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Abstract

We show the existence of global solution and the global attractor in L2(T) for the third order Lugiato–Lefever equation on T. 
Without damping and forcing terms, it has three conserved quantities, that is, the L2(T) norm, the momentum and the energy, but 
the leading term of the energy functional is not positive definite. So only the L2 norm conservation is useful for the third order 
Lugiato–Lefever equation unlike the KdV and the cubic NLS equations. Therefore, it seems important and natural to construct the 
global attractor in L2(T). For the proof of the global attractor, we use the smoothing effect of cubic nonlinearity for the reduced 
equation.
© 2016 Elsevier Masson SAS. All rights reserved.
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1. Introduction and main theorems

We consider the third order Lugiato–Lefever equation:

∂tu − ∂3
xu + iα∂2

xu + u + i|u|2u = f, t > 0, x ∈ T, (1)

u(0, x) = u0(x), x ∈ T, (2)

where α is a real constant such that 2α/3 /∈ Z. In (1), all the parameters are normalized except for α. The case α > 0
is called focusing and the case α < 0 is called defocusing. In the physical context, the third order Lugiato–Lefever 
equation includes the detuning term iθu (θ ∈ R) on the left hand side, but we omit the detuning term because it does 
not matter in this paper. From a mathematical point of view, it is more natural to regard equation (1) as the KdV 
type equation with second order dispersion. However, in most physical contexts, equation (1) is called the third order 
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(or the generalized) Lugiato–Lefever equation and so in the present paper, we follow this convention. Recently the 
generalized Lugiato–Lefever equation has been attracting a great interest especially in the field of nonlinear optics. 
It appears as a mathematical model, for example, for Kerr frequency comb generation in a whispering gallery mode 
resonator [3], octave-spanning Kerr frequency comb in a micro-ring resonator [5], and cavity solitons in micro-ring 
resonator near zero group-dispersion [17]. An increasing attention among theoretical and experimental physicists in 
that field has been paid to the role of third order dispersion, i.e. the third order derivative in (1) (see [16,17] and [22]).

In this paper, we show the global well-posedness in L2(T) of the Cauchy problem (1) and (2) and investigate the 
nonlinear smoothing effect. This enables us to prove the existence of the global attractor in L2 for flows generated 
by the third order Lugiato–Lefever equation (1). Without damping and forcing the solution u of (1) and (2) formally 
satisfies the following three conservations, that is, the mass, the momentum and the energy conservations for t > 0
(see [22, lines 7 to 10 on p. 2326]).

‖u(t)‖L2 = ‖u0‖L2 , (3)

Im (∂xu(t), u(t))) = Im (∂xu0, u0), (4)

Im (∂2
xu(t), ∂xu(t)) + α‖∂xu(t)‖2

L2 − 1

2
‖u(t)‖4

L4

= Im (∂2
xu0, ∂xu0) + α‖∂xu0‖2

L2 − 1

2
‖u0‖4

L4, (5)

where (·, ·) denotes the scalar product of L2(T). The energy functional defined as in (5) is neither positive definite 
nor negative definite, because it includes the L2 scalar product of the second and the first derivatives of the solution. 
This suggests that the energy is not useful for controlling the global behavior of the solution. Therefore, we need to 
consider the global solution in L2 and as a result, we need to construct the global attractor in L2 instead of the H 1

global attractor. The construction of global attractor in L2 causes a serious problem on the compactness of orbit.
In this paper, we prove the following two theorems concerning the well-posedness and the global attractor for the 

Cauchy problem (1) and (2).

Theorem 1.1. (i) (Local existence) Assume that u0 ∈ L2 and f ∈ C([0, ∞); L2). Then, there exists a positive constant 
T such that the Cauchy problem (1) and (2) has a unique solution u on [0, T ] satisfying

u ∈ C([0, T ];L2)
⋂

L4([0, T ] × T).

(ii) (Global existence and a priori estimate) The solution given by part (i) can be extended to any positive times 
and satisfies the following identity

‖u(t)‖2
L2 = e−2t‖u0‖2

L2 + 2

t∫
0

e−2(t−s)Re
(
u(s), f (s)

)
ds, t > 0.

Theorem 1.2. Assume that 2α/3 /∈ Z and that f is a time-independent function in L2(T). The third order Lugiato–
Lefever equation (1) has the global attractor in L2(T).

Remark 1.3. (i) In Theorem 1.1, the external forcing term f is a function of variables t and x, while f is a time-
independent function in Theorem 1.2. This is because equation (1) should be autonomous as we consider the global 
attractor in Theorem 1.2.

(ii) Theorem 1.1 holds for all α ∈ R, while our proof of Theorem 1.2 requires the assumption that 2α/3 /∈ Z. When 
2α/3 ∈ Z, it is open whether Proposition 3.5 in Section 3 holds or not. In that case, the nonresonance estimate (40)
breaks down. The resonance structure for (1) is similar to that for the cubic nonlinear Schrödinger equation, but the 
combination of the third and the second order dispersions gives rise to a new resonance. This resonance seems to 
be a specific feature of the third order Lugiato–Lefever equation (1), because it never occurs for the modified KdV 
equation (see [2,21] and [24]) and for the cubic nonlinear Schrödinger equation (see [12] and [15]). It is an interesting 
problem what influence the resonance coming from the coupling of the third and the second order dispersions has on 
the regularity and the global behavior of the solution for (1).
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To show the global well-posedness in L2(T), in Section 2, we prove the space-time integrability of solution for 
the linear inhomogeneous third order Schrödinger equation, which is called the Strichartz estimate. Theorem 1.1 is 
an immediate consequence of the Strichartz estimate. To show the existence of the global attractor, in Section 3, we 
prove a kind of the smoothing effect, which is not the same as that of the parabolic equation. Instead of the original 
equation (1), we consider the so-called reduced equations resulting from the removal of terms which give rise to the 
rapid oscillation of the solution (see (26) and (28) in Section 3). In [6] and [7], Erdoğan and Tzirakis use the smoothing 
effect of the Duhamel term to construct the global attractor for the KdV and the Zakharov equations (see also [13], 
[18] and [26]). However, the whole Duhamel term can not become more regular than the initial datum in the case of 
the third order Lugiato–Lefever equation (1), which is in sharp contrast to the KdV and the Zakharov equations (for 
more details, see Remark 3.9 in Section 3).

We now list notations which are used throughout this paper. For any a ∈ C, we put 〈a〉 = 1 + |a|. Let U(t) =
et(∂3

x−iα∂2
x ). Let f̃ denote the Fourier transform of f in both the time and spatial variables. Let f̂ denote the Fourier 

transform of f only in the spatial variable x or only in the time variable t . For T > 0, we put T = min{T , 1}. For b, 
s ∈ R, we define the Fourier restriction norms ‖ · ‖Yb,s and ‖ · ‖Ȳ b,s as follows.

‖f ‖Yb,s =
{ ∞∑

k=−∞

∞∫
−∞

〈k〉2s〈τ + k3 − αk2〉2b|f̃ (τ, k)|2 dτ

}1/2

,

‖f ‖Ȳ b,s =
{ ∞∑

k=−∞

∞∫
−∞

〈k〉2s〈τ + k3 + αk2〉2b|f̃ (τ, k)|2 dτ

}1/2

.

