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Abstract

Consider a rigid body S ⊂ R
3 immersed in an infinitely extended Navier–Stokes fluid. We are interested in self-propelled 

motions of S in the steady state regime of the system rigid body-fluid, assuming that the mechanism used by the body to reach such 
a motion is modeled through a distribution of velocities v∗ on ∂S. If the velocity V of S is given, can we find v∗ that generates V? 
We show that this can be solved as a control problem in which v∗ is a six-dimensional control such that either Supp v∗ ⊂ �, 
an arbitrary nonempty open subset of ∂�, or v∗ · n|∂� = 0. We also show that one of the self-propelled conditions implies a better 
summability of the fluid velocity.
© 2016 
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1. Introduction

Consider a rigid body S ⊂ R
3 immersed in a viscous incompressible fluid which fills the exterior domain 

� := R
3 \ S . In this paper, we consider self-propelled motions of S in the steady state regime of the system rigid 

body-fluid, assuming, as in [13] and [14], that the mechanism used by the body to reach such a motion is mod-
eled through a distribution of velocities v∗ on ∂� = ∂S . In practice, such a velocity can be produced by propellers 
(submarines), deformations (fishes), cilia (micro-organisms), etc. In a reference frame attached to the rigid body, the 
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system of equations modeling this mechanical system is

−divσ(v,p) + (v − V ) · ∇v + ω × v = 0 in � (1.1)

divv = 0 in � (1.2)

v = V + v∗ on ∂� (1.3)

lim|x|→∞v = 0 (1.4)

mξ × ω +
∫
∂�

[−σ(v,p)n + (v∗ · n) (v∗ + V + ω × x)
]

dγ = 0 (1.5)

(Iω) × ω +
∫
∂�

x × [−σ(v,p)n + (v∗ · n) (v∗ + V + ω × x)
]

dγ = 0 (1.6)

where the quantities v = v(x) and p = p(x) represent, respectively, the velocity field and the pressure of the liquid 
and

V (x) = ξ + ω × x, x ∈R
3

represents the velocity of the solid, as seen by an observer attached to S . Moreover, we have denoted by σ(v, p) the 
Cauchy stress tensor defined by

σ(v,p) := 2D(v) − pI3,

with I3 being the 3 × 3 identity matrix and D(v) being the symmetric gradient defined by

D(v) := 1

2

(
(∇v) + (∇v)�

)
,

so that divσ(v, p) = 	v − ∇p since divv = 0. In (1.5)–(1.6) the outward unit normal to ∂� is denoted by n. We also 
assume that the density of the rigid body is 1 and that its center of gravity is located at the origin:

m :=
∫
S

1 dx, I :=
∫
S

(|x|2I3 − x ⊗ x) dx,

∫
S

x dx = 0.

The model (1.1)–(1.6) is inspired by Galdi [13–15], the equation (1.5) having been obtained as the net force exerted 
by the fluid on the solid (see the proof of Theorem 1.2) and the equation (1.6) being the corresponding balance of 
torques.

The problem we are interested in is the following one: assuming that ξ and ω are given, can we find v∗, v, p
(in appropriate functional spaces) satisfying (1.1)–(1.6)? A positive answer to this question would show that the 
mechanism of locomotion expressed by the boundary velocity v∗ allows the rigid body to move with the velocity 
ξ + ω × x. This can be seen as a control problem in which the velocity v∗ on ∂� is the control of the problem. 
The corresponding problem for the steady, translational self-propelled motion of a symmetric body was solved by 
Galdi [13], but general case has remained open. When (1.1) is replaced by the classical Stokes system as the model 
with zero Reynolds number, this control problem was studied by Galdi [14, Sections 2 and 3]. In [24] San Martín, 
Takahashi and Tucsnak studied another quasi-steady control problem of finding a boundary control that achieves a 
final position with a prescribed velocity. We also mention some investigations of using boundary controls to minimize 
the drag about a three-dimensional translating body in an unsteady Navier–Stokes fluid, such as [12].

As pointed out by Galdi [13,14], we have various possibilities of finding a solution to our control problem. Among 
others, in this paper, we provide two sorts of solutions, both of which are physically relevant as well as interesting. 
One is a control v∗ which vanishes outside a prescribed portion � ⊂ ∂� with arbitrary small |�| > 0, the other is a 
control v∗ which is tangential to ∂�. Both of them were found in [13,14,24] for problems of their own, where the 
Stokes approximation was adopted in the last two papers. In those literature a control v∗ is chosen from a suitable 
finite dimensional (1-dimensional in [13], 6-dimensional in [14,24]) subspace, called the control space C, of L2(∂�)

which is constructed by use of the Stokes flow and depends only on geometric properties of the body S (thus the 
space C is independent of ξ, ω). We may expect such a space C for our problem as well, however, unlike the previous 
works it does not seem to be easy to find out a control v∗ in terms only of the Stokes flow because of full generality 
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of the problem. In order to get around the difficulty, in this paper, we construct a 6-dimensional subspace C = C(ξ,ω)

depending on a prescribed (ξ, ω) by using the adjoint system of the full linearized equation that involves (ξ +ω × x) ·
∇v −ω×v, see (3.17) and (3.18) below, and then single out v∗ ∈ C(ξ,ω) which provides a solution. The idea of finding 
v∗ dependent of (ξ, ω) works well to solve the control problem under consideration and, to the best of our knowledge, 
our result first shows the existence of a control v∗ in general nonlinear setting, where the rotation of the body is also 
taken into account, as long as |ξ | and |ω| are sufficiently small. The main result of the paper can be stated as follows.

Theorem 1.1. Assume ∂� is of class C3. There exist constants c0, C > 0 such that if ξ, ω ∈R
3 satisfy

|ξ | � c0, |ω| � c0, (1.7)

then problem (1.1)–(1.6) admits at least one solution (v, p, v∗) of class


v ∈ L∞(�), (∇v,p) ∈ W 1,2(�), v ∈ W
2,2
loc (�), (v,p) ∈ C∞(�), v∗ ∈ W 3/2,2(∂�) (1.8)

with


(x) :=

⎧⎪⎨⎪⎩
(

1 +
∣∣∣∣x − ω × ξ

|ω|2
∣∣∣∣)(

1 + 2
|ω · ξ |
|ω| s(x)

)
, ω 
= 0,

(1 + |x|) (1 + 2(|ξ ||x| + ξ · x)) , ω = 0,

(1.9)

where

s(x) :=
∣∣∣∣x − ω × ξ

|ω|2
∣∣∣∣+ sign (ω · ξ)

|ω| ω · x, ω 
= 0,

and it satisfies

sup
x∈�

[
(x)|v(x)|] + ‖(∇v,p)‖W 1,2(�) + ‖v∗‖W 3/2,2(∂�) � C
(|(ξ,ω)| + |(ξ,ω)|2). (1.10)

Here, one can choose the boundary control v∗ such that either Suppv∗ ⊂ � or v∗ · n|∂� = 0, where � is an arbitrary 
small nonempty open subset of ∂� (with respect to the induced topology).

The notion of solution to (1.1)–(1.4) is the same as introduced in [16], that is, it is basically of the so-called Leray 
class ∇v ∈ L2(�) with standard weak formulation, but the solution obtained in Theorem 1.1 actually becomes a 
strong (even smooth) one as described in (1.8), so that the boundary integrals in (1.5)–(1.6) make sense.

The weight function (1.9) looks complicated, however, if we replaced |x − ω×ξ

|ω|2 | just by |x|, then the constant C in 

(1.10) would depend on the ratio |ξ |
|ω| and the estimate (1.10) would become useless. Thus we should keep (1.9) as it 

is. Note that s(x) � 0 in (1.9), see Remark 2.2.
The last statement in Theorem 1.1 shows that there are two kinds of nontrivial controls (where the trivial control 

means v∗ = −V , i.e. (v, p) = (0, 0)). As mentioned above, we could have some others for the same ξ, ω. What is 
more interesting would be to find an optimal control v∗, which minimizes (for instance but typically) the drag as in 
[12], that is, which attains

inf
∫
∂�

(
σ(v,p)n

) · v dγ,

where the infimum is taken over the set of all solutions of our control problem subject to a suitable side condition 
(which excludes the trivial solution). It should be emphasized that this admissible set is nonvoid at least for small 
(ξ, ω) by Theorem 1.1, which is certainly the first step toward our future research. In order to proceed to that, it is 
convenient to rewrite the drag functional as∫

∂�

(
σ(v,p)n

) · v dγ = 2
∫
�

|D(v)|2 dx + 1

2

∫
∂�

(v∗ · n)|V + v∗|2 dγ, (1.11)

which is actually bounded from below provided that ‖v∗‖L3(∂�) � C as well as (1.7), however, we have to take care 
of the asymptotic behavior of (v, p) at infinity to justify (1.11) rigorously. By pointwise estimate (1.10) for 
v we 
have the following summability property:
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v ∈ L2+ε(�), ∀ε > 0, if (ω = 0 and ξ 
= 0) or (ω · ξ 
= 0),

v ∈ L3+ε(�), ∀ε > 0, if ω 
= 0 and ω · ξ = 0,

which is indeed enough to justify the representation (1.11) of the drag (as in the proof of Lemma 4.2 below), but 
the self-propelled condition, especially (1.5), implies even faster decay of the solution and consequently improves its 
summability. In particular, it is worth while noting that the solution possesses finite kinetic energy: v ∈ L2(�). This is 
not surprising because (1.5) tells us that the net force (momentum flux) exerted by the fluid to the rigid body vanishes, 
that is,∫

∂�

[
σ(v,p) − v ⊗ (v − V ) − (ω × x) ⊗ v

]
ndγ = 0, (1.12)

where the left-hand side of (1.12) is consistent with the equation (1.1) of momentum which can be written in the 
divergence form: div[σ(v, p) − v ⊗ (v − V ) − (ω × x) ⊗ v

] = 0. To be sure, let us observe that (1.5) is equivalent to 
(1.12); in fact, by (1.3) we have

N :=
∫
∂�

[σ(v,p) − v ⊗ (v − V ) − (ω × x) ⊗ v]ndγ

=
∫
∂�

[σ(v,p)n − (v + ω × x)(v∗ · n)]dγ +
∫
S

(ξ + ω × x) · ∇(ω × x)dγ

=
∫
∂�

[σ(v,p)n − (v∗ · n)(v∗ + V + ω × x)]dγ − mξ × ω

(1.13)

since 
∫
S x dx = 0. We could claim that this observation provides another interpretation of (1.5).

To complete our study, we show that the solutions to (1.1)–(1.4) of class (1.8) (actually under less conditions) 
possess better summability provided N = 0 (even weaker condition ω · N = 0 is enough when ω 
= 0). When the 
translation of the body is absent or orthogonal to the rotation, smallness of given solution is needed; indeed, for 
the solutions obtained in Theorem 1.1 this can be accomplished by (1.10) provided ξ and ω are taken still smaller. 
Our conclusion below is more or less known since the issue is closely related to asymptotic structure of the exterior 
Navier–Stokes flow near infinity. The classical case is that the body is purely translating (ω = 0, ξ 
= 0), for which it 
is well known ([1,10,11], [16, Theorem X.8.1]) that the leading term of asymptotic expansion is given by the Oseen 
fundamental solution whose coefficient is N . In this case the result can be obtained even if assuming only ∇v ∈ L2(�)

(the Leray class), however, the decay property of v(x) like |x|−1 is always assumed for any case in this paper. When 
the body is at rest (ω = 0, ξ = 0), the leading term involves the nonlinear effect unlike the previous case and is given 
by a particular Landau solution (homogeneous Navier–Stokes flow of degree (−1)) UN under smallness condition, 
where the set of all Landau solutions is parametrized as {Ub; b ∈ R

3}, see Section 6 for details. This was proved by 
Korolev and Šverák [21]. Hence, for both cases (ξ 
= 0, ξ = 0) in which the rotation of the body is absent (ω = 0), 
we know that N controls the rate of decay of the fluid velocity v(x) at infinity. Compared with this, when the body 
is purely rotating (ω 
= 0, ξ = 0), the leading term is given by Ub with b = ( ω

|ω| · N) ω
|ω| , that is, it is still a Landau 

solution, but this time the rate of decay of v(x) can be controlled only by ω · N . This was proved first by Farwig and 
Hishida [8] in which the remainder has better summability, and then the result was refined by Farwig, Galdi and Kyed 
[6] in the sense that the remainder has better pointwise decay. Finally, when the body is translating as well as rotating 
(ω 
= 0, ξ 
= 0), where ξ is parallel to ω, however, the general case can be reduced to this case or to the previous case 
as we will explain in the next section (see Galdi [16, Chapter VIII]), Kyed [23] proved that the leading term is given 
by the Oseen fundamental solution whose coefficient is ( ω

|ω| ·N) ω
|ω| . Taking all the cases into account, we know almost 

everything, but there are things which are missing in the literature:

– when ω 
= 0, all the papers [8,6,23] studied the case of no-slip boundary condition v = V on ∂�. In this paper, 
with the aid of the flux carrier, we discuss the asymptotic behavior without assuming any boundary condition on 
∂�. To do so, we need to develop analysis of the fundamental solution, see Lemma 6.1;

– when ω 
= 0 and ξ is not parallel to ω, we need the reduction mentioned above by using the Mozzi–Chasles 
transform [16, Chapter VIII] to describe the conclusion completely.
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The result is now summarized as follows. The statement is essentially independent of Theorem 1.1 and thus in-
cludes also the case (ξ, ω) = (0, 0) (due to [21]) although the solution obtained in Theorem 1.1 is the trivial one in 
that case.

