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Abstract

The object of this paper is to study estimates of ε−qWp(μ + εν, μ) for small ε > 0. Here Wp is the Wasserstein metric on 
positive measures, p > 1, μ is a probability measure and ν a signed, neutral measure (

∫
dν = 0). In [16] we proved uniform (in ε) 

estimates for q = 1 provided 
∫

φdν can be controlled in terms of 
∫ |∇φ|p/(p−1)dμ, for any smooth function φ.

In this paper we extend the results to the case where such a control fails. This is the case where, e.g., μ has a disconnected 
support, or the dimension d of μ (to be defined) is larger or equal to p/(p − 1).

In the latter case we get such an estimate provided 1/p + 1/d �= 1 for q = min(1, 1/p + 1/d). If 1/p + 1/d = 1 we get a 
log-Lipschitz estimate.

As an application we obtain Hölder estimates in Wp for curves of probability measures which are absolutely continuous in the 
total variation norm.

In case the support of μ is disconnected (corresponding to d = ∞) we obtain sharp estimates for q = 1/p (“optimal teleporta-
tion”):

lim
ε→0

ε−1/pWp(μ,μ + εν) = ‖ν‖μ

where ‖ν‖μ is expressed in terms of optimal transport on a metric graph, determined only by the relative distances between the 
connected components of the support of μ, and the weights of the measure ν in each connected component of this support.
© 2016 Elsevier Masson SAS. All rights reserved.
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1. Introduction

1.1. Notation

• � ⊂R
k is a compact set, equal to the closure of its interior.

• M := M(�) is the set of Borel measures on �. M+ is the set of non-negative measures in M. M1 is the set of 
probability (normalized) measures in M+.
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• The duality between M(�) and C(�) (continuous functions) is denoted by 〈μ, φ〉, where μ ∈M and φ ∈ C(�). 
This duality implies an order relation on M: μ1 ≥ μ2 iff 〈μ1, φ〉 ≥ 〈μ2, φ〉 for any non-negative φ ∈ C(�).

• For μ ∈M+, supp(μ) is the minimal closed set A ⊂ � such that μ(A) = μ(�).
• If μ ∈ M+ then |μ| :=< μ, 1 > (the “mass” of μ).
• For ν ∈ M, ν± ∈ M+ is the factorization of ν into positive and negative parts, namely ν = ν+ − ν− such that 

‖ν‖T V := |ν+| + |ν−| is the total variation norm of ν (in particular, ν± are mutually singular).
• M0 is the set of measures ν = ν+ − ν− where ν± ∈ M+ and |ν−| = |ν+|. In particular, for any ν ∈ M0 there 

exists a single factorization ν±.

1.2. Background

Recall the definition of the p-Wasserstein metric (p > 1) on M1(�):

Wp(μ1,μ2) :=
⎛
⎝ inf

π∈�(μ1,μ2)

∫
�

∫
�

|x − y|pπ(dxdy)

⎞
⎠

1/p

(1)

where μ1, μ2 ∈ M1,

�(μ1,μ2) := {π ∈ M1(� × �) ; π#1 = μ1; π#2 = μ2} (2)

Here π#,1,2 represents the first and second marginals of π on �, respectively.
The (C(�))∗ topology restricted to M1 can be metrized by Wp with p ≥ 1 [14, Theorem 6.9]. See also [8,9,13,4,

15,11,5,12] among many other sources for this and related metrics.
Wp can be trivially extended to any pair μ1, μ2 ∈ M+ provided |μ1| = |μ2|. This extension is defined naturally 

by the homogeneity relation

Wp(αμ1, αμ2) = α1/pWp(μ1,μ2) (3)

for α > 0.
Note that the total variation of ν = ν+ − ν− ∈ M0 is given by

‖ν‖T V = inf
π∈�(ν+,ν−)

∫
�

∫
�

d(x, y)π(dxdy)

where d is the discrete metric (d(x, y) = 1 if x �= y, d(x, x) = 0), see [14], Theorem 6.15. Since |x − y|p <

Diamp(�)d(x, y) for any x, y in the compact set �, then

Wp(ν+, ν−) ≤ Diam(�)‖ν‖1/p
T V , (4)

hence, by the principle of monotone additivity (see Proposition 3.2 below) and (3),

ε−1/pWp(μ + εν+,μ + εν−) ≤ Diam(�)‖ν‖1/p
T V (5)

for any ε > 0, provided μ ∈M+.
Lemma 5.6 in [16] (see also Theorem 7.26 in [13]) implies that for any ν = ν+ − ν− ∈ M0, ν± ∈ M+ and any 

probability measure μ

lim inf
ε↘0

ε−1Wp(μ + εν+,μ + εν−) ≥ sup
φ∈Bp(μ)

〈ν,φ〉 (6)

where, if p > 1,

Bp(μ) :=
⎧⎨
⎩φ ∈ C1(�);

∫
�

|∇φ|p/(p−1)dμ ≤ 1

⎫⎬
⎭ (7)

while Lemma 5.7 establishes the opposite inequality for lim sup in (6) (in particular, the existence of a limit), if ν is 
absolutely continuous with respect to μ and both measures are regular enough.
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Remark 1.1. Note that for p = 1 an equality

ε−1W1(μ + εν+,μ + εν−) = sup
φ∈B1

〈ν,φ〉

holds for any ε > 0 where B1 is the set of 1-Lipschitz functions on �.

In the cases where there is equality in (6) we obtain

lim inf
ε↘0

ε−1Wp(μ + εν+,μ + εν−) ≤ Dp(μ)‖ν‖T V (8)

where

Dp(μ) := sup
φ∈Bp(μ)

(
sup

x∈supp(μ)

φ(x) − inf
x∈supp(μ)

φ(x)

)

is the maximal oscillation of functions in Bp(μ) restricted to supp(μ) and is, of course, independent of ν.
In this paper we consider the case Dp(μ) = ∞.