We also define the spaces Yb,s and Ȳ b,s by the completions of C∞
0 (R × T) in the norms ‖ · ‖Yb,s and ‖ · ‖Ȳ b,s , 

respectively.

2. Strichartz’ estimate for the linear third order Lugiato–Lefever equation

Theorem 1.1 follows from the standard contraction argument if we have proved the so-called Strichartz estimate 
for the linear third order Schrödinger equation (see, e.g., [2, Section 4 on pp. 135–142]). So, in this section, we only 
describe the proof of the Strichartz estimate and leave the proof of Theorem 1.1 to the reader.

We now consider the following inhomogeneous linear Schrödinger equation with third order dispersion on one 
dimensional torus T = R/2πZ.

∂tu − ∂3
xu + iα∂2

xu = f, t ∈ R, x ∈ T, (6)

u(0, x) = u0(x), x ∈ T, (7)

where α is a real constant. We have the following L4 space-time integrability estimate of solution for (6) and (7).

Theorem 2.1. Let T > 0 and let 1/2 > b > 1/3. Then, we have

‖u‖L4((−T ,T )×T) ≤ CT 1/2T −b
[‖u0‖L2(T) (8)

+ T 1/2T −b‖f ‖L4/3((−T ,T )×T)

]
,

where T = min{T , 1} and C is a positive constant dependent only on b.

Remark 2.2. (i) Theorem 2.1 holds valid for all α ∈ R.
(ii) It is presumed that Theorem 2.1 may hold with the L4 norm replaced by the Lp norm for some p > 4 on the 

left hand side of (8) for the same reason as it is conjectured for the Schrödinger equation of second order and the linear 
KdV equation (see [2]). The Strichartz estimate in the case of T is more complicated than that in the case of R. For 
example, a sharp necessary condition for the Strichartz estimate in the R case follows directly from the scaling, but 
it is not the case with the Strichartz estimate on T. The specific property of each equation only reflects on the lower 
bound of the index b as long as we consider the L4 type Strichartz estimate (see, e.g., the proof of Proposition 2.4 in 
Section 2).
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Theorem 2.1 is more or less known (for the Schrödinger equation and the linear KdV equation, see [2]), but there 
seems to be no literature which contains the statement and the proof of Theorem 2.1 explicitly. Moreover, the problem 
in the case of T has not been studied as well as in the case of R. So we present the proof of Theorem 2.1 in this paper.

In this section, we describe the proof Theorem 2.1. We begin with the following lemma about the estimate of the 
integral of the convolution type.

Lemma 2.3. Let 1/2 ≥ b > 1/4 and 0 < ε < 4b − 1. Then, for any a ∈ R, we have

∞∫
−∞

1

〈a − x〉2b〈x〉2b
dx ≤ C

〈a〉4b−1−ε
,

where C is a positive constant independent of a.

Proof. We denote the integral on the left hand side of the inequality by I . We split the integral into two parts as 
follows.

I =
∫

|x|≥|a|/2

+
∫

|x|≤|a|/2

=: I1 + I2.

When |x| ≥ |a|/2, we have

I1 ≤ C

〈1 + |a|/2〉4b−1−ε

∞∫
−∞

dt

〈x − a〉2b〈x〉−2b+1+ε

≤ C

〈a〉4b−1−ε
.

Since |x − a| ≥ |a| − |x| ≥ |a|/2 for |x| ≤ |a|/2, we have

I2 ≤ C

〈1 + |a|/2〉4b−1−ε

∞∫
−∞

dt

〈x − a〉−2b+1+ε〈x〉2b

≤ C

〈a〉4b−1−ε
.

Therefore, we obtain the desired inequality. �
We next prove the L4 space-time estimate, which is a variant of the so-called Strichartz estimate for the linear KdV 

equation with second order dispersion.

Proposition 2.4. Let b > 1/3. Then, we have

‖f ‖L4(R×T) ≤ C‖f ‖Yb,0 ,

where C is a positive constant dependent only on b.

Proof. We follow the argument by Kenig, Ponce and Vega [14, the proof of Lemma 5.2] (see also [24, the proof of 
Lemma 2.1]). We divide the proof into the following two cases:

(Case 1) 2α/3 ∈ Z,
(Case 2) 2α/3 /∈ Z.
From now on, we suppose Case 1, because Case 2 can be treated in the same way. We set (f ∗ g)(τ ) = ∫

R f (τ −
τ1)g(τ1) dτ1. By the Parseval identity, we have
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∥∥f̃ × f
∥∥2

L2(R×T)
≤ C

∞∑
k=−∞

∫
R

( ∑
k1+k2=k

∣∣f̃ (·, k1) ∗ f̃ (·, k2)
∣∣)2

dτ (9)

= C
∑

k 
=2α/3

∫
R

( ∑
k1+k2=k

∣∣f̃ (·, k1) ∗ f̃ (·, k2)
∣∣)2

dτ

+ C

∫
R

( ∑
k1+k2=2α/3

∣∣f̃ (·, k1) ∗ f̃ (·, k2)
∣∣)2

dτ =: I1 + I2.

We note that k1 + k2 
= 2α/3 in Case 2. So in Case 2, equation (15), which appears below, is always quadratic with 
respect to k1. By the Schwarz inequality and the Minkowski inequality, we see that when b > 1/4,

I2 ≤ C

∫
R

[ ∞∑
k1=−∞

{
〈· + k3

1 − αk2
1〉−2b

∗ 〈· + (2α/3 − k1)
3 − α(2α/3 − k1)

2〉−2b
}1/2

×
{(〈· + k3

1 − αk2
1〉2b|f̃ (·, k1)|2

)
∗ (〈· + (2α/3 − k1)

3 − α(2α/3 − k1)
2〉2b|f̃ (·,−k1 + 2α/3)|2)}1/2]2

dτ

≤ C
[ ∞∑
k1=−∞

{∫
R2

〈τ − τ1 + k3
1 − αk2

1〉2b|f̃ (τ − τ1, k1)|2

× 〈τ1 + (2α/3 − k1)
3 − α(2α/3 − k1)

2〉2b|f̃ (τ1,2α/3 − k1)|2 dτ1dτ
}1/2]2

≤ C‖f ‖4
Yb,0 .

Next we suppose that

g̃(τ, k) = h̃(τ, k) = 0 (τ ∈ R, k < 0).

