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Abstract

This article is devoted to the Cauchy problem for the 2D gravity-capillary water waves in fluid domains with general bottoms. 
Local well-posedness for this problem with Lipschitz initial velocity was established by Alazard–Burq–Zuily [1]. We prove that the 
Cauchy problem in Sobolev spaces is uniquely solvable for initial data 1

4 -derivative less regular than the aforementioned threshold, 
which corresponds to the gain of Hölder regularity of the semi-classical Strichartz estimate for the fully nonlinear system. In order 
to obtain this Cauchy theory, we establish global, quantitative results for the paracomposition theory of Alinhac [5].
© 2017 Elsevier Masson SAS. All rights reserved.
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1. Introduction

1.1. The equations

We consider an incompressible, inviscid fluid with unit density moving in a time-dependent domain

�= {(t, x, y) ∈ [0, T ] × R × R : (x, y) ∈�t }
where each �t is a domain located underneath a free surface

�t = {(x, y) ∈ R × R : y = η(t, x)}
and above a fixed bottom �= ∂�t \�t . We make the following assumption on the domain:
�t is the intersection of the half space

�1,t = {(x, y) ∈ R × R : y = η(t, x)}
and an open connected set �2 containing a fixed strip around �t , i.e., there exists h > 0 such that

{(x, y) ∈ R × R : η(x)− h≤ y ≤ η(t, x)} ⊂�2.

This assumption prevents the bottom from emerging or even from coming arbitrarily close to the free surface and thus 
avoids the emergence of contact lines, which are not the subject of this paper. In what follows, we shall prove that this 
assumption can be propagated in short time if it is satisfied initially.
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The velocity field v admits a harmonic potential φ : � → R, i.e., v = ∇x,yφ with �x,yφ = 0. For the Zakharov 
formulation of irrotational water waves, we introduce the trace of φ on the free surface

ψ(t, x)= φ(t, x, η(t, x)).
Then φ(t, x, y) is the unique variational solution of

�x,yφ(t)= 0 in �t, φ(t)|� =ψ(t), ∂νφ(t)|� = 0, (1.1)

ν being the outward normal to the bottom �. The Dirichlet–Neumann operator is then defined by

G(η)ψ =
√

1 + |∂xη|2
(∂φ
∂n

∣∣∣
�

)
= (∂yφ)(t, x, η(t, x))− ∂xη(t, x)(∂xφ)(t, x, η(t, x)).

The gravity water wave problem with surface tension consists in solving the following system of (η, ψ) (see [14] or 
Chapter 9 of [20]):⎧⎪⎨⎪⎩

∂tη=G(η)ψ,

∂tψ + gη+H(η)+ 1

2
|∂xψ |2 − 1

2

(∂xη∂xψ +G(η)ψ)2
1 + |∂xη|2 = 0

(1.2)

where H(η) is twice the mean curvature of the free surface:

H(η)= −∂x
(

∂xη√
1 + |∂xη|2

)
.

Finally, we note that the vertical and horizontal components of the velocity can be expressed in terms of η and ψ as

B = (vy)|� = ∂xη∂xψ +G(η)ψ
1 + |∂xη|2 , V = (vx)|� = ∂xψ −B∂xη. (1.3)

1.2. The problem

We are interested in the Cauchy problem for system (1.2) with sharp Sobolev regularity for initial data. For previous 
results on the Cauchy problem, we refer to the works of Yosihara [33], Coutand–Shkoller [12], Shatah–Zeng [26–28], 
Ming–Zhang [24] for sufficiently smooth solutions; see also the works of Nalimov [25], Craig [13], Wu [31] [32], 
Christodoulou–Lindblad [11], Lindblad [22], Lannes [19] for gravity waves without surface tension. In terms of 
regularity of initial data, the work of Alazard–Burq–Zuily [1] reached an important threshold: local wellposedness as 
long as the velocity field is Lipschitz, in terms of Sobolev embeddings, up to the free surface. More precisely, this 
corresponds to initial data (in view of the formula (1.3))

(η0,ψ0) ∈Hs+ 1
2 (Rd)×Hs(Rd), s > 2 + d

2
.

This is achieved by the energy method after reducing the system to a single quasilinear equation using a paradifferen-
tial calculus approach. However, observe that the linearization of (1.2) around the rest state (0, 0) reads

∂t�+ i |D| 3
2 �= 0, �= |D| 1

2 η+ iψ
which is dispersive and enjoys the following Strichartz estimate with a gain of 3

8 derivative

‖�‖
L4
t W

σ− 1
8 ,∞

x

≤ Cσ ‖�|t=0‖Hσx , ∀σ ∈ R. (1.4)

Therefore, one expects that the fully nonlinear system (1.2) is also dispersive and enjoys similar Strichartz estimates. 
Indeed, this is true and was first proved by Alazard–Burq–Zuily [2]: all solutions

(η,ψ) ∈ C0([0, T ];Hs+ 1
2 (R)×Hs(R)), s > 2 + 1

2
(1.5)

possess the hidden regularity
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(η,ψ) ∈ L4([0, T ];Ws+ 1
4 ,∞(R)×Ws− 1

4 ,∞(R)). (1.6)

Compared to the classical (full) Strichartz estimate (1.4), the estimate (1.6) exhibits a loss of 1
8 derivative and is 

called the semi-classical Strichartz estimate. This terminology comes from the work [9] for Schrodinger equations on 
manifolds. In fact, slightly earlier in [10] the same Strichartz estimate was obtained for the 2D gravity-capillary water 
waves under another formulation. We also refer to [18] for another proof of (1.6) and the semi-classical Strichartz 
estimate for 3D waves.

It is known, for instance from the works of Bahouri–Chemin [6] and Tataru [29] [30], that for dispersive PDEs, 
Strichartz estimates can be used to improve the Cauchy theory for data that are less regular than the one obtained 
merely via the energy method. We refer to [7], Chapter 9 for an expository presentation concerning quasilinear wave 
equations. Our aim is to proceed such a program for the gravity-capillary water waves system (1.2). For pure gravity 
water waves, this was considered by Alazard–Burq–Zuily [4]. Coming back to our system (1.2), from the semi-
classical Strichartz estimate (1.6) for s > 2 + 1

2 it is natural to ask:
Q: Does the Cauchy problem for (1.2) have a unique solution for initial data

(η0,ψ0) ∈Hs+ 1
2 (Rd)×Hs(Rd), s > 2 + 1

2
− 1

4
= 9

4
?

In the previous joined work [16], we proved an “intermediate” result for s > 2 + 1/2 − 3/20 in 2D case (together with 
a similar result for 3D case), which asserts that water waves can still propagate starting from non-Lipschitz velocity
(up to the free surface). See [4] for the corresponding result for vanishing surface tension. Our contribution in this 
work is to prove an affirmative answer for question Q.

Let us give an outline of the proof. In [15], using a paradifferential approach we reduced the system (1.2) to a single 
dispersive equation as follows. Assume that for some s > r > 2

(η,ψ) ∈ C0([0, T ];Hs+ 1
2 (R)×Hs(R))∩L4([0, T ];Wr+ 1

2 ,∞(R)×Wr,∞(R)) (1.7)

then after paralinearization and symmetrization, (1.2) reduces to the following equation of a complexed-valued un-
known �

∂t�+ TV ∂x�+ iTγ�= f (1.8)

for some paradifferential symbol γ ∈�3/2 and the source term f (t) satisfies the tame estimate

‖f (t)‖Hs ≤ F
(∥∥(η(t),ψ(t))∥∥

H
s+ 1

2 ×Hs
)(

1 + ∥∥(η(t),ψ(t))∥∥
W
r+ 1

2 ,∞×Wr,∞

)
,

here F is some universal nonlinear function.
Such a reduction was first obtained in [1] for solutions at the “energy threshold” (1.5). Observe that the relation 

s > r > 2 exhibits a gap of 1
2 derivative in view of the Sobolev embedding from Hs to C

s− 1
2∗ (see Definition A.1). 

Having in hand the blow-up criterion and the contraction estimate in [15] at the regularity (1.7), the main difficulty 
in answering question Q is to prove the semi-classical Strichartz estimate for solution � to (1.8). Compared to the 
Strichartz estimates in [16] we remark that the semi-classical gain in [2] (when s > 2 + 1

2 ) was achieved owing to 
the fact that in one spatial dimension, (1.8) can be further reduced to an equation whose highest order term is just the 
Fourier multiplier |Dx | 3

2 :

∂t �̃+ TṼ ∂x�̃+ i|Dx | 3
2 �̃= f̃ . (1.9)

This reduction is proceeded by means of the paracomposition of Alinhac [5]. Here, we shall see that in our case 
we need more precise paracomposition results for two purposes: (1) dealing with rougher functions and (2) deriving 
quantitative estimates. This will be the content of section 3 and can be of independent interest. After having (1.9)
we show in section 4 that the method in [2] can be adapted to our lower regularity level to derive the semi-classical 
Strichartz estimate with an arbitrarily small ε loss of regularity.

1.3. Main results

Let us introduce the Sobolev norm and the Strichartz norm for solution (η, ψ) to the gravity-capillary system (1.2):
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Mσ(T )= ‖(η,ψ)‖
L∞([0,T ];Hσ+ 1

2 (R)×Hσ (R)), Mσ (0)= ‖(η,ψ)|t=0‖
H
σ+ 1

2 (R)×Hσ (R),

Nσ (T )= ‖(η,ψ)‖
L4([0,T ];Wσ+ 1

2 ,∞(R)×Wσ,∞(R))
.

Our first result concerns the semi-classical Strichartz estimate for system (1.2).

Theorem 1.1. Assume that (η, ψ) is a solution to (1.2) with⎧⎨⎩ (η,ψ) ∈ C
0([0, T ];Hs+ 1

2 (R)×Hs(R))∩L4([0, T ];Wr+ 1
2 ,∞(R)×Wr,∞(R)),

s > r >
3

2
+ 1

2

(1.10)

and

inf
t∈[0,T ] dist(η(t),�)≥ h > 0. (1.11)

For any μ < 1
4 there exists a nondecreasing function F independent of (η, ψ) such that

N
s− 1

2 +μ(T )≤ F
(
Ms(T )+Nr(T )

)
. (1.12)

As a consequence of Theorem 1.1 and the energy estimate in [15] we obtain a closed a priori estimate for the 
mixed norm Ms(T ) +Nr(T ).

Theorem 1.2. Assume that (η, ψ) is a solution to (1.2) and satisfies conditions (1.10), (1.11) with

2< r < s − 1

2
+μ, μ <

1

4
, h > 0.

There exists a nondecreasing function F independent of (η, ψ) such that

Ms(T )+Nr(T )≤ F
(
F(Ms(0))+ TF

(
Ms(T )+Nr(T )

))
.

Finally, we obtain a Cauchy theory for the gravity-capillary system (1.2) with initial data 1
4 -derivative less regular 

than the energy threshold in [1].

Theorem 1.3. Let μ < 1
4 and 2 < r < s− 1

2 +μ. For any (η0, ψ0) ∈Hs+ 1
2 (R) ×Hs(R) satisfying dist(η0, �) ≥ h > 0, 

there exists T > 0 such that the gravity-capillary waves system (1.2) has a unique solution (η, ψ) in

L∞([0, T ];Hs+ 1
2 (R)×Hs(R))∩L4([0, T ];Wr+ 1

2 ,∞(R)×Wr,∞(R)).

Moreover, we have

(η,ψ) ∈ C0([0, T ];Hs0+ 1
2 (R)×Hs0(R)) ∀s0 < s,

and

inf
t∈[0,T ] dist(η(t),�) >

h

2
.

Remark 1.4. The proof of Theorem 1.3 shows that for each μ < 1
4 the existence time T can be chosen uniformly for 

data (η0, ψ0) lying in a bounded set of Hs+ 1
2 (R) ×Hs(R) and the “fluid depth” h lying in a bounded set of (0, +∞).