1.3. Measures of connected support

Suppose μ is a uniform (Lebesgue) measure on a “nice” domain � ⊂R
d (e.g. a ball in Rd ). Then Bp(μ) is dense in 

the unit ball of the Sobolev space W1,p′(�)/R (with respect to that norm) where p′ := p/(p−1). Sobolev embedding 
theorem then implies that Dp(μ) < ∞ if d < p′ (where W1,p(�) is embedded in C(�)), while Dp(μ) = ∞ if p′ ≤ d

(see Remark 2.4).
The first result (Theorem 1) deals with measures μ of connected support. We introduce the notion of dimensionality 

of measure and define d-connected property of such measures in Definitions 2.1 and 2.2.
For strong d-connected measure μ and under the assumption that the support of ν is contained in the support of μ

we state the existence of a constant C depending only on μ, and an exponent q ∈ [1/p, 1] for which

sup
ε>0

ε−qWp(μ + εν+,μ + εν−) ≤ C‖ν‖T V , (9)

where

q = min(1,1/d + 1/p) if 1/d + 1/p �= 1 . (10)

The second case d = p/(p − 1) (i.e. 1/d + 1/p = 1) corresponds to the critical Sobolev embedding W1,p′(Rd) and 
leads to a log Lipschitz estimate

sup
ε>0

1

ε ln1/p(1/ε + 1)
Wp(μ + εν+,μ + εν−) ≤ C‖ν‖T V . (11)

1.4. Application: curves of measures

Let I ⊂ R be an interval and �μ ∈ M+(� × I ) such that its t marginal μ(t) is a probability measure on � for any 
t ∈ I [3]. Then

R⊃ I � t �→ μ(t) ∈M1

can be viewed as a curve in M1 := M1(�) parameterized in I . We say that �μ ∈ ACr(I, M1; T V ) for some
∞ ≥ r ≥ 1 if there exists a non-negative m ∈L

r (I ) such that

‖μ(t) − μ(τ)‖T V ≤
t∫

τ

m(s)ds

for any t > τ ∈ I .
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The metric derivative [2,1] of �μ with respect to the T V norm is

�μ′(t)(t) := lim
τ→t

‖μ(t) − μ(τ)‖T V

|t − τ | .

By Theorem 1.1.2 in [1], the metric derivative exists t a.s. in I for �μ ∈ ACr(I, M1; T V ).
On the other hand, M1 can also be considered as a metric space with respect to the Wasserstein metric Wp. 

Recalling (4), we observe that, if �μ ∈ ACr(I, M1; T V ) then

Wp(μ(t),μ(τ)) ≤ Diam(�)‖μ(t) − μ(τ)‖1/p
T V ≤ Diam(�)(

t∫
τ

m)1/p ≤ Diam(�)‖m‖1/p
r |t − τ | r−1

r
1
p .

So, we cannot expect that such a curve �μ ∈ ACr(I, M1; T V ) is more than (r − 1)/rp-Hölder with respect to the 
Wasserstein metric Wp .

In Theorem 2 we state that if the support of �μ is monotone non-increasing, namely supp(μ(t)) ⊆ supp(μ(τ)) for 
any t > τ , and supp(μ(t)) is strongly d-connected for any t ∈ I then we can improve this estimate: Under the above 
conditions, �μ is q(r − 1)/r-Hölder on I in (M1, Wp), (q-Hölder if r = ∞) where q given by (10).

Moreover, if 1/p + 1/d > 1 then q = 1 (10) and �μ ∈ ACr(I, M1; Wp) as well. This implies the existence of a 
Borel vector field v ∈ L

r
(
I,Lp(μ(t))

)
for which the continuity equation

∂tμ + ∇x · (μv) = 0 (12)

holds as a distribution [1].
To illustrate the above results, consider

μ(t) = m(t)δx0 + (1 − m(t))δx1 (13)

where x0 �= x1 and t �→ m(t) ∈ (0, 1) is a non-constant smooth function. Then μ̇(t) = ṁ(t)(δx0 − δx1) ∈ M and 
‖μ̇(t)‖T V = 2|ṁ(t)|.

If we consider the above curve in (M1, Wp) where p > 1 then the metric derivative does not exist.
Indeed, since Wp

p (μ(t), μ(τ)) = |m(t) − m(τ)| × |x − x0|p , all we can obtain is 1/p Hölder estimate:

lim
τ→t

Wp(μ(t),μ(τ))

|t − τ |1/p
= lim

τ→t

|m(t) − m(τ)|1/p

|t − τ |1/p
|x − x0| = |ṁ|1/p(t)|x − x0| .

Now, replace (13) by

μ(t) = m(t)δx0 + (1 − m(t))δx1 + μ̄ (14)

(recall (3)) where μ̄ ∈ M+ a stationary (independent of t ) positive, strongly d-connected measure whose support 
contains x0, x1. Even though μ̇ = ṁ(δx0 − δx1) is the same for both (13) and (14)), we can find out that for μ given 
by (14)

Wp(μ(t),μ(τ))

|t − τ |q ≤ C(μ̄)|ṁ|
for q = min[1, 1/p + 1/d] (provided 1/p + 1/d �= 1), or the Log-Lipschitz estimate

Wp(μ(t),μ(τ))

|t − τ | ln1/p(1/|t − τ |) ≤ C(μ̄)

if 1/p + 1/d = 1. In particular (14) is uniformly Lipschitz if 1/p + 1/d > 1. If this is the case, it is absolutely 
continuous in Wp . Hence the continuity equation (12) is satisfied for some Borel vectorfield v [1].

To elaborate further, let us consider the case where μ(t) is supported in an interval J ⊂R and [x0, x1] ⊂ J :

μ(t) := β1J (dx) + m(t)δx1 + (1 − m(t))δx0

where β > 0 is a constant. Then μ(·) is strongly 1-connected (see Definition 2.2). Hence for any p > 1, μ(·) is Lipschitz 
in Wp . In particular, it satisfies (12). It can be verified that the transporting vector field is nothing but

v(x, t) = β−1ṁ(t) if x0 < x < x1, , v(x0, t) = v(x1, t) = 0 ; ∀t ∈ I

and v is arbitrary otherwise.
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The case q < 1 corresponds, in this context, to a “teleportation”: No vector field v exists for which an orbit μ(t) is 
transported via the continuity equation (12). In particular, if the support of μ is disconnected (e.g. β = 0 above).

1.5. Disconnected support

In the last part of the paper we discuss the case of disconnected support of μ ∈M+, corresponding to d = ∞. In 
that case q = 1/p. Under appropriate condition we state in Theorem 3 that there exists a sharp limit

lim
ε↘0

ε−1/pWp (μ + εν+,μ + εν−) = lim
ε↘0

ε−1/pWp (μ + εν,μ) := ‖ν‖1/p
μ

where ‖ν‖μ is defined in terms of an optimal transport on a finite, metric graph. This is the rational behind the title 
“optimal teleportation”.