Then, for the estimate of I1, it suffices to show that∑
k 
=2α/3

∫
R

( ∑
k1+k2=k

∫
R

|g̃(τ − τ1, k1)||h̃(τ1, k2)| dτ1
)2

dτ

≤ C‖g‖2
Yb,0‖h‖2

Yb,0 , (10)∑
k 
=2α/3

∫
R

( ∑
k1+k2=k

∫
R

|g̃(τ − τ1, k1)||h̃(τ1, k2)| dτ1
)2

dτ

≤ C‖g‖2
Ȳ b,0‖h‖2

Ȳ b,0 (11)

for b > 5/16. Indeed, if we write f = f1 + f2 with f̃1(τ, k) = f̃ (τ, k) (k ≥ 0) and f̃2(τ, k) = f̃ (τ, k) (k < 0), the 
L2(T) norms of (f1)

2, f1f2 and (f2)
2 can be evaluated by virtue of the above estimate (10). This is because we have 

by the Parseval identity and the fact that ˜̄f (τ, k) = f̃ (−τ, −k),

‖(f2)
2‖L2(R×T) = ‖(f̄2)

2‖L2(R×T) = ‖(f̃2)
− ∗ (f̃2)

−‖L2(R×T), (12)

‖f1f2‖L2(R×T) = ‖f1f̄2‖L2(R×T) ≤ ∥∥|f̃1| ∗ |(f̃2)
−|∥∥

L2(R×T)
, (13)

where (f̃2)
−(τ, k) = f̃2(−τ, −k) and f̃ ∗ g̃ denotes the convolution in both τ and k of f̃ and g̃. Here, we note that if 

f ∈ Yb,s , then F−1(f̃ )−, F−1|(f̃ )−| ∈ Ȳ b,s , where F−1f denotes the inverse Fourier transform of f . Therefore, the 
right hand side of (12) can be estimated by (10) and the right hand side of (13) can be estimated by (10) and (11).

We only show the estimate (10), since (11) can be proved in the same way as (10). We denote the left hand side of 
(10) by J and we have by the Schwarz inequality
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J ≤ C
∑
k∈Z

k 
=2α/3

∫
R

( ∑
k1+k2=k
k1,k2≥0

∫
R

〈τ − τ1 + k3
1 − αk2

1〉−2b

× 〈τ1 + k3
2 − αk2

2〉−2b dτ1
)

× ( ∑
k1+k2=k

∫
R

〈
τ − τ1 + k3

1 − αk2
1〉2b|g̃(τ − τ1, k1)|2

× 〈τ1 + k3
2 − αk2

2〉2b|h̃(τ1, k2)|2 dτ1
)
dτ

≤ CM‖g‖2
Yb,0‖h‖2

Yb,0 ,

where

M = sup
(τ,k)∈R×(Z\{2α/3})

[ ∑
k1+k2=k
k1,k2≥0

∫
R

〈τ − τ1 + k3
1 − αk2

1〉−2b

× 〈τ1 + k3
2 − αk2

2〉−2b dτ1
]
.

Consequently, for the proof of (10), it suffices to show that M < ∞. A simple computation and Lemma 2.3 yield

M ≤ C sup
(τ,k)∈R×(Z\{2α/3})

∑
k1+k2=k
k1,k2≥0

〈
τ + k3

1 − αk2
1 (14)

+ (k − k1)
3 − α(k − k1)

2〉−4b+1+ε

for any ε with 0 < ε < 4(b − 1/4)

For each (τ, k) ∈ R × (Z \ {2α/3}), we consider the following algebraic equation with respect to k1, which corre-
sponds to the formula inside the brackets on the right hand side of (14).

(2α − 3k)k2
1 − k(2α − 3k)k1 − k3 + αk2 − τ = 0. (15)

We denote two roots of the algebraic equation (15) with respect to k1 by β and γ , respectively. If the two roots are 
real, we write β and γ for those real roots. If the two roots are complex, that is, if β = γ̄ and �β 
= 0, then we simply 
use the same notation β and γ for the real part of β and γ . In either case, there exist at most 8 k1’s such that

|k1 − β| < 2 or |k1 − γ | < 2,

and we can choose η > 0 so that for the other k1’s,∣∣k2
1 − kk1 − (2α − 3k)−1(τ + k3 − αk2)

∣∣
≥ |(k1 − β)(k1 − γ )|
≥ η〈k1 − β〉〈k1 − γ 〉.

On the other hand, the condition k1 ≥ 0 and k − k1 ≥ 0 implies that k ≥ k1 ≥ 0. Since |k − 2α/3| ≥ 1, we have

|k − 2α/3| ≥ 1

2

[
min

{ 3

2|α| ,1
}
|k1 − 2α/3| + 1

]
.

Indeed, we see that if k ≥ k1 ≥ 2α/3, then |k − 2α/3| ≥ |k1 − 2α/3| and that if k ≥ 2α/3 ≥ k1 ≥ 0, then |k − 2α/3| ≥
3/(2α)|k1 − 2α/3|. Furthermore, we can choose ε > 0 so small that 3(4b − 1 − ε) > 1. Therefore, the right hand side 
of (14) is bounded by the following:

C sup
(τ,k)∈R×(Z\{2α/3})

∑
k1+k2=k
k1,k2≥0

k 
=0

1

〈(k − 2α/3)(k1 − β)(k1 − γ )〉4b−1−ε

≤ C
∑ 1

〈(|k1| + 1)(k1 − β)(k1 − γ )〉4b−1−ε

k1∈Z
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≤ C
(

8 +
∑

|k1−β|≥2
|k1−γ |≥2

1

〈k1〉4b−1−ε〈k1 − β〉4b−1−ε〈k1 − γ 〉4b−1−ε

)

≤ C
{

8 +
(∑

k1∈Z

1

〈k1〉3(4b−1−ε)

)1/3( ∑
|k1−β|≥2

1

〈k1 − β〉3(4b−1−ε)

)1/3

×
( ∑

|k1−γ |≥2

1

〈k1 − γ 〉3(4b−1−ε)

)1/3}
< ∞,

since 3(4b − 1 − ε) > 1. This inequality shows that M < ∞ and so the proof is complete. �
Remark 2.5. (i) We use Lemma 2.3 to show (14) in the above proof of Proposition 2.4. Therefore, we need to assume 
that b > 1/4, which corresponds to the Sobolev embedding in the time variable: Hb(R) ⊂ L4(R) (b ≥ 1/4).

(ii) The question of what happens as α → 0 seems to be interesting. For this passage to the limit, the above proof 
of Proposition 2.4 should be slightly modified as follows. We divide the summation into two cases k 
= 0 and k = 0
on the right hand side of (9). By I1 and I2, we denote the terms corresponding to the summation over k 
= 0 and 
the summation over k = 0, respectively. The estimate of I2 is completely the same as above. For I1, we note that if 
k ≥ k1 ≥ 0, then |k −2α/3| ≥ 1

2

(|k1 −2α/3| +1
)

for all α close to 0. The rest of the proof for I1 proceeds without any 
change. The positive constant C on the right hand side of the inequality of Proposition 2.4 can be chosen independent 
of α as α → 0.

The following corollary is an immediate consequence of Proposition 2.4.

Corollary 2.6. Let T > 0 and let 1/2 > b > 1/3. Then, we have

‖U(·)u0‖L4((−T ,T )×T) ≤ CT 1/2T −b‖u0‖L2(T),

where C is a positive constant dependent only on b.

Proof. Let ϕ be a time cut-off function in C∞
0 (R) such that ϕ(t) = 1 for |t | ≤ 1 and ϕ(t) = 0 for |t | ≥ 2. We put 

ϕT (t) = ϕ(t/T ) for T > 0. We note that ϕT (t)U(t)u0 ∈ Yb,0 for any b ∈ R, since a simple computation yields

˜ϕT U(·)u0 = T ϕ̂
(
T (τ + k3 − αk2)

)
û0(k),

where ·̂ denotes either the Fourier transform in the time variable or the Fourier coefficient in the spatial variable. 
Furthermore, for b > 0,

〈τ 〉2b = (
1 + T −1|T τ |)2b ≤ T −2b〈T τ 〉2b.