Remark 1.5. We do not know yet if the semi-classical gain is optimal for solutions at the regularity (1.10). However, 
some remarks can be made as follows. On one hand, regarding Strichartz estimates for (1.8), since the symbol γ is 
x-dependent, trappings and thus loss of derivative may occur. As an example, the semi-classical Strichartz estimates 
are optimal for Schrödinger equations posed on spheres (see section 4, [9]). On the other hand, if one wishes to 
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eliminate the geometry by making changes of variables, then as we shall see in Proposition 4.3 and Remark 4.4, there 
will appear a loss of 1

2 derivative in the source term, which turns out to be the least allowable loss for the semi-classical 
Strichartz estimate (see the end of the proof of Theorem 4.14).

Remark 1.6. The linearization of (1.2) in 2 spatial dimensions (η, ψ : R2 → R) enjoys the semi-classical Strichartz 
estimate with a gain 1

2 derivative (see [18]). It was proved in [18] that the same estimate holds for the nonlinear 
system (1.2) when

(η,ψ) ∈ C0([0, T ];Hs+ 1
2 (R2)×Hs(R2)), s >

5

2
+ 1.

If the preceding regularity could be improved to ( 1
2 derivative)⎧⎨⎩ (η,ψ) ∈ C

0([0, T ];Hs+ 1
2 ×Hs)∩L2([0, T ];Wr+ 1

2 ,∞ ×Wr,∞),

s − 1

2
> r > 2,

the results in [15] would imply a Cauchy theory (see the proof of Theorem 1.3) with initial surface

η0 ∈Hs+ 1
2 (R2), s >

3

2
+ 1,

which is the lowest Sobolev regularity to ensure that the initial surface has bounded curvature (see the Introduction 
of [16]). Note that according to [4], in the absence of surface tension, the problem is well-posed even if the initial 
curvature is unbounded (in all spatial dimensions) or even not in L2 (in 2 spatial dimensions).

2. Preliminaries on dyadic analysis

2.1. Dyadic partitions

Our analysis below is sensitive with respect to the underlying dyadic partition of Rd . These partitions are con-
structed by using the cut-off functions given in the following lemma.

Lemma 2.1. For every n ∈ N, there exists φ(n) ∈ C∞(Rd) satisfying

φ(n)(ξ)=
{

1, if |ξ | ≤ 2−n,
0, if |ξ |> 2n+1,

(2.1)

∀(α,β) ∈ Nd × Nd,∃Cα,β > 0,∀n ∈ N,
∥∥xβ∂αφ(n)(x)∥∥L1(Rd ) ≤Cα,β . (2.2)

We postpone the proofs of the results in this paragraph to Appendix B. In fact, to guarantee condition (2.2) we 
choose φ(n) with support in a ball of size 2−n + c for some c > 0.

We shall skip the subscript (n) and denote φ ≡ φ(n) for simplicity. Setting

φk(·)= φ( ·
2k
), k ∈ Z, ϕ0 = φ = φ0, ϕ = χ − χ−1, ϕk = φk − φk−1 = ϕ( ·

2k
), k ≥ 1,

we see that

suppϕ0 ⊂ C0(n) := {ξ ∈ Rd : |ξ | ≤ 2n+1}
suppϕ ⊂ C(n) := {ξ ∈ Rd : 2−(n+1) < |ξ | ≤ 2n+1}
suppϕk ⊂ Ck(n) := {ξ ∈ Rd : 2k−(n+1) < |ξ | ≤ 2k+(n+1)}, ∀k ≥ 1.

(2.3)

Observe also that with

N0 := 2(n+ 1)

we have

Cj (n)∩ Ck(n)= ∅ if |j − k| ≥N0.
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Definition 2.2. For every φ ≡ φ(n), define the following Fourier multipliers

Ŝku(ξ)= φk(ξ)û(ξ), k ∈ Z, �̂ku(ξ)= ϕk(ξ)û(ξ), k ≥ 0.

Denoting uk =�ku we obtain a dyadic partition of unity

u=
∞∑
p=0

up, (2.4)

where n shall be called the size of this partition. Remark that with the notations above, there holds

�0 = S0,

q∑
p=0

�p = Sq, Sq+1 − Sq =�q+1.

Throughout this article, whenever Rd is equipped with a fixed dyadic partition, we always define the Zygmund-
norm (see Definition A.1) of distributions on Rd by means of this partition.

To prove our paracomposition results we need to choose a particular size n = n0, tailored to the diffeomorphism, 
in Proposition 2.9 below, whose proof requires uniform bounds for the norms of the operators Sj, �j in Lebesgue 
spaces and Hölder spaces, with respect to the size n. This fact in turn stems from property (2.2) of φ(n).

Lemma 2.3. 1. For every α ∈ Nd , there exists Cα > 0 independent of n such that

∀j, ∀1 ≤ p ≤ q ≤ ∞, ∥∥∂αSju∥∥Lq(Rd ) + ∥∥∂α�ju∥∥Lq(Rd ) ≤ Cα2j (|α|+ d
p

− d
q
) ‖u‖Lp(Rd ) .

2. For every μ ∈ (0, ∞), there exists M > 0 independent of n such that

∀j ∈ N, ∀u ∈Wμ,∞(Rd) : ∥∥�ju∥∥L∞(Rd ) ≤M2−jμ ‖u‖Wμ,∞(Rd ) .

As a consequence of this lemma, one can examine the proof of Proposition 4.1.16, [23] to have

Lemma 2.4. Let μ > 0, μ /∈ N. There exists a constant Cμ independent of n, such that for any u ∈Wμ,∞(Rd) we 
have

1

Cμ
‖u‖Wμ,∞(Rd ) ≤ ‖u‖Cμ∗ ≤Cμ ‖u‖Wμ,∞(Rd ) .

Moreover, when μ ∈ N the second inequality still holds.

By virtue of Lemma 2.4, we shall identify Wμ,∞(Rd) with Cμ∗ (Rd) whenever μ > 0, μ /∈ N, regardless of the 
size n.

For very j ≥ 1, the reverse estimates for �j in Lemma 2.3 1. hold (see Lemma 2.1, [7]).

Lemma 2.5. Let α ∈ Nd . There exists Cα(n) > 0 such that for every 1 ≤ p ≤ ∞ and every j ≥ 1, we have∥∥�ju∥∥Lp(Rd ) ≤ Cα(n)2−j |α| ∥∥∂α�ju∥∥Lp(Rd ) .
Applying the previous lemmas yields

Lemma 2.6. 1. Let μ > 0. For every α ∈ Nd there exists Cα > 0 such that

∀v ∈ Cμ∗ (Rd), ∀p ≥ 0,
∥∥∂α(Spv)∥∥L∞ ≤

⎧⎪⎨⎪⎩
Cα2p(|α|−μ) ‖∂αv‖

C
μ−|α|∗

, if |α|>μ
Cα ‖∂αv‖L∞ , if |α|<μ
Cαp ‖v‖Cμ∗ , if |α| = μ.

(2.5)

2. Let μ < 0. For every α ∈ Nd there exists Cα > 0 such that
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∀v ∈ Cμ∗ (Rd), ∀p ≥ 0,
∥∥∂α(Spv)∥∥L∞ ≤ Cα2p(|α|−μ) ‖v‖Cμ∗ . (2.6)

3. Let μ > 0. There exists C(n) > 0 such that for any v ∈ S ′ with ∇v ∈Cμ−1∗ (Rd) we have∥∥v − Spv
∥∥
L∞ ≤ C(n)2−pμ ‖∇v‖

C
μ−1∗
. (2.7)

2.2. On paradifferential operators

In this paragraph we clarify the choice of two cutoff functions χ and ψ appearing in the definition of paradifferen-
tial operators A.3 in accordance with the dyadic partitions above. Given a dyadic system of size n on Rd , define

χ(η, ξ)=
∞∑
p=0

φp−N(η)ϕp(ξ) (2.8)

with N = N(n) � n large enough. It is easy to check that the so defined χ satisfies (A.3) and (A.4). Plugging (2.8)
into (A.2) gives

Tau(x)=
∞∑
p=0

∫ ∫
ei(θ+η)xφp−N(θ)â(θ, η)ϕp(η)ψ(η)û(η)dηdθ

=
∞∑
p=0

Sp−Na(x,D)(ψϕp)(D)u(x).

Notice that for any p ≥ 1 and η ∈ suppϕp we have |η| ≥ 2−n. Choosing ψ (depending on n) verifying

ψ(η)= 1 if |η| ≥ 2−n, ψ(η)= 0 if |η| ≤ 2−n−1

gives

Tau(x)=
∞∑
p=1

Sp−Na(x,D)�pu(x)+ S−Na(x,D)(ψϕ0)(D)u(x). (2.9)

Defining the “truncated paradifferential operator” by

Ṫau=
∞∑
p=1

Sp−Na�pu, (2.10)

then the difference Ta − Ṫa is a smoothing operator in the following sense: if for some α ∈ Nd , ∂αu ∈ H−∞ then 
(Ta − Ṫa)u ∈H∞ since ψϕ0 is supported away from 0. We thus can utilize the symbolic calculus Theorem A.5 for 
the truncated paradifferential operator Ṫau when working on distributions u as above. The same remark applies to the 
paraproduct T Pa defined in (A.11). In general, smoothing remainders can be ignored in applications. However, to be 
precise in constructing abstract theories we decide to distinguish between these objects.

Definition 2.7. For v, w ∈ S ′ we define the truncated remainder

Ṙ(v,w)= Ṫvw− Ṫwv.
Compared to the Bony’s remainder R(v, w) defined in (A.12), there holds

Ṙ(v,w)=R(w,w)+
N∑
k=1

(Sk−Nv�kw+ Sk−Nw�kv) . (2.11)

Remark 2.8. The relation (2.11) shows that the estimates (A.13), (A.14), (A.15) are valid for Ṙ.
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2.3. Choice of dyadic partitions

Let κ : Rd1 → Rd2 be a diffeomorphism satisfying

∃ρ > 0, ∂xκ ∈Cρ∗ (Rd1),
∃m0 > 0, ∀x ∈ Rd1 ,

∣∣detκ ′(x)
∣∣ ≥m0.

We equip on Rd2 the dyadic partition (2.4) with n = 0 and on Rd1 the one with n = n0 large enough as given in the next 
proposition.

Proposition 2.9. Let p, q, j ≥ 0. For ε0 > 0 arbitrarily small, there exist F1, F2 nonnegative such that with

n0 =F1(m0,
∥∥κ ′∥∥

L∞) ∈ N, p0 =F2(m0,
∥∥κ ′∥∥

C
ε0∗ ) ∈ N,

and N0 = 2(n0 + 1), we have∣∣Spκ ′(y)η− ξ ∣∣ ≥ 1,

if either (ξ, η) ∈ Cj (n)× Cq(1), p ≥ 0, j ≥ q +N0 + 1

or |ξ | ≤ 2j+(n+1), η ∈ Cq(1), p ≥ p0, 0 ≤ j ≤ q −N0 − 1.

Proof. We consider 2 cases:
(i) p ≥ 0, j ≥ q +N0 + 1. Using Lemma 2.3 we get for some constant M1 =M1(d)∣∣Spκ ′(y)η− ξ ∣∣ ≥ |ξ | − |Spκ ′(y)η| ≥ 2q+1(2j−q−1−(n+1) −M1

∥∥κ ′∥∥
L∞)

≥ 2N0−(n+1) −M1
∥∥κ ′∥∥

L∞ ≥ 2n+1 −M1
∥∥κ ′∥∥

L∞ .