To describe the nature of ‖ν‖μ, consider a finite graph whose vertices are identified with the connected components 
Ai of the support of μ. The length of an edge connecting two vertices is defined as the p power of the distance between 
the corresponding supports. We then consider the discrete metric space composed of these vertices, subjected to the 
geodesic distance corresponding the edge’s length defined above.

At each vertex i of this graph let ν̄i ∈R be the weight of the measure ν restricted to corresponding component Ai . 
By neutrality 

∑
i ν̄i = 0.

Then ‖ν‖μ is just the optimal transport cost of {ν̄i > 0} to {ν̄i < 0} for the above defined metric (cf. Fig. 2).

2. Detailed description of main results

We start by posing some assumptions on a measure μ ∈M1:

Definition 2.1. μ is d-connected if supp(μ) is arc-connected and there exists K, δ > 0 such that for any x ∈ supp(μ)

and any 0 < r < δ

μ(Br(x)) ≥ Krd . (15)

Remark 2.1. Condition (15) states, in fact, that μ is d-Ahlfors regular from below on its support. See e.g. [6] for more 
general definitions. Note also that if μ is d-connected then μ is d∗-connected for any d∗ ≥ d .

Actually, we need a stronger definition for d-connected measure:

Definition 2.2. μ is strongly d-connected if there exist L, K > 0, 2 ≤ N ∈ N and a measure space (D, β) such that 
for any x0, x1 ∈ supp(μ) there are k ≤ N points y1 = x0, y2, . . . yk = x1 in supp(μ) and k − 1 measurable mappings 

j : J = [0, 1] × D → supp(μ), j = 1, . . . k − 1 such that

i) 
j(·, b) : [0, 1] → � is L-Lipschitz on [0, 1] for any b ∈ D.
ii) 
j is injective on (0, 1) × D, 
j(0, b) = yj , 
j(1, b) = yj+1 for any b ∈ D.

iii) 
j,#(ρ) ≤ μ where ρ ∈ M+(J ) given by the density ρ(ds, dβ) = Ksd−1(1 − s)d−1dsdβ .

See Fig. 1.

Remark 2.2. We conjecture that d-connectedness should be enough for the main results of this paper. Unfortu-
nately we had to adopt the stronger definition for proving these results. Note that strong d-connected set is also 
d-connected. In fact, supp(μ) is arc connected and 
1([0, r/L] × D) ⊂ Br(x0) by (i, ii). By (iii), μ(Br(x0)) ≥
Kβ(D) 

∫ r/L

0 sd−1(1 − s)d−1ds, hence if, say, r < L/2 then μ(Br(x0)) ≥ Kβ(D)rd/(dLd2d).

Examples:
• Let Y be a convex subset of an m (≤ k) dimensional hyperplane in Rk . Let μ ≥ cHm(T ), c > 0, Hm(Y ) being 

the m-Hausdorff measure on Y . Then μ is strongly m-connected (N = 2). The same for a starshaped Y (N = 3).
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Fig. 1. Mapping of J to supp(μ) via 
.

• μ is uniformly distributed on the wedge

{(x, y) ∈R
k ; 0 ≤ x ≤ 1, y ∈R

k−1, |y| ≤ xβ}
where k > 1, β ≥ 0. μ is strongly β(k − 1) + 1 connected if β ≥ 1 and strongly k connected if 0 ≤ β ≤ 1
(N = 2).

• � = [0, 3] ⊂R and μ has a density proportional to x �→ x(x −1)2(x −2)2. In that case μ is strongly 3-connected 
and N = 3.

2.1. Connected support

Theorem 1. Suppose μ is strongly d-connected (d ≥ 1) and ν = ν+ − ν− ∈M0 such that supp(ν±) ⊂ supp(μ). Then 
there exists C depending only on μ such that

sup
ε>0

ε−qWp (μ + εν+,μ + εν−) < C‖ν‖T V (16)

where q = min(1, 1/d + 1/p) provided p �= d/(d − 1).
In the critical case p = d/(d − 1) (where q = 1)

sup
ε>0

1

ε ln1/p(1/ε + 1)
Wp (μ + εν+,μ + εν−) < C‖ν‖T V .

In particular there exists C = C(μ) for which

Wp(μ + ν+,μ + ν−) ≤ C(μ)‖ν‖q
T V (17)

if p �= d/(d − 1), while if p = d/(d − 1),

Wp(μ + ν+,μ + ν−) ≤ C(μ)‖ν‖T V ln1/p
(
‖ν‖−1

T V + 1
)

(18)

holds for any balanced pair ν = ν+ − ν−.

Remark 2.3. By Proposition 3.2 below we can observe that the optimal C(μ) in (17), (18) is monotone non-increasing 
in μ, that is C(μ1) ≥ C(μ2) if μ1 ≤ μ2. By the same Proposition we can also assume that ν± is a factorization of ν, 
namely ‖ν‖T V = |ν+| + |ν−|.

Remark 2.4. We may now make a connection between (6), (7), Theorem 1 and the Sobolev embedding Theorem. 
Consider the Sobolev space
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W
1,p′(�) := {

φ ∈ L
p′(�) ;∇φ ∈ L

p′}
where p > 1, p′ := p/(p − 1) and � ⊂R

d . If p′ > d then W1,p′(�) is embedded in the space of bounded continuous 
functions C(�). Suppose μ is the Lebesgue measure on a convex set � ⊂ R

d (so, in particular, d-connected). This 
implies that the W1,p′

closure of Bp(μ) is embedded in C(�). Let ν = δx0 − δx1 where x0, x1 ∈ supp(μ). Then the 
right hand side of (6) is finite. On the other hand, the case p′ > d corresponds to the case q = 1 so (16) is consistent 
with (6) in that case.

Recall that the case p′ = d corresponds to the critical Sobolev embedding where W1,d (or Bp(μ)) just fails to be 
embedded in the space of continuous functions. In that case Dp(μ) = ∞ (see (8)). The bound of (18) suggests that a 
Log-Lipschitz estimate corresponds to a critical Sobolev embedding in the context of Wasserstein metric.

2.2. Curves of probability measures

Let �μ := {μ(t)}, t ∈ I be a curve of probability measures

R⊃ I � t �→ μ(t) ∈M1 .

Recall that �μ ∈ ACr(I, M1; T V ) for some ∞ ≥ r ≥ 1 if ∃m ∈ L
r (I ) such that

‖μ(t) − μ(τ)‖T V ≤
t∫

τ

m(s)ds

for any t > τ ∈ I .