Therefore, for 1/2 > b > 0, we have by the change of variables∥∥ϕT U(·)u0‖2
Yb,0

=
∞∑

k=−∞

∞∫
−∞

〈τ + k3 − αk2〉2b|T ϕ̂(T (τ + k3 − αk2))û0(k)|2 dτ

≤
( ∞∑

k=−∞
|û0(k)|2

)( ∞∫
−∞

T T −2b〈τ 〉2b|ϕ̂(τ )|2 dτ
)

≤ CT T −2b‖u0‖2
L2(R)

.

Therefore, Proposition 2.4 implies Corollary 2.6. �
We are now in a position to show Theorem 2.1.
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Proof of Theorem 2.1. Lemma 2.1 without external forcing f is reduced to Corollary 2.6. When u0 = 0, it is suffi-
cient to prove that

∥∥∥ t∫
0

U(t − τ)f (τ) dτ

∥∥∥
L4((0,T )×T)

≤ CT T −2b‖f ‖L4/3((0,T )×T), (16)

where C is a positive constant dependent only on T . Because we can easily prove the estimate (16) on (−T , 0) in the 
same way. From the Christ–Kiselev lemma (see [4] and [23, Lemma 3.1 on p. 2179]), it follows that the proof of (16)
is reduced to that of the following inequality.

∥∥∥ T∫
0

U(t − τ)f (τ) dτ

∥∥∥
L4((0,T )×T)

≤ CT T −2b‖f ‖L4/3((0,T )×T), (17)

where C is a positive constant dependent only on T . Then, Corollary 2.6 yields that

∥∥∥ T∫
0

U(t − τ)f (τ) dτ

∥∥∥
L4(0,T )×T)

(18)

=
∥∥∥U(t)

T∫
0

U(−τ)f (τ) dτ

∥∥∥
L4(0,T )×T)

≤ CT 1/2T −b
∥∥∥ T∫

0

U(−τ)f (τ) dτ

∥∥∥
L2(T)

.

Furthermore, we have by the Fubini theorem, Hölder’s inequality and Corollary 2.6

∣∣∣( T∫
0

U(−τ)f (τ) dτ, v
)∣∣∣ =

∣∣∣ T∫
0

(
f (τ),U(τ)v

)
dτ

∣∣∣ (19)

≤ ‖f ‖L3/4((0,T )×T)‖U(·)v‖L4((0,T )×T)

≤ CT 1/2T −b‖f ‖L4/3((0,T )×T)‖v‖L2(T), v ∈ L2(T),

where (·, ·) denotes the L2(T) scalar product and C is a positive constant dependent only on b. Accordingly, inequal-
ities (18), (19) and the duality argument imply (17), which completes the proof of Theorem 2.1. �
Remark 2.7. When we use the Christ–Kiselev lemma to derive (16) from (17) in the above proof of Theorem 2.1, we 
can see explicitly how the right hand side of (16) depends on T and T (see, e.g., [23, Lemma 3.1 on p. 2179]).

3. Smoothing property and global attractor

In this section, we show the existence of the global attractor for the third order Lugiato–Lefever equation (1) (see 
Theorem 1.2). For that purpose, we investigate the smoothing effect of cubic nonlinearity (see Proposition 3.5 below). 
The general strategy to construct the global attractor consists of the following two steps. The first step is to show the 
absorbing set which absorbs all the trajectories starting from a bounded set in finite time. The second step is to show 
the compactness of the trajectory starting from the absorbing set. In nonlinear parabolic equations, one employs the 
smoothing effect to show the latter. But nonlinear dispersive equations such as the third order Lugiato–Lefever equa-
tion do not have exactly the same smoothing effect as nonlinear parabolic equations. In order to show the compactness 
of orbits, from the solution we separate its part smoothened by the nonresonant interaction of the cubic nonlinearity. 
Throughout this section, we assume that the external forcing term f is a time-independent function in L2(T).
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We begin with the construction of the absorbing set. We multiply (1) by ū and integrate the resulting equation in 
the spatial variable to have

d

dt
‖u(t)‖2

L2 = −2‖u‖2
L2 + 2Re

(
u(t), f

)
(20)

≤ −2‖u(t)‖2
L2 + 2‖u(t)‖L2‖f ‖L2 ≤ −2‖u(t)‖2

L2 + ‖u(t)‖2
L2 + ‖f ‖2

L2

≤ −‖u(t)‖2
L2 + ‖f ‖2

L2, t ≥ 0.

This formal calculation can be justified by the regularizing technique. Therefore, the integration in the time variable 
of the above inequality yields

‖u(t)‖2
L2 ≤ {

e−2t‖u0‖2
L2 + (1 − e−2t )‖f ‖2

L2

}
, t > 0. (21)

Inequality (21) implies the existence of the absorbing set in L2 for (1). The closed ball in L2 is a compact metrizable 
space equipped with the weak topology of L2. Accordingly, if the semiflow generated by (1) were weakly continuous 
in L2, it would follow from the well-known theorem on the existence of global attractor (see, e.g., [25, Theorem 1.1 
on p. 23]) that there exists a unique global attractor A for the third order Lugiato–Lefever equation (1) in the weak 
topology of L2 (see, e.g., Ghidaglia [10]). If it were true, we could show that all the trajectories of (1) would converge 
to the global attractor A in the strong topology of L2, that is, A would be a global attractor in the strong topology 
of L2. We could employ the argument due to Ball [1] and Ghidaglia [11]. However, it follows from the argument due 
to Molinet [19] and [20] that the weak continuity in L2 of the solution map fails for the third order Lugiato–Lefever 
equation (1). In such a case, the use of the reduced equation is often helpful. Instead of (1), we consider the following 
equation from which the resonance terms breaking the weak continuity are removed.

∂tv − ∂3
x v + iα∂2

x v + v + i
(|v|2 − 1

π
‖v(t)‖2

L2

)
v

= e
− i

π

∫ t
0 ‖v(s)‖2

L2 ds
f, t > 0, x ∈ T. (22)

Here, the solution u of (1) is linked to the solution v of (22) by the following transformation

u(t, x) = e
− i

π

∫ t
0 ‖v(s)‖2

L2 ds
v(t, x), (23)

and the opposite is also true by the following transformation

v(t, x) = e
i
π

∫ t
0 ‖u(s)‖2

L2 ds
u(t, x). (24)

We note that |u(t, x)| = |v(t, x)| and so ‖u(t)‖L2 = ‖v(t)‖L2 . Let S(t, s) : L2 → L2 (t ≥ s ≥ 0) be the solution 
operator from initial data to solutions for (22). The operator S(t, s) satisfies

S(t, s)S(s, r) = S(t, r) (t ≥ s ≥ r ≥ 0), S(t, t) = I (t ≥ 0), (25)

where I is the identity operator. When f = 0, the factor ‖u(t)‖L2 does not appear in (22). In that case, the L2 weak 
continuity of the flow map S(t, s) holds, while it fails for the inhomogeneous case. Therefore, we can not expect the 
weak continuity in L2 from the semiflow of the reduced equation (22).