We choose n ≥ [
log2(M1

∥∥κ ′∥∥
L∞ + 1)

]
to have 

∣∣Spκ ′(y)η− ξ ∣∣ ≥ 1.
(ii) j ≤ q−N0 − 1. Note that for any ε0 > 0, owing to the estimate (2.7), there is a constant M2 =M2(d, ε0) such 

that

|κ ′ − Spκ ′| ≤M22−pε0
∥∥κ ′∥∥

C
ε0∗

and consequently, for some increasing function F∣∣detSpκ
′∣∣ ≥ ∣∣detκ ′∣∣−M22−pε0F(

∥∥κ ′∥∥
C
ε0∗ )≥

m0

2
(2.12)

if we choose

p ≥ p0 := 1

ε0

[
ln
(2M2

m0
F(

∥∥κ ′∥∥
C
ε0∗ )

)]+ 1. (2.13)

We then use the inverse formula with adjugate matrix (Spκ ′)−1 = 1
det Spκ ′ adj(Spκ ′) when d ≥ 2 to get for all d ≥ 1,∣∣∣(Spκ ′)−1

∣∣∣ ≤ 2

m0

(
1 +C(d)∥∥κ ′∥∥d−1

L∞
)

:=K.
It follows that∣∣Spκ ′(y)η− ξ ∣∣ ≥ 1

K
|η| − |ξ | ≥ 2j+n+1(

1

K

2q−2−j−(n+1)

2
− 1)

≥ 1

K
2N0−1−(n+1) − 1 ≥ 1

K
2n − 1.

Choosing n ≥ [1 + lnK] + 1 leads to 
∣∣Spκ ′(y)η− ξ ∣∣ ≥ 1. The Proposition then follows with p0 as in (2.13) and

n0 = [
log2(M1

∥∥κ ′∥∥
L∞ + 1)

]+ [1 + lnK] + 1. �
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3. Quantitative and global paracomposition results

3.1. Motivations

The semi-classical Strichartz estimate [2] for solutions to (1.8) relies crucially on the fact that a para-change 
of variables can be performed to convert the highest order term Tγ to the simple Fourier multiplier |Dx | 3

2 . This is 
achieved by using the theory of paracomposition of Alinhac [5]. Let us recall here the main features of this theory:

Theorem 3.1. Let �1, �2 be two open sets in Rd and κ :�1 →�2 be a diffeomorphism of class Cρ+1, ρ > 0. Then, 
there exists a linear operator κ∗

A :D′(�2) → D′(�1) having the following properties:
1. κ∗

A applies Hsloc(�2) to Hsloc(�1) for all s ∈ R.

2. Assume that κ ∈Hr+1
loc with r > d

2 . Let u ∈Hsloc(�2) with s > 1 + d
2 . Then we have

κ∗
Au= u ◦ κ − Tu′◦κκ + R (3.1)

with R ∈Hr+1+ε
loc (�1), ε = min(s − 1 − d

2 , r + 1 − d
2 ).

3. Let h ∈�mτ . There exists h∗ ∈�mε with ε = min(τ, ρ) such that

κ∗
AThu= Th∗κ∗

Au+ Ru (3.2)

where R applies Hsloc(�2) to Hs−m+ε
loc (�2) for all s ∈ R. Moreover, the symbol h∗ can be computed explicitly as in 

the classical pseudo-differential calculus (see Theorem 3.6 below).

Let u ∈ E ′(�2), suppu =K , ψ ∈C∞
0 (�1), ψ = 1 near κ−1(K). The original definition of κ∗

A in [5] is given by

κ∗
Au=

∞∑
p=0

p+N0∑
j=p−N0

�̃j (ψ�pu ◦ κ) (3.3)

for some N0 ∈ N and some dyadic partition 1 =∑
�̃j depending on κ, K .

This local theory was applied successfully by Alinhac in studying the existence and interaction of simple waves for 
nonlinear PDEs. The equation we have in hand is (1.8). More generally, let us consider the paradifferential equation

∂tu+Nu+ iThu= f, (t, x) ∈ (0, T )× R, (3.4)

where u is the unknown, Th is a paradifferential operator of order m > 0 and Nu is the lower order part. Assume 
furthermore that h(x, ξ) = a(x)|ξ |m, a(x) > 0. We seek for a change of variables to convert Th to the Fourier multi-
plier |Dx |m. Set

χ(x)=
x∫

0

a− 1
m (y)dy

and let κ be the inverse map of χ . Suppose that a global version of Theorem 3.1 were constructed then part 3. would 
yield

κ∗
AThu= Th∗κ∗

Au+ Ru

and the principal symbol of h∗ (as in the case of classical pseudo-differential calculus) would be indeed |ξ |m. However, 
to be rigorous we have to resolve the following technical difficulties.

Question 1. A global version of Theorem 1, that is, in all statements Hsloc(R) is replaced by Hs(R).

Question 2. If the symbol h is elliptic: a(x) ≥ c > 0 then the regularity condition κ ∈ Cρ+1(R) is violated for

κ ′(x)= 1

χ ′(κ(x))
= a 1

m (κ(x))≥ c 1
m .

So, we need a result without any regularity assumption on κ but only on its derivatives; in other words, only on the 
high frequency part of κ .
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Assume now that equation (3.4) is quasilinear: a(t, x) = F(u)(t, x). We then naturally consider for each t , the 
diffeomorphism

χt (x)=
x∫

0

F(u)−m(t, y)dy

and this gives rise to the following problem

Question 3. When one conjugates (3.4) with κ∗
A it is requisite to compute

∂t (κ
∗
Au)= κ∗

A(∂tu)+ R. (3.5)

This would be complicated in view of the original definition (3.3). In [2] the authors overcame this by using Theo-
rem 3.1 2. as a new definition of the paracomposition:

κ∗u= u ◦ κ − Tu′◦κκ.

For this purpose, we need to make use of part 2. of Theorem 3.1 to estimate the remainder k∗A(Thu) − k∗(Thu). This 
in turn requires Thu ∈Hs with s > 1 + d

2 or u ∈Hs with s > m + 1 + d
2 , which is not the case if one wishes to study 

the optimal Cauchy theory for (3.4) since we are always 1-derivative above the “critical index” μ =m + d
2 .

Question 4. Does a linearization result as in part 2. of Theorem 3.1 for u ∈Hs(R) with s < 1 + d
2 hold?

Let’s suppose that all the above questions can be answered properly. After conjugating (3.4) with κ∗ the equation 
satisfied by u∗ := κ∗u reads

∂tu
∗ +Mu∗ + |Dx |mu∗ = κ∗f + g (3.6)

where g contains all the remainders in Theorem 3.1 2., 3. and in (3.5).
To prove Strichartz estimates for (3.6), we need to control g, as a source term, in Lpt L

q
x norms, which in turns 

requires tame estimates for g. It is then crucial to have quantitative estimates for the remainders appearing in g and 
hence quantitative results for the paracomposition.

3.2. Statement of main results

Let κ : Rd1 → Rd2 be a diffeomorphism. We equip on Rd2 and Rd1 two dyadic partitions as in (2.4) with n = 0 and 
n = n0, respectively, where n0 is given in Proposition 2.9.

Notation 3.2. 1. For a fixed integer Ñ sufficiently large (larger than N given in (2.8) and N0 = 2(n0 +1)) to be chosen 
appropriately in the proof of Theorem 3.6, we set for any v ∈ S ′(Rd1) the piece

[v]p =
∑

|j−p|≤Ñ
�jv. (3.7)

2. For any positive real number μ we set μ− = μ if μ /∈ N and μ− = μ − ε if s ∈ N with ε > 0 arbitrarily small so 
that μ − ε /∈ N.

Henceforth, we always assume the following assumptions on κ :

Assumption I.

∃ρ > 0 : ∂xκ ∈Cρ∗ (Rd1); ∃α ∈ Nd, r >−1 : ∂α0
x κ ∈Hr+1−|α0|(Rd1). (3.8)

Assumption II.

∃m0 > 0,∀x ∈ Rd1 : ∣∣detκ ′(x)
∣∣ ≥m0. (3.9)
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Definition 3.3 (Global paracomposition). For any u ∈ S ′(Rd2) we define formally

κ∗
gu=

∞∑
p=0

[up ◦ κ]p.

We state now our precise results concerning the paracomposition operator κ∗
g .

Theorem 3.4 (Operation). For every s ∈ R there exists F independent of κ such that

∀u ∈ Cs∗(Rd2),
∥∥∥κ∗
gu

∥∥∥
Cs∗

≤F(m0,
∥∥κ ′∥∥

L∞)‖u‖Cs∗ ,

∀u ∈Hs(Rd2),
∥∥∥κ∗
gu

∥∥∥
Hs

≤F(m0,
∥∥κ ′∥∥

L∞)‖u‖Hs .

Theorem 3.5 (Linearization). Let s ∈ R. For all u ∈ S ′(Rd2) we define

Rlineu= u ◦ κ −
(
κ∗
gu+ Ṫu′◦κκ

)
. (3.10)

(i) If 0 < σ < 1, ρ + σ > 1 and r + σ > 0 then there exists F independent of κ, u such that

‖Rlineu‖Hs̃ ≤F(m0,
∥∥κ ′∥∥

C
ρ∗ )
(
1 + ∥∥∂α0

x κ
∥∥
Hr+1−|α0|

)(∥∥u′∥∥
Hs−1 + ‖u‖Cσ∗

)
where s̃ = min(s + ρ, r + σ).
(ii) If σ > 1, set ε = min(σ − 1, ρ + 1)− then there exists F independent of κ, u such that

‖Rlineu‖Hs̃ ≤F(m0,‖κ‖Cρ∗ )
(
1 + ∥∥∂α0

x κ
∥∥
Hr+1−|α0|

)(∥∥u′∥∥
Hs−1 + ‖u‖Cσ∗

)
where s̃ = min(s + ρ, r + 1 + ε).

Theorem 3.6 (Conjugation). Let m, s ∈ R and τ > 0. Set ε = min(τ, ρ). Then for every h(x, ξ) ∈ �mτ , homogeneous 
in ξ there exist

• h∗ ∈�mε ,
• F nonnegative, independent of κ, h,
• k0 = k0(d, τ) ∈ N

such that we have for all u ∈Hs(Rd2),
κ∗
gThu= Th∗κ∗

gu+ Rconju, (3.11)∥∥Rconju
∥∥
Hs−m+ε ≤F(m0,

∥∥κ ′∥∥
C
ρ∗ )M

m
τ (h; k0)

(
1 + ∥∥∂α0κ

∥∥
H+1−α0

)‖u‖Hs (3.12)

(the semi-norm Mm
τ (h; k0) is defined in (A.1)). Moreover, h∗ is computed by the formula

h∗(x, ξ)=
[ρ]∑
j=0

h∗
j :=

[ρ]∑
j=0

1

j !∂
j
ξ D

j
y

(
h
(
κ(x),R(x, y)−1ξ

) ∣∣det∂yκ(y)
∣∣

|det R(x, y)|
)
|y=x, (3.13)

R(x, y)= t

∫ 1

0
∂xκ(tx + (1 − t)y)dt.

Remark 3.7.

• The definition (3.10) of Rline involves Ṫu◦κ ′κ which does not require the regularity on the low frequency part of 
the diffeomorphism κ .

• Part (i) of Theorem 3.6 gives an estimate for the remainder of the linearization of κ∗
gu where u is allowed to be 

less regular than Lipschitz.



1804 H.Q. Nguyen / Ann. I. H. Poincaré – AN 34 (2017) 1793–1836
• In part (ii) of Theorem 3.6, the possible loss of arbitrarily small regularity in ε= min(σ − 1, ρ + 1)−, according 
to Notation 3.2 2., is imposed to avoid the technical issue in the composition of two functions in Zygmund spaces 
(see the proof of Lemma 3.10). On the other hand, there is no loss in part (i) where σ ∈ (0, 1).