Theorem 1.2. Suppose (v, p) is a solution to (1.1)–(1.4) satisfying, in particular, ∇v ∈ L2(�), p ∈ L2(�) and (1 +
|x|) v ∈ L∞(�).

1. Case ω = 0, ξ = 0. Let N = 0, that is,∫
∂�

[
σ(v,p)n − (v∗ · n)v∗

]
dγ = 0.

Then, for every ε > 0, there is a constant δ = δ(ε) > 0 such that if lim sup
|x|→∞

|x||v(x)| � δ, then v ∈ L3/2+ε(�).

2. Case ω 
= 0, ω · ξ = 0. Let ω · N = 0, that is,

ω ·
∫
∂�

[
σ(v,p)n − (v∗ · n)v∗

]
dγ = 0.

For every ε > 0, there is a constant δ = δ(ε) > 0 such that if lim sup
|x|→∞

|x||v(x)| � δ, then v ∈ L3/2+ε(�).

3. Case ω = 0, ξ 
= 0. Let N = 0, that is,∫
∂�

[
σ(v,p)n − (v∗ · n) (v∗ + ξ)

]
dγ = 0.

Then v ∈ L3/2+ε(�) for every ε > 0.
4. Case ω · ξ 
= 0. Let ω · N = 0, that is,

ω ·
∫
∂�

[
σ(v,p)n − (v∗ · n) (v∗ + ξ)

]
dγ = 0.

Then v ∈ L3/2+ε(�) for every ε > 0.

In the last two cases, if we assume moreover that 
∫
∂�

v∗ · n dγ = 0, then v ∈ L4/3+ε(�) for every ε > 0.

We note that N is understood as W 1/2,2(∂�)〈1, T (v, p)n〉W−1/2,2(∂�) and thus well-defined even under the condition 
of Theorem 1.2, where T (v, p) := σ(v, p) −v⊗(v−V ) −(ω×x) ⊗v, see (1.13); in fact, T (v, p)n ∈ W−1/2,2(∂�) :=
W 1/2,2(∂�)∗ by the normal trace theorem since T (v, p) ∈ L2

loc(�) and divT (v, p) = 0. The last statement in Theo-
rem 1.2 shows that for tangential boundary controls, that is, boundary velocities satisfying v∗ · n = 0, we have a better 
summability for the solutions of (1.1)–(1.6).

The plan of the paper is as follows. Section 2 contains the notation used throughout the paper and the results 
available in the literature for the generalized Oseen problem (which takes into account the rotation effect of S) that are 
relevant for our work. In Section 3, we give the precise mathematical formulation of the control problem, introducing 
a set of adjoint problems which are used to define the control spaces. Then, in Section 4, we solve a linearized version 
of the control problem considering localized controls (in a portion of the boundary of S) and tangential controls. The 
full non-linear control problem is solved in Section 5, by means of Banach fixed point Theorem, assuming that the 
data are suitably small. Finally, in Section 6, we show that the self-propelled condition (1.5), or equivalently (1.12), 
implies a better summability of the fluid velocity.
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2. Notation and preliminary results on a generalized Oseen problem

In this paper, the usual notation is used for Lebesgue and Sobolev spaces on a domain A, namely, Lq(A) and 

Wm,q(A), with norms ‖.‖q,A and ‖.‖m,q,A, respectively. By Wm− 1
q
,q

(∂A) we indicate the trace space on the smooth 
boundary ∂A of A, for functions from Wm,q(A), equipped with the usual norm ‖.‖

m− 1
q
,q,∂A. The homogeneous 

Sobolev space of order (k, q) is defined by

Dk,q(A) := {u ∈ L1
loc(A); Dαu ∈ Lq(A) for any multi-index α with |α| = k}

with associated seminorm |u|k,q,A = ∑
|α|=k ‖Dαu‖q,A, where k � 1 is an integer and 1 < q < ∞. For a vector or 

second-order tensor field G and a positive function w defined on A, we adopt the notation

�G�α,w,A := sup
x∈A

[w(x)α|G(x)|], �G�α := �G�α, (1+|x|),R3 (2.1)

for α � 0. Throughout the paper we shall use the same font style to denote scalar, vector and tensor-valued functions 
and corresponding function spaces.

In what follows, S is a compact connected set, with nonempty interior, and we assume that � = R
3 \ S is a 

three-dimensional exterior domain. We will assume that the boundary ∂� of � is of class C3. This is needed in 
Lemma 3.2 although Proposition 2.1 below holds provided ∂� is of class C2.

Gathering several results in [16,18,19] by Galdi and Silvestre, and using suitable changes of variables, we can 
obtain existence, uniqueness and estimates for the general linear problem

− divσ(v,p) − (a + b × x) · ∇v + b × v = f in �

divv = 0 in �

v = v∗ on ∂�

lim|x|→∞v = 0.

(2.2)

We will need very specific estimates for the solution of problem (2.2), with a constant independent of a and b satisfying 
|a|, |b| � B since this will be crucial for defining suitable smallness conditions when we apply the Banach fixed 
point theorem to solve the non-linear problem. When b 
= 0, the following theorem is essentially due to Galdi [16, 
Theorem VIII.6.1], in which both a and b are assumed to be parallel to e1 = (1, 0, 0). The general case is reduced to 
this particular case by the Mozzi–Chasles transform as explained in [16,18]. For later use it is convenient to summarize 
the result as follows.

Proposition 2.1. We set

w(x) :=

⎧⎪⎨⎪⎩
(

1 +
∣∣∣∣x − b × a

|b|2
∣∣∣∣)[

1 + 2

( |b · a|
|b|

∣∣∣∣x − b × a

|b|2
∣∣∣∣+ b · a

|b|2 b · x
)]

, b 
= 0,

(1 + |x|) (1 + 2(|x||a| + a · x)) , b = 0.

(2.3)

Assume that f = divF ∈ L2(�), with

�F �2,w,� := sup
x∈�

[
w(x)2|F(x)|

]
< ∞ (2.4)

and v∗ ∈ W 3/2,2(∂�). Then, there exists a unique solution (v, p) to (2.2) with

v ∈ D2,2(�) ∩ D1,2(�) ∩ L2
loc(�), p ∈ W 1,2(�), (2.5)

�v�1,w,� := sup
x∈�

[w(x)|v(x)|] < ∞ (2.6)

and

|v|2,2,� + |v|1,2,� + �v�1,w,� + ‖p‖1,2,� � C(‖f ‖2,� + �F �2,w,� + ‖v∗‖3/2,2,∂�), (2.7)

where, for each B > 0, one can choose a constant C = C(B) > 0 independent of a and b with |a|, |b| ∈ [0, B].
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Proof. Let us consider the case b 
= 0. Let M ∈ R
3×3 be an orthogonal matrix that fulfills M b

|b| = e1. By the transfor-
mation

x′ = Mx, �′ = M�, v′(x′) = Mv(M�x′), p′(x′) = p(M�x′),
v′∗(x′) = Mv∗(M�x′), f ′(x′) = Mf (M�x′), F ′(x′) = (MFM�)(M�x′),

(2.8)

so that f ′ = divF ′, we see that (2.2) can be written as

− divσ(v′,p′) − a′ · ∇v′ − |b|{(e1 × x′) · ∇v′ − e1 × v′} = f ′ in �′

divv′ = 0 in �′

v′ = v′∗ on ∂�′

lim
|x′|→∞

v′ = 0

(2.9)

where a′ = Ma, and ∇ and div are differential operators with respect to x ′. And then, following [16, Chapter VIII], 
we make further change of variables

x̃ = x′ − e1 × a′

|b| = M

(
x − b × a

|b|2
)

, �̃ = �′ − e1 × a′

|b| = M

(
� − b × a

|b|2
)

,

ṽ( x̃ ) = v′
(

x̃ + e1 × a′

|b|
)

= Mv

(
M�x̃ + b × a

|b|2
)

,

p̃( x̃ ) = p′
(

x̃ + e1 × a′

|b|
)

= p

(
M�x̃ + b × a

|b|2
)

,

(2.10)

and

ṽ∗( x̃ ) = v′∗
(

x̃ + e1 × a′

|b|
)

= Mv∗
(

M�x̃ + b × a

|b|2
)

,

f̃ ( x̃ ) = f ′
(

x̃ + e1 × a′

|b|
)

= Mf

(
M�x̃ + b × a

|b|2
)

, f̃ = div F̃ ,

F̃ ( x̃ ) = F ′
(

x̃ + e1 × a′

|b|
)

= (MFM�)

(
M�x̃ + b × a

|b|2
)

.

(2.11)

Taking account of the relation a′ = (e1 · a′)e1 + (e1 × a′) × e1 in (2.9), we are led to

− divσ (̃v, p̃) −R ∂1ṽ − |b| {(e1 × x̃) · ∇ṽ − e1 × ṽ} = f̃ in �̃

div ṽ = 0 in �̃

ṽ = ṽ∗ on ∂�̃

lim|̃x|→∞ ṽ = 0

(2.12)

which is exactly (VIII.0.7) of [16], where

R= e1 · a′ = b · a
|b| .

Here, ∇ and div are differential operators with respect to ̃x as well as ∂1 = ∂x̃1 .
We can gather several results of Galdi [16]: from Theorem VIII.1.2 and Theorem VIII.2.1, there exists a unique 

weak solution, and from Theorem VIII.6.1 (which can be proved by the same cut-off technique after subtracting the 
flux carrier as in the proof of Theorem 1.2 in the present paper, see Section 6) we find an anisotropic pointwise decay 
estimate with wake property of this solution. Although R � 0 is assumed in [16], it is obvious that these theorems 
still hold true for the other case R < 0 as well. The only difference between those cases is the direction of the wake, 
which can be described by the following weight function:

w̃( x̃ ) := (1 + |̃x|)(1 + 2|R| s̃( x̃ )
)
, s̃( x̃ ) :=

{ |̃x| + x̃1, R> 0,

|̃x| − x̃1, R< 0.
(2.13)
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Let us define

w(x) := w̃( x̃ ) =
(

1 +
∣∣∣∣x − b × a

|b|2
∣∣∣∣)(

1 + 2
|b · a|
|b| s(x)

)
(2.14)

with

s(x) := s̃( x̃ ) =
∣∣∣∣x − b × a

|b|2
∣∣∣∣+ e1 ·

(
M

(
x − b × a

|b|2
))

=
∣∣∣∣x − b × a

|b|2
∣∣∣∣+ b

|b| ·
(

x − b × a

|b|2
)

=
∣∣∣∣x − b × a

|b|2
∣∣∣∣+ b

|b| · x for b · a > 0,

(2.15)

while

s(x) := s̃( x̃ ) =
∣∣∣∣x − b × a

|b|2
∣∣∣∣− b

|b| · x for b · a < 0. (2.16)

We observe

‖f̃ ‖2,�̃ = ‖f ‖2,�, �F̃ �2,w̃,�̃ := sup
x̃∈�̃

[
w̃( x̃ )2|F̃ ( x̃ )|

]
= �F �2,w,� < ∞ (2.17)

by (2.4), as well as

‖̃v∗‖3/2,2,∂�̃ � C‖v∗‖3/2,2,∂�. (2.18)

In fact, the mapping v∗ �→ ṽ∗ defined by (2.11) is isometric from Wk,2(∂�) to Wk,2(∂�̃) for k = 1, 2, which together 
with W 3/2,2(∂A) = [

W 1,2(∂A),W 2,2(∂A)
]

1/2 for A = �, �̃ implies (2.18), where [·, ·]1/2 denotes the complex 
interpolation functor. By [16, Theorem VIII.6.1] problem (2.12) admits a unique solution

ṽ ∈ D2,2(�̃) ∩ D1,2(�̃) ∩ L2
loc(�̃), p̃ ∈ W 1,2(�̃),

� ṽ �1,w̃,�̃ := sup
x̃∈�̃

[w̃( x̃ )|̃v( x̃ )|] < ∞

which satisfies, by using (2.17) and (2.18),

|̃v|2,2,�̃ + |̃v|1,2,�̃ + � ṽ �1,w̃,�̃ + ‖p̃‖1,2,�̃ � C
(
‖f̃ ‖2,�̃ + �F̃ �2,w̃,�̃ + ‖̃v∗‖3/2,2,∂�̃

)
� C

(‖f ‖2,� + �F �2,w,� + ‖v∗‖3/2,2,∂�

)
.