Theorem 2. Suppose �μ ∈ ACr(I, M1; T V ) for some ∞ ≥ r > 1. Assume also that the support of �μ is non-increasing, 
namely supp(μ(t)) ⊆ supp(μ(τ)) for any τ < t ∈ I , and supp(μ(t)) is uniformly d-connected with respect to t (that is, 
N, K, L can be chosen independently of t in Definition 2.2).

Then

i) For any p > 1, p/(p − 1) �= d , μ is uniformly q(r − 1)/r-Hölder (q-Hölder if r = ∞) in the Wasserstein metric 
Wp where q = min(1, 1/d + 1/p), namely

Wp(μ(t),μ(τ)) ≤ C|t − τ |q(r−1)/r

where C is independent of t ∈ I .
If r = ∞ and p/(p − 1) = d then μ is uniformly log-Lipschitz, that is,

Wp(μ(t),μ(τ)) ≤ C|t − τ |
[

ln1/p

(
1

|t − τ |
)

+ 1

]
for some C independent of t, τ ∈ I .

ii) If 1 < p < d/(d − 1) then there exists a Borel vector field v ∈ L
r
(
I,Lp(�;μ(t))

)
such that the continuity equa-

tion

∂tμ + ∇x · (vμ) = 0 (19)

is satisfied in the sense of distributions in I × �.

3. Proofs for the case of a connected support

In this section we introduce the proofs of Theorems 1–2.

3.1. Proof of Theorem 1

Proposition 3.1. Suppose μ is strongly d-connected (d ≥ 1) and x0, x1 ∈ supp(μ). Then there exists C = C(μ) de-
pending only on μ such that
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sup
ε>0

ε−qWp

(
μ + εδx0 ,μ + εδx1

)
< C(μ) (20)

where q = min(1, 1/d + 1/p) provided p �= d/(d − 1).
In the critical case p = d/(d − 1) (where q = 1)

sup
ε>0

1

ε ln1/p(1/ε + 1)
Wp

(
μ + εδx0 ,μ + εδx1

)
< C(μ) . (21)

Lemma 3.1. Proposition 3.1 and Theorem 1 are equivalent.

Proof. Obviously Theorem 1 implies Proposition 3.1. To see the opposite direction recall (see, e.g. [10])

W
p
p (μ1,μ2) = sup

(φ,ψ)∈Cp(�)

〈μ1, φ〉 − 〈μ2,ψ〉 (22)

where

Cp(�) := {
(φ,ψ) ∈ C(�) × C(�); φ(x) − ψ(y) ≤ |x − y|p ∀(x, y) ∈ � × �

}
(23)

Without limiting the generality we may assume |ν+| = |ν−| = 1). Let δ > 0 and (φ̄δ, ψ̄δ) ∈ Cp(�) such that

W
p
p (μ1,μ2) ≤ 〈μ1, φ̄δ〉 − 〈μ2, ψ̄δ〉 + δ

where μ1 = μ + εν+, μ2 = μ + εν−. Let x0 be a maximizer of φ̄δ and x1 a minimizer of ψ̄δ . Then

W
p
p (μ + εν+,μ + εν−) ≤ 〈μ + εν+, φ̄δ〉 − 〈μ + εν−, ψ̄δ〉 + δ

≤ 〈μ + εδx0 , φ̄δ〉 − 〈μ + εδx1 , ψ̄δ〉 + δ ≤ W
p
p (μ + εδx0 ,μ + εδx1) + δ . (24)

Since δ > 0 is arbitrary (and independent of ε) we obtain the result. �
The following result is very easy but useful. For completeness we introduce the proof:

Proposition 3.2. Principle of monotone additivity: Let μ1, μ2, λ ∈ M+, |μ1| = |μ2|. Then Wp(μ1, μ2) ≥ Wp(μ1 +
λ, μ2 + λ).

Proof. Let δ > 0. By (22), (23) there exists (φ, ψ) ∈ Cp for which

W
p
p (μ1 + λ,μ2 + λ) ≤ 〈μ1 + λ,φ〉 − 〈μ2 + λ,ψ〉 + δ

= 〈μ1, φ〉 − 〈μ2,ψ〉 + 〈λ,φ − ψ〉 + δ ≤ 〈μ1, φ〉 − 〈μ2,ψ〉 + δ ≤ W
p
p (μ1,μ2) + δ . (25)

The first inequality follows from φ(x) − ψ(x) ≤ 0 for any x ∈ � by (23). The third one from (22). Again, we obtain 
the desired result since δ > 0 is arbitrary. �
3.2. Proof of Proposition 3.1

To illustrate the proof we start by stating some simplifying assumptions:
� is one dimensional, e.g. � = [0, 1], x0 = 0, x1 = 1 and

μ(ds) = ρ(s)ds∫ 1
0 ρ(t)dt

where ρ(s) = Ksd−1(1 − s)d−1 . (26)

For μ1, μ2 ∈ M1[0, 1], let Mi(s) := μi[0, s] be the cumulative distribution function (CDF) of μi for i = 1, 2 respec-
tively. Let S(i) be the generalized inverses of Mi . Then (cf. Theorem 2.18 in [13] for the case p = 2 and Remark 2.19 
there for the general case)

W
p
p (μ1,μ2) =

1∫
|S(1)(m) − S(2)(m)|pdm . (27)
0
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In our case M1 is the CDF of μ + εδ0 while M2 the CDF of μ + εδ1. Setting M = M(s) the CDF of μ and S = S(m)

its generalized inverse, then M1(s) = M(s) + ε on (0, 1] and M2(s) = M(s) on s ∈ [0, 1), M2(1) = 1 + ε. The 
corresponding inverses are

i) S(1)(m) = 0 for m ∈ [0, ε], S(1)(m) = S(m − ε) for ε ≤ m ≤ 1 + ε.
ii) S(2)(m) = S(m) for m ∈ [0, 1] and S(2)(m) = 1 for m ∈ [1, 1 + ε].

