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Abstract

We provide Schauder estimates for nonlinear Beltrami equations and lower bounds of the Jacobians for homeomorphic solutions. 
The results were announced in [1] but here we give detailed proofs.
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1. Introduction

This note is devoted to establish properties of solutions to the nonlinear Beltrami equation

∂zf (z) =H(z, ∂zf (z)) a.e. (1.1)
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under additional regularity of H. Recall that the strong ellipticity of the equation is encoded in the fact that the 
function H(z, ξ) is k-Lipschitz on its second variable where k < 1. In particular, W 1,2

loc -solutions to (1.1) are a priori
K-quasiregular, where K = 1+k

1−k
.

In the recent monograph [4] on quasiconformal mappings and elliptic equations it was established that the nonlinear 
Beltrami equation governs effectively all nonlinear planar elliptic systems. The nonlinear equation was introduced 
by Bojarski and Iwaniec in [6,8,14] and its basic Lp-properties were obtained in [5]. On the other hand, to study 
oscillating properties of sequences of gradients of Sobolev mappings in [10,12], it was vital to associate to them a 
corresponding nonlinear Beltrami equation.

The nonlinear Beltrami equation shares the existence properties of homeomorphic solutions with the linear one [4]
but, for example, the uniqueness fails in general as proved in [2]. In [1] it was proved that the set of homeomorphic 
solutions forms an embedded submanifold of W 1,2

loc (C, C) and that under regularity assumptions the manifold of 
homeomorphic solutions defines uniquely the structure function H. The arguments in [1] rely on regularity properties 
of the solutions, which we prove in the current paper.

Let us state our regularity assumptions on the structure function H(z, ξ). Throughout this paper we will assume 
Hölder continuity of H in the first variable and k-Lipschitz dependence on the second one. More precisely, given an 
open bounded set � ⊂C, we assume that

|H(z1, ξ1) −H(z2, ξ2)| � Hα(�) |z1 − z2|α
(|ξ1| + |ξ2|

) + k |ξ1 − ξ2|,
H(z1,0) ≡ 0,

(1.2)

for all z1, z2 ∈ �, ξ1, ξ2 ∈C, where α ∈ (0, 1) and k = K−1
K+1 < 1 are fixed.

In case H(z, ξ) is linear in the second variable, (1.2) implies that the derivatives of the solutions to Beltrami 
equation are α-Hölder continuous and that the Jacobian of a homeomorphic solution does not vanish (see [4,21]). Our 
goal is to see if similar regularity results hold in the general nonlinear case. We start with our second main question.

Theorem 1.1. Suppose the structure function H(z, ξ) satisfies (1.2). Then a homeomorphic solution f ∈ W
1,2
loc (�, C)

to the nonlinear Beltrami equation (1.1) has a positive Jacobian, J (z, f ) > 0.
Further, if � = C and f : C → C is a normalised solution, i.e., f (0) = 0 and f (1) = 1, then there is a lower 

bound for the Jacobian

inf
z∈D(0,R0)

J (z, f ) � c(H,R0) > 0, 0 < R0 < ∞.

Besides of intrinsic interest, the non-vanishing of the Jacobian is, e.g., a key property needed in the study of 
manifolds of quasiconformal maps in [1]. In the linear case the statement can be shown by the representation theorem 
of the quasiregular maps (e.g., [21, Theorems II.5.2 and II.5.47]) or by using the Schauder estimates for the inverse 
(e.g., proof of [7, Proposition 5.1]), i.e., showing that also f −1 solves a Beltrami equation with Hölder continuous 
coefficients and hence the inverse is locally Hölder continuous, too. In the nonlinear case it is much harder to establish 
a suitable equation for the inverse. If we denote g = f −1 then g satisfies the nonlinear Beltrami equation

∂ωg(ω) = − 1

J (z, f )
H

(
g(ω), J (z, f ) ∂ωg(ω)

)
, ω = f (z) a.e.,

which would have Hölder continuous coefficients if we a priori knew that the Jacobian J (z, f ) has a positive lower 
bound.

In Section 3 we show that it is also possible to recover a nonlinear equation (that satisfies (1.2)) for g, giving us the 
required regularity to be able to conclude that the Jacobian must be positive everywhere.

Next we turn to the regularity of the gradient. Nowadays the term Schauder estimates refers to various types of 
Hölder regularity results in the theory of PDEs. Juliusz Schauder pioneered these topics in [22,23]. His papers deal 
mostly with linear, quasilinear and nonlinear elliptic equations of second order. The importance of his ideas (freez-
ing the equation, i.e., viewing equations with Hölder regular coefficients locally as perturbations of equations with 
constant coefficients) is reflected in an enormous number of applications and generalisations. These ideas were suc-
cessfully used to deal with quasilinear equations in [18] and the nonlinear divergence equations with C1-dependence 
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on the gradient variable [13, Chapter 6], see also [17] for recent developments. Notice that quasilinear elliptic equa-
tions relate to the nonlinear Beltrami equation through the two dimensional Hodge operator [4], though the relation to 
the regularity of H is not clear.

Schauder estimates for general nonlinear structure functions H(z, ξ), which are only Lipschitz in the gradient 
variable ξ and Hölder continuous in z form an important step in proving Theorem 1.1. The required estimates do not 
seem to appear in literature in this generality, and therefore we give a quasiregular proof for the Schauder estimates 
in this setting. A different quasiregular approach of Schauder estimates for linear and quasilinear Beltrami equations 
is considered in [4, Chapter 15].

Theorem 1.2. Assuming (1.2), suppose f ∈ W
1,2
loc (�, C) is a solution to the nonlinear Beltrami equation

∂zf (z) =H(z, ∂zf (z)) a.e. in �.

Then f ∈ C
1,γ

loc (�, C), where γ = α, if α < 1
K

; otherwise one can take any γ < 1
K

. Moreover, we have a norm bound, 
when D(ω, 2R) � �,

‖Dzf ‖Cγ (D(ω,R)) � c(K,α,γ,ω,R,Hα(�))‖Dzf ‖L2(D(ω,2R)). (1.3)

Let us emphasise that there is a restriction γ < 1
K

on the Hölder exponent. This restriction already occurs at the 
level of the autonomous equation

∂zf (z) =H(∂zf (z)) a.e.,

for which we prove the C
1, 1

K

loc -regularity of solutions in Corollary 2.3. We do not know whether the bound γ < 1
K

of 
Theorem 1.2 is sharp, but the example

f0 : C→C, f0(z) = z2|z| 3
2K+1 −1

shows that we must at least have the bound γ � 3
2K+1 , as the function f0 solves an autonomous equation with 

ellipticity constant k = K−1
K+1 . This surprisingly shows that the optimal Hölder exponent in Theorem 1.2 depends not 

only on α, but on the ellipticity constant of H as well. In particular one cannot always take γ = α, contrary to the case 
where H(z, ξ) is linear in ξ . We leave it as an interesting open problem to determine the optimal Hölder exponent in 
terms of K .