We take the Fourier transform of (22) to have the following equation.

∂t v̂(t, k) + (
i(k3 − αk2) + 1

)
v̂(t, k) (26)

+ i
∑

k1+k2+k3=k
(k1+k2)(k2+k3)
=0

v̂(t, k1) ˆ̄v(t, k2)v̂(t, k3) − i|v̂(t, k)|2v(t, k)

= f̂ (k)e
− i

π

∫ t
0 ‖v(s)‖2

L2 ds
, t > 0.

We further define w(t, x) as follows.

ŵ(t, k) = e−i
∫ t

0 |v̂(s,k)|2 ds v̂(t, k). (27)

Then, ŵ(t, k) satisfies
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∂t ŵ(t, k) + (
i(k3 − αk2) + 1

)
ŵ(t, k) (28)

+ iei
∫ t

0 |v̂(s,k)|2 ds
∑

k1+k2+k3=k
(k1+k2)(k2+k3)
=0

v̂(t, k1) ˆ̄v(t, k2)v̂(t, k3)

= f̂ (k)e
− i

π

∫ t
0 ‖v(s)‖2

L2 ds−i
∫ t

0 |v̂(s,k)|2 ds
, t > 0.

Here, we note that the nonlinear term on the left hand side of (28) is expressed in terms of the solution v and not of w, 
because it is easier to evaluate the nonlinear interaction of v than that of w. We now estimate the solution w of (28)
through the estimate of the solution v to (22). The analogous argument is used in [21] and [24] for the modified KdV 
equation. We note that |ŵ(t, k)| = |v̂(t, k)| and so ‖w(t)‖L2 = ‖v(t)‖L2 . Therefore, by (28), we obtain

ŵ(t, k) = e−(i(k3−αk2)+1)t û0 (29)

− i

t∫
0

e−(i(k3−αk2)+1)(t−s)ei
∫ s

0 |v̂(τ,k)|2 dτ

×
[ ∑

k1+k2+k3=k
(k1+k2)(k2+k3)
=0

v̂(s, k1) ˆ̄v(s, k2)v̂(s, k3)
]

ds

+ f̂ (k)

t∫
0

e
−(i(k3−αk2)+1)(t−s)− i

π

∫ s
0 ‖v(τ)‖2

L2 dτ−i
∫ s

0 |v̂(τ,k)|2 dτ
ds, t > 0.

On the right hand side of (29), the first term converges to 0 as t → ∞, and so all what we have to do is to investigate 
the second term and the third term, from which we can expect the smoothing property.

We first look into the third term. By Ĵ (t, k), we denote the third term on the right hand side of (29). We now show 
that the orbit of J (t) is precompact in L2. The integration by parts yields

Ĵ = f̂ (k)
[(

i(k3 − αk2) + 1
)−1

e
−(i(k3−αk2)+1)(t−s)− i

π

∫ s
0 ‖v(τ)‖2

L2 dτ−i
∫ s

0 |v̂(τ,k)|2 dτ
]s=t

s=0

− (
i(k3 − αk2) + 1

)−1
f̂ (k)

t∫
0

(− i

π
‖v(s)‖2

L2 − i|v̂(s, k)|2)
× e

−(i(k3−αk2)+1)(t−s)− i
π

∫ s
0 ‖v(τ)‖2

L2 dτ−i
∫ s

0 |v̂(τ,k)|2 dτ
ds

= f̂ (k)
(
i(k3 − αk2) + 1

)−1
[
e
− i

π

∫ t
0 ‖v(τ)‖2

L2 dτ−i
∫ t

0 |v̂(τ,k)|2 dτ − e−(i(k3−αk2)+1)t

−
t∫

0

(− i

π
‖v(s)‖2

L2 − i|v̂(s, k)|2)e−(i(k3−αk2)+1)(t−s)− i
π

∫ s
0 ‖v(τ)‖2

L2 dτ−i
∫ s

0 |v̂(τ,k)|2 dτ
ds

]
.

The following lemma will be useful when one proves a set of orbits of rapidly oscillating solutions is precompact.

Lemma 3.1. Let A and B be two positive constants. We define two sets X1 in C([0, ∞); L2) and X2 in C([0, ∞); �2)

as follows.

X1 = {
g(t) ∈ C([0,∞);L2)

∣∣ sup
t≥0

‖g(t)‖L2 ≤ A
}
,

X2 = {
h(t) = (· · · , h−1(t), h0(t), h+1(t), · · · )

∣∣
hk(t) ∈ C([0,∞);C), sup

k∈Z,t≥0
|hk(t)| ≤ B

}
.

For any η > 0, D ⊂ X1 and E ⊂ X2, let F(t) be an L2-valued function on [0, ∞) × D × E such that
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F(t, g,h) = 1√
2π

∞∑
k=−∞

〈k〉−ηĝ(t, k)hk(t)e
ikx, t ≥ 0, g ∈ D, h ∈ E.

We put G = {F(t, g, h)| t ≥ 0, g ∈ D, h ∈ E}. Then, the set G is precompact in L2.

Proof. We put

F̃ (t, g,h) = 1√
2π

∞∑
k=−∞

ĝ(t, k)hk(t)e
ikx, t ≥ 0, g ∈ D, h ∈ E.

Let G̃ = {F̃ (t, g, h)| t ≥ 0, g ∈ D, h ∈ E}. By the Parseval identity, we note that

sup
t≥0,
g∈D,
h∈E

‖F̃ (t, g,h)‖2
L2 ≤ sup

t≥0,
g∈D,
h∈E

[ ∞∑
k=−∞

|ĝ(t, k)|2|hk(t)|2
]

≤ [
sup
g∈D

(sup
t≥0

‖g(t)‖2
L2)

][
sup
h∈E

( sup
t≥0,
k∈Z

|hk(t)|2)
] ≤ A2B2.

Hence, the set G̃ is a bounded set in L2. Now we define the linear operator Tη : L2 → L2 as follows.

Tη : 1√
2π

∑
k∈Z

v̂(k)eikx �→ 1√
2π

∑
k∈Z

〈k〉−ηv̂(k)eikx, v ∈ L2(T).

Obviously, the operator Tη is a compact operator in L2. Therefore, the image Tη(G̃) of the set G̃ by Tη is precompact 
in L2. Since G = Tη(G̃), this completes the proof of Lemma 3.1. �
Remark 3.2. In fact, the above proof of Lemma 3.1 does not require the continuity in L2 of g(t). The notion of the 
compactness for orbits is different from that of the continuity for solutions.

Lemma 3.1 ensures that the orbit of J , that is, {J (t)| t ≥ 0} is precompact in L2.
We next show that the second term on the right hand side of (29) has the smoothing property. We first show the 

time local estimate of the solution v to (26), which, together with the damping effect, yields the time global estimate 
of the solution w to (29). For that purpose, we consider the following integral equation associated with (26) whose 
initial datum is prescribed at t = r > 0.

v̂(t, k) = e−i(k3−αk2)t v̂r +
t∫

r

e−i(k3−αk2)(t−s)v̂(s, k) ds (30)

− i

t∫
r

e−i(k3−αk2)(t−s)
[ ∑

k1+k2+k3=k
(k1+k2)(k2+k3)
=0

v̂(s, k1) ˆ̄v(s, k2)v̂(s, k3)

− |v̂(s, k)|2v̂(s, k)
]

ds

+ f̂ (k)

t∫
r

e
−i(k3−αk2)(t−s)− i

π

∫ s
r ‖v(τ)‖2

L2 dτ
ds, t > r > 0,

where

v̂r (k) = û(r, k)e
i
π

∫ r
0 ‖u(s)‖2

L2 ds
.