Then (27) implies Wp
p (μ + εδ0, μ + εδ1) =

ε∫
0

|S(m)|pdm +
1∫

ε

|S(m) − S(m − ε)|pdm +
1+ε∫
1

|S(m − ε) − 1|pdm . (28)

Since S is monotone non decreasing:

ε∫
0

|S(m)|pdm +
1+ε∫
1

|S(m − ε) − 1|pdm ≤ ε
[
Sp(ε) + |1 − S(1 − ε)|p] (29)

while

1∫
ε

|S(m) − S(m − ε)|pdm = εp

1−ε∫
ε

∣∣∣∣ dS

dm

∣∣∣∣
p

dm(1 + o(1)) . (30)

By the simplifying assumptions (26)

κ1s
d ≤ M(s) ≤ κ2s

d , κ1(1 − s)d ≤ 1 − M(s) ≤ κ2(1 − s)d

for some 0 < κ1 < κ2 where s ∈ [0, 1]. Hence

κ
−1/d

2 m1/d ≤ S(m) ≤ κ
−1/d

1 m1/d , κ
−1/d

2 (1 − m)1/d ≤ 1 − S(m) ≤ κ
−1/d

1 (1 − m)1/d

for m ∈ [0, 1]. From this and S′(m) := dS/dm = 1/ρ(S(m))

S′(m) = 1

ρ(S(m))
≤ κ min{m1/d−1, (1 − m)1/d−1}

for some κ > 0 and m ∈ [0, 1]. It follows from (27)–(30) that

i) If p < d/(d − 1) then Wp
p (μ + εδ0, μ + εδ1) ≤ O(εp).

ii) if p = d/(d − 1) then Wp
p (μ + εδ0, μ + εδ1) ≤ O (εp ln(1/ε + 1)).

iii) if p > d/(d − 1) then Wp
p (μ + εδ0, μ + εδ1) ≤ O

(
εp/d+1

)
.

In the general case, we provide the estimate (i–iii) for Wp
p (μ + εδyj

, μ + εδyj+1) for j = 1, . . . k − 1 (see Defini-
tion 2.2). Indeed, since Wp is a metric we get by the triangle inequality

W
p
p (μ + εδx0 ,μ + εδx1) ≤

⎛
⎝ k∑

j=1

Wp(μ + εδyj
,μ + εδyj+1)

⎞
⎠

p

.

Consider J, 
j as in Definition 2.2. We my replace μ by the measure μ̂ := K
j,#ρ. Indeed, by assumption, μ̂ ≤ μ

and the inequality

Wp(μ + εδyj
,μ + εδyj+1) ≤ Wp(μ̂ + εδyj

, μ̂ + εδyj+1) (31)

is evident by monotone additivity (Proposition 3.2).
Let (Xε, σ) be a reference measure space such that 

∫
Xε

dσ = ε + ∫
�

dμ̂. If T (i) : Xε → �, i = 1, 2, is a pair of 

Borel mappings such that T (1)
# σ = μ̂ + εδyj

, T (2)
# σ = μ̂ + εδyj+1 then
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W
p
p (μ̂ + εδyj

, μ̂ + εδyj+1) ≤
∫
Xε

∣∣∣T (1)(x) − T (2)(x)

∣∣∣p σ(dx) . (32)

We now construct (Xε, σ) as follows:
Let M = M(s) be the CDF of ρ (cf. (26)). Set M̄ := M(1). Then

Xε := {
(m,β) ∈ [0, M̄ + ε] × D

}
and σ is a multiple dmdβ on Xε , normalized according to 

∫
Xε

dσ = ∫
�

dμ̂ + ε.
Let S = S(m) the generalized inverse of M = M(s), and extend it to Xε by S(m, β) = S(m). In analogy with 

one-dimensional case above, set

i) S(1)(m, β) = 0 for m ∈ [0, ε], S(1)(m, β) = S(m − ε, β) for ε ≤ m ≤ M̄ + ε.
ii) S(2)(m, β) = S(m, β) for m ∈ [0, M̄] and S(2)(m, β) = M̄ for m ∈ [M̄, M̄ + ε].

By construction, S(i) : Xε → J satisfy

S
(1)
# σ = ρds + εδs=0dβ ; S

(2)
# σ = ρds + εδs=1dβ .

From Definition 2.2 it follows that T (1,2) := 
j ◦ S(1,2) satisfy T (1)
# σ = μ̃ + εδyj

, T (2)
# σ = μ̃ + εδyj+1 . Then Defini-

tion 2.2-(i’) yields∫
Xε

∣∣∣T (1)(m,β) − T (2)(m,β)

∣∣∣p dmdβ ≤ Lp

∫
Xε

∣∣∣S(1)(m,β) − S(2)(m,β)

∣∣∣p dmdβ .

We now proceed as in the one-dimensional case to obtain the proof by (31), (32) via (28)–(30), in the general case.

3.3. Proof of Theorem 2

Proposition 3.3. Suppose μ ∈ M+, ν ∈ M0 and μ + ν ∈ M+. Under the assumptions of Theorem 1, there exists 
C̄ = C̄(μ) for which

Wp (μ + ν,μ) < C̄‖ν‖q
T V (33)

where q = min(1, 1/d + 1/p) provided p �= d/(d − 1).
In the critical case p = d/(d − 1) (where q = 1)

Wp (μ + ν,μ) < C̄‖ν‖T V ln
(
‖ν‖−1

T V + 1
)

.

For the proof of this proposition we need the following auxiliary lemma

Lemma 3.2. Suppose μ, ν− ∈ M+, μ is d-connected and ν− ≤ μ. Then there exists ν̃ ∈ M+ such that ν̃ − ν− ∈ M0, 
ν̃ ≤ μ/2, ν̃ + ν− ≤ μ and a constant Ĉ(μ) such that

Wp(μ − ν−,μ − ν̃) < Ĉ(μ)|ν−|q
with q = min{1, 1/p + 1/d}.

Proof. Given ε0 > 0 it is enough to prove it for any |ν−| < ε0. So, let |ν−| = ε < ε0. Let β > 0 large enough (inde-
pendent of ε). For any such ε we divide the domain supp(μ) into essentially disjoint, measurable cells Ui ⊂ � such 
that ∪Ui ⊃ supp(μ), Ui ∩ Uj = ∅ where i �= j , and such that

i) Each cell contains a ball of radius rε := (4/K)1/dε1/d whose center is in supp(μ). Here K is given by Defini-
tion 2.2.

ii) Each cell is contained in a concentric ball of radius βrε .
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The existence of such a division can easily be demonstrated by tilling a neighborhood of supp(μ) by, say, identical 
boxes. The constant β depends only on the dimension of the embedding domain.