• In the estimate (3.12), u is assumed to have Sobolev regularity. Therefore, in the conjugation formula (3.11) the 
paradifferential operators Th and Th∗ can be replaced by their truncated operators Ṫh and Ṫh∗ , modulo a remainder 
bounded by the right-hand side of (3.12).

3.3. Proof of the main results

Notation 3.8. To simplify notations, we denote throughout this section Cμ = Cμ∗ (Rd).

3.3.1. Technical lemmas
First, for every u ∈ S ′(Rd2) we define formally

Rgu= κ∗
gu−

∑
p≥0

[up ◦ Spκ]p. (3.14)

The remainder Rg is ρ-regularized as to be shown in the following lemma.

Lemma 3.9. For every μ ∈ R there exists F independent of κ such that:

∀v ∈Hμ(Rd2),
∥∥Rgv

∥∥
Hμ+ρ ≤F(m0,

∥∥κ ′∥∥
Cρ
)
∥∥v′∥∥

Hμ−1

(
1 + ∥∥∂α0κ

∥∥
Hr+1−α0

)
.

Proof. By definition, we have

Rgv = −
∑
p≥0

[vp ◦ Spκ − vp ◦ κ]p = −
∑
p≥0

[Ap]p.

Each term Ap can be written using Taylor’s formula:

Ap(x)=
1∫

0

v′
p(κ(x)+ t (Spκ(x)− κ(x)))dt (Spκ(x)− κ(x)).

1. Case 1: p ≥ p0. Setting y(x) = κ(x) + t (Spκ(x) − κ(x)), one has as in (2.12)
∣∣det(y ′)

∣∣ ≥ m0
2 , hence∥∥∥∥∥∥

1∫
0

v′
p(κ(x)+ t (Spκ(x)− κ(x)))dt

∥∥∥∥∥∥
L2

≤ F(m0,
∥∥κ ′∥∥

Cρ
)

∥∥∥v′
p

∥∥∥
L2
. (3.15)

Then by virtue of the estimate (2.7) we obtain

∀p ≥ p0,
∥∥Ap∥∥L2 ≤ 2−p(ρ+1)2−p(μ−1)F(m0,

∥∥κ ′∥∥
Cρ
)ep = 2−p(ρ+μ)F(m0,

∥∥κ ′∥∥
Cρ
)ep (3.16)

with
∞∑
p=p0

e2
p ≤ ∥∥v′∥∥2

Hμ−1 .

2. Case 2: 0 ≤ p < p0. We have by the Sobolev embedding Hd/2+1 ↪→ L∞∥∥∥∥∥∥
1∫

0

v′
p(κ(x)+ t (Spκ(x)− κ(x)))dt

∥∥∥∥∥∥
L∞

≤
∥∥∥v′
p

∥∥∥
L∞ ≤ 2p(

d
2 −s+2)

∥∥v′∥∥
Hs−1 .

Applying Lemma 2.5 we may estimate with 
∑
p≥0 f

2
p ≤F(m0, 

∥∥κ ′∥∥
ρ ) ‖∂α0κ‖2

r+1−|α |
C H 0
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∥∥κ − Spκ
∥∥
L2 ≤

∞∑
j=p+1

∥∥�jκ∥∥L2 ≤
∞∑

j=p+1

2−j |α0| ∥∥�j∂α0κ
∥∥
L2

≤
∞∑

j=p+1

2−j |α0|2−j (r+1−|α0|)fp ≤ F(m0,
∥∥κ ′∥∥

Cρ
)
∥∥∂α0κ

∥∥
Hr+1−α0 ,

where we have used the assumption that r + 1 > 0. Therefore,

∀p < p0,
∥∥Ap∥∥L2 ≤F(m0,

∥∥κ ′∥∥
Cρ
)
∥∥v′∥∥

Hμ−1

∥∥∂α0κ
∥∥
Hr+1−α0 . (3.17)

3. Finally, noticing that the spectrum of [Ap]p is contained in an annulus {M−12p ≤ |ξ | ≤ 2pM} with M depending 
on n0, the lemma then follows from (3.16), (3.17). �
Lemma 3.10. Let μ > 0 and ε = min(μ, ρ + 1)−. For every v ∈ Cμ(Rd2), set

rp := Sp(v ◦ κ)− (Spv) ◦ (Spκ).
Then for every α ∈ N there exists a non-decreasing function Fα independent of κ and v such that∥∥∂αx rp∥∥L∞ ≤ 2p(|α|−ε)Fα(

∥∥κ ′∥∥
Cρ
)‖v‖Cμ .

Proof. We first remark that by interpolation, it suffices to prove the estimate for α = 0 and all |α| large enough. By 
definition of ε we have v ◦ κ ∈ Cε with norm bounded by F(

∥∥κ ′∥∥
Cρ
) ‖v‖Cμ .

1. α = 0. One writes

rp = (Sp(v ◦ κ)− v ◦ κ)+ (v − Spv) ◦ κ + (Spv ◦ κ − Spv ◦ Spκ)
and uses (2.7) to estimate the first two terms. For the last term, by Taylor’s formula and (2.7) (consider μ > 1, = 1 or 
< 1) we have∥∥Spv ◦ κ − Spv ◦ Spκ

∥∥
L∞ ≤ ∥∥Spv′∥∥

L∞
∥∥κ − Spκ

∥∥
L∞ ≤ C2−pε ‖v‖Cμ

∥∥κ ′∥∥
Cρ
.

Therefore,∥∥rp∥∥L∞ ≤C2−pε (‖v ◦ κ‖Cε + ‖v‖Cε + ‖v‖Cμ
∥∥κ ′∥∥

Cρ

)
.

2. |α| > ρ + 1. The estimate (2.5) implies∥∥∥Sp(v ◦ κ)(α)
∥∥∥
L∞ ≤Cα2p(|α|−ε) ‖v ◦ κ‖Cε .

On the other hand, part 2. of the proof of Lemma 2.1.1, [5] gives∥∥∥(Spv ◦ Spκ)(α)
∥∥∥
L∞ ≤Cα2p(|α|−ε)(1 + ∥∥κ ′∥∥

Cρ
)|α| ‖v‖Cμ .

Consequently, we get the desired estimate for all |α| > 1 + ρ, which completes the proof. �
Lemma 3.11. Let v ∈ C∞(Rd2) with supp v̂ ∈ Cq(0). Recall that N0 = 2(n0 + 1) with n0 given by Proposition 2.9.
(i) For p ≥ 0, j ≥ q +N0 + 1 and k ∈ N there exists Fk independent of κ, v such that∥∥∥(v ◦ Spκ

)
j

∥∥∥
L2(Rd )

≤ 2−jk2p(k−ρ)+ ‖v‖L2 Fk(m0,
∥∥κ ′∥∥

Cρ
).

(ii) For p ≥ p0, 0 ≤ � ≤ �′ ≤ q −N0 − 1 and k ∈ N there exists Fk independent of κ, v such that∥∥∥∥∥∥
�′∑
j=�

(
v ◦ Spκ

)
j

∥∥∥∥∥∥
L2(Rd )

≤ 2−qk2p(k−ρ)+ ‖v‖L2 Fk(m0,
∥∥κ ′∥∥

Cρ
).

(iii) Set Rpu = [up ◦ Spκ]p − (up ◦ Spκ). For any p ≥ p0, there exists Fk independent of κ, u such that∥∥Rpu∥∥L2 ≤ 2−pρ ∥∥up∥∥L2 Fk(m0,
∥∥κ ′∥∥

Cρ
).
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Proof. First, it is clear that (iii) is a consequence of (i) and (ii) both applied with k > ρ. The proof of (i) and (ii)
follows mutadis mutandis that of Lemma 2.1.2, [5], using the technique of integration by parts with non-stationary 
phase. We only explain how to obtain the non-stationariness here. Let ϕ̃ = 1 on C(0) and supp ϕ̃ ⊂ C(1). The phase of 
the integral (with respect to y) appearing in the expression of (v ◦ Spκ)j and 

∑�′
j=�(v ◦ Spκ)j is

Spκ(y)η− yξ
where,

• in case (i), (η, ξ) ∈ supp(ϕ̃(2−q ·) × suppϕ(2−j ·),
• in case (ii), (η, ξ) ∈ supp(ϕ̃(2−q ·) × suppφ(2−ι·) with ι = � or �′ + 1, which comes from the fact that

�∑
j=�′

ϕ(2−j ξ)= φ(2−�ξ)− φ(2−�′−1).

In both cases,∣∣∂y(Spκ(y)η− yξ)∣∣ = ∣∣Spκ ′(y)η− ξ ∣∣ ≥ 1

by virtue of Proposition 2.9. �
3.3.2. Proof of Theorem 3.4

By Definition 3.3 of the global paracomposition κ∗
gu = ∑∞

p=0[up ◦κ]p . Since each [up ◦κ]p is spectrally localized 
in a dyadic cell depending on n0 = F(m, ‖κ ′‖L∞), the theorem follows from Lemma 2.3 after making the change of 
variables y = κ(x).

3.3.3. Proof of Theorem 3.5
Using the dyadic partition u =∑

p≥0 up and the fact that Sp → Id in S ′ we have in D′(Rd1)

u ◦ κ =
∑
p≥0

up ◦ κ =
∑
p≥0

∑
q≥0

(
up ◦ Sq+1κ − up ◦ Sqκ

)+
∑
p≥0

up ◦ S0κ.

Denoting by S the first term on the right-hand side, one has by Fubini’s theorem,

S =
∑
q≥0

∑
0≤p≤q

(up ◦ Sq+1χ − up ◦ Sqκ)+
∑
q≥0

∑
p≥q+1

(up ◦ Sq+1κ − up ◦ Sqκ)=: (I )+ (II ).

For (I ) we take the sum in p first and notice that S0 =�0 to get

(I )=
∑
q≥0

(Squ ◦ Sq+1κ − Squ ◦ Sqκ).

For (II ) we write

(II )=
∑
p≥1

∑
0≤q≤p−1

(up ◦ Sq+1κ − up ◦ Sqκ)=
∑
p≥1

(up ◦ Spκ − up ◦ S0κ).

Summing up, we derive

u ◦ κ =
∑
p≥0

up ◦ Spκ +
∑
q≥0

(Squ ◦ Sq+1κ − Squ ◦ Sqκ)=:A+B. (3.18)

Thanks to Lemma 3.9, there hold

A=
∑
p≥0

up ◦ Spκ = κ∗
gu+ Rgu, with (3.19)

∥∥Rgu
∥∥

s+ρ ≤F(m0,
∥∥κ ′∥∥

ρ )
∥∥u′∥∥

s−1

(
1 + ∥∥∂α0κ

∥∥
r+1−α0

)
. (3.20)
H C H H
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On the other hand, B = ∑
q≥0Bq with

Bq := Squ ◦ Sq+1κ − Squ ◦ Sqκ = rq+1κq+1 + Sq−N+1(u
′ ◦ κ)κq+1

where

rq+1 =
1∫

0

(Squ
′)(tSq+1κ + (1 − t)Sqκ)dt − Sq−N+1(u

′ ◦ κ).

By the definition of truncated paradifferential operators∑
q≥0

Sq−N+1(u
′ ◦ κ)κq+1 =

∑
p≥1

Sp−N(u′ ◦ κ)κp = Ṫu′◦κκ. (3.21)

Thus, it remains to bound∑
q≥0

rq+1κq+1 =
∑
q≥1

rqκq.

(i) Case 1: 0 < σ < 1, σ + ρ > 1
In this case, we see that u ◦ κ ∈ Cσ , hence (u ◦ κ)′ ∈ Cσ−1 with norm bounded by F(m0, 

∥∥κ ′∥∥
Cρ
) ‖u‖Cσ . Then, 

using (A.22) with α = 1 − σ, β = ρ− yields∥∥u′ ◦ κ∥∥
Cσ−1 =

∥∥∥(κ ′)−1(u ◦ κ)′
∥∥∥
Cσ−1

≤ F(m0,
∥∥κ ′∥∥

Cρ
)

∥∥∥(κ ′)−1
∥∥∥
Cρ−

∥∥(u ◦ κ)′∥∥
Cσ−1 .