Here, we note that the damping term is treated as an inhomogeneous term in (30). By (21), we easily see that
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‖vr(k)‖2
L2 ≤ ‖u0‖2

L2 + ‖f ‖2
L2 , r ≥ 0. (31)

We have the following identity, which represents the resonance in the cubic nonlinear interaction.

(τ + k3 − αk2) − (τ1 + k3
1 − αk2

1)

− (τ2 + k3
2 + αk2

2) − (τ3 + k3
3 − αk2

3)

= (k1 + k2 + k3)
3 − α(k1 + k2 + k3)

2

− (k3
1 + k3

2 + k3
3) + α(k2

1 − k2
2 + k2

3)

= 3(k1 + k2)(k2 + k3)(k3 + k1 − 2α/3), (32)

where

τ = τ1 + τ2 + τ3, k = k1 + k2 + k3.

This identity implies that no resonance occurs in the third term on the right hand side of (30), which leads to the 
smoothing property of the second term on the right hand side of (29). We define function ϕ on R as follows.

ϕ(t) =
{

1, 0 < t < 1,

0, otherwise.

For r, T > 0 and g ∈ C([0, ∞); L2), we put

ϕr,T (t) = ϕ((t − r)/T ),

ψr,T ,g(t,Dx)u = et

√
2π

ϕr,T (t)

∞∑
k=−∞

ei
∫ t

0 |ĝ(s,k)|2 ds û(t, k)eikx .

We easily see that for τ ∈ R,

|ϕ̂r,T (τ )| ≤ 2T 〈T τ 〉−1, (33)

|ψ̃r,T ,g(τ, k)| ≤ 2(1 + sup
t≥0

‖g(t)‖L2)e
r+T 〈τ 〉−1, (34)

since simple computations yield, for r , T > 0 and g ∈ C([0, ∞); L2),

ϕ̂r,T (τ ) = e−irτ
(
1 − e−iT τ

)
iτ

,

ψ̃r,T ,g(τ, k) = er
(
eT e−i(r+T )τ+i

∫ r+T
0 |ĝ(s,k)|2 ds − e−irτ+i

∫ r
0 |ĝ(s,k)|2 ds

)
1 − iτ

+ i

1 − iτ

r+T∫
r

(
et−itτ+i

∫ t
0 |ĝ(s,k)|2 ds

)|ĝ(t, k)|2dt.

The following lemma follows directly from (33) and (34).

Lemma 3.3. Let s ∈ R, 1 ≥ T > 0, r , b, η > 0 and let g ∈ C([0, ∞); L2). Assume that b +η < 1/2 and b + 2η ≥ 1/2. 
Then, we have

‖ϕr,T u‖Y s,b ≤ CT 1/2−(b+η)‖u‖Y s,b+η , (35)

‖ψr,T ,gu‖Y s,b ≤ Cer+T (1 + sup
t≥0

‖g(t)‖L2)‖u‖Y s,b+η . (36)

Proof. Lemma 3.3 essentially follows from the Sobolev embedding with respect to the time variable t . We only show 
(35) because (36) can be treated in the same way. We may assume s = 0 without loss of generality. Let U(t) =
et(∂3

x−iα∂2
x ).
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‖ϕr,T u‖Y 0,b ≤ C‖〈Dt 〉bU(−t)ϕr,T u‖2
L2(R2)

= C

∫
T

∫
R

∣∣〈Dt 〉bU(−t)ϕr,T u
∣∣2

dtdx = C

∫
T

I (x) dx, (37)

where I = ∫
R

∣∣〈Dt 〉bU(−t)ϕr,T u
∣∣2

dt . We put g = U(−t)ϕr,T u and we regard g as a function of the time variable t by 
fixing the spatial variable x for the moment. Let 〈Dt 〉 = F−1〈τ 〉F . So, by the Plancherel theorem and (33), we have

I = C

∫
R

∣∣〈τ 〉b
∫
R

T 〈T (τ − τ ′)〉−1ĝ(τ ′) dτ ′∣∣2
dτ

≤ C
[∫

R

∣∣∫
R

{(〈τ − τ ′〉bT 〈T (τ − τ ′)〉−1)ĝ(τ ′)

+ T 〈T (τ − τ ′)〉−1(〈τ ′〉bĝ(τ ′)
)}

dτ ′∣∣2
dτ

]
We put Ĝ(τ ) = T 〈T τ 〉−1 and Ĥ (τ ) = |ĝ(τ )|. Then, we have

G ∈ Hs(R), s < 1/2,

‖〈Dt 〉b+ηG(·/T )‖L2 = T 1/2−(b+η)‖〈Dt 〉b+ηG(·)‖L2 .

Therefore, we obtain
√

I ≤ C
{∥∥(〈Dt 〉bG(·/T )

)
H

∥∥
L2(R)

+ ∥∥G(·/T )
(〈Dt 〉bH

)∥∥
L2(R)

}
≤ C

{
‖〈Dt 〉bG(·/T )‖L2/(1−2η)‖H‖L1/η

+ ‖G(·/T )‖L1/η‖〈Dt 〉bH‖L2/(1−2η)

}
≤ CT 1/2−(b+η)‖〈Dt 〉b+ηH‖L2 .

At the last inequality, we have used the Sobolev embeddings Hη ⊂ L2/(1−2η) and Hb+η ⊂ L1/η for the one dimen-
sional case, since b + η < 1/2 and b + 2η ≥ 1/2. Thus, the application of the above inequality to the right hand side 
of (37) leads to the estimate (35). �

We next state the following fundamental lemma concerning the trilinear estimate in terms of the Fourier restriction 
norms (see, e.g., [2] and [14]).

Lemma 3.4. Let r > 0, 1 ≥ T > 0, b > 1/3 and η > 0. Assume that b + η < 1/2 and b + 2η ≥ 1/2. Then, there exist 
two positive constants α and C such that∥∥ϕr,T (uv̄w)

∥∥
Y 0,−b ≤ CT α‖u‖Y 0,b+η‖v‖Y 0,b+η‖w‖Y 0,b+η ,

where α and C depend only on b.

We apply Lemma 3.4 to (30) to show that there exist M , T > 0 such that

‖ϕr,T v‖Y 0,b+η ≤ M, r > 0, (38)

where M and T are two positive constants depending only on ‖u0‖L2 , ‖f ‖L2 , b and η. We are in a position to prove 
the following proposition concerning the smoothing property of the second term on the right hand side of (29).