Here, for each B > 0 the constant C > 0 can be taken independently of a and b provided |a|, |b| � B (yielding 
|R|, |b| � B). When we define (v, p) by (2.10), we observe

|v|k,2,� = |̃v|k,2,�̃ (k = 1,2), �v�1,w,� = � ṽ �1,w̃,�̃, ‖p‖1,2,� = ‖p̃‖1,2,�̃,

and conclude that (v, p) is the desired solution with estimate (2.7).
We will give a brief sketch for the other cases. When b = 0, a 
= 0, we take the orthogonal matrix M ∈ R

3×3

satisfying M a
|a| = e1 and make the change of variables (2.8) to obtain

− divσ(v′,p′) − |a| ∂1v
′ = f ′ in �′

divv′ = 0 in �′

v′ = v′∗ on ∂�′

lim
|x′|→∞

v′ = 0.

(2.19)

We first construct a unique solution of class (2.5). We then reduce (2.19) to the whole space problem by cut-off 
technique and use the pointwise decay of the Oseen fundamental solution, see (6.6) below. By using estimate of 
the Oseen potential representation given by Lemma VIII.3.5 of [16], which is traced back to Farwig [5], Kracmar, 
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Novotny and Pokorny [22], we deduce the same result as in Theorem VIII.6.1 of [16], where the weight function is 
given by

w′(x′) := (1 + |x′|)(1 + 2|a|s′(x′)), s′(x′) := |x′| + x′
1.

In the original frame, they are transformed into

w(x) := w′(x′) = (1 + |x|)(1 + 2|a|s(x)), s(x) := s′(x′) = |x| + e1 · (Mx) = |x| + a

|a| · x.

Finally, when (a, b) = (0, 0), the strategy of the proof of the corresponding result is the same as mentioned above, in 
which Lemma VIII.3.4 of [16] is employed for the Stokes potential representation. �
Remark 2.2. From Proposition 2.1 it follows that in the case b ·a 
= 0, as well as the classical case of b = 0 and a 
= 0, 
the “wake” behind the moving body can be described by (2.14), where (2.15)–(2.16) are unified as

s(x) =
∣∣∣∣x − b × a

|b|2
∣∣∣∣+ sign (b · a)

|b| b · x. (2.20)

We note that s(x) � 0 in view of the second line of (2.15). In those cases above we deduce from the wake formula 
that for all ε > 0,

v ∈ L2+ε(�).

3. Formulation of the control problem. The adjoint systems

In this section, given the rigid body velocity V = ξ + ω × x, we propose two candidates of 6-dimensional sub-
space C = C(ξ,ω) of L2(∂�), as mentioned in Section 1, from which we wish to take the boundary control v∗. For 
convenience, in what follows, we use the terminology “control space” for our space C as well.

Let us write (1.1)–(1.6) in the following form

−divσ(v,p) − V · ∇v + ω × v = f (v) in � (3.1)

divv = 0 in � (3.2)

v = V + v∗ on ∂� (3.3)

lim|x|→∞v = 0 (3.4)

−
∫
∂�

[σ(v,p)n + (V · n)v]dγ = κ(v∗) (3.5)

−
∫
∂�

x × [σ(v,p)n + (V · n)v] dγ = μ(v∗) (3.6)

where

f (v) := −v · ∇v = divF(v), F (v) := −v ⊗ v, (3.7)

κ(v∗) := −
∫
∂�

(v∗ · n)(v∗ + V + ω × x)dγ − mξ × ω −
∫
∂�

(V · n)(V + v∗)dγ, (3.8)

μ(v∗) := −
∫
∂�

x × (v∗ + V + ω × x)(v∗ · n)dγ − (Iω) × ω −
∫
∂�

x × (V + v∗)(V · n)dγ. (3.9)

Indeed the formulation (3.5) and (3.6) might look artificial, but it depends on how to develop the linear theory in 
the next section (there are actually some other possible ways). In order to define the control space for our problem, 
we consider six auxiliary adjoint problems, associated with six elementary rigid body motion velocities. For each 
i ∈ {1, 2, 3}, let (v(i), q(i)) be the solution of the generalized Oseen problem
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− divσ(v(i), q(i)) + (ξ + ω × x) · ∇v(i) − ω × v(i) = 0 in �

divv(i) = 0 in �

v(i) = ei on ∂�

lim|x|→∞v(i) = 0

(3.10)

where (e1, e2, e3) is the canonical basis of R3. We also consider the solutions (V (i), Q(i)) of

− divσ(V (i),Q(i)) + (ξ + ω × x) · ∇V (i) − ω × V (i) = 0 in �

divV (i) = 0 in �

V (i) = ei × x on ∂�

lim|x|→∞V (i) = 0

(3.11)

for i ∈ {1, 2, 3}. The above problems are well-posed, as a direct consequence of Proposition 2.1. One can obtain even 
smoothness of the solutions by the regularity theory for the classical Stokes system.

Lemma 3.1. There exist unique smooth solutions (v(i), q(i)) and (V (i), Q(i)) of systems (3.10) and (3.11), respectively. 
Moreover, for each B > 0 there exists a constant C = C(B) > 0 independent of ξ and ω with |ξ |, |ω| ∈ [0, B] such 
that for i ∈ {1, 2, 3}

|v(i)|2,2,� + |v(i)|1,2,� + �v(i)�1,w,� + ‖q(i)‖1,2,� � C, (3.12)

|V (i)|2,2,� + |V (i)|1,2,� + �V (i)�1,w,� + ‖Q(i)‖1,2,� � C. (3.13)

Here, �·�1,w,� is given by (2.6) and w is defined by (2.3) for (a, b) = (−ξ, −ω).

Assuming ∂� ∈ C3, we define

g(i) := σ(v(i), q(i))n on ∂�, (3.14)

G(i) := σ(V (i),Q(i))n on ∂�. (3.15)

This choice is inspired by Galdi [14, Section 2], in which the Stokes system was adopted instead of (3.10) and (3.11). 
Note that g(i) and G(i) depend on ξ, ω differently from [14], however, we have the following estimate.

Lemma 3.2. Assume ∂� is of class C3. For each B > 0 there exists a constant C = C(B) > 0 independent of ξ and 
ω with |ξ |, |ω| ∈ [0, B] such that g(i), G(i) ∈ W 3/2,2(∂�) with

‖g(i)‖3/2,2,∂� + ‖G(i)‖3/2,2,∂� � C (3.16)

for any i ∈ {1, 2, 3}.

Proof. We can use Theorem IV.5.1 in [16, p. 276] to obtain

‖v(i)‖3,2,�R
+ ‖q(i)‖2,2,�R

� c

(∥∥∥(ξ + ω × x) · ∇v(i) − ω × v(i)
∥∥∥

1,2,�R+1
+ ‖ei‖5/2,2,∂�R

+ ‖v(i)‖1,2,�R+1 + ‖q(i)‖2,�R+1

)
,

where �R := � ∩BR and BR := {x ∈R
3; |x| < R}. Applying Proposition 2.1, in which L∞ estimate is also involved 

in (2.7) through �v�1,w,�, we deduce from (2.7) that if |ξ |, |ω| ∈ [0, B], then there exists a constant C = C(B) such 
that

‖v(i)‖3,2,�R
+ ‖q(i)‖2,2,�R

� C.

Since σ(v(i), q(i)) ∈ W 2,2(�R), the trace theorem yields (3.16). �
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The control spaces we are going to consider for v∗ are

Cχ := span{χg(i), χG(i) ; i = 1,2,3}, (3.17)

Cτ := span{(g(i) × n) × n, (G(i) × n) × n ; i = 1,2,3}, (3.18)

where χ is a smooth function such that χ � 0, with support in �, a nonempty open subset of ∂�, and χ > 0 on a 
nonempty open subset �0 of �. We will see in Lemma 4.3 and in Lemma 4.7 that if |ξ | and |ω| are small enough, 
then Cχ and Cτ are of dimension 6 because their Gram matrices are nonsingular. The control problem can be now 
formulated in the following way: Given ξ, ω ∈ R

3, find v∗ ∈ Cχ or Cτ and (v, p) in appropriate Sobolev spaces, 
satisfying (3.1)–(3.6) and (3.7)–(3.9).

4. Linearized version of the problem

4.1. Localized boundary controls

In this section, we solve the following control problem for the linearized system: Given f = divF ∈ L2(�) satisfy-
ing (2.4) with w defined by (2.3) for (a, b) = (ξ, ω) and given (κ, μ) ∈ R

6, find (α, β) ∈ R
6 with α = (αj ), β = (βj )

and (u, p) such that

−divσ(u,p) − (ξ + ω × x) · ∇u + ω × u = f in � (4.1)

divu = 0 in � (4.2)

u = V +
3∑

j=1

(
αjχg(j) + βjχG(j)

)
on ∂� (4.3)

lim|x|→∞u = 0 (4.4)

−
∫
∂�

[σ(u,p)n + (V · n)u] dγ = κ (4.5)

−
∫
∂�

x × [σ(u,p)n + (V · n)u] dγ = μ (4.6)

where V = ξ + ω × x. Recall that g(j) and G(j) are defined by (3.14)–(3.15). The linear control problem will be 
solved with the aid of the following auxiliary systems⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−divσ(u(j),p(j)) − (ξ + ω × x) · ∇u(j) + ω × u(j) = 0

divu(j) = 0

u(j) = χg(j) on ∂�

lim|x|→∞u(j) = 0,

(4.7)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−divσ(U(j),P (j)) − (ξ + ω × x) · ∇U(j) + ω × U(j) = 0

divU(j) = 0

U(j) = χG(j) on ∂�

lim|x|→∞U(j) = 0,

(4.8)

and ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−divσ(uf ,pf ) − (ξ + ω × x) · ∇uf + ω × uf = f

divuf = 0

uf = V on ∂�

lim uf = 0.

(4.9)
|x|→∞
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As a consequence of Proposition 2.1 and Lemma 3.2, the above problems are well-posed.

Lemma 4.1. Define s and w by (2.3) for (a, b) = (ξ, ω). Let B > 0.

1. For each j ∈ {1, 2, 3}, there exist unique solutions (u(j), p(j)) and (U(j), P (j)) of (4.7) and (4.8), respectively. 
They are of class (2.5)–(2.6) and there exists a constant C = C(B) > 0 independent of ξ and ω with |ξ |, |ω| ∈
[0, B] such that

|u(j)|2,2,� + |u(j)|1,2,� + �u(j)�1,w,� + ‖p(j)‖1,2,� � C,

|U(j)|2,2,� + |U(j)|1,2,� + �U(j)�1,w,� + ‖P (j)‖1,2,� � C.
(4.10)

2. Suppose f = divF ∈ L2(�) with (2.4). Then there exists a unique solution (uf , pf ) of (4.9). It is of class 
(2.5)–(2.6) and there exists a constant C = C(B) > 0 independent of ξ and ω with |ξ |, |ω| ∈ [0, B] such that

|uf |2,2,� + |uf |1,2,� + �uf �1,w,� + ‖pf ‖1,2,� � C
(‖f ‖2,� + �F �2,w,� + ‖V ‖3/2,2,∂�

)
. (4.11)

Suppose f = divF , f ′ = divF ′ ∈ L2(�) with F , F ′ satisfying (2.4). Let (uf , pf ) and (uf ′ , pf ′) be respectively 
the corresponding solutions. Then

|uf − uf ′ |2,2,� + |uf − uf ′ |1,2,� + �uf − uf ′ �1,w,� + ‖pf − pf ′ ‖1,2,�

� C
(‖f − f ′‖2,� + �F − F ′�2,w,�

)
,

(4.12)

where C is the same constant as in (4.11).

Hereupon, we can seek a solution of (4.1)–(4.6) in the form

u := uf +
3∑

j=1

(
αju

(j) + βjU
(j)

)
, p := pf +

3∑
j=1

(
αjp

(j) + βjP
(j)

)
. (4.13)

It is clear that (u, p) satisfies (4.1)–(4.4). Therefore, it is a solution of (4.1)–(4.6) if and only if (4.5)–(4.6) holds true. 
Inserting (4.13) into these two equations yields

−
3∑

j=1

αj

∫
∂�

[σ(u(j),p(j))n + (V · n)u(j)] · ei dγ −
3∑

j=1

βj

∫
∂�

[σ(U(j),P (j))n + (V · n)U(j)] · ei dγ

= κ · ei +
∫
∂�

[σ(uf ,pf )n + (V · n)V ] · ei dγ (i = 1,2,3),

(4.14)

and

−
3∑

j=1

αj

∫
∂�

[σ(u(j),p(j))n + (V · n)u(j)] · (ei × x) dγ

−
3∑

j=1

βj

∫
∂�

[σ(U(j),P (j))n + (V · n)U(j)] · (ei × x) dγ

= μ · ei +
∫
∂�

[σ(uf ,pf )n + (V · n)V ] · (ei × x) dγ (i = 1,2,3),

(4.15)

where uf = V on ∂� is taken into account in the right-hand sides of (4.14)–(4.15).
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Lemma 4.2. For i, j = 1, 2, 3, we have∫
∂�

[σ(u(j),p(j))n + (V · n)u(j)] · ei dγ =
∫
∂�

χg(i) · g(j) dγ,

∫
∂�

[σ(U(j),P (j))n + (V · n)U(j)] · ei dγ =
∫
∂�

χg(i) · G(j) dγ,

∫
∂�

[σ(u(j),p(j))n + (V · n)u(j)] · (ei × x) dγ =
∫
∂�

χG(i) · g(j) dγ,

∫
∂�

[σ(U(j),P (j))n + (V · n)U(j)] · (ei × x) dγ =
∫
∂�

χG(i) · G(j) dγ.