By writing (κ ′)−1 = 1
det(κ ′)adj(κ ′) we get easily that 

∥∥(κ ′)−1
∥∥
Cρ− ≤ F(m0, 

∥∥κ ′∥∥
Cρ
) and hence∥∥u′ ◦ κ∥∥

Cσ−1 ≤F(m0,
∥∥κ ′∥∥

Cρ
)‖u‖Cσ .

Now, we claim that

∀q ≥ 1, ∀α ∈ Nd,
∥∥∂αx rp∥∥L∞ ≤ 2q(|α|+1−σ)Fα(m0,

∥∥κ ′∥∥
Cρ
)‖u‖Cσ . (3.22)

Since σ − 1 < 0 it follows from (2.6) that∥∥∂αx Sq−N(u′ ◦ κ)∥∥
L∞ ≤ Cα2q(|α|+1−σ) ∥∥u′ ◦ κ∥∥

Cσ−1 ≤ 2q(|α|+1−σ)Fα(m0,
∥∥κ ′∥∥

Cρ
)‖u‖Cσ .

Thus, to obtain (3.22) it remains to prove

∀q ≥ 1, ∀α ∈ Nd,
∥∥∂αx (Squ′(Sqκ))

∥∥
L∞ ≤ 2q(|α|+1−σ)Fα(m0,

∥∥κ ′∥∥
Cρ
)‖u‖Cσ . (3.23)

By interpolation, this will follow from the corresponding estimates for α= 0 and |α| > 1 + ρ. Again, since σ − 1 < 0
we have (3.23) for α = 0.

Now, consider |α| > 1 +ρ. By the Faà-di-Bruno formula ((Squ′) ◦(Sqκ))(α) is a finite sum of terms of the following 
form

A= (Squ′)(m)
t∏
j=1

[(Sqκ)(γj )]sj ,

where 1 ≤ |m| ≤ |α|, |γj | ≥ 1, |sj | ≥ 1,
∑t
j=1 |sj |γj = α, ∑t

j=1 sj =m.
By virtue of (2.5), one gets

∥∥∥(Sqκ)(γj )∥∥∥
L∞ =

∥∥∥(Sqκ ′)(γj−1)
∥∥∥
L∞ ≤

⎧⎪⎨⎪⎩
C2q(|γj |−1−ρ) ∥∥κ ′∥∥

Cρ
, if |γj | − 1> ρ

C
∥∥κ ′∥∥

Cρ
, if |γj | − 1< ρ

Cη2qη
∥∥κ ′∥∥

Cρ
,∀η > 0 if |γj | − 1 = ρ.

≤ Cα2q(|γj |−1)(1− ρ
|α|−1 )

∥∥κ ′∥∥
Cρ
.

Consequently,
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∥∥∥∥∥∥
t∏
j=1

[(Sqκ)(γj )]sj
∥∥∥∥∥∥
L∞

≤ Cα2q(|α|−|m|)(1− ρ
|α|−1 )

∥∥κ ′∥∥|m|
Cρ
. (3.24)

Combining (3.24) with the estimate (applying (2.5) since m + 1 > σ )∥∥∥(Squ′)(m)
∥∥∥
L∞ ≤ Cm2q(m+1−σ) ‖u‖Cσ

yields∥∥∂αx (Squ′(Sqκ))
∥∥
L∞ ≤ 2qMFα(

∥∥κ ′∥∥
Cρ
)‖u‖Cσ

with

M = (m+ 1 − σ)+ (|α| −m)(1 − ρ

|α| − 1
)≤ |α| + 1 − σ,

which concludes the proof the claim (3.23).
On the other hand, according to Lemma 2.5 (ii) for any q ≥ 1, α ∈ N there holds∥∥∂αx κq∥∥L2 ≤ Cα2q|α| ∥∥κq∥∥L2 ≤Cα2q(|α|−|α0|) ∥∥∂α0κq

∥∥
L2

≤ Cα2q(|α|−|α0|)2−q(r+1−|α0|)ap = Cα2q(|α|−r−1)ap,
(3.25)

with ∑
q≥1

a2
q ≤ F(m0,

∥∥κ ′∥∥
Cρ
)
∥∥∂α0
x κ

∥∥2
Hr+1−α0 .

We deduce from (3.23) and (3.25) that

∀α ∈ Nd, ∀q ≥ 1,
∥∥∂αx (rqκq)∥∥L2 ≤ 2q(|α|−r−σ)Fα(‖κ‖Cρ )‖u‖Cσ aq.

By the assumption r + σ > 0 we conclude

‖
∑
q≥1

rqκq‖Hr+σ ≤ F(‖κ‖Cρ )‖u‖Cσ
∥∥∂α0
x κ

∥∥
Hr+1−α0 . (3.26)

Combining (3.19), (3.20), (3.21), (3.26) we obtain the assertion (i) of Theorem 3.5.
(ii) Case 2: σ > 1. This case was studied in [5]. One writes

Sq−N(u′ ◦ κ)= tq + Sq−1u
′ ◦ Sq−1κ + sq

with

tq = Sq−N(u′ ◦ κ)− Sq−1(u
′ ◦ κ), sq = Sq−1(u

′ ◦ κ)− Sq−1u
′ ◦ Sq−1κ.

Plugging this into rq gives

rq = zq − tq − sq
with

zq =
1∫

0

(Sq−1u
′)(tSqκ + (1 − t)Sq−1κ)dt − Sq−1u

′ ◦ Sq−1κ

= κq
1∫

0

t

1∫
0

((Sq−1u
′))′(Sq−1κ + stκq)dsdt.

Now we estimate the L∞-norm of derivatives of rq . Since

tq = −
q−1∑

(u′ ◦ κ)j

j=q−N+1



H.Q. Nguyen / Ann. I. H. Poincaré – AN 34 (2017) 1793–1836 1809
we get with ε= min(σ − 1, ρ + 1)−

∀q ≥ 1,∀α ∈ N,
∥∥∂αx tq∥∥L∞ ≤ 2p(|α|−ε)Fα(

∥∥κ ′∥∥
Cρ
)‖u‖Cσ . (3.27)

Applying Lemma 3.10 we have the same estimate as (3.27) for sq . Finally, following exactly part d) of the proof of 
Lemma 3.1, [5] with the use of Lemma 2.6 one obtains the same bound for zq .

We conclude by using (3.25) that

‖
∑
q≥1

rqκq‖Hr+1+ε ≤ ∥∥∂α0
x κ

∥∥
Hr+1−α0 F(

∥∥κ ′∥∥
Cρ
)‖u‖Cσ ,

which combined with (3.20) gives the assertion (ii) of Theorem 3.5.

3.3.4. Proof of Theorem 3.6
We recall first the following lemma on the boundedness of a class of Fourier integral operators.

Lemma 3.12. ([5, Lemme d), page 111]) Let K ⊂ Rd be a compact set. Let a(x, y, η) be a bounded function satisfying 
the following properties: a is C∞ in η and its support w.r.t. η is contained in K , all derivatives of a w.r.t. η are 
bounded. For every p ∈ N, define the associated Fourier integral operator

Apv(x)=
∫
ei(x−y)ξ a(x, y,2−pξ )v(y)dydξ.

Then, there exist an integer k1 = k1(d) and a positive constant C independent of a, p such that with

M = sup
|α|≤k1

∥∥∥∂αη a∥∥∥
L∞(Rd×Rd×Rd )

we have

∀v ∈ L2(Rd),
∥∥Apv∥∥L2 ≤ CM ‖v‖L2 .

Now we quantify the proof of Lemma 3.3 in [5]. Let m, s ∈ R, τ > 0, ε = min(τ, ρ) and h(x, ξ) ∈ �mτ , homoge-
neous in ξ . We say that a quantity Q is controllable if ‖Q‖Hs−m+ε is bounded by the right-hand side of (3.12) and 
therefore can be neglected. Also, by A ∼ B we mean that A − B is controllable. Keep in mind that κ : Rd1 → Rd2 , 
u : Rd2 → C where Rd1 and Rd2 are Rd equipped with a dyadic partition of size n = n0 and n = 0 respectively.
Step 1. First, by Lemma 3.9 we have

κ∗
g (Thu)∼

∑
p≥0

[
�pThu ◦ Spκ

]
p
. (3.28)

Then with vq := (Sq−Nh)(x, D)uq ,

κ∗
g (Thu)∼

∑
p≥0

∑
q≥1

[
�pv

q ◦ Spκ
]
p
.

One can see easily that if N is chosen sufficiently larger than n0 then the spectrum of vq is contained in the annulus{
ξ ∈ Rd : 2q−M1 ≤ |ξ | ≤ 2q+M1

}
with M1 =M1(N, n0). This implies

�pv
q = 0 if |p− q|>M :=M1 + n0 + 1 =M(N,n0),

hence

κ∗
g (Thu)=

∑
|p−q|≤M

[
�pv

q ◦ Spκ
]
p
.

Set



1810 H.Q. Nguyen / Ann. I. H. Poincaré – AN 34 (2017) 1793–1836
S1 =
∑

|p−q|≤M

([
�pv

q ◦ Spκ
]
p

− [
�pv

q ◦ Spκ
]
q

)
,

S2 =
∑

|p−q|≤M

([
�pv

q ◦ Spκ
]
q

− [
�pv

q ◦ κ]
q

)
.

We shall prove that S1, S2 are controllable so that

κ∗
g (Thu)∼

∑
p,q≥0

[
�pv

q ◦ κ]
q

=
∑
q≥0

[
vq ◦ κ]

q
=

∑
p≥0

[
(Sp−Nh)�pu ◦ κ]

p
. (3.29)

Following the proof of Lemma 3.9, it can be seen that S2 is (ρ − m)-regularized and thus controllable. We now 
consider S1. If we choose Ñ �M +N0, N0 = 2(n0 + 1), in the definition (3.7) of [·]p then

S1 =
∑
p,q

|p−q|≤M

∑
j

N0<|j−p|≤Ñ

�j (�pv
q ◦ Spκ)−

∑
p,q

|p−q|≤M

∑
j

N0<|j−q|≤Ñ

�j (�pv
q ◦ Spκ)= S1,1 − S1,2.

Observe that the pieces �j(. . . ) with j close to both p and q canceled out in the above subtraction. S1,1 and S1,2 can 
be treated in the same way. Let us consider S1,1 = ∑

j a
1
j +∑

j a
2
j with

a1
j =

∑
p

p<j−N0
|p−j |≤Ñ

∑
q

|q−p|≤M

�j(�pv
q ◦ Spκ), a2

j =
∑
p

p>j+N0
|p−j |≤Ñ

∑
q

|q−p|≤M

�j(�pv
q ◦ Spκ).

For some positive constants C and k0, where the later is an integer depending only on d , we have

∀q, ∥∥vq∥∥
L2 ≤ CMm

0 (h, k0)
∥∥�qu∥∥Hm .

By virtue of Lemma 3.11 (i) applied with k > ρ,∥∥∥a1
j

∥∥∥
L2

≤
∑

p<j−N0,|p−j |≤Ñ,|q−p|≤M
Ck2

−jk2p(k−ρ)Mm
0 (h, k0)

∥∥�qu∥∥Hm Fk(m0,
∥∥κ ′∥∥

Cρ
)

≤
∑

|q−j |≤M+Ñ
C′2−jρ+mqMm

0 (h, k0)
∥∥�qu∥∥L2 Fk(m0,

∥∥κ ′∥∥
Cρ
)

≤ C′′2−j (ρ−m+s)Mm
0 (h, k0)Fk(m0,

∥∥κ ′∥∥
Cρ
)

∑
|q−j |≤M+Ñ

bq

with ‖b‖�2 ≤ C ‖u‖Hs . Recall that m0 is such that | detκ ′(x)| ≥ m0 for all x ∈ Rd1 . Then, thanks to the spectral 
localization of a1

j we conclude that (for a different Fk)

‖
∑
j

a1
j‖Hs−m+ρ ≤Mm

0 (h, k0)‖u‖Hs Fk(m0,
∥∥κ ′∥∥

Cρ
).