The restriction γ < 1
K

is not needed if in addition to (1.2), the structure function H is assumed to be C1 in the 
gradient variable as well. This will follow from the fact that for a C1-regular autonomous equation, the solutions will 
be shown to be in C1,β

loc (�, C) for every 0 < β < 1. The estimate on the C1,β

loc (�, C)-norm is locally uniform in the 
L2-norm, but the dependence is not linear (as it is in (1.3)).

Theorem 1.3. Let f ∈ W
1,2
loc (�, C) be a solution to the nonlinear Beltrami equation (1.1), where we assume in addition 

that ξ 	→H(z, ξ) ∈ C1(C, C). Then f ∈ C
1,α
loc (�, C) with α as in (1.2).

We will first study the autonomous case (Section 2.1) and then in the spirit of Schauder’s estimates tackle the 
general case by perturbation. The proof of Theorem 1.2 will be given in Section 2.3 and Theorem 1.3 is considered in 
Section 2.4.

2. Schauder-type estimates

2.1. Autonomous equation and integral estimates

We start with an auxiliary result for the nonlinear Beltrami equation with constant coefficients (see [24,10,11]). 
In this case H depends only on the gradient variable, and the requirement (1.2) reduces to H(0) = 0 with |H(ξ1) −
H(ξ2)| � k|ξ1 − ξ2|.
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Proposition 2.1. Let F ∈ W
1,2
loc (�, C) be a solution to the autonomous nonlinear Beltrami equation

∂zF (z) =H(∂zF (z)) for a.e. z ∈ �. (2.1)

Then the directional derivatives of F are K-quasiregular, K = 1+k
1−k

.

Proof. Let h > 0. The difference quotients

Fh(z) := F(z + he) − F(z)

h
, |e| = 1

are K-quasiregular. Indeed, by (2.1),

|∂zFh(z)| =
∣∣∣∣H(∂zF (z + he)) −H(∂zF (z))

h

∣∣∣∣
� k

|∂zF (z + he) − ∂zF (z)|
|h| = k |∂zFh(z)|.

(2.2)

Now, we have a Caccioppoli estimate for Fh, see e.g. [4, Theorem 5.4.2]. For ρ < R and any constant cˆ

Dρ

|DzFh|2 � c(K)

(R − ρ)2

ˆ

DR

|Fh − c|2, (2.3)

where we denote Dr = D(z0, r). Thus c(K) 
ffl
DR

(|DzF |2 + 1) is a uniform bound for the derivative of the difference 

quotient for the range 0 < ρ � R
2 . Hence the directional derivative ∂eF ∈ W

1,2
loc (�, C). Further, letting h → 0 in (2.2), 

we see that ∂eF (z) is K-quasiregular. �
Therefore, the directional derivatives inherit the properties of K-quasiregular maps. We will need few integral 

estimates that we prove next.

Proposition 2.2. Let g ∈ W
1,2
loc (�, C) be K-quasiregular. Then

‖g‖L2(D(z0,ρ)) � c(K)
ρ

R
‖g‖L2(D(z0,R)) (2.4)

for D(z0, ρ) ⊂ D(z0, R) ⊂ �. Moreover, g is locally 1
K

-Hölder continuous; formulated in a Morrey–Campanato form 
we have

‖g − gρ‖L2(D(z0,ρ)) � c(K)
( ρ

R

)1+ 1
K ‖g − gR‖L2(D(z0,R)) (2.5)

for any ρ � R, where gr = ffl
D(z0,r)

g.

Proof. We start by proving (2.4). Denote Dr = D(z0, r). Since g is K-quasiregular, we have by Caccioppoli’s in-
equality and weak reverse Hölder inequalities, [4, Theorem 5.4.2], [15, Proposition 1], for 2K

K+1 < p < 2K
K−1 ,

‖Dzg‖Lp(DR/2) � c0(p,K,R)‖g‖Lp(D2R/3) � c1(p,K,R)‖g‖L2(DR). (2.6)

Now, for ρ � R
2 ,

‖g‖L2(Dρ) �
√

π ρ sup
Dρ

|g| � c(R)ρ ‖g‖W 1,p(DR/2)

� c(p,K,R)ρ ‖g‖L2(DR),

where the second to the last inequality follows from the Sobolev embedding, by Morrey’s inequality (choose p > 2), 
and the last one from Caccioppoli’s inequality (2.6). By rescaling, one sees that c(p, K, R) = c(p, K)R−1. Hence

‖g‖L2(D(z0,ρ)) � c(p,K)
ρ ‖g‖L2(D(z0,R)),

R
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for ρ �R (above we show the estimate for ρ � R
2 and it is trivial for R2 < ρ � R with possibly a bigger constant). We 

have thus proved the integral estimate (2.4).

The 1
K

-Hölder inequality of K-quasiregular maps goes back to Morrey ([20], [4, Section 3.10]). For later purposes 
we recall how this follows using the isoperimetric inequality for Sobolev spaces, in combination with Caccioppoli’s
and Poincaré’s inequalities, and the pointwise equivalence of |Dzg(z)|2 and J (z, g) for quasiregular maps.

We have, by the isoperimetric inequality in the Sobolev space and the Hölder inequality, that the mapping ψ(r) :=
r− 2

K

´
Dr

J (z, g) dA(z) is non-decreasing. Indeed,

ˆ

Dr

J (z, g) dA(z) � 1

4π

⎛
⎜⎝ ˆ

∂Dr

|Dzg(z)|dz

⎞
⎟⎠

2

� K|∂Dr |
4π

ˆ

∂Dr

|Dzg(z)|2
K

dz � Kr

2

ˆ

∂Dr

J (z, g) dz,

for Dr ⊂ �, where the last inequality follows by quasiregularity (i.e., |Dzg(z)|2 � KJ(z, g) almost everywhere). In 
other words ψ ′(r) � 0.