(4.16)

Proof. We only prove the first identity of (4.16) for the case ω 
= 0. The other formulae are proved in a similar way. 
When ω = 0, we have only to replace the cut-off function ψR(x) given by (4.17) below just by ψ(|x|/R). Consider a 
“cut-off” function ψR ∈ C∞

0 (�) (R � diam(S) + |ω×ξ |
|ω|2 ) defined by

ψR(x) := ψ

⎛⎝ |x − ω×ξ

|ω|2 |
R

⎞⎠ , (4.17)

with ψ ∈ C∞([0, ∞)), a non-increasing real function, such that ψ(t) = 1, t ∈ [0, 1] and ψ(t) = 0, t � 2. We have the 
standard properties

0 � ψR(x) � 1, for all x ∈ �,

lim
R→∞ψR(x) = 1 for all x ∈ �,

‖∇ψR‖∞ � C

R
,

(4.18)

where C is a positive constant independent of x and R. Moreover(
ω ×

(
x − ω × ξ

|ω|2
))

· ∇ψR(x) = 0.

Note that

ω ×
(

x − ω × ξ

|ω|2
)

= ξ + ω × x − ξ · ω
|ω|

ω

|ω| = V (x) − ξ · ω
|ω|

ω

|ω| , for all x ∈ �,

and therefore

V · ∇ψR = ξ · ω
|ω|

ω

|ω| · ∇ψR.

Using the properties of ψR listed in (4.18), we get

V · ∇ψR = 0, if ξ · ω = 0 (4.19)

‖V · ∇ψR‖∞ � C|ξ |
R

, if ξ · ω 
= 0. (4.20)

Moreover, the support of ∇ψR is contained in R � |x − ω×ξ

|ω|2 | � 2R. When ξ 
= 0, ξ · ω = 0 as well as ω 
= 0, we do 

not have better summability of v(i) and u(j) such as L2+ε , see Remark 2.2. If we used simply ψ(|x|/R) in this case 
instead of (4.17), it would not be easy to treat the last term of (4.23) below. This is the reason why we adopt (4.17)
which yields (4.19).



1520 T. Hishida et al. / Ann. I. H. Poincaré – AN 34 (2017) 1507–1541
Let us multiply the first equation of (4.7) by ψRv(i), where v(i) is the solution of (3.10), to obtain

−
∫
�

ψRv(i) · divσ(u(j),p(j)) dx −
∫
�

ψRv(i) ·
[
V · ∇u(j) − ω × u(j)

]
dx = 0, (4.21)

and let us multiply the first equation of (3.10) by ψRu(j), where u(j) is the solution of (4.7):

−
∫
�

ψRu(j) · divσ(v(i), q(i)) dx +
∫
�

ψRu(j) ·
[
V · ∇v(i) − ω × v(i)

]
dx = 0. (4.22)

Integrating (4.21) and (4.22) by parts and combining them, we obtain

−
∫
∂�

[σ(u(j),p(j))n + (V · n)u(j)] · (ψRv(i)) dγ +
∫
∂�

(
σ(v(i), q(i))n

) · (ψRu(j)) dγ

=
∫
�

[
−(∇ψR · ∇u(j)

) · v(i) + (∇ψR · ∇v(i)
) · u(j) − (

v(i) · ∇u(j)
) · ∇ψR + (

u(j) · ∇v(i)
) · ∇ψR

]
dx

+
∫
�

(
p(j)v(i) · ∇ψR − q(i)u(j) · ∇ψR

)
dx −

∫
�

V · ∇ψR

(
v(i) · u(j)

)
dx.

(4.23)

We recall that from Lemma 3.1 and Lemma 4.1,

|v(i)(x)| + |u(j)(x)| � C

w(x)
� C

1 + |x| , ∀x ∈ �,

where w is defined by (2.3) with (a, b) = (ξ, ω). If ω · ξ 
= 0, we have even better summability

v(i), u(j) ∈ L2+ε(�), ∀ ε > 0, (4.24)

see Remark 2.2. Using the above properties of the functions u(j) and v(i) and (4.18) for ∇ψR , we get

∣∣∣∣∣∣
∫
�

(∇ψR · ∇u(j)
) · v(i) dx

∣∣∣∣∣∣ � C

R
‖∇u(j)‖2,�

⎛⎜⎜⎜⎝
∫

R<|x− ω×ξ

|ω|2 |<2R

1

(1 + |x|)2
dx

⎞⎟⎟⎟⎠
1
2

� C‖∇u(j)‖2,�R−1/2 .

In a similar way∣∣∣∣∣∣
∫
�

q(i)u(j) · ∇ψR dx

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫
�

p(j)v(i) · ∇ψR dx

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫
�

(∇ψR · ∇v(i)
) · u(j) dx

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫
�

(
v(i) · ∇u(j)

) · ∇ψR dx

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫
�

(
u(j) · ∇v(i)

) · ∇ψR dx

∣∣∣∣∣∣ � CR−1/2.

Finally, if ω · ξ = 0 then, from (4.19) it follows∫
V · ∇ψR

(
v(i) · u(j)

)
dx = 0,
�
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else estimates (4.20) and (4.24) imply∣∣∣∣∣∣
∫
�

V · ∇ψR

(
v(i) · u(j)

)
dx

∣∣∣∣∣∣ � C|ξ |
R

∫
R<|x− ω×ξ

|ω|2 |<2R

∣∣∣v(i) · u(j)
∣∣∣ dx

� C|ξ |
R

∥∥∥v(i)
∥∥∥

2+ε,�

∥∥∥u(j)
∥∥∥

2+ε,�
R

3ε
2+ε .

Letting R → ∞ in (4.23) yields the first identity of (4.16). �
The identities established in Lemma 4.2 allow us to write (4.14), (4.15) in the form

A

[
α

β

]
=

[
δ

η

]
, (4.25)

where

δi := −κ · ei −
∫
∂�

[σ(uf ,pf )n + (V · n)V ] · ei dγ (i = 1,2,3), (4.26)

ηi := −μ · ei −
∫
∂�

[σ(uf ,pf )n + (V · n)V ] · (ei × x) dγ (i = 1,2,3), (4.27)

and A = (Ai,j ) ∈ R
6×6 is defined by

Ai,j =
∫
∂�

χg(i) · g(j) dγ (i, j � 3),

Ai,j =
∫
∂�

χg(i) · G(j−3) dγ (i � 3, j � 4),

Ai,j =
∫
∂�

χG(i−3) · g(j) dγ (i � 4, j � 3),

Ai,j =
∫
∂�

χG(i−3) · G(j−3) dγ (i, j � 4).

(4.28)

Lemma 4.3. The matrix A defined by (4.28) is symmetric nonnegative. Furthermore, there exist positive constants c1, 
K such that if

|ξ | � c1, |ω| � c1, (4.29)

then A is invertible with

‖A−1‖ � K, (4.30)

where ‖ · ‖ = ‖ · ‖L(R6), and K is independent of ξ, ω with |ξ |, |ω| � c1.

Remark 4.4. The matrix A is the Gram matrix of the family 
{√

χg(i),
√

χG(i) ; i = 1,2,3
}
. Thus, since A is invert-

ible for (ξ, ω) with (4.29), it yields that the family is linearly independent. This fact implies that the family Cχ defined 
by (3.17) is linearly independent.

Proof of Lemma 4.3. Let (α, β) ∈ R
6 with α = (αi), β = (βi) and set

(v, q) :=
3∑

αi(v
(i), q(i)) +

3∑
βi(V

(i),Q(i)).
i=1 i=1
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From (3.10)–(3.11), (3.14)–(3.15) and (4.28) it follows that this pair is a smooth solution to

− divσ(v, q) + (ξ + ω × x) · ∇v − ω × v = 0

divv = 0

v = α + β × x on ∂�

lim|x|→∞v = 0

(4.31)

and that

A

[
α

β

]
·
[
α

β

]
=

∫
∂�

χ |σ(v, q)n|2 dγ � 0, ∀(α,β) ∈ R
6. (4.32)

Let us now show that A is invertible in the case (ξ, ω) = (0, 0). If

A

[
α

β

]
·
[
α

β

]
= 0

then, from (4.32) it follows that v satisfies

−divσ(v, q) = 0

divv = 0

v = α + β × x on ∂�

lim|x|→∞v = 0

σ(v, q)n = 0 on �0 ⊂ ∂�,

where χ is assumed to be positive on a nonempty open subset �0 of ∂�. The following procedure is classical, see 
San Martín, Takahashi and Tucsnak [24, Lemma 4.1]. We consider ṽ(x) := v(x) − (α + β × x), which is a weak 
solution of

− divσ (̃v, q) = 0 in �

div ṽ = 0 in �

ṽ = 0 on ∂�

σ (̃v, q)n = 0 on �0 ⊂ ∂�.

(4.33)

Indeed ṽ is growing for |x| → ∞, but the argument below works well no matter how ṽ behaves at infinity. We can 
extend � by adding a small open subset E ⊂ S (with respect to the induced topology) such that E ∩∂S (
= ∅) is strictly 
included into �0 and that in the domain �̃ := � ∪ E the function ̃v is a weak solution of

− divσ (̃v, q) = 0 in �̃

div ṽ = 0 in �̃

ṽ = 0 in E
(4.34)

where (̃v, q) is understood as extension to �̃ by setting zero outside �. Using the unique continuation property for the 
Stokes system due to [4], we deduce that ̃v = 0 in � and thus v(x) = α + β × x for x ∈ �. Since lim|x|→∞ v(x) = 0
we conclude that α = β = 0. This implies that A is definite positive for (ξ, ω) = (0, 0).

To prove that A is invertible and that (4.30) holds true, we show that the mapping

(ξ,ω) �→ A = A(ξ,ω) (4.35)

is continuous at (0, 0). Consider a sequence

lim (ξk,ωk) = (0,0) (4.36)

k→∞
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and denote by (v(i)
k , q(i)

k ) and (V (i)
k , Q(i)

k ) the solutions of systems (3.10) and (3.11), respectively, associated with 
(ξk, ωk). From Lemma 3.1, we have that

|v(i)
k |2,2,� + |v(i)

k |1,2,� + ‖q(i)
k ‖1,2,� � C,

|V (i)
k |2,2,� + |V (i)

k |1,2,� + ‖Q(i)
k ‖1,2,� � C.

Since v(i)
k and V (i)

k tend to zero as |x| → ∞, from a classical embedding inequality we also deduce (see, for instance, 
[16, Theorem II.6.1])

‖v(i)
k ‖6,� � C, ‖V (i)

k ‖6,� � C.

As a consequence, we find a pair (v(i), q(i)) such that, up to a subsequence,

v
(i)
k → v(i) in L2

loc(�),(∇v
(i)
k , q

(i)
k

)
⇀

(∇v(i), q(i)
)

weakly in W 1,2(�),

v
(i)
k ⇀ v(i) weakly in L6(�).

(4.37)

Using (4.37) together with (4.36), we deduce that (v(i), q(i)) is a weak solution (see for instance [16, Definition V.1.1]
but eventually a smooth solution) of

− divσ(v(i), q(i)) = 0 in �

divv(i) = 0 in �

v(i) = ei on ∂�

lim|x|→∞v(i) = 0,

(4.38)

where the boundary condition on ∂� follows from the trace estimate

‖v(i)
k − v(i)‖2,∂� � C‖v(i)

k − v(i)‖1/2
2,�R

‖v(i)
k − v(i)‖1/2

1,2,�R
→ 0 (k → ∞), �R = � ∩ BR,

while the boundary condition at infinity is satisfied in L6-sense and even pointwise, see [16, Theorem V.3.1]. By 
uniqueness of solutions to (4.38) [16, Theorem V.3.4], (4.37) holds for the whole sequence (v(i)

k , q(i)
k ) (not only for 

a subsequence). Using classical compactness results, we also deduce from (4.37) that (∇v
(i)
k , q(i)

k ) → (∇v(i), q(i))

strongly in L2
loc(�). This together with the trace estimate implies that

‖σ(v
(i)
k , q

(i)
k )n − σ(v(i), q(i))n‖2,∂�

� C‖∇v
(i)
k − ∇v(i)‖1/2

2,�R
‖∇v

(i)
k − ∇v(i)‖1/2

1,2,�R

+ C‖q(i)
k − q(i)‖1/2

2,�R
‖q(i)

k − q(i)‖1/2
1,2,�R

→ 0 (k → ∞).