For the second sum 
∑
a2
j we apply Lemma 3.11 (ii).

Step 2. Recall from (3.29) that

κ∗
gThu=

∑
p≥0

[Ap]p, Ap = (
(Sp−Nh)(x,D)up

) ◦ κ.

One writes

Ap(y)=
∫
ei(κ(y)−y′)ξ ϕ̃(2−pξ)(Sp−Nh)(κ(y), ξ)up(y′)dy′dξ

where ϕ̃ is a cut-off function analogous to ϕ and equal to 1 on the support of ϕ.
In the integral defining Ap(y) we make two changes of variables
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y′ = κ(z), ξ = tR−1η, R = R(y, z) :=
1∫

0

κ ′(ty + (1 − t)z)dt

to derive

Ap(y)=
∫
ei(y−z)ηϕ̃(2−p tR−1η)(Sp−Nh)(κ(y), tR−1η)up(κ(z))

∣∣κ ′(z)
∣∣

|det R| dzdη.

The rest of the proof follows the same method as for pseudo-differential operators (see [17]) except that we shall 
regularize first the symbol ap(y, z, η) of Ap: set

bp(y, z, η)= ϕ̃(2−p tR−1
p η)(Sp−Nh)(Spκ(y), tR−1

p η)

∣∣Spκ ′(z)
∣∣∣∣det Rp
∣∣

with

Rp = Rp(y, z)=
1∫

0

Spκ
′(ty + (1 − t)z)dt.

By the homogeneity of Sp−Nh we write ap(y, z, η) = 2pmãp(y, z, 2−pη) and similarly for ̃bp . Then due to the pres-
ence of the cut-off function ϕ̃ one can prove without any difficulty that

∀k ∈ N, sup
|α|≤k

∣∣∣∂αη (̃ap − b̃p)(y, z, η)
∣∣∣ ≤ Ck2−pρFk(m0,

∥∥κ ′∥∥
Cρ
)Mm

0 (h; k + 1).

Therefore, in view of Lemma 3.12 we see that the replacement of ap with bp in κ∗
gThu gives rise to a controllable 

remainder.
Step 3. Next, we expand bp(y, z, η) by Taylor’s formula at z= y up to order � = [ρ] to have

bp(y, z, η)= b0
p(y, η)+ b1

p(y, η)(z− y)+ ...+ b�p(y, η)(z− y)� + r�+1
p (y, z, η)(z− y)�+1

where bj is the j th-derivative of bp with respect to z, taken at z= y and

r�+1
p (y, z, η)= C

1∫
0

b�+1
p (y, y + t (z− y), η)dt (z− y)�+1.

In the pseudodifferential operator R�+1
p with symbol r�+1

p we integrate by parts w.r.t. η � + 1 times to obtain a sum of 
symbols of the form 2p(m−�−1)r̃p(y, z, 2−pη),

r̃p(y, z, η)= C
1∫

0

∂αz ∂
β
η b̃p(y, y + t (z− y), η)dt, |α| = |β| = �+ 1.

For |α| = � + 1, |γ | = � + 1 + k, k ∈ N it holds∣∣∣∂αz ∂γη b̃p(y, z, η)∣∣∣ ≤ Ck2p(�+1−ρ)Mm
0 (h, [ρ] + 1 + k)Fk(m0,

∥∥κ ′∥∥
Cρ
).

Lemma 3.12 then gives for some k1 = k1(d) ∈ N,∥∥∥R�+1
p

∥∥∥
L2

≤ 2p(�+1−ρ)2p(m−�−1)
∥∥up∥∥L2 M

m
0 (h, k1)Fk(m0,

∥∥κ ′∥∥
Cρ
).

Therefore, the remainder 
∑
p[R�+1

p ]p is (ρ −m)-regularized and thus controllable.
Step 4. We write

B
j
pu(y)=

∫
ei(y−z)ηbjp(y, η)(z− y)jup(κ(z))dzdη
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and integrate by parts j times w.r.t. η to get

B
j
pu=

∫
ei(y−z)ηcjp(y, η)up(κ(z))dzdη.

The key point is that in the above expression above we shall replace up ◦ κ , p ≥ 0 by its approximation [up ◦ κ]p
which will contribute in Th∗κ∗

gu. In order to do so, we will estimate the L2-norm of the difference

Wp := up ◦ κ − [up ◦ κ]p
as ∥∥Wp∥∥L2 ≤ 2−pρF(m0,

∥∥κ ′∥∥
Cρ
)
∥∥up∥∥L2 .

Consider 0 ≤ p < p0. We treat separately each term in Wp by making the change of variables x �→ κ(x) to have∥∥Wp∥∥L2 ≤F(m0,
∥∥κ ′∥∥

Cρ
)
∥∥up∥∥L2 .

For p ≥ p0 we write

Wp = (up ◦ κ − up ◦ Spκ)+ (up ◦ Spκ − [up ◦ Spκ]p)+ ([up ◦ Spκ]p − [up ◦ κ]p).
The second term is bounded using directly Lemma 3.11 (iii). The first and the last terms are treated as in the first part 
(case 1.) of the proof of Lemma 3.9 (see (3.16)).

Again, by virtue of Lemma 3.12 we conclude that: in κgThu the replacement of up ◦ κ with [up ◦ κ]p is (ρ + j −
m)-regularized and controllable.
Step 5. Set

C
j
pu(y)=

∫
ei(y−z)ηcjp(y, η)[up ◦ κ]p(z)dzdη.

We observe that if the cut-off function ϕ̃ is chosen appropriately then all the terms in cjp relating to ∂αϕ̃ are 1 if α = 0
and are 0 if α �= 0, on the spectrum of [up ◦ κ]p . Therefore, compared to the classical calculus (3.13) for Sp−Nh we 
can prove that

sup
|α|≤k

0<c1≤|η|≤c2

∣∣∣∂αη (cjp − Sp−Nh∗
j

)
(y, η)

∣∣∣ ≤ Ck2−pεjMm
τ (h; k + j + 1)Fk(m0,

∥∥κ ′∥∥
Cρ
)

with εj = min(τ, ρ − j).
Then, Lemma 3.12 implies that in κ∗

gThu the replacement of Cjpu with

Dju(y) :=
∫
ei(y−z)η(Sp−Nh∗

j )(y, η)[up ◦ κ]p(z)dzdη
leaves a controllable remainder of order m − j − εj ≤m − ε.
Step 6. Summing up, we obtain

κ∗
gThu∼

[ρ]∑
j=0

∑
p

[
D
j
pu

]
p

=
[ρ]∑
j=0

∑
p

[
(Sp−Nh∗

j )(x,D)[up ◦ κ]p
]
p
.

Now, notice that if in the definition of κ∗
gThu in (3.28) we had chosen instead of [·]p a larger piece [·]′p corresponding 

to N � Ñ (remark that such a replacement is controllable according to Lemma 3.9 and Lemma 3.11) we would have 
obtained

κ∗
gThu=

[ρ]∑
j=0

∑
p

[
(Sp−Nh∗

j )(x,D)[up ◦ κ]p
]′
p

=
[ρ]∑
j=0

∑
p

∑
|k−p|≤N

�k

(
Sp−Nh∗

j )(x,D)[up ◦ κ]p
)
.

The spectrum of (Sp−Nh∗)(x, D)[up ◦ κ]p is contained in the annulus
j
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{
ξ ∈ Rd : 2p−M ≤ |ξ | ≤ 2p+M}

for some M =M(Ñ, N) > 0. Therefore, if we choose N �M(Ñ, N) then

�k

(
Sp−Nh∗

j )(x,D)[up ◦ κ]p
)

= 0 if |k − p|>N,
and thus

κ∗
gThu=

[ρ]∑
j=0

∑
p

(Sp−Nh∗
j )(x,D)[up ◦ κ]p. (3.30)

Finally, we write for 0 ≤ j ≤ [ρ]
Th∗

j
κ∗u=

∑
p

(Sp−Nh∗
j )(x,D)�p

∑
q

[uq ◦ κ]q

=
∑
p

(Sp−Nh∗
j )(x,D)�p

∑
q

∑
k

|k−q|≤Ñ

�k(uq ◦ κ)

=
∑
p

k,q:|k−p|≤N0,|k−q|≤Ñ

(Sp−Nh∗
j )(x,D)�p�k(uq ◦ κ).

In the preceding expression, the replacement of (Sp−Nh∗
j )(x, D) with (Sq−Nh∗

j )(x, D) leaves a controllable remain-
der, so

Th∗
j
κ∗u∼

∑
k|p−k|≤N0

|q−k|≤Ñ

(Sq−Nh∗
j )(x,D)�p�k(uq ◦ κ)=

∑
k,q

|q−k|≤Ñ

(Sq−Nh∗
j )(x,D)�k(uq ◦ κ)

=
∑
q

(Sq−Nh∗
j )(x,D)[uq ◦ κ]q .

Therefore, we conclude in view of (3.30) that κ∗
gThu ∼ ∑[ρ]

j=0 Th∗
j
κ∗u.

4. The semi-classical Strichartz estimate

4.1. Para-change of variable

First of all, let us recall the symmetrization of (1.2) into a paradifferential equation as performed in [15]. This 
symmetrization requires the introduction of the following symbols:

• γ = (
1 + (∂xη)2

)− 3
4 |ξ | 3

2 ,
• ω= − i

2∂x∂ξ γ ,

• q = (
1 + (∂xη)2

)− 1
2 ,

• p = (
1 + (∂xη)2

)− 5
4 |ξ | 1

2 + p(− 1
2 ), where p(− 1

2 ) = F(∂xη, ξ)∂2
xη, F ∈ C∞(R × R \ {0}; C) is homogeneous of 

order −1/2 in ξ .

Theorem 4.1. ([15, Proposition 4.1]) Assume that (η, ψ) is a solution to (1.2) and satisfies⎧⎨⎩ (η,ψ) ∈ C
0([0, T ];Hs+ 1

2 (R)×Hs(R))∩L4([0, T ];Wr+ 1
2 ,∞(R)×Wr,∞(R)),

s > r >
3

2
+ 1

2
.

(4.1)

Define
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U :=ψ − TBη, �= Tpη+ TqU,
then � solves the problem

∂t�+ TV ∂x�+ iTγ�= f (4.2)

where there exists a nondecreasing function F : R+ × R+ → R+, independent of (η, ψ) such that for a.e. t ∈ [0, T ],
‖f (t)‖Hs ≤F

(
‖(η(t),ψ(t))‖

H
s+ 1

2 ×Hs
)(

1 + ‖η(t)‖
W
r+ 1

2 ,∞
+ ‖ψ(t)‖Wr,∞

)
. (4.3)

We assume throughout this section that (η, ψ) is a solution to (1.2) with regularity (4.1). We shall apply our results 
on the paracomposition in the preceding section to reduce further equation (4.2) by adapting the method in [2]. Define 
for every (t, x) ∈ [0, T ] × R

χ(t, x)=
x∫

0

√
1 + (

∂yη(t, y)
)2dy.

For each t ∈ [0, T ], the mapping x �→ χ(t, x) is a diffeomorphism from R to itself. Introduce then for each t ∈ I the 
inverse κ(t) of χ(t).