Let νi be the restriction of ν− to Ui , αi := |νi |, the mass of ν− contained in Ui . By assumption, 
∑

i αi = ε.
By d-connectedness (see Definition 2.1) and (i), μ(Ui) ≥ 4ε for any i. Let

Vi := {x ∈ Ui; dνi/dμ ≤ 1/2}
where dνi/dμ stands for the Radon–Nikodym derivative. (Note that dνi/dμ ≤ 1 since νi ≤ ν− ≤ μ). Then

ε ≥ αi ≥
∫

Ui−Vi

(dνi/dμ)dμ ≥ 1

2
μ(Ui − Vi)

hence μ(Ui − Vi) ≤ 2ε, so μ(Vi) ≥ 4ε − 2ε ≥ 2αi .
Let Ṽi ⊂ Vi , a measurable set such that μ(Ṽi) = 2αi . Define ν̃i as the restriction of μ/2 to Ṽi . In particular, 

|ν̃i | = αi , and ν̃i ≤ μ/2.
Let now ν̃ :=∑

i ν̃i . Since the sets Ṽi are mutually disjoint, ν̃ ≤ μ/2, i.e. dν̃/dμ ≤ 1/2 μ-a.e. Moreover, dν̃/dμ +
dν−/dμ ≤ 1 μ-a.e., since dν̃/dμ = 0 if dν−/dμ > 1/2 by construction while dν−/dμ ≤ 1 by the assumption ν− ≤
μ. So ν− + ν̃ ≤ μ. Finally, |ν̃| = |ν−| = ε, so ν̃ − ν− ∈M0.

Since the diameter of the set Ui is not larger than 2βrε (cf. (ii)), the Wp
p cost for shifting a mass αi within Ui is not 

larger that αi(2βrε)
p . Hence

W
p
p (ν̃i , νi) ≤ αi(2βrε)

p = αi(2β)p
(

4

K

)p/d

εp/d (34)

Recalling ν− =∑
νi , ν̃ =∑

ν̃i we get Wp
p (ν̃, ν−) ≤∑

i W
p
p (ν̃i , νi) ≤

∑
i

(2β)p
(

4

K

)p/d

αiε
p/d = (2β)p

(
4

K

)p/d

εp/d+1 = (2β)p
(

4

K

)p/d

|ν−|p/d+1

were we used 
∑

αi = ε = |ν−|.
Let now λ := μ − ν− − ν̃ ≥ 0. Then

Wp(μ − ν−,μ − ν̃) = Wp(λ + ν̃, λ + ν−) ≤ Wp(ν̃, ν−) ≤ (2β)

(
4

K

)1/d

|ν−|q

by Proposition 3.2. �
Proof of Proposition 3.3. Let ν = ν+ − ν−. We may assume by the principle of monotone additivity that ν± are the 
positive/negative parts of ν, i.e. ‖ν‖T V = |ν+| + |ν−|. Let μ̄ := μ + ν+. Then, by the triangle inequality,

Wp(μ + ν,μ) = Wp(μ̄ − ν−, μ̄ − ν+) ≤ Wp(μ̄ − ν−, μ̄ − ν̃) + Wp(μ̄ − ν̃, μ̄ − ν+) (35)

where ν̃ is as in Lemma 3.2 (in particular, μ̄ majorizes ν̃, as well as ν−, ν+). Since μ̄ ≥ μ we get by monotone 
additivity and Lemma 3.2

Wp(μ̄ − ν−, μ̄ − ν̃) ≤ Wp(μ − ν−,μ − ν̃) ≤ Ĉ(μ)|ν−|q ≡ 2−qĈ(μ)‖ν‖q
T V . (36)

Setting μ̃ = μ − ν̃ := μ̄ − ν+ − ν̃ we get

Wp(μ̄ − ν̃, μ̄ − ν+) = Wp(μ̃ + ν+, μ̃ + ν̃) . (37)

Now, μ̃ ≥ μ/2 by Lemma 3.2, and since ‖ν+ − ν̃‖T V ≤ |ν+| +|ν̃| = |ν+| +|ν−| = ‖ν‖T V , we obtain from Theorem 1, 
(37) and Proposition 3.2

Wp(μ̄ − ν̃, μ̄ − ν+) ≤ C(μ/2)

{ ‖ν‖q
T V if p �= d

d−1

‖ν‖T V

(
ln(‖ν‖−1

T V + 1
)

if p = d
d−1

}
. (38)

The proposition now follows from (35), (36), (38) where C̄(μ) = 2−qĈ(μ) + C(μ/2). �
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Proof of Theorem 2.
i) Given t > τ ∈ I , let ν = μ(t) − μ(τ). Note that supp(ν) ⊆ supp(μ(τ)). Since �μ ∈ ACr(I, T V )

‖ν‖T V ≤
t∫

τ

m ≤ ‖m‖r |t − τ |1−1/r . (39)

The assumptions of Theorem 1 are satisfied so we obtain the result by Proposition 3.3, upon estimating ‖ν‖T V

by (39). �
ii) Since 1 < p < d/(d − 1) we get q = 1 so (33), where μ := μ(τ), ν = μ(t) − μ(τ), with the first inequality in 

(39) imply

Wp(μ(t),μ(τ)) ≤ C

t∫
τ

m .

Since μ(·) ∈ ACr(I, T V ) by the assumption, then m ∈ L
r so �μ ∈ ACr(I, Wp) as well. The existence of a vector field 

satisfying (19) follows from Theorem 8.3.1 in [1] (see also Theorem 5 in [7]).

4. Optimal teleportation and disconnected support

In the case of disconnected support of μ we obtain the following result:

Assumption 4.1.

1. μ ∈ M1 and supp(μ) is composed of a finite number (m ≥ 2) of disjoint components μ = ∑m
j=1 μj where 

supp(μi) ∩ supp(μj ) = ∅ for any i �= j .
2. Each μi satisfies the assumptions of Theorem 1.
3. ν = ν+ − ν− ∈ M0, supp(ν+) ∪ supp(ν−) ⊂ supp(μ).

Definition 4.1. Ai := supp(μi) are the connected components of supp(μ).

i) ν̄j := 〈ν, 1Aj
〉. By Assumption 4.1-(3), 

∑m
j=1 ν̄j = 0.

ii) V := {1..., m}, V+ := {j ∈ V ; ν̄j > 0}, V− := {j ∈ V ; ν̄j < 0}.
iii) For i, j ∈ V , |E|i,j := distp(Ai, Aj) ≡ minx∈Ai,y∈Aj

|x − y|p .
iv) G := (V, E) is a complete graph (i.e. any two vertices are connected by an edge) whose vertices V and the length 

of the edge Ei,j connecting i to j is |E|i,j .
v) Let Oi,j is the set of all orbits in V connecting i to j , that is, oi,j ∈ Oi,j if

oi,j = {o(1)
i,j , . . . o

(n)
i,j } ⊂ V

such that o(1)
i,j = i, o(n)

i,j = j . The length of such an orbit is |oi,j | = n in that case.
Given i, j ∈ V , d(i, j) is the geodesic distance corresponding to (V , E). That is:

d(i, j) := min
oi,j ∈Oi,j

|oi,j |−1∑
l=1

|E|
o
(l)
i,j ,o

(l+1)
i,j

(40)

See Fig. 2 for an illustration.
vi) Let now ν̄i > 0 be the charge associated with the vertex i ∈ V+, and −ν̄j > 0 the charge associated with j ∈ V−. 