The non-decreasing of ψ implies thatˆ

Dρ

J (z, g) dA(z) �
( ρ

R

)2/K
ˆ

DR

J (z, g) dA(z), (2.7)

for Dρ ⊂DR ⊂ �. Now, by Poincaré’s inequality, K-quasiregularity, (2.7), and Caccioppoli’s inequality (2.3), we get 
for ρ � R

2

‖g − gρ‖L2(Dρ) � c ρ‖Dzg‖L2(Dρ) � c ρ

⎛
⎜⎝ˆ

Dρ

K J (z, g)

⎞
⎟⎠

1
2

� c(K)
ρ1+1/K

R1/K

⎛
⎜⎝ ˆ

DR/2

J (z, g)

⎞
⎟⎠

1
2

� c(K)
ρ1+1/K

R1/K
‖Dzg‖L2(DR/2)

� c(K)
( ρ

R

)1+1/K ‖g − gR‖L2(DR).

(2.8)

For R2 < ρ � R, (2.8) holds trivially. Hence we have shown the integral estimate (2.5). �
The formulation of Proposition 2.2 will be particularly useful when applied to the derivatives DzF of a solution to 

the autonomous equation (2.1).

Corollary 2.3. If F is as in Proposition 2.1, the derivative DzF is locally 1
K

-Hölder continuous. Moreover,

(1) for every D(z0, ρ) ⊂ D(z0, R) ⊂ �,

‖DzF‖L2(D(z0,ρ)) � c(K)
ρ

R
‖DzF‖L2(D(z0,R)).

(2) For every D(z0, ρ) ⊂D(z0, R) ⊂ �,

‖DzF − (DzF )ρ‖L2(D(z0,ρ)) � c(K)
( ρ

R

)1+ 1
K ‖DzF − (DzF )R‖L2(D(z0,R))

where (DzF )r = ffl
D(z0,r)

DzF .
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Proof. Since for the Hilbert–Schmidt norm ‖DzF(z)‖2 = ∑2
j=1 |DzF(z) ej |2 = ∑2

j=1 |∂ej
F (z)|2 and ‖DzF −

(DzF )r‖2 = ∑2
j=1 |∂ej

F − (∂ej
F )r |2, the corollary follows from Proposition 2.2 and the quasiregularity of the direc-

tional derivatives. �
2.2. Riemann–Hilbert problem

The solution of the Riemann–Hilbert problem is well-known; the proof is based on the local versions of the classical 
Cauchy transform and the Beurling transform, see, for instance, [12, Proposition 2]. We sketch a proof for the reader’s 
convenience in the situation we need in this paper.

Proposition 2.4. Let f be a solution to the nonlinear Beltrami equation (1.1), and suppose D(z0, R) � �. Then there 
exists a unique solution F ∈ W 1,2(D(z0, R), C) to the following local Riemann–Hilbert problem for the autonomous 
equation{

∂zF (z) =H(z0, ∂zF (z)) a.e. z ∈ D(z0,R),

Re(f − F) = 0 on ∂D(z0,R).
(2.9)

Furthermore, ‖∂zF − ∂zf ‖L2(DR) = ‖∂zF − ∂zf ‖L2(DR) and we have a norm bound

‖DzF‖L2(DR) � 2K‖Dzf ‖L2(DR). (2.10)

Proof. The local Cauchy transform in DR := D(z0, R) is obtained from the Cauchy transform on the unit disk by 
conformal change of variables (see, e.g., [7, Section 6.1]). Namely, the local Cauchy transform of ψ ∈ L2(DR, C) is 
given by

(CDR
ψ)(z) = 1

π

ˆ

�

(
ψ(ζ )

z − ζ
− (z − z0)ψ(ζ )

R2 − (z − z0) (ζ − z0)

)
dA(ζ )

and the local Beurling transform by SDR
ψ = ∂z CDR

ψ , that is,

(SDR
ψ)(z) = − 1

π

ˆ

�

(
ψ(ζ )

(z − ζ )2
+ R2 ψ(ζ )

(R2 − (z − z0) (ζ − z0))2

)
dA(ζ ).

By definition, ∂z CDR
ψ = SDR

ψ , ∂z CDR
ψ = ψ , and CDR

ψ ∈ W 1,2(DR, C) ∩ C(DR, C).
As the integrand in the definition of CDR

is purely imaginary on the boundary, Re(CDR
ψ) = 0 on ∂DR , i.e., 

Re(CDR
ψ) is in the closure of C∞

0 (DR, C) in W 1,2(DR, C). Now, we can use Green’s theorem, [4, Theorem 2.9.1], to 
see that the local Beurling transform SDR

: L2(DR, C) → L2(DR, C) is an isometry, that is,

‖SDR
ψ‖L2(DR) = ‖ψ‖L2(DR).

Indeed, let CDR
ψ = u + iv,

ˆ

DR

|SDR
ψ |2 − |ψ |2 =

ˆ

DR

|∂z CDR
ψ |2 − |∂z CDR

ψ |2 =
ˆ

DR

J (z,CDR
ψ)

= − i

2

ˆ

DR

∂zu ∂zv − ∂zu ∂zv = 1

4

ˆ

∂DR

u(∂zv + ∂zv) = 0,

as u = 0 on ∂DR .
The isometry of SDR

implies that the Beltrami operator

(Bψ)(z) =H(z0, (SDR
ψ)(z) + ∂zf (z)) −H(z, ∂zf (z))

is a contraction on L2(DR, C);
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‖Bψ1 −Bψ2‖L2(DR) = ‖H(z0, (SDR
ψ1)(z) + ∂zf (z)) −H(z0, (SDR

ψ2)(z) + ∂zf (z))‖L2(DR)

� k‖ψ1 − ψ2‖L2(DR).

Thus there is a unique fixed point  ∈ L2(DR, C) of B.
We define F = CDR

 +f , since then ∂zF =  +∂zf , ∂zF = SDR
 +∂zf , and ReF = Re(CDR

) +Ref = Ref

(i.e., F solves (2.9)).
The L2-estimate is obtained in the similar fashion. For the fixed point 

‖‖L2(DR) = ‖B‖L2(DR)

= ‖H(z0, (SDR
)(z) + ∂zf (z)) −H(z, ∂zf (z))‖L2(DR)

� k‖SDR
‖L2(DR) + 2k‖∂zf ‖L2(DR).