(4.39)

By the same reasoning, we also have

‖σ(V
(i)
k ,Q

(i)
k )n − σ(V (i),Q(i))n‖2,∂� → 0 (k → ∞), (4.40)

where {V (i), Q(i)} denotes the solution to (3.11) with (ξ, ω) = (0, 0). In view of (3.14)–(3.15) and (4.28), the con-
vergence (4.39) and (4.40) yield the continuity at (0, 0) of the mapping defined by (4.35). Now it follows from the 
argument by use of the Neumann series that if

‖A(ξ,ω) − A(0,0)‖ � 1

2‖A−1
(0,0)‖

then A(ξ,ω) is invertible and ‖A−1
(ξ,ω)‖ � 2‖A−1

(0,0)‖. Hence, the condition (4.29) with sufficiently small c1 implies 
(4.30). �
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We are now in a position to give a result on solvability of the control problem for the linearized system in which 
the control v∗ is taken from Cχ defined by (3.17), that is,

v∗ =
3∑

j=1

(
αjχg(j) + βjχG(j)

)
.

Proposition 4.5. Suppose (ξ, ω) ∈R
6 satisfies (4.29). Let w be the function defined by (2.3) for (a, b) = (ξ, ω).

1. Given f = divF ∈ L2(�) with (2.4) and given (κ, μ) ∈ R
6, problem (4.1)–(4.6) admits a unique solution 

(α, β, u, p) of class

(α,β) ∈R
3 ×R

3, u ∈ D2,2(�) ∩ D1,2(�) ∩ L2
loc(�), wu ∈ L∞(�), p ∈ W 1,2(�) (4.41)

subject to

|(α,β)| + |u|2,2,� + |u|1,2,� + �u�1,w,� + ‖p‖1,2,�

� C
(|(κ,μ)| + ‖f ‖2,� + �F �2,w,� + |(ξ,ω)| + |(ξ,ω)|2), (4.42)

where the constant C > 0 is independent of ξ , ω, κ , μ and f .
2. Let f = divF , f ′ = divF ′ ∈ L2(�) with F , F ′ satisfying (2.4), and let (κ, μ), (κ ′, μ′) ∈ R

6. Then the solutions 
(α, β, u, p) and (α′, β ′, u′, p′) obtained above fulfill

|(α − α′, β − β ′)| + |u − u′|2,2,� + |u − u′|1,2,� + �u − u′�1,w,� + ‖p − p′‖1,2,�

� C
(|(κ − κ ′,μ − μ′)| + ‖f − f ′‖2,� + �F − F ′�2,w,�

)
,

(4.43)

where C is the same constant as in (4.42).

Proof. From Lemma 4.3 and (4.25)–(4.27) we deduce that, under the smallness condition (4.29), there exists a unique 
(α, β) such that (4.1)–(4.6) holds with (u, p) of the form (4.13). By the trace estimate we have

|(α,β)| � K|(δ, η)| � C
(
|(κ,μ)| + ‖(∇uf ,pf )‖1,2,� + ‖V ‖2

2,∂�

)
,

which together with (4.11) implies that

|(α,β)| � C
(
|(κ,μ)| + ‖f ‖2,� + �F �2,w,� + |(ξ,ω)| + |(ξ,ω)|2

)
, (4.44)

where we have used ‖V ‖3/2,2,∂� = ‖ξ + ω × x‖3/2,2,∂� � C|(ξ, ω)|. In view of (4.13) we collect (4.10), (4.11) and 
(4.44) to obtain (4.42). Concerning the difference between two solutions, we use (4.12) in place of (4.11) to get 
(4.43). �
4.2. Tangential boundary controls

In this case, our aim is to use a control v∗ that is tangential on ∂�. More precisely, the control space is (3.18), 
where g(i) and G(i) are defined by (3.14) and (3.15). We replace (4.3) by

u = V +
3∑

j=1

{
αj (g

(j) × n) × n + βj (G
(j) × n) × n

}
on ∂�, (4.45)

and, accordingly, (u(j), p(j)) and (U(j), P (j)) are respectively solutions (as in the first assertion of Lemma 4.1) to⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−divσ(u(j),p(j)) − (ξ + ω × x) · ∇u(j) + ω × u(j) = 0

divu(j) = 0

u(j) = (g(j) × n) × n on ∂�

lim u(j) = 0,

(4.46)
|x|→∞
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−divσ(U(j),P (j)) − (ξ + ω × x) · ∇U(j) + ω × U(j) = 0

divU(j) = 0

U(j) = (G(j) × n) × n on ∂�

lim|x|→∞U(j) = 0,

(4.47)

in place of (4.7)–(4.8).
We look for a solution of the form (4.13) and we arrive as in the previous subsection at system (4.14)–(4.15). 

Lemma 4.2 is then transformed into

Lemma 4.6. For i, j = 1, 2, 3, we have∫
∂�

[σ(u(j),p(j))n + (V · n)u(j)] · ei dγ = −
∫
∂�

[
(g(i) × n) × n

]
·
[
(g(j) × n) × n

]
dγ,

∫
∂�

[σ(U(j),P (j))n + (V · n)U(j)] · ei dγ = −
∫
∂�

[
(g(i) × n) × n

]
·
[
(G(j) × n) × n

]
dγ,

∫
∂�

[σ(u(j),p(j))n + (V · n)u(j)] · (ei × x) dγ = −
∫
∂�

[
(G(i) × n) × n

]
·
[
(g(j) × n) × n

]
dγ,

∫
∂�

[σ(U(j),P (j))n + (V · n)U(j)] · (ei × x) dγ = −
∫
∂�

[
(G(i) × n) × n

]
·
[
(G(j) × n) × n

]
dγ.

(4.48)

Proof. The proof of (4.23) is exactly the same as in the proof of Lemma 4.2. This time, letting R → ∞ in (4.23)
yields∫

∂�

[σ(u(j),p(j))n + (V · n)u(j)] · ei dγ =
∫
∂�

g(i) · [(g(j) × n) × n]dγ.

Using the relation

g(i) = (n · g(i))n + (n × g(i)) × n,

we find the first identity of (4.48). The other formulae can be verified similarly. �
We are thus led to the linear system (4.25) with the matrix A = (Ai,j ) ∈ R

6×6 defined by

Ai,j = −
∫
∂�

[
(g(i) × n) × n

]
·
[
(g(j) × n) × n

]
dγ (i, j � 3),

Ai,j = −
∫
∂�

[
(g(i) × n) × n

]
·
[
(G(j−3) × n) × n

]
dγ (i � 3, j � 4),

Ai,j = −
∫
∂�

[
(G(i−3) × n) × n

]
·
[
(g(j) × n) × n

]
dγ (i � 4, j � 3),

Ai,j = −
∫
∂�

[
(G(i−3) × n) × n

]
·
[
(G(j−3) × n) × n

]
dγ (i, j � 4).

(4.49)

Lemma 4.7. The matrix A defined by (4.49) is symmetric nonpositive. Furthermore, there exist positive constants c′
1, 

K ′ such that if (4.29) holds true with c1 replaced by c′
1, then A is invertible with

‖A−1‖ � K ′, (4.50)

where ‖ · ‖ = ‖ · ‖L(R6), and K ′ is independent of ξ , ω with |ξ |, |ω| � c′ .
1
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Proof. The invertibility of A(0,0) is proved by Galdi [14, Lemma 2.1]. In view of (4.49) with (3.14)–(3.15), the 
convergence (4.39) and (4.40) tell us that the mapping (4.35) is continuous at (0, 0). As in the proof of Lemma 4.3, 
we obtain the assertion. �

Now it is obvious that Proposition 4.5 holds true for the control problem (4.1), (4.2), (4.45), (4.4)–(4.6) as well. 
Since the statement is exactly the same, we do not repeat it.

5. Solution of the nonlinear control problem

In this section we combine the formulation of the control problem given in Section 3 with Proposition 4.5 to prove 
Theorem 1.1. Let us set

X :=
{
(v,α,β) ∈ D1,2(�) ×R

3 ×R
3 ; �v�1,w,� < ∞

}
endowed with the norm

‖(v,α,β)‖X := |v|1,2,� + �v�1,w,� + |(α,β)|.
Note that the space X depends on ξ and ω through the weight function w(x) defined by (2.3) for (a, b) = (ξ, ω). It is 
a Banach space with the norm defined above.

Proof of Theorem 1.1. In order to solve (3.1)–(3.6) with (3.7)–(3.9), we intend to find a fixed point of the map Z
defined below. Given (v, α, β) ∈X , we consider f (v) = divF(v), κ(v∗) and μ(v∗), given respectively by (3.7)–(3.9), 
with

v∗ =
3∑

j=1

(
αjχg(j) + βjχG(j)

)
∈ Cχ , (5.1)

or

v∗ =
3∑

j=1

{
αj (g

(j) × n) × n + βj (G
(j) × n) × n

}
∈ Cτ . (5.2)

Since

‖f (v)‖2,� + �F(v)�2,w,� � ‖v‖∞,�‖∇v‖2,� + ‖wv‖2∞,� �
(|v|1,2,� + �v�1,w,�

) �v�1,w,�, (5.3)

and since (3.16) yields∣∣(κ(v∗),μ(v∗)
)∣∣ � C|(α,β)|2 + C|(ξ,ω)|2, (5.4)

where C = C(B) > 0 is independent of ξ, ω with |ξ |, |ω| ∈ [0, B], one can apply Proposition 4.5 to f = f (v), 
κ = κ(v∗) and μ = μ(v∗) under the condition |ξ |, |ω| ∈ [0, c1], see (4.29). By Z(v, α, β) we denote the solution 
obtained by Proposition 4.5. Combining (4.42) with (5.3)–(5.4), we find

‖Z(v,α,β)‖X � C2
(|(ξ,ω)| + |(ξ,ω)|2)+ C3‖(v,α,β)‖2

X (5.5)

with some constants C2, C3 > 0. Suppose

|(ξ,ω)| + |(ξ,ω)|2 � 1

4C2C3
(5.6)

and set

L := 2C2
(|(ξ,ω)| + |(ξ,ω)|2). (5.7)

Then it easily follows from (5.5) that ‖(v, α, β)‖X � L implies ‖Z(f, α, β)‖X � L.
We next show that the map Z is contractive from this closed ball

XL := {(v,α,β) ∈X ; ‖(v,α,β)‖X � L}
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into XL. Let (v, α, β), (v′, α′, β ′) ∈ XL. Then we have

‖f (v) − f (v′)‖2,� + �F(v) − F(v′)�2,w,�

�
(|v|1,2,� + �v�1,w,� + �v′�1,w,�

)�v − v′�1,w,� + �v′�1,w,�|v − v′|1,2,�

(5.8)∣∣(κ(v∗) − κ(v′∗),μ(v∗) − μ(v′∗)
)∣∣ � C

(|(α,β)| + |(α′, β ′)| + |(ξ,ω)|)|(α − α′, β − β ′)| (5.9)

where v∗ and v′∗ denote the control functions given by (5.1) or (5.2) with (α, β) and (α′, β ′), respectively. We then 
combine (4.43) with (5.8)–(5.9) to deduce

‖Z(v,α,β) −Z(v′, α′, β ′)‖X � C4L‖(v,α,β) − (v′, α′, β ′)‖X .

Let us take c0 > 0 so small that (1.7) implies not only (4.29), (5.6) but also

C4L = 2C2C4
(|(ξ,ω)| + |(ξ,ω)|2) < 1,

see (5.7). Then the map Z admits a unique fixed point (v, α, β) ∈XL, which together with (5.1) or (5.2) provides the 
desired solution. By Proposition 4.5 we know that (v, α, β) = Z(v, α, β) and the associated pressure p belong to the 
additional class (4.41). We gather ‖(v, α, β)‖X � L with (5.7), Lemma 3.2, (4.42), (5.3) and (5.4) to obtain (1.10). 
Finally, the interior regularity theory for the classical Stokes system [16, Theorem IV.4.1] and the bootstrap argument 
lead us to (v, p) ∈ C∞(�). We have thus completed the proof. �
6. On the asymptotic behavior and summability of solutions

In this section we will discuss the asymptotic behavior of solutions at infinity for (1.1)–(1.2), independently of 
Theorem 1.1, without assuming any boundary condition on ∂� when they enjoy N = 0 or ω · N = 0, see (1.13). And 
then, as an application, it is at once shown that the self-propelled condition (1.5) implies faster decay of solutions 
constructed in Theorem 1.1. Our starting point is that a solution to (1.1)–(1.2) (only these two equations) with

(∇v,p) ∈ L2(�), (1 + |x|) v ∈ L∞(�) (6.1)

is given. Then, as in the end of the proof of Theorem 1.1 given by the previous section, the regularity theory for the 
Stokes system yields

(v,p) ∈ C∞(�). (6.2)

As explained in Section 1, Theorem 1.2 for the case ω = 0 is completely covered by previous literature and so, in 
what follows, we will concentrate ourselves on the other case ω 
= 0.