Proposition 3.5. Let 1/2 > b > 1/3 and η > 0. Let v be the solution of (26). Assume that b + 2η < 1/2 and b + 3η ≥
1/2. We put



1720 T. Miyaji, Y. Tsutsumi / Ann. I. H. Poincaré – AN 34 (2017) 1707–1725
N̂(t, k) =
t∫

0

e−(i(k3−αk2)+1)(t−s)ei
∫ s

0 |v̂(s′,k)|2 ds′

×
[ ∑

k1+k2+k3=k
(k1+k2)(k2+k3)
=0

v̂(s, k1) ˆ̄v(s, k2)v̂(s, k3)
]

ds.

Then, there exists a positive constant C such that

sup
t≥0

∥∥(1 − ∂2
x )η/2N(t)

∥∥
L2 ≤ CM3,

where C = C(‖u0‖L2 , ‖f ‖L2, b, η) and M is defined as in (38).

Remark 3.6. We note that there exist constants b and η satisfying all the assumptions in Proposition 3.5. For example, 
we can choose b = 1/2 − 3ε and η = ε for any ε with 1/18 > ε > 0.

Proof of Proposition 3.5. We prove Proposition 3.5 in a slightly more general form. Let u, v, w ∈ Y 0,b+2η and let 
g ∈ C([0, ∞); L2) with supt≥0 ‖g(t)‖L2 < ∞. By (·, ·), we denote the scalar product of L2(T). We put

V (u, v,w) =
∞∑

k=−∞

{∑
k2∈Z

(
û(−k2) ˆ̄v(k2)ŵ(k) + û(k) ˆ̄v(k2)ŵ(−k2)

)
− û(k) ˆ̄v(−k)ŵ(k)

}
eikx.

Let t0 > 0 be arbitrarily fixed and let t0 ≥ r + T > r > 0. We first note that for any h ∈ L2(T),

( r+T∫
r

∞∑
k=−∞

e−(i(k3−αk2)+1)(t0−s)+ikxei
∫ s

0 |ĝ(s′,k)|2 ds′

×
∑

k1+k2+k3=k
(k1+k2)(k2+k3)
=0

û(s, k1) ˆ̄v(s, k2)ŵ(s, k3) ds, h
)

=
∫
R

(
ϕr,T (uv̄w − V (u, v,w)), ψ∗

r,T ,ge
s(∂3

x−iα∂2
x )h̃

)
ds,

where h̃ = e−t0(∂
3
x−iα∂2

x )h and ψ∗
r,T ,g is the adjoint operator of ψr,T ,g(t, Dx). Since h̃ ∈ L2(T), it suffices to show that 

for r > 0 and 1 ≥ T > 0,∣∣∣∫
R

(
ϕr,T (uv̄w − V (u, v,w)), ψ∗

r,T ,gz
)
dt

∣∣∣ (39)

≤ CT 3(1/2−(b+2η))er+T (1 + sup
t≥0

‖g(t)‖L2)

× ‖u‖Y 0,b+2η‖v‖Y 0,b+2η‖w‖Y 0,b+2η‖z‖Y−η,b+2η .

Indeed, if we have proved (39), then we have by duality

( ∞∑
k=−∞

〈k〉2η
∣∣∣ r+T∫

r

e−(i(k3−αk2)+1)(t−s)ei
∫ s

0 |v̂(s′,k)|2 ds′

×
∑

k1+k2+k3=k
(k1+k2)(k2+k3)
=0

ŵ(s, k1) ˆ̄w(s, k2)ŵ(s, k3) ds

∣∣∣2)1/2

≤ CT 3(1/2−(b+2η))e−(t−(r+T ))‖ϕr,T w‖3
0,b+2η , t ≥ r + T > r > 0.
Y
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At the last inequality, we have used (39) with u, v, w and z replaced by ϕr,T u, ϕr,T v, ϕr,T w and ϕr,T z, respectively. 
For a ∈ R, we denote by [a] the greatest integer that does not exceed a. Let T be given by (38) and n = [t/T ]. For a, 
b ∈ R, we put a ∧ b = min{a, b}. Accordingly, we obtain by (38)

‖(1 − ∂2
x )η/2N(t)‖L2 ≤ C

n+1∑
j=1

( ∞∑
k=−∞

〈k〉2η
∣∣∣ t∧(jT )∫
(j−1)T

e−(i(k3−αk2)+1)(t−s)

× ei
∫ s

0 |v̂(s′,k)|2 ds′ ∑
k1+k2+k3=k

(k1+k2)(k2+k3)
=0

v̂(s, k1) ˆ̄v(s, k2)v̂(s, k3) ds

∣∣∣2)1/2

≤ C
(
e−(t−nT ) +

n∑
j=1

e−(n−j)T
)
T 3(1/2−(b+2η))‖ϕr,T v‖3

Y 0,b+2η ≤ CM3, t ≥ 0,

which shows Proposition 3.5.
It remains only to show (39). To simplify the notation, we write u, v, w and z for ϕr,T u, ϕr,T v, ϕr,T w and ψr,T ,gz, 

respectively. Then, by the Plancherel theorem, we have∣∣∫
R

(uv̄w − V (u, v,w), z) dt
∣∣

≤ C

∫
τ1+τ2+τ3=τ

∞∑
k=−∞

∑
k1+k2+k3=k

(k1+k2)(k2+k3)
=0

|ũ(τ1, k1)|| ˜̄v(τ2, k2)||w̃(τ3, k3)|

× |z̃(τ, k)| dτ1dτ2dτ =: A.

We put

D = max
{|τ + k3 − αk2|, |τ1 + k3

1 − αk2
1 |, |τ2 + k3

2 − αk2
2 |, |τ3 + k3

3 − αk2
3 |}.

By the identity (32), we first have

∃c > 0; D ≥ c|k|. (40)

We divide the integral region into the following four parts.
(Region I) D = |τ + k3 − αk2|,
(Region II) D = |τ1 + k3

1 − αk2
1 |,

(Region III) D = |τ2 + k3
2 − αk2

2 |,
(Region IV) D = |τ3 + k3

3 − αk2
3 |.

We only consider Region I, since the other regions can be treated in the same way. Let AI denote the contribution 
of Region I to the integral A. By the Plancherel theorem, we have

AI ≤ C

∫
τ1+τ2+τ3=τ

∞∑
k=−∞

∑
k1+k2+k3=k

(k1+k2)(k2+k3)
=0

|ũ(τ, k1)|

× | ˜̄v(τ, k2)||w̃(τ, k3)|
× (〈τ + k3 − αk2〉η|ẑ(τ, k)|)〈k〉−η/2 dτ1dτ2dτ

≤ C
∣∣∫
R

(f1f2f3, f4)dt
∣∣, (41)

where f̃1(τ, k) = |ũ(τ, k)|, f̃2(τ, k) = | ˜̄v(τ, k)|, f̃3(τ, k) = |w̃(τ, k)| and f̃4(τ, k) = 〈k〉−η〈τ + k3 − αk2〉η|z̃(τ, k)|. 
Therefore, the application of Proposition 2.4 to (41) yields

AI ≤ C‖u‖Y 0,b‖v‖Y 0,b‖w‖Y 0,b‖z‖Y−η/2,b+η .
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We apply Lemma 3.3 to the right hand side of the above inequality with u, v, w and z replaced by ϕr,T u, ϕr,T v, ϕr,T w

and ψr,T ,gz, respectively to have

AI ≤ CT 3(1/2−(b+2η))er+T (1 + sup
t≥0

‖g(t)‖L2)

× ‖u‖Y 0,b+2η‖v‖Y 0,b+2η‖w‖Y 0,b+2η‖z‖Y−η/2,b+2η

for r > 0 and 1 ≥ T > 0. At the last inequality, we have used Lemma 3.3 with η replaced by 2η for ϕr,T u, ϕr,T v, 
ϕr,T w and with b replaced by b + η for ψr,T ,gz. This shows (39) for Region I. �
Remark 3.7. (i) By inspecting the above proof of Proposition 3.5, we can show that the constant C = C(·, ·, b, η)

appearing on the right hand side of the inequality is a locally bounded function of the first and the second variables 
for each fixed b and η.