Now, using that SDR
is also an isometry,

‖DzF‖L2(DR) � ‖‖L2(DR) + ‖SDR
‖L2(DR) + 2‖Dzf ‖L2(DR)

�
(

4k

1 − k
+ 2

)
‖Dzf ‖L2(DR) = 2

1 + k

1 − k
‖Dzf ‖L2(DR). �

2.3. Schauder estimates by freezing the coefficients

We will use the Morrey–Campanato integral characterisation of Hölder continuous functions [13, Chapter III, 
Theorem 1.2, p. 70, and Theorem 1.3, p. 72]. Namely, the integral estimate

‖g − gρ‖L2(D(z0,ρ)) � M ρ1+γ (2.11)

for z0 ∈ � and every ρ � min{R0, dist(z0, ∂�)} (for some R0) gives the local γ -Hölder continuity of g in �. More-
over, for �̃� �, (2.11) implies the Hölder seminorm bound

[g]Cγ (�̃) � c(γ, �̃)M (2.12)

and the L∞-bound

‖g‖L∞(�̃) � c(γ, �̃)
(
M diam(�)γ + ‖g‖L2(�)

)
, (2.13)

see the proofs of Proposition 1.2 and Theorem 1.2 on pages 68–72 of [13, Chapter III].
Next, we apply the ideas of freezing the coefficients to get few basic estimates for solutions to (1.1). We start with 

the following

Lemma 2.5. Suppose H satisfies the conditions (1.2) and let f ∈ W
1,2
loc (�, C) be a solution to

∂zf (z) =H(z, ∂zf (z)) a.e. in �.

If D(z0, R) � �, then for each 0 < ρ � R we have

‖Dzf − (Dzf )ρ‖L2(Dρ) � c(K)
( ρ

R

)1+ 1
K ‖Dzf − (Dzf )R‖L2(DR)

+ c(K)Hα(�)Rα ‖∂zf ‖L2(DR),

where Dr =D(z0, r).

Proof. The required estimate to prove is then the same as in Corollary 2.3, claim (2), up to the correction term 
c(K) Hα(�)Rα‖∂zf ‖L2(DR). This will arise from a comparison of f and the solution F to an autonomous equation, 
the local Riemann–Hilbert problem{

∂zF (z) =H(z0, ∂zF (z)) a.e. z ∈DR,

Re(f − F) = 0 on ∂DR.
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The existence of F follows by Proposition 2.4. Furthermore, by (1.2),

‖∂z(f − F)‖L2(DR) � ‖H(z, ∂zf ) −H(z0, ∂zf )‖L2(DR) + ‖H(z0, ∂zf ) −H(z0, ∂zF )‖L2(DR)

� 2 Hα(�)Rα ‖∂zf ‖L2(DR) + k ‖∂z(f − F)‖L2(DR).

Since the Beurling transform SDR
of the disk DR is an isometry L2(DR) → L2(DR), we end up with

‖Dzf − DzF‖L2(DR) �
4

1 − k
Hα(�)Rα ‖∂zf ‖L2(DR). (2.14)

On the other hand, Corollary 2.3 (2) gives

‖Dzf − (Dzf )ρ‖L2(Dρ) � ‖DzF − (DzF )ρ‖L2(Dρ) + 2‖Dzf − DzF‖L2(Dρ)

� c(K)
( ρ

R

)1+ 1
K ‖DzF − (DzF )R‖L2(DR) + 2‖Dzf − DzF‖L2(DR)

� c(K)
( ρ

R

)1+ 1
K ‖Dzf − (Dzf )R‖L2(DR) + (2 c(K) + 2)‖Dzf − DzF‖L2(DR),

ρ � R. Combining this with (2.14) gives the claim. �
If we use claim (1) of Corollary 2.3, instead of claim (2), the same argument as above leads to

Lemma 2.6. Suppose H satisfies the conditions (1.2). If f ∈ W
1,2
loc (�, C) and D(z0, R) are as in Lemma 2.5, then for 

each 0 < ρ � R,

‖Dzf ‖L2(Dρ) � c(K)
ρ

R
‖Dzf ‖L2(DR) + c(K)Hα(�)Rα ‖∂zf ‖L2(DR).

Since the W 1,2
loc -solutions to (1.1) are a priori K-quasiregular, we have the Caccioppoli estimates (2.3) at our use. 

These are convenient to present in the following form.

Lemma 2.7. Suppose H and f ∈ W
1,2
loc (�, C) are as in Lemma 2.5. Let D(z0, R) ⊂ �′′ � �′ � �. If f ∈ Cβ(�′, C)

for some 0 < β � 1, then

‖Dzf ‖L2(D(z0,R)) � c(K,�′,�′′) [f ]Cβ(�′) R
β.

Lastly, let us recall

Lemma 2.8 (Lemma 2.1, p. 86, in [13, Chapter III]). Let  be non-negative, non-decreasing function such that

(ρ)� a

[( ρ

R

)λ + σ

]
(R) + bRγ

for every 0 < ρ � R � R0, where a is non-negative constant and 0 < γ < λ. Then there exists σ0 = σ0(a, λ, γ ) such 
that, if σ < σ0,

(ρ)� c(a,λ, γ )
[( ρ

R

)γ

(R) + bργ
]

for all 0 < ρ � R �R0.

With these tools and estimates at our disposal we are ready for the Schauder estimates.

Proof of Theorem 1.2. Denote Dr =D(z0, r).

Step 1. Hölder continuity of f . We will show that f is actually locally β-Hölder continuous for every 0 < β < 1.
Namely, according to Lemma 2.6 we have

‖Dzf ‖L2(Dρ) � c0(K)
( ρ + Hα(�)Rα

)
‖Dzf ‖L2(DR),
R
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whenever 0 < ρ � R and DR = D(z0, R) ⊂ �. Applying Lemma 2.8 to (ρ) = ‖Dzf ‖L2(Dρ), with b = 0, λ = 1 and 
σ = Hα(�)Rα , we see that

‖Dzf ‖L2(Dρ) � c1(K)
( ρ

R

)1−ε ‖Dzf ‖L2(DR),

where 0 < ρ � R � min{R0, dist(z0, ∂�)}. Here R0 is small enough; how small R0 needs to be taken depends on 
c0(K), Hα(�) and ε > 0 but not on z0. Thus the same upper bound R0 works throughout the bounded domain �.

Combining with the Poincaré inequality gives

‖f − fρ‖L2(Dρ) � ρ ‖Dzf ‖L2(Dρ) � c1(K)ρ2−ε Rε−1 ‖Dzf ‖L2(DR),

for 0 < ρ � R � min{R0, dist(z0, ∂�)}.
Let D(ω, 4R) ⊂ �. Now, for D(z0, ρ) ⊂ D(ω, 2R),

‖f − fρ‖L2(Dρ) � c1(K)ρ2−ε min{R0,R}−β‖Dzf ‖L2(D(ω,3R)).