As is standard, the proof of Theorem 1.2 is done by cut-off procedure after subtracting the flux carrier, see (6.24)
below. In order to recover the solenoidal condition, we need a correction term, whose support can be compact because 
the total flux through ∂� vanishes by this subtraction. We then analyze the whole space problem and the point is that 
the information about the net force N goes to the external force of the equation of momentum, see (6.32) with (6.34)
below. We follow in principle the argument developed by [8,6,23] (in which no-slip boundary condition is imposed) 
and two cases ω · ξ 
= 0 and ω · ξ = 0 are discussed independently as we will soon describe.

Unlike the case of no-slip boundary condition, the flux carrier mentioned above brings the external force with 
noncompact support in the whole space problem. For the case ω · ξ 
= 0, in spite of this change, we will make it clear 
how the argument of Kyed [23] still works. The reason why his argument does not work for the other case ω · ξ = 0
is that the following claim is no longer true if we replace the Oseen fundamental solution EOs(x) by the Stokes 
fundamental solution ESt (x), see (6.5) and (6.6):

EOs ∗ div(̃u ⊗ ũ) ∈ Lr, ∀r ∈ (4/3,∞) (6.3)

under the condition (6.1), where ̃u is a suitable modification of v by (6.27), (6.31) and (6.35) below. The only thing 
we can obtain for the case ω · ξ = 0 is that ESt ∗ div(̃u ⊗ ũ) ∈ Lr for all r ∈ (3, ∞) under the condition (6.1); indeed, 
we have no gain compared with (6.1). This suggests that the leading term does not come from the linear part when 
ω · ξ = 0, while the leading term is given by ( ω

|ω| · N)EOs(x) ω
|ω| when ω · ξ 
= 0.

We turn to the case ω · ξ = 0. Then, as in Farwig and Hishida [8], it is possible to show that the leading term 
is given by a member of the Landau solutions. It is known (Korolev and Šverák [21, Section 3]) that the class of 
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those solutions can be parametrized as {Ub; b ∈R
3} by vectorial parameter b, which denotes the axis of symmetry of 

Ub, and coincides with the family of all self-similar solutions (that is, homogeneous solutions of degree (−1)) to the 
Navier–Stokes system in R3 \ {0}. The member Ub together with the associated pressure Pb (which is homogeneous 
of degree (−2)) satisfies

−	Ub + ∇Pb + Ub · ∇Ub = bδ0, divUb = 0 in D′(R3),

where δ0 denotes the Dirac measure supported in the origin. Since Ub(x) → 0 pointwise in R3 \ {0} as |b| → 0, one 
may regard U0 = 0. The Landau solution with parameter b = ( ω

|ω| · N) ω
|ω| provides the leading term of the flow under 

consideration as in the case of no-slip boundary condition [8], however, we do not derive the asymptotic expansion 
here. Instead, under the condition ω · N = 0 we directly deduce v ∈ L3/2+ε as long as lim sup|x|→∞ |x||v(x)| is small 
enough. We can do that by making full use of the Lorentz space as in [8], but in this paper we adopt another framework 
with use of less function spaces.

We begin with introducing several fundamental solutions, which play an important role. First of all, we recall the 
fundamental solution

ELa(x) = 1

4π |x| (6.4)

of the Laplace operator −	. The fundamental solution of the classical Stokes system is given by

ESt (x) = 1

8π

(
I3

|x| + x ⊗ x

|x|3
)

, P(x) = −∇ELa(x) = x

4π |x|3 . (6.5)

At the stage of the whole space problem, see (6.32) below, we will reduce our consideration for general case (ξ, ω)

with ω 
= 0 to the case where both ω and ξ are parallel to e1 = (1, 0, 0) as performed in Section 2. It thus suffices to 
provide the representation formulae of the fundamental solutions of the Oseen and rotating Stokes systems below for 
this particular case. Let R ∈R \ {0}. The velocity part of fundamental solution of the Oseen system

−	u + ∇p −R ∂1u = f, divu = 0 in R
3

is given by

EOs(x) = (
	 I3 − ∇2)�(x), �(x) = 1

4π |R|

|R|
2 s(x)∫
0

1 − e−τ

τ
dτ, (6.6)

together with the same P as in (6.5) for the pressure part, where

s(x) =
{ |x| + x1, R> 0,

|x| − x1, R< 0.

Let us also introduce

ERSt (x, y) =
∞∫

0

Oω(t)�K(Oω(t)x − y, t) dt, (6.7)

where K(x, t) is the fundamental solution of unsteady Stokes system given by

K(x, t) = G(x, t) I3 +
∞∫
t

∇2G(x, s) ds, G(x, t) = (4πt)−3/2e−|x|2/4t ,

and

Oω(t) = O(|ω|t), O(t) =
⎡⎣ 1 0 0

0 cos t − sin t

0 sin t cos t

⎤⎦ . (6.8)
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Note that the fundamental solution (6.5) of Stokes system is represented as

ESt (x) =
∞∫

0

K(x, t) dt,

which can be compared with (6.7). We know (see [7,9]) that (ERSt (x, y), P(x − y)) with P given by (6.5) is a 
fundamental solution of the rotating Stokes system

−	u + ∇p − |ω| {(e1 × x) · ∇u − e1 × u} = f, divu = 0 in R
3. (6.9)

Analysis of the fundamental solution (6.7) was developed by Farwig and Hishida [7], but we need a bit more. When 
the support of f is assumed to be compact in (6.9), the result of [7] can be directly applied, however, that is not the 
case here. But we do not intend to optimize the condition on f . For later use, the following result is enough. Although 
pointwise estimate (6.15) was already proved by Farwig, Galdi and Kyed [6, (2.12)], our proof is somewhat different 
from theirs.

Lemma 6.1. Suppose ω = |ω|e1 
= 0.

1. Let

f ∈ Lr(R3) ∩ Ls(R3)

for some (r, s) satisfying 1 < r < 3/2 < s � 2. Then the potential representations

u(x) =
∫
R3

ERSt (x, y)f (y) dy, p(x) =
∫
R3

P(x − y)f (y) dy (6.10)

are well-defined as

u ∈ L∞(R3), p ∈ Lr∗(R3) ∩ Ls∗(R3) (6.11)

and the pair (u, p) is a solution to (6.9) in the sense of distributions, where 1/r∗ = 1/r − 1/3 and 1/s∗ =
1/s − 1/3.

2. Suppose⎧⎪⎨⎪⎩
f = f0 + divF,

f0 ∈ L∞(R3) with compact support, (1 + |x|)αF ∈ L∞(R3),

divF ∈ L1(R3) ∩ Ls(R3)

(6.12)

for some α ∈ (2, 3] and s ∈ (3/2, 2]. Then the solution (6.10) enjoys the asymptotic representation

u(x) =
⎛⎜⎝e1 ·

∫
R3

f (y)dy

⎞⎟⎠ESt (x)e1 +
{

O(|x|−2 log |x|), α = 3,

O(|x|−α+1), 2 < α < 3,
as |x| → ∞, (6.13)

where ESt (x) is the Stokes fundamental solution (6.5).
3. Assume (6.12) for some α ∈ (2, 3) and s ∈ (3/2, 2]. If in particular f0 = 0, then the solution (6.10) is of class

(1 + |x|)α−1u ∈ L∞(R3), u ∈ D1,2(R3) ⊂ L6(R3), p ∈ L2(R3) (6.14)

and there is a constant C = C(α) > 0 such that

�u�α−1 + |u|1,2,R3 + ‖u‖6,R3 + ‖p‖2,R3 � C�F �α, (6.15)

where the abbreviation �F �α := �F �α,(1+|x|),R3 is used for simplicity of notation, see (2.1). Furthermore, it is a 
unique solution to (6.9) within the class (u, p) ∈ L6(R3) × L2(R3).
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Proof. We verify the first assertion when f ∈ Lr(R3) ∩ Ls(R3) for some r , s specified above. By the Hardy–
Littlewood–Sobolev inequality, it is obvious that p ∈ Lr∗(R3) ∩ Ls∗(R3) with

‖p‖r∗,R3 � C‖f ‖r,R3, ‖p‖s∗,R3 � C‖f ‖s,R3 . (6.16)

By Tf we denote the right-hand side of the first formula of (6.10), which is written as

(
F(Tf )

)
(ζ ) =

∞∫
0

Oω(t)�e−|ζ |2t
(
I3 − (Oω(t)ζ ) ⊗ (Oω(t)ζ )

|ζ |2
)

(Ff )(Oω(t)ζ ) dt

in the Fourier side, where F stands for the Fourier transform. Let us consider

∫
R3

|(F(Tf )
)
(ζ )|dζ � C

⎛⎜⎝ ∫
|ζ |�1

+
∫

|ζ |>1

⎞⎟⎠ |(Ff )(ζ )|
|ζ |2 dζ =: I1 + I2.

Since 1 < r < 3/2 < s � 2, we have

I1 � C‖Ff ‖r ′,R3
ζ

⎛⎜⎝ ∫
|ζ |�1

dζ

|ζ |2r

⎞⎟⎠
1/r

� C‖f ‖r,R3,

I2 � C‖Ff ‖s′,R3
ζ

⎛⎜⎝ ∫
|ζ |>1

dζ

|ζ |2s

⎞⎟⎠
1/s

� C‖f ‖s,R3,

where 1/r ′ + 1/r = 1 and 1/s′ + 1/s = 1. We thus obtain F(Tf ) ∈ L1(R3
ζ ) and, therefore, Tf ∈ L∞(R3) subject to

‖Tf ‖∞,R3 � C
(‖f ‖r,R3 + ‖f ‖s,R3

)
.

Given f ∈ Lr(R3) ∩ Ls(R3), we take fj ∈ C∞
0 (R3) such that fj → f in Lr(R3) ∩ Ls(R3); then, Tfj → Tf in 

L∞(R3) and P ∗ fj → P ∗ f in Lr∗(R3) ∩ Ls∗(R3) as j → ∞. Since (Tfj , P ∗ fj ) is a solution to (6.9), so is 
(Tf, P ∗ f ).

Let us prove the second assertion. Set

H(x) := 1

8π |x|3

⎡⎣ |x|2 + x2
1 0 0

x2x1 0 0
x3x1 0 0

⎤⎦ .

Then it follows from [7, Section 4] that

|ERSt (x, y) −H(x)| � C|y|
|x|2 + C

|ω||x|3 for |x| > 2|y|, (6.17)

which together with the assumption on f0 immediately implies that

∫
R3

ERSt (x, y)f0(y) dy =
⎛⎜⎝e1 ·

∫
R3

f0(y) dy

⎞⎟⎠ESt (x)e1 + O(|x|−2) (6.18)

as |x| → ∞ (see also [8, Lemma 3.7, Lemma 3.8]). Let ψ ∈ C∞([0, ∞)) be the same cut-off function as in the 
beginning of the proof of Lemma 4.2 and set ψR(x) = ψ(|x|/R). Then we have∫

3

(ψR divF + F · ∇ψR)(y) dy =
∫

3

div(ψRF)(y) dy = 0.
R R
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Since (6.12) yields∣∣∣∣∣∣∣
∫
R3

(F · ∇ψR)(y) dy

∣∣∣∣∣∣∣ � C

Rα−2
→ 0 (R → ∞)

and since divF ∈ L1(R3), we find 
∫
R3 divF dy = 0, so that∫

R3

f (y)dy =
∫
R3

f0(y) dy. (6.19)

It thus suffices to show that

u1(x) :=
∫
R3

ERSt (x, y) (divF)(y) dy =
{

O(|x|−2 log |x|), α = 3,

O(|x|−α+1), 2 < α < 3,
(6.20)

as |x| → ∞. Similarly to [7, (2.11)], we have

|ERSt (x, y)| � C

|x| , |∇yERSt (x, y)| � C

|x|2 for |x| > 2|y|, (6.21)

|ERSt (x, y)| � C

|y| , |∇yERSt (x, y)| � C

|y|2 for |y| > 2|x|. (6.22)

By the Fubini theorem together with a simple transformation we find∫
|y|�2|x|

|∇yERSt (x, y)|dy

�
∫

|y|�2|x|

∞∫
0

|(∇K)(Oω(t)x − y, t)|dt dy

� C

∫
|y|�2|x|

∞∫
0

⎛⎝t−2e−|Oω(t)x−y|2/8t +
∞∫
t

s−3e−|Oω(t)x−y|2/8s ds

⎞⎠dt dy

= C

∫
|y|�2|x|

∞∫
0

⎛⎝t−2e−|x−y|2/8t +
∞∫
t

s−3e−|x−y|2/8s ds

⎞⎠dt dy

= C

∫
|y|�2|x|

dy

|x − y|2 � C|x|.