(ii) The above proof of (39) is slightly redundant, because we have applied (35) to ϕr,T u, ϕr,T v and ϕr,T w. In fact, 
unless we derive the factor T 3(1/2−(b+η)) in (39), we do not have to use (35). But we need to apply (36) to ψr,T ,gz to 
have the factor er+T .

Finally, by combining Lemma 3.1, Proposition 3.5 and (21), we can see that for any R > 0, the following set is 
precompact in L2.

{ 1√
2π

∞∑
k=−∞

N̂(t, k) exp
(−i

t∫
0

‖w(s)‖2
L2 ds + i

t∫
0

|ŵ(s, k)|2 ds + ikx
) ∣∣

w is a solution of (28) with w(0) = u0 and ‖u0‖L2 ≤ R, t ≥ 0
}
.

Moreover, for any R > 0, the following set is also precompact in L2, as is already proved.

{ 1√
2π

∞∑
k=−∞

Ĵ (t, k) exp
(−i

t∫
0

‖w(s)‖2
L2 ds + i

t∫
0

|ŵ(s, k)|2 ds + ikx
) ∣∣

w is a solution of (28) with w(0) = u0 and ‖u0‖L2 ≤ R, t ≥ 0
}
.

The two sets mentioned above correspond to the sets of orbits transformed by (23) and (27) from the nonlinear 
Duhamel term and the inhomogeneous term of (29), respectively. The rest of the solution u, that is, the homogeneous 
term et(∂3

x−iα∂2
x−1)u0 multiplied by the gauge factors converges to 0 as t → ∞. Therefore, by Theorem 1.1 on p. 23 in 

[25] and Remark 3.7 (i), we can conclude the existence of the global attractor in L2 for the third order Lugiato–Lefever 
equation (1).

The above proof of Proposition 3.5 is partly applicable to the original equation (1). Indeed, by the proof of Propo-
sition 3.5 and Remark 3.6, we obtain the following corollary.

Corollary 3.8. Assume that 1/18 > η > 0 and u0 ∈ L2(T). Let u be the solution of (1) and (2) given by part (i) of 
Theorem 1.1. Then, we have

i

t∫
0

U(t − t ′)
[(|u|2u)

(t ′) − R(t ′)
]
dt ′

∈ C([0,∞);Hη(T)),

where

R(t, x) = 1

π
‖u(t)‖2

L2u(t, x) + 1√
2π

∑
k∈Z

(|û(t, k)|2û(t, k)
)
eikx.



T. Miyaji, Y. Tsutsumi / Ann. I. H. Poincaré – AN 34 (2017) 1707–1725 1723
Remark 3.9. Corollary 3.8 implies that the Duhamel term from which the resonant part is removed has a smoothing 
effect. This kind of smoothing property is known for some other nonlinear dispersive equations (see, e.g., [6–8,12]
and [24]). Especially, in [6–8], Erdoğan and Tzirakis study the global attractor by using the nonlinear smoothing 
effect for the KdV and the Zakharov equations. But the smoothing effect of the third order Lugiato–Lefever equation 
(1) is different from that of the KdV and the Zakharov equations. To be more specific, the last term |v̂(t, k)|2v̂(t, k)

on the right hand side of (26) is the worst term as far as the regularity of the solution with initial data in L2(T) is 
concerned. This doubly resonant term does not appear in such quadratic nonlinear dispersive equations as the KdV 
and the Zakharov equations. On the other hand, if one considers the solution with initial datum in Hs(T), s > 0, 
then the term |v̂(t, k)|2v̂(t, k) also has a smoothing property (see, e.g., [9, Theorem 4.1 on p. 112] for the cubic 
nonlinear Schrödinger equation). So one does not have the difficulty with the term |v̂(t, k)|2v̂(t, k) as long as one 
considers the regular solution of the third order Lugiato–Lefever equation (1). However, in that case, no conservation 
law corresponding to such regularity is available, as was already pointed out.

By inspecting the above proof of Theorem 1.2, we can have a quantitative result on the regularity of the global 
attractor. To be more precise, for any r > 0, we have by (29), Proposition 3.5, Remark 3.6 and the proof of Theorem 1.2

sup
t≥0

‖u0‖L2 ≤r

‖w(t) − et(∂3
x−iα∂2

x−1)u0‖Hη < ∞ (0 < η < 1/18).

The transformations (23) and (27) convert this regularity property of w to that of u as follows.

sup
t≥0

‖u0‖L2 ≤r

‖u(t) − V (t)u0‖Hη < ∞ (0 < η < 1/18), (42)

where

V (t)u0 =
∑
k∈Z

e
−t (i(k3−αk2)+1)−i

∫ t
0 ‖u(s)‖2

L2 ds+i
∫ t

0 |û(s,k)|2 ds+ikx
û0(k).

Since we have

sup
‖u0‖L2 ≤r

‖V (t)u0‖L2 → 0 (t → ∞)

for any r > 0, the following corollary concerning the regularity of the global attractor is an immediate consequence 
of (42).

Corollary 3.10. The global attractor given by Theorem 1.2 is a compact set in Hη(T) for 1/18 > η > 0.

Concluding remark After this paper was submitted, we became aware of the paper by Molinet [20] concerning the 
global attractor in L2 of the cubic nonlinear Schrödinger equation with damping and forcing terms. The new ingredient 
of his proof is the application of the argument by Ball [1] to the weak limit equation keeping the same structure as 
the original equation. It would be possible to apply the proof by Molinet [20] to our problem for 2α/3 /∈ Z. But the 
smoothing property we have proved in this paper is stronger than that in the paper [20]. Furthermore, it seems difficult 
to apply Molinet’s proof to the case 2α/3 ∈ Z\{0} for the same reason as in our proof. Indeed, when 2α/3 ∈ Z\{0}, 
equation (26) is written as follows.

∂t v̂(t, k) + (
i(k3 − αk2) + 1

)
v̂(t, k) (43)

+ i
∑

k1+k2+k3=k
(k1+k2)(k2+k3)
=0

k3+k1 
=2α/3

v̂(t, k1) ˆ̄v(t, k2)v̂(t, k3) − i|v̂(t, k)|2v(t, k)

+ i
∑
k1∈Z

v̂(t, k1)v̂(t,2α/3 − k1) ˆ̄v(t, k − 2α/3)

= f̂ (k)e
− i

π

∫ t
0 ‖v(s)‖2

L2 ds
, t > 0.
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The last term on the left hand side of (43) prevents us from applying not only our proof but also the proof by Mo-
linet [20].
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