Let ‖ν‖μ be the optimal cost of transportation of 
∑

i∈V+ ν̄iδi to 
∑

j∈V−(−ν̄j )δj subjected to the graph metric 
d(i, j). That is:

‖ν‖μ := min
λ∈λ(ν)

∑ ∑
λi,j d(i, j) :=

∑ ∑
λ∗

i,j |d(i, j) (41)

i∈V+ j∈V− i∈V+ j∈V−
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Fig. 2. Transfer plan via a directed graph. Sources (ν̄i > 0) are filled circles while sinks (ν̄i < 0) are empty circles. (cf. Definition 4.1-(i)). Geodesic 
arcs: (1 �→ 5) = (1, 5); (1 �→ 6) = (1, 5, 6), (1 �→ 7) = (1, 5, 7), (1 �→ 8) = (1, 5, 3, 8), (2 �→ 5) = (2, 5), (2 �→ 6) = (2, 6), (2 �→ 7) = (2, 5, 7), 
(2 �→ 8) = (2, 5, 3, 8), (3 �→ 5) = (3, 5), (3 �→ 6) = (3, 5, 6), (3 �→ 7) = (3, 5, 7), (3 �→ 8) = (3, 8); Weighed arcs: �∗

E1,5
= λ∗

1,5 + λ∗
1,6 + λ∗

1,7, 
λ∗
E2,5

= λ∗
2,5 + λ∗

2,7, �∗
E2,6

= λ∗
2,6, �∗

E5,6
= λ∗

3,6 + λ∗
1,6, �∗

E5,7
= λ∗

1,7 + λ∗
2,7 + λ∗

3,7, �∗
E3,5

= λ∗
3,5 + λ∗

3,6 + λ∗
3,7. It is assumed that ν̄3 is 

large enough to supply ν̄8, so λ∗
1,8 = λ∗

2,8 = 0. Otherwise, the arrow E3,5 should be reversed, and �∗
E1,5

= λ∗
1,5 + λ∗

1,6 + λ∗
1,7 + λ∗

1,8, λ∗
E2,5

=
λ∗

2,5 + λ∗
2,7 + λ∗

2,8, and �∗
E5,3

= λ∗
1,8 + λ∗

2,8.

where λ(ν) is the set of non-negative |V+| × |V−| matrices {λi,j } which satisfy:∑
j∈V− λi,j = ν̄i if i ∈ V+∑
i∈V+ λi,j = −ν̄j if j ∈ V−.

Theorem 3. If ∞ > p > 1 and μ, ν := ν+ − ν− satisfy Assumption 4.1 then

lim
ε↘0

ε−1/pWp(μ,μ + εν) = ‖ν‖1/p
μ

4.1. Proof of Theorem 3

We first state the inequality

lim inf
ε↘0

ε−1/pWp(μ,μ + εν) ≥ ‖ν‖1/p
μ .

From the principle of monotone additivity it is enough to prove

lim inf
ε↘0

ε−1/pWp(μ + εν+,μ + εν−) ≥ ‖ν‖1/p
μ . (42)

Recall the dual formulation (22), (23). In fact, it is enough to restrict to (φ, ψ) ∈ Cp(supp(μ)) ≡ Cp(∪Ai). In the 
special case ψ(x) = φ(x) := zi is a constant over Ai we get

W
p
p (μ + εν+,μ + εν−) ≥ ε

∑
¯
zi ν̄i (43)
i∈V
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provided zi − zj ≤ |x −y|p for any x ∈ Ai, y ∈ Aj . In particular, if zi − zj ≤ d(i, j) (see Definition 4.1-(iii, v)). From 
(43) and Definition 4.1-(ii) we get

W
p
p (μ + εν+,μ + εν−) ≥ ε sup

{z}

∑
i∈V̄

zi ν̄i (44)

where the supremum is on all possible values of {z1 . . . , z#V̄ } which satisfy zi − zj ≤ d(i, j) for any i, j ∈ V̄ . Since 
d(·, ·) is a metric on the graph (V , E) via Definition 4.1-(v) we recall the dual formulation of the metric Monge 
problem, or the so called Kantorovich–Rubinstein Theorem (Theorem 1.14 in [13]) in discrete version:

‖ν‖μ = sup
{z}

∑
i∈V

zi ν̄i ; zi − zj ≤ d(i, j) (45)

(see also Definition 4.1-(vi)). Then (42) follows from (44)–(45).
To prove the opposite inequality we need some additional definitions:

Definition 4.2.

1. Denote Zj
i ∈ Ai to be the closest point in Ai to Aj (see Definition 4.1-(iii)).

2. For i, j ∈ V let ōi,j = (o
(1)
i,j . . . o

(n)
i,j ), a choice of an optimal orbit realizing (40) in Definition 4.1-(v) (note that 

there can be more than one such orbit, but we choose only one). Let |ōi,j | be the cardinality of ōi,j .
For any l ∈ V , denote E+

l the set if all outgoing edges from l, that is, E ∈ E+
l iff, for some i, j ∈ V , l ∈ ōi,j =

(o
(1)
i,j . . . o

(n)
i,j ), l �= o

(n)
i,j .

Likewise, denote E−
l the set if all incoming edges to l, that is E ∈ E−

l iff l ∈ ōi,j = (o
(1)
i,j . . . o

(n)
i,j ), l �= o

(1)
i,j .

3. For each i, j ∈ V , let

Eōi,j
:= {E;E = E

o
(k)
i,j ,o

(k+1)
i,j

; 1 ≤ k ≤ |ōi,j | − 1} ,

where ōi,j is the above choice of optimal orbit. Let

�∗
E :=

∑
{i,j ;E∈Eōi,j

}
λ∗

i,j , (46)

see (41) for λ∗
i,j . This is the total flux traversing E due to the optimal transport plan.