In view of (2.11) we see that f ∈ C
β

loc(D(ω, 2R), C) for every 0 < β < 1. The estimate (2.12) gives a bound for the 
local Hölder norm,

[f ]Cβ(D(ω,R)) � c2(K,β,R,Hα(�))‖Dzf ‖L2(D(ω,3R)). (2.15)

Step 2: Self-improving Morrey–Campanato estimate. Claim: Assume that 1 < α + β < 1 + 1
K

. Then Dzf ∈
C

α+β−1
loc (�, C).

Let �′′ � �′ � �. We first show the claim for β < 1, and start with estimates from Lemma 2.5,

‖Dzf − (Dzf )ρ‖L2(Dρ) � c0(K)
( ρ

R

)1+ 1
K ‖Dzf − (Dzf )R‖L2(DR)

+ c0(K)Hα(�)Rα ‖∂zf ‖L2(DR),

when D(z0, R) ⊂ �′′. Here, by the Caccioppoli estimate of Lemma 2.7

‖∂zf ‖L2(DR) � c1(K,�′,�′′) [f ]Cβ(�′) R
β, (2.16)

which by Step 1 is finite for every β < 1.
We will now apply Lemma 2.8 to the non-decreasing function (ρ) = ‖Dzf − (Dzf )ρ‖L2(Dρ) = infa∈C ‖Dzf −

a‖L2(Dρ) and the parameters λ = 1 + 1
K

, σ = 0 and b = Hα(�) [f ]Cβ(�′). We obtain that

‖Dzf − (Dzf )ρ‖L2(Dρ) � c2

( ρ

R

)α+β ‖Dzf − (Dzf )R‖L2(DR)

+ c2 ρα+β Hα(�) [f ]Cβ(�′)

(2.17)

whenever ρ � R.
In terms of the Morrey–Campanato estimate (2.11) in the set �′′, we see that Dzf ∈ C

α+β−1
loc (�′′, C), which is 

enough for our claim if α � 1/K . The norm estimate (1.3) follows from combining (2.12) with (2.15) and (2.17).
In case α < 1/K we need to continue to show that f ∈ C

1,α
loc (�, C). But what we have above proves that Dzf is 

locally bounded. Thus the bound in (2.16) remains finite for β = 1, and we can repeat the proof of (2.17) with β = 1. 
Accordingly, (2.11) and (2.12) give f ∈ C

1,α
loc (�, C), with norm bound

[Dzf ]Cα(D(ω,R)) � c(K,α,ω,R)

[
‖Dzf ‖L2(D(ω,2R)) + Hα(�)‖Dzf ‖L∞(D(ω,2R))

]
.

To estimate the L∞-norm in D(ω, 2R), we note that for D(z0, ρ) ⊂ D(ω, 5R
2 ) (2.17) holds with �′ = D(ω, 3R)

and thus once more by Morrey–Campanato norm estimate (2.11) (with (2.13))

‖Dzf ‖L∞(D(ω,2R)) � c(K,α,ω,R)

[
‖Dzf ‖L2(D(ω,3R)) + Hα(�) [f ]

Cβ′
(D(ω,3R))

]
,
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where β ′ < 1. It remains to combine with (2.15) to obtain

‖Dzf ‖Cγ (D(ω,R)) � c(K,α,γ,ω,R,Hα(�))‖Dzf ‖L2(D(ω,9R)),

and we have the norm bound (1.3) by rescaling. �
2.4. Schauder estimates with C1 gradient dependence

Proof of Theorem 1.3. As we see in Step 2 of the proof of Theorem 1.2, the restriction on Hölder continuity comes 
from the autonomous case. Hence it is enough to show that, when the dependence on the gradient is C1, we may 
improve the norm estimates in Corollary 2.3.

Proposition 2.9. Let F ∈ W
1,2
loc (�, C) be a solution to the autonomous nonlinear Beltrami equation (2.1), where in 

addition ξ 	→H(ξ) ∈ C1(C, C). Then, for every ε > 0 and D(z0, ρ) ⊂ D(z0, R) ⊂ �′′ � �′ � �,

‖DzF − (DzF )ρ‖L2(D(z0,ρ)) � c
( ρ

R

)2−ε ‖DzF − (DzF )R‖L2(D(z0,R))

where (DzF )r = ffl
D(z0,r)

DzF and the constant c depends on the parameters K , �′, �′′, ‖Df ‖L2(�′) and the modulus 
of continuity of Hξ and Hξ .

Proof. We know by Proposition 2.1 that ∂zF (z) ∈ W
1,2
loc (�, C). If we differentiate the autonomous equation ∂zF (z) =

H(∂zF (z)) with respect to z, we get for g = ∂zF that

gz =Hξ (g) ∂zg +Hξ (g) ∂zg, a.e. in �.

By isolating gz we obtain the R-linear Beltrami equation

gz = μ(g)gz + ν(g)gz (2.18)

with the coefficients

μ(g) = Hξ (g)

1 − |Hξ (g)|2 , ν(g) = Hξ (g)Hξ (g)

1 − |Hξ (g)|2 , (2.19)

satisfying

|μ(g)| + |ν(g)| � k < 1,

by k-Lipschitz property of H, |DξH(g)| = |Hξ (g)| + |Hξ (g)| � k < 1.

There are now two natural ways to proceed. First, we have a quick way to deduce the W 2,p

loc -regularity of the solution 
F for all 1 < p < ∞ using (2.18) and the fact that the coefficients μ, ν are continuous. In fact, following the path 
from [5,9,16], for any linear Beltrami equation with coefficients in VMO all W 1,2

loc -solutions are actually W 1,p

loc -regular 
for every 1 < p < ∞. However, these arguments rely on applying Fredholm theory to the Beltrami equation and as 
such do not yield the explicit bounds we need in a straightforward manner.