Concerning the underlying dyadic partitions, we shall write

η(t), ψ(t) : R2 → R1, κ(t) : R1 → R2,

where, R2 is equipped with the dyadic partition (2.4) of size n = 0 and R1 is equipped with the one of size n = n0 as 
in Proposition 2.9: n0 =F1(m0, 

∥∥κ ′∥∥
L∞). Since

κ ′(x)= 1

(∂xχ) ◦ κ = 1√
1 + (∂xη) ◦ κ(x))2

,

we get

m0 :=
(

1 + ‖∂xη‖2
L∞
t L

∞
x

)−1/2 ≤ κ ′(x)≤ 1, ∀x ∈ R. (4.4)

Therefore, up to a multiplicative constant of the form F(‖∂xη‖L∞
t L

∞
x
) we will not distinguish between R1 and R2 in 

the rest of this article.
As mentioned in the introduction of our paracomposition results, we shall consider the linearized part of κ∗

g as a 
new definition of paracomposition. More precisely, we set

u= κ∗� :=� ◦ κ − Ṫ(∂x�)◦κκ, (4.5)

where, for any function g : I × R2 → C we have denoted

(g ◦ κ)(t, x)= g(t, κ(t, x)), ∀(t, x) ∈ I × R1.

Let us first gather various estimates that will be used frequently in the sequel. To be concise, we denote

N =F
(‖(η,ψ)‖

L∞
t (H

s+ 1
2

x ×Hsx )
)

where F is nondecreasing in each argument, independent of η, ψ and F may change from line to line.

Lemma 4.2. The following estimates hold

1. ‖�‖L∞
t H

s
x

≤ N ,

2. ‖�(t)‖Cr∗,x ≤N
(

1 + ‖η(t)‖
W
r+ 1

2 ,∞
+ ‖ψ(t)‖Wr,∞

)
,

3. ‖∂xχ − 1‖
L∞
t H

s− 1
2

x

≤N ,

4. ‖∂tχ‖L∞
t,x

≤N ,
5. ‖∂tκ‖L∞ ≤ N ,
t,x
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6. ‖∂xκ‖
L∞
t W

(s−1)−,∞
x

≤N ,

7. ‖∂xκ − 1‖
L∞
t H

s− 1
2

x

≤N ,

8. ‖∂t ∂xχ(t)‖L∞
x

≤ N
(

1 + ‖ψ(t)‖Cr∗
)

.

Proof. The estimates 1., 2., 3. can be deduced straightforwardly from the definition of � and the regularity of (η, ψ)
given in (4.1).

4. By definition of χ ,

∂tχ(t, x)=
x∫

0

∂t ∂yη(t, y)∂yη(t, y)
(

1 + (
∂yη(t, y)

)2
)− 1

2
dy (4.6)

so by Hölder’s inequality we get

|∂tχ(t, x)| ≤ ‖∂x∂tη(t)‖L2
x

∥∥F0
(
∂yη(t)

)∥∥
L2
x

where F0(z) = z√
z2+1

. Using (A.23) and Sobolev’s embedding gives
∥∥F0

(
∂yη(t)

)∥∥
L2
x
≤ N . On the other hand, using 

the first equation in (1.2) and the fact that s > 2 we obtain

‖∂x∂tη(t)‖L2
x
≤ ‖G(η)ψ(t)‖H 1

x
≤ ‖G(η)ψ(t)‖

Hs−1
x

≤ N ,

where we have used in the last inequality the continuity of the Dirichlet–Neumann operator from Hs−1 to Hs (see 
Theorem 3.12, [3]).

5. This follows from 4. by using the formula ∂tκ = − ∂tχ
∂xχ

◦ κ and noticing that ∂xχ ≥ 1.

6. With F(z) = 1√
1+z2

− 1 and G := F ◦ (∂xη) we have

∂xκ = 1

(∂xχ) ◦ κ = 1 + F ◦ (∂xη) ◦ κ = 1 +G ◦ κ (4.7)

From 3. and Sobolev’s embedding, ∂xη ∈L∞
t C

s−1∗ ⊂ L∞
t W

(s−1)−,∞
x (recall Notation 3.2 2. for the notation μ−). This 

together with the fact that F ∈ C∞
b (R) implies G ∈L∞

t W
(s−1)−,∞
x and

‖G‖
L∞
t W

(s−1)−,∞
x

≤ N . (4.8)

Then, bootstrapping the recurrence relation (4.7) we deduce that ∂xκ ∈L∞
t W

[(s−1)−],∞
x and

‖∂xκ‖
L∞
t W

[(s−1)−],∞
x

≤N . (4.9)

Now, set μ = (s − 1)− − [(s − 1)−] ∈ (0, 1). Again, by (4.7)

∂
[(s−1)−]
x (∂xκ)= ∂ [(s−1)−]

x (G ◦ κ) (4.10)

is a finite combination of terms of the form

A= [(∂qG) ◦ κ]
m∏
j=1

∂
γj
x κ, 1 ≤ q ≤ [(s − 1)−], γj ≥ 1,

m∑
j=1

γj = [(s − 1)−]. (4.11)

Using (4.9) and (4.8) it follows easily that A belongs to Wμ,∞(Rd) with norm bounded by N and thus 6. is proved.
7. First, the nonlinear estimate (A.23) implies that G = F ◦ ∂xη defined in the proof of 6. satisfies

‖G‖
L∞
t H

s− 1
2

x

≤N . (4.12)

Then changing the variables x �→ χ(x) in (4.7) gives

‖∂xκ − 1‖L∞L2 ≤ ‖G‖L∞L2

∥∥χ ′∥∥ 1
2
L∞ ≤ N .
t x t x t,x
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Now using (4.7), (4.9) and induction we arrive at

‖∂xκ − 1‖
L∞
t H

[(s−1)−]
x

≤ N . (4.13)

Next, set μ = (s − 1
2 ) − [(s − 1)−] ∈ [ 1

2 , 
1
2 + ε], ε arbitrarily small (so that μ ∈ [ 1

2 , 1)). To obtain 7. we are left with 

the estimate for the Hμ-norm of ∂ [(s−1)−]
x ∂xκ . This amounts to bound∫∫

R2

|∂ [(s−1)−]
x (G ◦ κ)(x)− ∂ [(s−1)−]

x (G ◦ κ)(y)|2
|x − y|1+2μ

dxdy (4.14)

where ∂ [(s−1)−]
x (G ◦ κ) is a finite linear combination of terms of the form A in (4.11). Inserting A into (4.14) one 

estimates successively the difference of each factor in A under the double integral while the others are estimated in 
L∞-norm. This is done using (4.12), (4.13) for Sobolev-norm estimates and (4.8), (4.9) for Hölder-norm estimates.

8. By definition of χ , it holds with F0(z) = z√
1+z2

∂t ∂xχ(t, x)= F0(∂xη)∂x∂tη= F0(∂xη)∂xG(η)ψ.

Then, applying the Hölder estimate for the Dirichlet–Neumann operator in Proposition 2.21, [15] leads to

‖∂xG(η)ψ‖L∞ ≤ ‖∂xG(η)ψ‖
Cr−2∗ ≤ N

(
1 + ‖ψ(t)‖Cr∗

)
,

hence 8. �
The main task here is to apply Theorem 3.5 and Theorem 3.6 to convert the highest order paradifferential opera-

tor Tγ to the Fourier multiplier |Dx | 3
2 .

Proposition 4.3. The function u defined by (4.5) satisfies the equation(
∂t + TW∂x + i|Dx | 3

2

)
u= f (4.15)

where

W = (V ◦ κ)(∂xχ ◦ κ)+ ∂tχ ◦ κ (4.16)

and for a.e. t ∈ [0, T ],
‖f (t)‖

H
s− 1

2
≤F

(
‖(η,ψ)‖

L∞
t (H

s+ 1
2

x ×Hsx )

)(
1 + ‖η(t)‖

W
r+ 1

2 ,∞
+ ‖ψ(t)‖Wr,∞

)
. (4.17)

Proof. We proceed in 4 steps. We shall say that A is controllable if for a.e. t ∈ [0, T ], ‖A(t)‖
H
s− 1

2
is bounded by the 

right-hand side of (4.17) denoted by RHS.
Step 1. Let us first prove that for some controllable remainder R1,

κ∗(∂t�)=
(
∂t + T(∂tχ)◦κ∂x

)
u+R1. (4.18)

By definition of κ∗ we have

κ∗(∂t�)= ∂t� ◦ κ − Ṫ(∂x∂t�)◦κκ = ∂t (� ◦ κ)− (∂x� ◦ k)∂tκ − Ṫ(∂x∂t�)◦κκ.
Therefore,

κ∗(∂t�)= ∂t (κ∗�)+A1 +A2 (4.19)

A1 = Ṫ(∂2
x�◦κ)∂t κκ, A2 = Ṫ(∂x�)◦κ∂tκ − (∂x� ◦ κ)∂tκ.

1. Since the truncated paradifferential operator Ṫ(∂2
x�◦κ)∂t κκ involves only the high frequency part of κ we have

‖A1‖ s+ 1
2

≤ N
∥∥∥(∂2

x� ◦ κ)∂tκ
∥∥∥
L∞

∥∥∥∂2
x κ

∥∥∥
H
s− 3

2
. (4.20)
Hx x
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From Lemma 4.2 2., 5. there holds∥∥∥(∂2
x� ◦ κ)∂tκ

∥∥∥
L∞
x

≤ N
(

1 + ‖η(t)‖
W
r+ 1

2 ,∞
+ ‖ψ(t)‖Wr,∞

)
.

On the other hand, Lemma 4.2 7. gives 
∥∥∂2
xκ

∥∥
H
s− 3

2
≤ N , hence A1 is controllable.

2. To study A2, one uses ∂tκ = −ab with a = (∂tχ) ◦ κ, b= ∂xκ . Set c= (∂x�) ◦ κ then

∂x(κ
∗�)= bc− Ṫcb− Ṫ∂xcκ,

hence

A2 = −Ṫc(ab)+ abc= Ṫabc+ Ṙ(c, ab)= ṪaṪbc+R2 + Ṙ(c, ab)
= Ṫa(bc− Ṫcb)− ṪaṘ(b, c)+R2 + Ṙ(c, ab)
= Ṫa(∂x(κ∗�))+ ṪaṪ∂xcκ − ṪaṘ(b, c)+R2 + Ṙ(c, ab)

where R2 = Ṫabc− ṪaṪbc.
(i) The symbolic calculus Theorem A.5 implies for a.e. t ∈ [0, T ]

‖R2(t)‖Hs ≤K(‖a(t)‖W 1,∞ ‖b(t)‖L∞ + ‖a(t)‖L∞ ‖b(t)‖W 1,∞
)‖c(t)‖Hs−1 .

Now, from Lemma 4.2 6. and the fact that s − 1 > 1 one gets ‖b‖
L∞
t W

1,∞
x

≤ N . On the other hand, Lemma 4.2 4., 8. 
gives, respectively,

‖a(t)‖L∞ ≤ N , ‖a(t)‖W 1,∞ ≤ RHS.

Applying Lemma 3.2 in [1] and Lemma 4.2 1., 6. yields

‖c(t)‖
L∞
t H

s−1
x

≤ N . (4.21)

Therefore, ‖R2(t)‖Hs is controllable.
(ii) In view of Lemma 4.2 2., 4., 7. the term ṪaṪ∂xcκ can be bounded as∥∥(ṪaṪ∂xcκ)(t)∥∥Hs ≤ N ‖a(t)‖L∞ ‖∂xc(t)‖L∞

∥∥∥∂2
xκ(t)

∥∥∥
Hs−2

≤ RHS.

(iii) The estimate 7. in Lemma 4.2 and Sobolev’s embedding imply that ‖b‖
L∞
t C

s−1∗ ≤ N . Then according to (A.14)
and the fact that s > 2 we obtain∥∥ṪaṘ(b, c)(t)∥∥Hs ≤ N ‖a(t)‖L∞ ‖b(t)‖

Cs−1∗ ‖c(t)‖Hs−1 �N .