Note that∑
E∈E+

l

�∗
E −

∑
E∈E−

l

�∗
E = ν̄l (47)

for any l ∈ V . Recall (Definition 4.1 (i, ii)) that ν̄l > 0 if l ∈ V+, ν̄l < 0 if l ∈ V− and ν̄l = 0 if l ∈ V − V̄ .
Note also that the flux due to optimal plan is uni-directional, i.e. �∗

E ·�∗−E = 0 for any edge E (here −E represents 
the same edge in the opposite orientation).

4. For k ∈ V

ν̂+
k :=

∑
Ek,i∈E+

k

�∗
Ek,i

δZi
k
. (48)

Here δx is the Dirac delta function at x. In particular, ν̂+
k is supported in Ak (see Definition 4.2 (1)), and

|ν̂+
k | =

∑
E∈E+

k

�∗
E . (49)

5. For i, j ∈ V , let Br(Z
j
i ) be the ball of radius r centered at Zj

i ∈ Ai . Given ε > 0 let rj,ε
i > 0 be the radius of the 

ball such that μ 
(
Aj ∩ B

r
j,ε
i

(Z
j
i )
)

= ε. See Fig. 3.

Let μ̂ε
i,j be the restriction of the measure μ to the set Aj ∩ B j,ε (Z

j
i ) defined above.
ri
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Fig. 3. Locating the support of μ̂ε
i,j

.

6. Let

ν̂−
k (ε) :=

∑
E=El,k∈E−

k

μ̂
ε�∗

E

l,k . (50)

In particular, ν̂−
k is supported in Ak and

|ν̂−
k (ε)| = ε

∑
E∈E−

k

�∗
E . (51)

7. ν̂+ :=∑
k∈V ν̂+

k ; ν̂−(ε) :=∑
k∈V ν̂−

k (ε) ; ν̂(ε) := εν̂+ − ν̂−(ε).

Note that ν̂(ε) ∈ M0, i.e. ε|ν̂+| = |ν̂−(ε)|. In fact, we obtain from (47), (49, (51) that for each k ∈ V

ε|ν̂+
k | − |ν̂−

k (ε)| = εν̄k , (52)

and 
∑

k∈V ν̄k = 0 (Definition 4.1-(i)).
Using the above we find form the metric property of Wp and the triangle inequality

Wp(μ + εν,μ) ≤ Wp(μ + εν,μ + ν̂(ε)) + Wp(μ,μ + ν̂(ε)) . (53)

Let μk be the restriction of μ to Ak , νk the restriction of ν to Ak and ν̂k(ε) = εν̂+
k − ν̂−

k (ε). By (52) (recall ν̄k := |νk|), 
Wp(μk + ενk, μk + ν̂k(ε)) is defined on each component. We can use the definition of Wasserstein metric to obtain

W
p
p (μ + εν,μ + ν̂(ε)) ≤

∑
k∈V

W
p
p (μk + ενk,μk + ν̂k(ε)) .

Now Theorem 1 applies to each of the components of this sum. By the assumption of the Theorem we obtain

W
p
p (μk + ενk+,μk + εν̂+

k ) = O(εpq) = o(ε)

where q > 1/p by its definition. Thus, the first term on the right of (53) is controlled by o(ε1/p).
To complete the proof we need to estimate the second term.

Proposition 4.1.

W
p
p (μ,μ + ν̂(ε)) ≤ ε‖ν‖μ + o(ε) .
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For the proof we construct a transport plan π from μ to μ + ν̂(ε). To illustrate this construction by a particular 
example see the directed tree in Fig. 2. A detailed description of the plan is given below.

For any positive measure σ ∈M+(�) and x ∈ � define δx ⊗ σ ∈ M+(� × �) by its action on φ ∈ C(� × �):

< δx ⊗ σ,φ >:=
∫
�

φ(x, y)dσ (y) .

Let

με− := μ − ν̂−(ε) (54)

and πμε− be the diagonal lift of με− to M+(� × �), that is,

< πμε− , φ >:=
∫
�

φ(x, x)dμε−(x) .

Let now

πε := πμε− +
∑
l∈V

∑
k∈V

δZk
l
⊗ μ̂

ε�∗
El,k

l,k . (55)

Note that some terms in the double sum above my be zero. This is the case if the edge El,k does not transverse an 

orbit of the optimal transport plan, i.e. �∗
El,k

= 0 (hence δZk
l
⊗ μ̂

ε�∗
El,k

l,k = 0).

Next, observe that πε ∈ �(μ + ν̂(ε), μ) (cf. (2)). In fact, from (54) and (55), for any φ = 1(y)ψ(x)

< πε,φ >=
∫
�

ψ(x)dμε−(x) + ε
∑
l∈V

∑
k∈V

ψ(Zl
k)�

∗
E(k,l) =

∫
�

ψ(x)dμ(x) −
∫
�

ψ(x)dν̂−(ε)(x) + ε

∫
�

ψ(x)dν̂+(x) =< μ + ν̂(ε),ψ > (56)

where we used ν̂+ :=∑
k∈V ν̂+

k and (48).
Setting now φ = 1(x)ψ(y)

< πε,φ >=
∫
�

ψ(y)dμε−(y) +
∑
l∈V

∑
k∈V

∫
�

ψ(y)dμ̂
ε�∗

El,k

l,k (y) =< μ,ψ > (57)

where we used ν̂−(ε) :=∑
k∈V ν̂−

k (ε) and (54), (50).
It then follows from (55) that

W
p
p (μ,μ + ν̂(ε)) ≤

∫
�

∫
�

|x − y|pdπε =
∑
l∈V

∑
E=El,k

∫
�

∫
�

|Zk
l − y|pμ̂

ε�∗
E

l,k (dy) (58)

From Definition 4.2-1, 5 and Definition 4.1-(iii), we obtain 
∫
�

|Zk
l − y|pμ̂

ε�∗
El,k

l,k (dy) = ε|E|l,k�∗
E + o(ε), so Defini-

tion 4.2-6, 7, together with (46) imply∫
�

∫
�

|Zk
l − y|pμ̂

ελ∗
E

l,k (dy) = ε|E|l,k
∑

(i,j);El,k∈ēi,j

λ∗
i,j + o(ε) (59)

and (58), (59), (40) imply

W
p
p (μ,μ + ν̂(ε)) ≤ ε

∑
i,j∈V ×V

λ∗
i,j d(i, j) + o(ε) = ε‖ν‖ν + o(ε) . �
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