Another approach is to use the Morrey–Campanato method to improve the norm estimates in Corollary 2.3. Here we 
split g = G + (g − G), where G solves the Riemann–Hilbert problem of a linear equation with constant coefficients,{

Gz = μ((∂zF )R)Gz + ν((∂zF )R)Gz a.e. z ∈DR =D(z1,R),

Re(g − G) = 0 on ∂DR.
(2.20)

Above z1 ∈ �′′, R � dist(z1, ∂�′′), and (∂zF )R = ffl
DR

∂zF . Similarly, as we already saw in Proposition 2.4, the 
existence of G is based on the local versions of the classical Cauchy transform and the Beurling transform. Moreover,

‖DzG‖L2(DR) � c(K)‖Dzg‖L2(DR). (2.21)

For a solution G to (2.20), we have DzG ∈ W
1,2
loc (DR, C) and the directional derivatives ∂eG(z), |e| = 1, are 

K-quasiregular in DR , by using difference quotients Gh as in the proof of Proposition 2.1.
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We will show that, for every ε > 0,

‖D2
zF‖L2(Dρ) � c(K, ε)

( ρ

R

)1−ε ‖D2
zF‖L2(DR), (2.22)

whenever ρ � R � min{R0, dist(z1, ∂�′′)}, where R0 will be chosen later.
As ∂zF =H(∂zF ) and DξH(ξ) is uniformly bounded by k, it is enough to show the claim for g = ∂zF , that is,

‖Dzg‖L2(Dρ) � c(K, ε)
( ρ

R

)1−ε ‖Dzg‖L2(DR), (2.23)

whenever ρ � R � min{R0, dist(z1, ∂�′′)}.
Since ‖DzG(z)‖2 = ∑2

j=1 |DzG(z) ej |2 = ∑2
j=1 |∂ej

G(z)|2 for the Hilbert–Schmidt norm, the quasiregularity of 
∂eG with integral estimate (2.4) of Proposition 2.2 implies

‖DzG‖L2(Dρ) � c(K)
ρ

R
‖DzG‖L2(DR).

Hence, by triangle inequality,

‖Dzg‖L2(Dρ) � ‖DzG‖L2(Dρ) + ‖Dz(g − G)‖L2(Dρ)

� c(K)
ρ

R
‖DzG‖L2(DR) + ‖Dz(g − G)‖L2(DR)

� c(K)
ρ

R
‖Dzg‖L2(DR) + ‖Dz(g − G)‖L2(DR),

(2.24)

where the last estimate follows by (2.21). Thus we need to estimate Dz(g − G). Below we use the uniform bound 
|μ| + |ν| � k to get that

‖(g − G)z‖L2(DR) = ‖μ(g)gz + ν(g)gz − μ((∂zF )R)Gz − ν((∂zF )R)Gz‖L2(DR)

� ‖μ((∂zF )R) (g − G)z + ν((∂zF )R) (g − G)z‖L2(DR)

+ ‖(μ(g) − μ((∂zF )R))gz + (ν(g) − ν((∂zF )R)) gz‖L2(DR)

� k ‖(g − G)z‖L2(DR)

+ sup
z∈DR

[|(μ(g) − μ((∂zF )R)| + |ν(g) − ν((∂zF )R))|]‖gz‖L2(DR).

Hence, combining with (2.24) and using that the local Beurling transform of the disk is an isometry to absorb the 
term k ‖(g − G)z‖L2(DR) into the left hand side, we have

‖Dzg‖L2(Dρ) � c(K)
( ρ

R
+ σ(R)

)
‖Dzg‖L2(DR),

where

σ(R) := sup
z∈DR

[|(μ(∂zF ) − μ((∂zF )R)| + |ν(∂zF ) − ν((∂zF )R))|].
Now, (2.23) follows by Lemma 2.8 if we can make σ(R) as small as we wish by reducing R. This is actually 

possible since ∂zF is 1
K

-Hölder continuous by Corollary 2.3 and μ and ν are continuous by the fact that H is C1. 
Here R0 has to be so small that σ(R0) � σ0(K, ε), where the constant σ0 is from Lemma 2.8. Moreover, we can 
choose R0 uniformly in the compact set �′′.

We collect now the dependence of R0 on the parameters. From the proof we see that it depends on the modulus 
of continuity of Hξ and Hξ on the set ∂zF (�′′) as well as the numbers [∂zF ]C1/K (�′′), K and ε. It is also possible, 
via Corollary 2.3 and the Morrey–Campanato norm estimates (2.11)–(2.13), to bound the size of the set ∂zF (�′′) and 
[∂zF ]C1/K (�′′) in terms of c(K, �′, �′′) ‖DF‖L2(�′).

Using Poincaré’s inequality on the left hand side of (2.22) and Caccioppoli’s inequality on the right we deduce, for 
ρ � R � min{R0, dist(z1, ∂�′′)},

‖DzF − (DzF )ρ‖L2(Dρ) � c(K, ε)
( ρ )1+(1−ε) ‖DzF − (DzF )R‖L2(DR). (2.25)
R
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As we have seen before, because of the Caccioppoli estimate, we have (2.25) first for ρ � R
2 . The full range ρ � R

holds with possible bigger constant.
The claim follows by covering D(z0, R) with disks of radius R0. �
The (nonlinear) L2-norm dependence of R0 is reflected in the final Cα-norm estimate of Dzf , that is, we do not 

have linear dependence on the L2-norm as in Theorem 1.2 (i.e., (1.3)). �
3. Positivity of the Jacobian

In this section we prove Theorem 1.1. The proof is based on Schauder estimates and the following lemma that 
establishes a nonlinear equation for the inverses of our solutions. After the proof of Theorem 1.1 we will give a simple 
and separate argument for the autonomous case.

Lemma 3.1. Let f be a homeomorphic solution to the nonlinear Beltrami equation

∂zf (z) =H(z, ∂zf (z)) a.e. in �,

where H is measurable in z and k-Lipschitz, k = K−1
K+1 , in the gradient variable with the normalisation H(z, 0) ≡ 0. 

Then g = f −1 solves a nonlinear equation of the form

∂ωg(ω) =H∗(g(ω), ∂ωg(ω)) a.e. in f (�).

Moreover,

• the function H∗ does not depend on the solution f .

• H∗(g, ξ) is measurable in the variable g and K
3−1

K3+1
-Lipschitz in ξ with the normalisation H∗(g, 0) ≡ 0.

• If H satisfies the Hölder condition (1.2), then so does H∗.

Remark 3.2. Note that the assumption that H(z, ξ) is measurable in z and k-Lipschitz in ξ implies the natural condi-
tion of Lusin-measurability of H, as defined in [4, Section 7.6]. Nevertheless, these assumptions are only in place to 
make the statement of Lemma 3.1 more general as throughout the rest of the paper we assume the condition (1.2), in 
particular that H is continuous in (z, ξ).