(6.23)

By (6.22) together with (6.12) for α > 2 one can justify the following integration by parts and then split the integral 
into three parts

u1(x) = −
∫
R3

∇yERSt (x, y) : F(y)dy

=
∫

+
∫

+
∫

=: u11(x) + u12(x) + u13(x).
|y|<|x|/2 |x|/2�|y|�2|x| |y|>2|x|
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Combining (6.21)–(6.23) with (6.12), we get

|u11(x)| � C�F �α

|x|2
∫

|y|<|x|/2

dy

(1 + |y|)α �

⎧⎪⎪⎨⎪⎪⎩
C�F �α

|x|2 log
(

1 + |x|
2

)
, α = 3,

C�F �α

(3 − α)|x|2
(

1 + |x|
2

)3−α

, 2 < α < 3,

|u12(x)| � C�F �α(
1 + |x|

2

)α ∫
|y|�2|x|

|∇yERSt (x, y)|dy � C�F �α|x|
(

1 + |x|
2

)−α

,

|u13(x)| � C�F �α

∫
|y|>2|x|

|y|−2(1 + |y|)−α dy = C�F �α

α − 1
(1 + 2|x|)−α+1.

Summing up, we obtain (6.20), which together with (6.18)–(6.19) concludes (6.13).
Finally, we show the third assertion. Among three estimates of u1(x) above, the only problem is the boundedness 

of u11(x), however, one has only to estimate this term in the other way

�F �α

|x|2
|x|/2∫
0

ρ2

(1 + ρ)α
dρ � �F �α

4

|x|/2∫
0

dρ

(1 + ρ)α
� C�F �α

α − 1

near x = 0. We thus obtain

�u�α−1 � C�F �α.

Since F ∈ L2(R3), one can employ [20, Theorem 2.1], [16, Theorem VIII.1.2] to find that (6.9) admits a solution 
(u′, p′) of class

u′ ∈ D1,2(R3) ⊂ L6(R3), p′ ∈ L2(R3)

with

|u′|1,2,R3 + ‖u′‖6,R3 + ‖p′‖2,R3 � C‖F‖2,R3 � C�F �α.

We here note that C∞
0 (R3) is dense in D1,2(R3) and hence the embedding relation ‖g‖6,R3 � C‖∇g‖2,R3 = C|g|1,2,R3

holds for all g ∈ D1,2(R3). Let us identify (u′, p′) with (u, p) given by (6.10). Set (v, q) := (u −u′, p−p′) ∈ S ′(R3), 
which fulfills

−	v + ∇q − |ω|{(e1 × x) · ∇v − e1 × v} = 0, divv = 0 in R
3,

where S ′(R3) denotes the class of tempered distributions. Since

div [(e1 × x) · ∇v − e1 × v] = (e1 × x) · ∇ divv = 0

so that 	q = 0 and since q ∈ Ls∗(R3) + L2(R3), we get q = 0, which leads to

−	v − |ω|{(e1 × x) · ∇v − e1 × v} = 0 in R
3.

As shown in [9, p. 311], [20, Lemma 4.2], the Fourier transform Fv is supported in the origin. Hence v is a polynomial 
vector field, which concludes v = 0 since u′ ∈ L6(R3) as well as (1 + |x|)α−1 u ∈ L∞(R3). The final statement on 
uniqueness is obvious by the same reasoning as above. �

We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2. As we have mentioned, we only consider here the cases 2 and 4. We thus assume throughout 
that ω 
= 0 and ω · N = 0. Given (v, p), a solution to (1.1)–(1.2) with (6.1) (and, as a consequence, (6.2) as well), we 
set

� =
∫

v · ndγ.
∂�
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We fix x0 ∈ intS and use (6.4) to introduce the flux carrier W ∈ L3/2+ε(�) by

W(x) = �∇ELa(x − x0) = −�(x − x0)

4π |x − x0|3 , (6.24)

which satisfies{
divW = 0, 	W = 0, ξ · ∇W = ∇(ξ ·W),(
ω × (x − x0)

) · ∇W = ω ×W, W · ∇W = ∇( 1
2 |W|2) (6.25)

in R3 \ {x0} as well as∫
∂�

W · ndγ = �. (6.26)

Note that we do not always claim 0 ∈ intS without loss because the axis of rotation runs through the origin and 
because the equation (1.1) changes by translation. We set

v̂ = v −W, p̂ = p − (ξ + ω × x0) ·W − 1

2
|W|2. (6.27)

We then see from (6.1)–(6.2) and (6.25)–(6.26) that the pair (v̂, p̂) obeys

− divσ(v̂, p̂) + (v̂ − ξ − ω × x) · ∇v̂ + ω × v̂ = −v · ∇W −W · ∇v in �,

div v̂ = 0 in �,∫
∂�

v̂ · ndγ = 0,

(6.28)

and satisfies

(∇v̂, p̂) ∈ L2(�), (1 + |x|) v̂ ∈ L∞(�), (v̂, p̂) ∈ C∞(�). (6.29)

We fix R0 > 0 such that S ⊂ BR0 . Let R ∈ [R0, ∞) be a parameter to be determined later (one may take R = R0
when ω · ξ 
= 0, while when ω · ξ = 0 we have to be more precise in the choice of R, see (6.57) below). We take 
φR ∈ C∞(R3; [0, 1]) such that

1 − φR ∈ C∞
0 (B3R), φR(x) = 0 (x ∈ B2R), ‖∇φR‖∞,R3 � C

R
. (6.30)

We set

u := φRv̂ −B[v̂ · ∇φR], q := φRp̂, (6.31)

where B denotes the Bogovskii operator [2,3,16] in the domain

BR,3R := {x ∈R
3;R < |x| < 3R}.

Since 
∫
BR,3R

v̂ · ∇φR dx = 0 follows from 
∫
∂�

v̂ · n dγ = 0, we have divB[v̂ · ∇φR] = v̂ · ∇φR . We thus obtain

− divσ(u, q) + (u − ξ − ω × x) · ∇u + ω × u = g in R
3,

divu = 0 in R
3,

lim|x|→∞u = 0
(6.32)

where (6.1)–(6.2) and (6.24) imply that⎧⎪⎨⎪⎩
g = g0 − divG, g0 ∈ C∞

0 (BR,3R),

G := φR (W ⊗ v + v ⊗W) ∈ C∞(R3), (1 + |x|)3 G ∈ L∞(R3),

divG ∈ Lr(R3) for all r ∈ [1,2].
(6.33)
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We do not need any exact form of g0. A key observation is∫
R3

g(y)dy = N + �(ω × x0), ω ·
∫
R3

g(y)dy = ω · N = 0, (6.34)

see (1.13), which follows only from the structure of the equation (6.32). Indeed, for ρ > 3R + |x0| we set Bρ(x0) :=
{y ∈R

3; |y − x0| < ρ} ⊃ B3R and then we see from (6.32) that∫
Bρ(x0)

g(y) dy

= −
∫

Bρ(x0)

div[σ(u, q) − u ⊗ (u − ξ − ω × y) − (ω × y) ⊗ u]dy

= −
∫

|y−x0|=ρ

[
σ(v̂, p̂) − v̂ ⊗ (v̂ − ξ − ω × y) − (ω × y) ⊗ v̂

] y − x0

ρ
dγy

= −
∫

|y−x0|=ρ

[
σ(v,p) − v ⊗ (v − ξ − ω × y) − (ω × y) ⊗ v

] y − x0

ρ
dγy

+
∫

|y−x0|=ρ

[
σ

(
W, (ξ + ω × x0) ·W + 1

2
|W|2

)

+W ⊗W +W ⊗ (ξ + ω × y) − (ω × y) ⊗W
]

y − x0

ρ
dγy

−
∫

|y−x0|=ρ

[
v ⊗W +W ⊗ v

] y − x0

ρ
dγy.

By (1.1) we have

−
∫

|y−x0|=ρ

[
σ(v,p) − v ⊗ (v − ξ − ω × y) − (ω × y) ⊗ v

] y − x0

ρ
dγy

=
∫
∂�

[
σ(v,p) − v ⊗ (v − ξ − ω × y) − (ω × y) ⊗ v

]
ndγy = N.

We thus obtain∫
Bρ(x0)

g(y) dy = N + J1 + J2 + J3 + J4 + J5 + J6,

where (6.25) leads us to

J1 := 2
∫

|y−x0|=ρ

D(W)
y − x0

ρ
dγy

= 2
∫

|y−x0|=ρ

(∇W)
y − x0

ρ
dγy = �

πρ4

∫
|y−x0|=ρ

(y − x0) dγy = 0,

J2 :=
∫

|y−x0|=ρ

[−ξ ·W I3 +W ⊗ ξ ]
y − x0

ρ
dγy

= 1

ρ

∫ [−(
ξ ·W)

(y − x0) +W
(
ξ · (y − x0)

)]
dγy = 0,
|y−x0|=ρ
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J3 :=
∫

|y−x0|=ρ

[−(ω × x0) ·W I3 +W ⊗ (ω × y)
] y − x0

ρ
dγy

= �

4πρ4

∫
|y−x0|=ρ

[(
(ω × x0) · y)(y − x0) + (

(ω × y) · x0
)
(y − x0)

]
dγy = 0,

J4 := −
∫

|y−x0|=ρ

(ω × y) ⊗W y − x0

ρ
dγy

= �

4πρ2

∫
|y−x0|=ρ

{
ω × (y − x0) + ω × x0

}
dγy = �(ω × x0),

J5 :=
∫

|y−x0|=ρ

[
−|W|2

2
I3 +W ⊗W

]
y − x0

ρ
dγy

= �2

32π2ρ5

∫
|y−x0|=ρ

(y − x0) dγy = 0,

J6 := −
∫

|y−x0|=ρ

[
v ⊗W +W ⊗ v

]y − x0

ρ
dγy.

Since v(x) = O(|x|−1) and W(x) = O(|x|−2), we find that the integral J6 goes to zero as ρ → ∞. This yields (6.34).
It is convenient to reduce the whole space problem (6.32) to an equivalent one in which both rotation and translation 

are parallel to e1 = (1, 0, 0). Let M ∈ R
3×3 be an orthogonal matrix that fulfills M ω

|ω| = e1. As in the proof of 
Proposition 2.1, by the transformation

x′ = Mx, u′(x′) = Mu(M�x′), q ′(x′) = q(M�x′), g′(x′) = Mg(M�x′),

we are led to

−divσ(u′, q ′) + u′ · ∇u′ − ξ ′ · ∇u′ − |ω|{(e1 × x′) · ∇u′ − e1 × u′} = g′ in R
3
x′

divu′ = 0 in R
3
x′

lim
|x′|→∞

u′ = 0

where ξ ′ = Mξ , and ∇ and div are differential operators with respect to x′. And then, by the translation

x̃ = x′ − e1 × ξ ′

|ω| = M
(
x − ω × ξ

|ω|2
)
,

ũ( x̃ ) = u′
(

x̃ + e1 × ξ ′

|ω|
)

= Mu

(
M�x̃ + ω × ξ

|ω|2
)

,

q̃( x̃ ) = q ′
(

x̃ + e1 × ξ ′

|ω|
)

= q

(
M�x̃ + ω × ξ

|ω|2
)

,

g̃( x̃ ) = g′
(

x̃ + e1 × ξ ′

|ω|
)

= Mg

(
M�x̃ + ω × ξ

|ω|2
)

,

(6.35)

we obtain

− divσ (̃u, q̃) + ũ · ∇ũ −R ∂1ũ − |ω| {(e1 × x̃) · ∇ũ − e1 × ũ} = g̃ in R
3
x̃

div ũ = 0 in R
3
x̃

lim|̃x|→∞ ũ = 0
(6.36)

where
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R= e1 · ξ ′ = ω · ξ
|ω|

and ∇ and div are differential operators with respect to ̃x. Then it follows from (6.34) that

e1 ·
∫
R3

g̃( x̃ ) dx̃ =
(

M
ω

|ω|
)

·
⎛⎜⎝M

∫
R3

g(x)dx

⎞⎟⎠ = ω

|ω| · N = 0. (6.37)

Look at the properties described in (6.33) for g = g0 − divG. We take the same transformation ̃g0 of g0 as above and

G̃( x̃ ) = (
MGM�)(M�x̃ + ω × ξ

|ω|2
)

,

so that{
g̃ = g̃0 − div G̃, g̃0 ∈ C∞

0 (R3),

G̃ ∈ C∞(R3), (1 + |̃x|)3 G̃ ∈ L∞(R3), div G̃ ∈ Lr(R3) for all r ∈ [1,2]. (6.38)

By (6.29), (6.31) and (6.35) together with properties of the Bogovskii operator, we have

(∇ũ, q̃) ∈ L2(R3), (̃u, q̃) ∈ C∞(R3). (6.39)

Furthermore, when we take

R � max

{
2R0, 1 + |ξ |

|ω|
}

(6.40)

in (6.30)–(6.31), we find

� ũ �1 � C0

(
sup

x∈R3\BR

|x||v(x)| + |�|
R

)
(6.41)

with some constant C0 > 0 independent of R satisfying (6.40), where the abbreviation (2.1) is used. In fact, we employ 
the Gagliardo–Nirenberg inequality with fixed r ∈ (3, ∞), the Poincaré inequality and Lr -estimate of the Bogovskii 
operator (where the estimate is dilation invariant, see Borchers and Sohr [3, Theorem 2.10]) to obtain

‖|x|B[v̂ · ∇φR]‖∞,BR,3R
� CR‖B[v̂ · ∇φR]‖1−3/r

r,R3 ‖∇B[v̂ · ∇φR]‖3/r

r,R3

� CR2−3/r‖∇B[v̂ · ∇φR]‖r,BR,3R

� CR2−3/r‖v̂ · ∇φR‖r,BR,3R

� CR1−3/r‖v̂‖Lr(BR,3R)

� C sup
x∈R3\BR

|x||v̂(x)|

which implies

sup
x∈R3\BR

|x||u(x)| � C sup
x∈R3\BR

|x||v(x) −W(x)|. (6.42)

Since x0 ∈ intS , so that |x0| < R0, the flux carrier (6.24) can be estimated as

|W(x)| = |�|
4π |x − x0|2 <

|�|
π |x|2 for |x| � R � 2R0, (6.43)

see (6.40). We use (6.40) again to observe

sup
x̃∈R3

(1 + |̃x|)|̃u( x̃ )| = sup
x∈R3

(
1 +

∣∣∣∣x − ω × ξ

|ω|2
∣∣∣∣) |u(x)| � 2 sup

x∈R3\BR

|x||u(x)|,

which combined with (6.42)–(6.43) concludes (6.41).
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Let us divide our study into two cases: ω · ξ 
= 0 and ω · ξ = 0. We note that (6.41) is needed only for the latter.