Proof of Lemma 3.1. Note first that since f is quasiconformal, we have Jf (z) > 0 almost everywhere in �. The 
identities

−gω

Jg

= fz and
gω

Jg

= fz at ω = f (z)

are also valid almost everywhere. Thus we find that g satisfies the nonlinear equation

−gω

|gω|2 − |gω|2 =H
(

g,
gω

|gω|2 − |gω|2
)

(3.1)

almost everywhere in f (�). We first want to show that gω can be uniquely solved from this equation in terms of g
and gω. To do this we consider (3.1) as an equation of three complex variables:

−ζ

|ξ |2 − |ζ |2 =H
(

g,
ξ

|ξ |2 − |ζ |2
)

, (3.2)

where the variables are as follows:⎧⎪⎨
⎪⎩

ξ, an arbitrary complex number,

ζ, a complex variable that satisfies |ζ | � k|ξ |,
g, a complex variable that belongs to the set �.

(3.3)
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We now solve (3.2) in terms of ζ . Fix the variables g and ξ and consider the function

Fξ (ζ ) = −ζ

|ξ |2 − |ζ |2 .

Then it is easy to check that Fξ is bijective from the disk |ζ | � k|ξ | onto another disk. We can hence make a substitu-
tion ζ = F−1

ξ (ζ ′) into (3.2). This transforms the equation into

ζ ′ =H
(

g,
ξ

|ξ |2 − |F−1
ξ (ζ ′)|2

)
. (3.4)

Now, it happens that the map

ζ ′ 	→ ξ

|ξ |2 − |F−1
ξ (ζ ′)|2

is actually a contraction. This can be seen by differentiation, for example. Thus by the k-Lipschitz property of H, the 
expression on the right hand side of (3.4) is a contraction in terms of ζ ′. Hence it has a unique fixed point, which 
shows that the equation can be uniquely solved for ζ ′. Thus ζ can also be uniquely solved from (3.2) in terms of g
and ξ in the disk |ζ | � k|ξ |, and we can use this as the definition of H∗,

ζ =H∗(g, ξ).

We would also like to make sure that the function H∗ is measurable in the variable g. This follows from the fact 
that H∗(g, ξ) can be obtained by iterating the right hand side of (3.4). At each point of the iteration the function 
is measurable due to Lusin-measurability of H and [4, Theorem 7.7.2], and the limit function is measurable as a 
pointwise limit of measurable functions.

We now show that H∗ is K
3−1

K3+1
-Lipschitz in the variable ξ . To do this we have to show that if

ζj =H∗(g, ξj ) j = 1,2,

then |ζ1 − ζ2| � K3−1
K3+1

|ξ1 − ξ2|. By definition ζj solves the equation (3.2) for g and ξj . Thus∣∣∣∣ ζ2

|ξ2|2 − |ζ2|2 − ζ1

|ξ1|2 − |ζ1|2
∣∣∣∣ � K − 1

K + 1

∣∣∣∣ ξ2

|ξ2|2 − |ζ2|2 − ξ1

|ξ1|2 − |ζ1|2
∣∣∣∣ . (3.5)

Define two linear maps by Ajz = ξj z + ζj z. We say that a linear map A is K-quasiregular if

|A|2 � K detA.

Then the maps Aj are K-quasiregular by the property |ζj | � K−1
K+1 |ξj |. By (3.5), the map A−1

2 − A−1
1 is also 

K-quasiregular. We can now use the identity

A1 − A2 = A2 (A−1
2 − A−1

1 )A1

to find that the linear map A1 − A2 is K3-quasiregular. This gives that |ζ1 − ζ2| � K3−1
K3+1

|ξ1 − ξ2| as wanted.

It remains to prove that the condition (1.2) is also inherited by H∗. We must prove that there exists a constant C
such that if

ζj =H∗(gj , ξ) j = 1,2,

then |ζ1 − ζ2| � C|g1 − g2|α|ξ |. By using the property (1.2) of H, we obtain that∣∣∣∣ ζ1

|ξ |2 − |ζ1|2 − ζ2

|ξ |2 − |ζ2|2
∣∣∣∣� Hα(�) |g1 − g2|α

( |ξ |
|ξ |2 − |ζ1|2 + |ξ |

|ξ |2 − |ζ2|2
)

+ K − 1

K + 1

∣∣∣∣ ξ

|ξ |2 − |ζ1|2 − ξ

|ξ |2 − |ζ2|2
∣∣∣∣ .
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Denote R = |ξ |2−|ζ1|2
|ξ |2−|ζ2|2 . Then the above estimate can also be written as

|ζ1 − R ζ2| − k|ξ ||1 − R|� Hα(�) |g1 − g2|α|ξ |(1 + R).

Note that R is bounded from above by a constant, thus the right hand side is already of the desired form. It remains to 
prove the elementary inequality

|ζ1 − R ζ2| − k|ξ ||1 − R|� c |ζ1 − ζ2|
for a sufficiently small constant c > 0. This will follow once we prove the two estimates

|ζ1 − R ζ2| � c |ζ1 − ζ2| (3.6)

and

|ζ1 − R ζ2| � |ξ ||1 − R|. (3.7)

To prove (3.6), it is enough to do the following estimate:

|ζ1 − R ζ2| =
∣∣∣∣∣ (ζ1 − ζ2)|ξ |2 + ζ1ζ2(ζ1 − ζ2)

|ξ |2 − |ζ2|2
∣∣∣∣∣ � |ξ |2 − k2|ξ |2

|ξ |2 |ζ1 − ζ2|.

For (3.7), it suffices to estimate:

|ζ1 − R ζ2| � ||ζ1| − R|ζ2||

= ||ζ1| − |ζ2|| |ξ |2 + |ζ1||ζ2|
|ξ |2 − |ζ2|2

� ||ζ1| − |ζ2|| |ξ |(|ζ1| + |ζ2|)
|ξ |2 − |ζ2|2

= |ξ ||1 − R|.
This finishes the proof of Lemma 3.1. �
Proof of Theorem 1.1. Combining Theorem 1.2 and Lemma 3.1, we find that both f and g = f −1 are C1,α

loc -regular. 
Outside of the set where Jf (z) = 0 we have the identity

Jf (z)Jg(f (z)) = 1.

Both of the Jacobians are continuous functions, which means that this identity must hold everywhere. This shows that 
Jf (z) > 0 everywhere.

To complete the proof of Theorem 1.1 we next use a compactness argument to show that for a normalised homeo-
morphic solution f to (1.1) there is a lower bound for the Jacobian in each disk D(0, R0), that is,

inf
z∈D(0,R0)

J (z, f ) � c(H,R0) > 0.

We also collect the dependence of the constant c(H, R0) on H and R0. It will be shown that c(H, R0) only depends 
on the numbers R0, k, α, Hα(D(0, 8R0)).

Let us make a counter-assumption: there exist zn ∈ D(0, R0) and normalised homeomorphic solutions fn to the 
nonlinear Beltrami equations of the type (1.1) with the regularity (1.2), i.e.,

∂zfn(z) =Hn(z, ∂zfn(z)) a.e.,

such that

J (zn, fn)�
1

n
.

In particular, the Hölder constant Hα(D(0, 8R0)), the Hölder exponent α and the ellipticity k are assumed to be the 
same for each Hn.
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Now, we may pass to the subsequence, if necessary, to assume that zn → z∞ ∈D(0,R0) and as a normalised family 
of quasiconformal maps fn → f∞ locally uniformly, where f∞ is quasiconformal and f∞(0) = 0, f∞(1) = 1 (see 
the Montel-type theorem [4, Theorem 3.9.4]). Moreover, by the Schauder norm estimate (1.3), for any R > 0,

‖Dzfn‖Cγ (D(0,R)) � c ‖Dzfn‖L2(D(0,2R)) � c ‖fn‖L2(D(0,4R))

� c ηK(4R),
(3.8)

where c = c(H, R) and the second to the last inequality follows by Caccioppoli’s inequality and the last one from 
the ηK -quasisymmetry of quasiconformal maps. Hence derivatives Dzfn have a local uniform Cγ -upper bound and 
mappings fn converge to f∞ in C1,γ

loc (C, C), too. Thus J (z∞, f∞) = 0.
We will show that the inconsistency follows from the fact that f∞ also solves a nonlinear Beltrami equation

∂zf∞(z) =H∞(z, ∂zf∞(z)) a.e., (3.9)

where H∞ will satisfy the assumption (1.2).
We first find H∞ as a limit of the structure functions Hn. Namely, Hn is locally uniformly equicontinuous on 

C ×C. Indeed, given open, bounded sets �′, �′′ and (zi, ξi) ∈ �′ × �′′, by assumption

|Hn(z1, ξ1) −Hn(z2, ξ2)| � Hα(�′)|z1 − z2|α(|ξ1| + |ξ2|) + k |ξ1 − ξ2|.
This gives the equicontinuity. Thus passing to a subsequence it converges to a function H∞ locally uniformly, where 
H∞ has the same regularity and norm bounds (1.2) as the family Hn.

As H∞ has the required regularity properties, we must only show that f∞ satisfies equation (3.9). But this is 
immediate from the fact that the convergence of Dzfn is also locally uniform (they converge in the Hölder class 
as seen above). By the earlier part of the proof of Theorem 1.1, we now know that Jf∞ > 0 in the set D(0, R0), 
a contradiction to the fact that J (z∞, f∞) = 0. Hence there must be a lower bound for the Jacobian, and we have 
proved Theorem 1.1. �

For the reader’s interest, we also present a different proof for the positivity of the Jacobian in the autonomous case. 
This proof is based on Stoïlov factorisation, Hurwitz theorem and a compactness argument inspired by [3].

Theorem 3.3. Assume H : C → C is k-Lipschitz, where k = K−1
K+1 < 1, with H(0) = 0 and let F ∈ W

1,2
loc (�, C) be a 

homeomorphic solution to

∂zF (z) =H(∂zF (z)) a.e.

Then J (z, F) = 0 at every point z ∈ �.

Proof. Let us fix a disk D(z0, 2R) ⊂ � and a point z1 ∈ D(z0, R) where J (z1, F) = 0. The derivatives of F are 
continuous by Proposition 2.1 and we can assume, for instance, that ∂xF (z1) = 0 and we will show that ∂xF (z) = 0
everywhere. This is enough, since |DF |2 � KJF .

Let us define

Fh(z) = F(z + h) − F(z)

F (z1 + h) − F(z1)
, h > 0. (3.10)

Clearly Fh is well-defined on �h = {z ∈ � : d(z, ∂�) > h}, and D(z0, 2R) ⊂ �h for any h < d(z0, ∂�) −2R. Further, 
Fh is K-quasiregular on �h, as we saw in (2.2). Moreover, by Proposition 2.1, we know that DzF ∈ W

1,2
loc (�, C) and 

F ∈ C
1, 1

K

loc (�).
We can factor, by Stoïlow factorisation,

Fh = Hh ◦ �h

where �h : C → C is K-quasiconformal, and we choose the normalisation �h(z0) = 0, �h(z1) = 1, and Hh :
�h(�h) → C is holomorphic. Moreover, Hh(1) = 1, by the definition of Fh and the above normalisation of �h. 
Since �h are normalised K-quasiconformal maps, there exists a limit K-quasiconformal map

� = lim+ �h,

h→0
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with locally uniform convergence, at least for a subsequence, see the Montel-type theorem [4, Theorem 3.9.4]. Simi-
larly, for the same subsequence �−1

h → �−1 locally uniformly in �(D(z0, R)).
Note further that since F is continuously differentiable and ∂xF (z1) = 0, the functions Fh in (3.10) converge 

locally uniformly in D(z0, R), hence also Hh = Fh ◦ �−1
h converges locally uniformly in �(D(z0, R)). Let us now 

fix a compact set E ⊂ �(D(z0, R)) with 1 as an interior point. Since �h(D(z0, R)) converges in the Hausdorff metric 
to �(D(z0, R)), for every h small enough �(D(z0, R)) � �h(D(z0, 2R)). Thus E ⊂ �(D(z0, R)) � �h(�h), and so 
Hh, h < h0, is well-defined family of functions analytic on a neighbourhood of E, with limit

H = lim
h→0+ Hh

at least for a subsequence. Of course, the limit mapping H is holomorphic on a neighbourhood of E and H(1) = 1. 
Then it follows that

lim
h→0+ Hh ◦ �h = H ◦ �

uniformly on compact subsets of D(z0, R). In particular,

∂xF (z)

∂xF (z1)
= H(�(z)) for every z ∈ D(z0,R).

But the analytic functions Hh do not have zeros in �h(�h), since F is a homeomorphism. By the Hurwitz theorem 
H as well is non-vanishing on E, that is, ∂xF (z)

∂xF (z1)
does not have zeros in D(z0, R). We have shown our claim. �

Remark 3.4. Alternatively in the proof of Theorem 3.3 one can invoke the Hurwitz theorem for quasiregular mappings 
[19] which tells for any converging subsequence that either the limit limj Fhj

(z) is non-vanishing everywhere, or the 
limit vanishes identically.
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