Case ω · ξ 
= 0. The argument of Kyed [23] still works well in this case although the support of g is not compact. We 
will briefly describe the change which is not obvious. First of all, by Galdi and Kyed [17, Theorem 4.4] the Leray 
class (6.1) implies that v ∈ L2+ε(�) for every ε > 0 and, therefore, ũ ∈ L2+ε(R3) by using the Lq -estimate of the 
Bogovskii operator B, see [2,3,16].

Following [23], we consider

w(̃x, t) = Oω(t )̃u(Oω(t)�x̃), r(̃x, t) = q̃(Oω(t)�x̃), h(̃x, t) = h0(̃x, t) − divH(̃x, t),

h0(̃x, t) = Oω(t)g̃0(Oω(t)�x̃), H (̃x, t) =
(
Oω(t)G̃Oω(t)�

)
(Oω(t)�x̃),

with use of the same rotation matrix Oω(t) given by (6.8). Then (w, r) is a time-periodic flow with period 2π
|ω| to the 

system

∂tw − 	w + ∇r −R ∂1w = h − w · ∇w in R
3 ×R/

( 2π
|ω|Z

)
divw = 0 in R

3 ×R/
( 2π

|ω|Z
)

lim|̃x|→∞w = 0.

The point of observation due to [23] is that the leading term of ̃u at infinity comes from the average

w( x̃ ) = |ω|
2π

2π/|ω|∫
0

w(̃x, t) dt, (6.44)

because ̃u − w ∈ Lq(R3) for all q ∈ (1, 2], which follows from [23, Lemma 2.2] and ̃g − ũ · ∇ũ ∈ Lq(R3) for such q , 
see (6.38). Here, w together with the associated pressure

r( x̃ ) = |ω|
2π

2π/|ω|∫
0

r(̃x, t) dt

can be regarded as the solution to the Oseen system

−	w + ∇r −R ∂1w = h − divK in R
3

divw = 0 in R
3

lim|̃x|→∞w = 0

with

h = h0 − divH,

where h0, H and K are defined respectively by the average of h0(·, t), H(·, t) and (w ⊗ w)(·, t) over the period as in 
(6.44). The case of absence of H was discussed by [23]. The only change here is that divH is treated as follows.

As mentioned above, H is given by

H( x̃ ) = |ω|
2π

2π/|ω|∫
0

(
Oω(t)G̃Oω(t)�

)
(Oω(t)�x̃) dt,

whose properties follow from those of G̃, see (6.38). Let EOs be the Oseen fundamental solution (6.6). Since EOs ∈
Lq(R3) for q ∈ (2, 3), see [16, Chapter VII], the Hausdorff–Young inequality implies that the convolution U :=
EOs ∗ (divH) is well-defined in Lr(R3) for r ∈ (2, ∞]. By H( ̃x ) = O(|̃x|−3) and by H ∈ Ls(R3) for all s ∈ (1, ∞], 
one can justify integration by parts to obtain U = (∇EOs) ∗ H , which belongs to Lr(R3) for even better r ∈ (4/3, ∞]
on account of ∇EOs ∈ Lq(R3) for q ∈ (4/3, 3/2). In this way, divH brings better summability and that is also the case 
for divK , see (6.3) in which ̃u⊗ ũ is replaced by K (they have the same summability). As a consequence, the leading 
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term of ̃u arises from EOs ∗ h0. Since 
∫
R3 g̃ dy = ∫

R3 g̃0 dy by the same reasoning as in (6.19), we can conclude the 
asymptotic expansion

ũ( x̃ ) =
⎛⎜⎝e1 ·

∫
R3

g̃(y) dy

⎞⎟⎠EOs( x̃ )e1 + U( x̃ ), (6.45)

where the remainder possesses better summability U ∈ Lq(R3 \ BL) for all q ∈ (4/3, 2] and L > 0; hence, by virtue 
of (6.37), ̃u enjoys such summability and thus the relation (6.35) leads us to∫

∣∣∣x− ω×ξ

|ω|2
∣∣∣>L

|u(x)|q dx < ∞.

Since u is smooth, we have u ∈ L4/3+ε(R3). This together with (6.31) yields v̂ = v − W ∈ L4/3+ε(�) and thereby 
v ∈ L3/2+ε(�) unless � = 0, while v ∈ L4/3+ε(�) if in particular � = 0.

Case ω · ξ = 0. For α > 0 we set

Mα(R3) :=
{
f ∈ D1,2(R3) ; �f �α < ∞

}
(6.46)

which is a Banach space endowed with the norm

‖f ‖Mα
:= |f |1,2,R3 + �f �α,

where the abbreviation (2.1) is used. Let us consider the auxiliary linear system

− divσ(U,Q) − |ω| {(e1 × x̃) · ∇U − e1 × U} = g̃ − U · ∇ũ in R
3
x̃

divU = 0 in R
3
x̃ .

(6.47)

We know from (6.36) with R = 0 that (̃u, ̃q) itself is a solution to (6.47) of class (6.39) together with � ̃u �1 < ∞, to 
be more precise, (6.41). We fix ε > 0 arbitrarily small. For (6.47) our task is to show

(i) uniqueness in the space M1(R
3) × L2(R3);

(ii) existence in the space Mγ (R3) × L2(R3) with 
3

3
2 + ε

< γ < 2

provided � ̃u �1 is sufficiently small (the smallness condition in (ii) will depend on ε > 0). Once we have these results, 
the only solution ̃u must belong to Mγ (R3) and, therefore,

sup
x∈R3

(
1 +

∣∣∣∣x − ω × ξ

|ω|2
∣∣∣∣)γ

|u(x)| < ∞.

We thus obtain u ∈ L3/2+ε(R3), which concludes v = v̂ +W ∈ L3/2+ε(�).
Let us start with the proof of uniqueness (i). Suppose

(U(1),Q(1)), (U(2),Q(2)) ∈M1(R
3) × L2(R3)

are two solutions of (6.47) and set U := U(1) − U(2), Q := Q(1) − Q(2). Then

− divσ(U,Q) − |ω| {(e1 × x̃) · ∇U − e1 × U} = −U · ∇ũ in R
3
x̃

divU = 0 in R
3
x̃ .

(6.48)

As in the proof of Lemma 4.2, we consider the truncation function ψR(x) = ψ(|x|/R), where ψ ∈ C∞([0, ∞)) is the 
same function as in the beginning of the proof of Lemma 4.2, multiply (6.48) by ψRU , use the properties

∇U, Q ∈ L2(R3), �U�1 < ∞, � ũ �1 < ∞,
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and let R → ∞ to deduce that

‖∇U‖2
2,R3 =

∫
R3

ũ · (U · ∇U)dx̃.

By the Hardy inequality we get

‖∇U‖2
2,R3 � 2 sup

x̃∈R3

[|̃x||̃u( x̃ )|]‖∇U‖2
2,R3 .

We thus conclude that U(1) = U(2), Q(1) = Q(2) under the condition

� ũ �1 <
1

2
. (6.49)

We next consider the existence result (ii). Let us consider the solution (u0, q0) of

− divσ(u0, q0) − |ω| {(e1 × x̃) · ∇u0 − e1 × u0} = g̃ in R
3
x̃

divu0 = 0 in R
3
x̃ .

(6.50)

By (6.38) we can apply the second assertion of Lemma 6.1 and take account of (6.37) to find that the solution u0 given 
by (6.10) (with f = g̃) enjoys

u0( x̃ ) = O(|̃x|−2 log |̃x|) as |̃x| → ∞. (6.51)

Since g̃ ∈ C∞(R3), the regularity theory for the Stokes system implies that u0 ∈ C∞(R3) ⊂ L∞
loc(R

3), which com-
bined with (6.51) yields

(1 + |̃x|)γ u0 ∈ L∞(R3), (6.52)

while the associated pressure is of class

q0 ∈ Ls(R3), ∀ s ∈ (3/2,6], (6.53)

which follows from (6.16) with r close to 1 and s = 2. Since C∞
0 (R3) is dense in D1,2(R3), we have the embedding 

relation D1,2(R3) ⊂ L6(R3) to regard D1,2(R3) = {u ∈ L6(R3); ∇u ∈ L2(R3)}, which is a Banach space with the 
norm ‖∇(·)‖2,R3 = | · |1,2,R3 . Having this in mind, we denote by D−1,2(R3) the dual space of D1,2(R3). In view of 
(6.38) again, since g̃0 ∈ L6/5(R3) ⊂ D−1,2(R3) and since G̃ ∈ L2(R3), we have g̃ ∈ D−1,2(R3). Therefore, by [20, 
Theorem 2.1], [16, Theorem VIII.1.2] problem (6.50) admits a solution u′

0 ∈ D1,2(R3) ⊂ L6(R3), q ′
0 ∈ L2(R3). By 

the same argument as in the end of the proof of Lemma 6.1, we see that (u′
0, q

′
0) = (u0, q0) and that it is the only 

solution to (6.50) within the class L6(R3) × L2(R3). We thus obtain

u0 ∈ Mγ (R3), q0 ∈ L2(R3). (6.54)

By T : f �→ u we denote the solution operator for (6.9) defined by the third assertion of Lemma 6.1 (u = Tf has the 
representation (6.10)). Given U ∈ Mγ (R3), we deduce from (6.39) and (6.41) that f = −U · ∇ũ = − div(̃u ⊗ U)

satisfies (6.12) with α = γ + 1, s = 2 and f0 = 0:

� ũ ⊗ U�γ+1 � � ũ �1�U�γ , U · ∇ũ ∈ L1(R3) ∩ L2(R3). (6.55)

This together with (6.54) shows that the mapping Z : Mγ (R3) → Mγ (R3) is well-defined by

ZU := u0 − T
(
div(̃u ⊗ U)

)
and that the solution of (6.47) can be understood as the fixed point of Z . Let U(1), U(2) ∈ Mγ (R3). By (6.15) it is 
easily seen that

‖ZU(1) −ZU(2)‖Mγ
= ‖T

(
div

(
ũ ⊗ (

U(1) − U(2)
)))‖Mγ

� C∗� ũ ⊗ (
U(1) − U(2)

)�γ+1

� C � ũ � ‖U(1) − U(2)‖
∗ 1 Mγ
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with some constant C∗ = C∗(γ ) > 0. This implies that Z is a contraction mapping and thus provides a solution 
U ∈Mγ (R3), together with the pressure Q = q0 −P ∗ (

div(̃u ⊗ U)
) ∈ L2(R3), to (6.47) provided

� ũ �1 <
1

C∗
. (6.56)

Set

δ = δ(ε) = η

4C0
, η = η(ε) = min

{
1

2
,

1

C∗

}
where C0 and C∗ = C∗(γ ) are the constants in (6.41) and (6.56), respectively, and γ is taken such that 3

3/2+ε
< γ < 2. 

Suppose that

lim sup
|x|→∞

|x||v(x)| � δ.

Then there is a constant

R1 = R1(ε) � max

{
2R0,1 + |ξ |

|ω|
}

,

see (6.40), such that

|x||v(x)| < 2δ = η

2C0
for |x| � R1.

By virtue of (6.41) we take

R = R(ε) := max

{
R1,

2C0|�|
η

}
(6.57)

to accomplish both (6.49) and (6.56), which completes the proof. �
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