By the same argument, to estimate ‖Ṙ(ab, c)(t)‖Hs it remains to bound ‖(ab)(t)‖C1∗ which is in turn bounded by 
‖(ab)(t)‖W 1,∞ . From Lemma 4.2 1. and 4. we have

‖a(t)‖L∞ + ‖b(t)‖L∞ ≤N .
On the other hand, the estimate 6. (or 7.) of that lemma gives ‖∂xb‖L∞ ≤ N . Finally, we write ∂xa = [(∂t ∂xχ) ◦κ]∂xκ
and use Lemma 4.2 8. to get ‖∂xa‖L∞ ≤ RHS.

We have proved that modulo a controllable remainder, A2 = Ṫ∂tχ◦κu. Consequently, modulo a controllable remain-
der, A2 = T∂tχ◦κu. Then putting together this and (4.19), (4.20) we end up with the claim (4.18).
Step 2. With the definitions of Rline and Rconj in Theorem 3.5 and Theorem 3.6 we write for any h ∈ �mτ

κ∗Th�= Th∗κ∗�− Rline(Th�)+ Th∗Rline�+ Rconj�. (4.22)

It follows from Lemma 4.2 7. that

‖∂xκ − 1‖
L∞
t C

s−1∗ ≤ ‖∂xκ − 1‖
L∞
t H

s− 1
2

x

≤N .

Therefore, κ satisfies condition (3.8) with

ρ = 1, r1 = s − 1
, α0 = 2 (4.23)
2
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where we have changed the notation in (3.8): ∂α0
x κ ∈Hr1+1−|α0| to avoid the r used in (4.1) for the Hölder regularity 

of ψ . On the other hand, we have seen from (4.4) that κ ′ ≥m0 and thus the Assumptions I, II on κ are fulfilled.
For the transport term, the symbol is h(x, ξ) = iξV (x).

(i) Now one can apply Theorem 3.6 with τ = ρ = 1 (hence ε = min(τ, ρ) = 1) to have

h∗(x, ξ)= iV ◦ κ(x) ξ

κ ′(x)
= i(V ◦ κ)(∂xχ ◦ κ)ξ

and at a.e. t ∈ [0, T ],∥∥Rconj�
∥∥
Hs

≤F(m0,
∥∥κ ′∥∥

C
ρ∗ )M

1
1 (h; k0)

(
1 +

∥∥∥∂2κ

∥∥∥
H
s− 3

2

)‖�‖Hs .
Regarding the right-hand side, we bound∥∥κ ′∥∥

C
ρ∗ + ‖u‖Hs +

∥∥∥∂2κ

∥∥∥
H
s− 3

2
≤ N , M1

1 (h; k0)≤ RHS

hence,∥∥Rconj�(t)
∥∥
Hs

≤ RHS.

(ii) The term Th∗Rline� is bounded as

‖Th∗Rline�(t)‖Hs ≤M1
0 (h

∗)‖Rline�(t)‖Hs+1

where M1
0 (h

∗) ≤ N . Applying Theorem 3.5 (ii) with �(t) ∈ C2∗, σ = r, ε = min(σ − 1, 1 + ρ)− ≥ 1 we have

s̃ = min(s + ρ, r1 + 1 + ε)= min(s + 1, s − 1

2
+ 1 + ε)= s + 1,

‖Rline�(t)‖Hs+1 ≤ F(m0,
∥∥κ ′∥∥

C
ρ∗ )
(
1 +

∥∥∥∂2
x κ

∥∥∥
H
s− 3

2

)(∥∥�′(t)
∥∥
Hs−1 + ‖�(t)‖Cσ∗

) ≤ RHS.

(In the last inequality, we have used Lemma 4.2 1., 2.)
Therefore

‖Th∗Rline�(t)‖Hs ≤ RHS. (4.24)

In (4.22) we are left with the estimate for Rline(Th�). Notice that since M1
0 (h) ≤ N , with v = Th� one has

‖v(t)‖Hs−1 ≤N , ‖v(t)‖
Cr−1∗ ≤ RHS.

Then, by virtue of Theorem 3.5 (ii) applied to v and σ = r − 1, ε = min(r − 2, 2)− we have

s̃ = min(s + 1, s − 1

2
+ 1 + ε) > s + 1

2
,

‖Rlinev‖
H
s+ 1

2
≤ RHS.

Summing up, we conclude from (4.22) that

κ∗Th�= Th∗κ∗�+R2, ‖R2(t)‖Hs ≤ RHS.

Step 3. We now conjugate the highest order term Tγ� with κ∗. This is the point where we really need Theorem 3.5 (i)
for non-C1 functions. Recall the formula (4.22) and the verifications of Assumptions I, II given by (4.23) and (4.4). 

With c0 = (1 + (∂xη))−1/2, we have that γ = c0|ξ |3/2 satisfies M
3
2

1 (γ ) ≤ N . Theorem 3.6 applied with m = 3/2, 
τ = 1 then yields

γ ∗(x, ξ)= γ (κ(x), ξ

κ ′(x)
)= (c0 ◦ κ)(x) |ξ | 3

2

κ ′(x)
= |ξ | 3

2

for 1/κ ′(x) = (χ ′ ◦ κ)(x) = (c0 ◦ κ)(x); and (at a.e. t ∈ [0, T ])∥∥Rconj�
∥∥

s− 3 +1 ≤F(m0,
∥∥κ ′∥∥

C
ρ )M

3
2

1 (γ ; k0)
(

1 +
∥∥∥∂2κ

∥∥∥ s− 3

)
‖�‖Hs ≤ N .
H 2 ∗ H 2
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The term Tγ ∗Rline�(t) is estimated exactly as in (4.24) noticing that γ ∗ now is of order 3/2 we get

‖Tγ ∗Rline�(t)‖
H
s− 1

2
≤ RHS.

Consider the remaining term RlineTγ�(t). Since Tγ�(t) belongs to C
r− 3

2∗ and r − 3
2 can be smaller than 1, we have 

to use in this case Theorem 3.5 (i):

σ = 1

2
, ρ + σ = 3

2
> 1, s̃ = min((s − 3

2
)+ 1, (s − 1

2
)+ 1

2
)= s − 1

2
,∥∥RlineTγ�(t)

∥∥
H
s− 1

2
≤F(m0,

∥∥κ ′∥∥
C
ρ∗ )
(
1 +

∥∥∥∂2
x κ

∥∥∥
H
s− 3

2

)(∥∥Tγ�(t)∥∥
H
s− 3

2
+ ∥∥Tγ�(t)∥∥Cσ∗ )

.

We conclude in this step that

κ∗Tγ�= |Dx | 3
2 κ∗�+R3, ‖R3(t)‖

H
s− 1

2
≤ RHS.

Step 4. Since ω ∈ �
1
2
0 with the semi-norms bounded by N , one gets by virtue of Theorem 3.4 and Theorem 3.5 (ii)∥∥κ∗Tω�(t)

∥∥
H
s− 1

2
≤N .

Similarly, f (t) ∈Hs ↪→C
s− 1

2∗ with s − 1
2 >

3
2 we also have∥∥κ∗f (t)

∥∥
H
s− 1

2
≤ RHS.

Putting together the results in the previous steps, we conclude the proof of Proposition 4.3. �
Remark 4.4. In fact, in the above proof, we have proved that

κ∗(∂t + TV ∂x)�(t)= (∂t + TW∂x)κ∗�(t)+ f1(t)

with

‖f1(t)‖Hs ≤N
(

1 + ‖η(t)‖
W
r+ 1

2 ,∞
+ ‖ψ(t)‖Wr,∞

)
.

The loss of 1
2 derivative only occurred in Step 3 and Step 4 when conjugating κ∗ with Tγ� and Tω, where in Step 3 

we applied Theorem 3.6 with ρ = 1, τ = 3
2 and thus ε = 1. The reason is that we want to keep the right-hand side 

of (4.17) to be tame. On the other hand, if we apply the mentioned theorem with ρ = 3
2 then it follows that

κ∗Tγ�= |Dx | 3
2 κ∗�+R3

with

‖R3(t)‖Hs ≤ F1

(
‖(η,ψ)‖

L∞
t (H

s+ 1
2 ×Hsx )

)
F2

(
‖(η(t),ψ(t))‖

W
r+ 1

2 ,∞×Wr,∞

)
.

If we assume more regularity: s > 2 + 1
2 then by Sobolev’s embedding ‖R3(t)‖Hs ≤N and thus we recover Proposi-

tion 3.3, [1] (after performing in addition another change of variables to suppress the 1
2-order terms).

In the next paragraphs, we shall prove Strichartz estimates for u solution to (4.15). To have an independent result, 
let us restate the problem as follows. Let I = [0, T ], s0 ∈ R and

W ∈ L∞([0, T ];L∞(R))∩L4([0, T ];W 1,∞(R)),

f ∈ L4(I ;Hs0− 1
2 (R)).

(4.25)

If u ∈ L∞(I, Hs0(R)) is a solution to the problem(
∂t + TW∂x + i|Dx | 3

2

)
u= f (4.26)
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we shall derive the semi-classical Strichartz estimate for u (with a gain of 1
4 − ε derivative). Remark that the same 

problem was considered in [2] at the following regularity level

W ∈ L∞([0, T ];Hs−1(R)), f ∈ L∞(I ;Hs(R)), s > 2 + 1

2
.

We shall in fact examine the proof in [2] to show that our regularity (4.25) is sufficient. It turns out that for the 
semi-classical Strichartz estimate, the loss of 1

2 derivative of the source term f is optimal.
Recall that u is defined on R equipped with a dyadic partition of size n0. Then as remarked before, up to a 

multiplicative constant of the form F(‖∂xη‖L∞
t L

∞
x
), which will appear in our final Strichartz estimate, we shall work 

as if n0 = 0.

4.2. Frequency localization

In order to prove Strichartz estimates for equation (4.26), we will adapt the proof of Theorem 1.1 in [2]: microlocal-
ize the solution into dyadic pieces using Littlewood–Paley theory and establish dispersive estimates for those dyadic 
pieces. The first step in realizing this strategy consists in conjugating (4.26) with the dyadic operator �j to get the 
equation satisfied by �ju:(

∂t + 1

2
(TW∂x + ∂xTW )+ i|Dx | 3

2

)
�ju=�jf + 1

2
�j(T∂xWu)+

1

2

([TW ,�j ]∂xu+ ∂x[TW ,�j ]u
)
. (4.27)

After localizing u at frequency 2j one can replace the paradifferential operator TW by the paraproduct with Sj−NW
as follows

Lemma 4.5. ([4, Lemma 4.9]) For all j ≥ 1 and for some integer N , we have

TW∂x�ju= Sj−NW∂x�ju+Rju
∂xTW�ju= = ∂xSj−NW�ju+R′

j u

where Rju, R′
j u have spectrum contained in an annulus {c12j ≤ |ξ | ≤ c22j } and satisfy the following estimate for all 

s0 ∈ R:

‖Rju‖Hs0 (R) + ‖R′
j u‖Hs0 (Rd ) ≤ C(s0)‖W‖W 1,∞(Rd )‖u‖Hs0 (Rd ).

From now on, we always consider the high frequency part of u, that is �ju with j ≥ 1. Combining (4.27) and 
Lemma 4.5 leads to(

∂t + 1

2
(Sj−NW∂x + ∂xSj−NW)+ i|Dx | 3

2

)
�ju=

�jf + 1

2
�j(T∂xWu)+

1

2

([TW ,�j ]∂xu+ ∂x[TW ,�j ]
)
u+Rju+R′

ju. (4.28)

Next, as in [6,29,4] we smooth out the symbols (see for instance Lemma 4.4, [4])

Definition 4.6. Let δ > 0 and U ∈ S ′(R). For any j ∈ Z, j ≥ −1 we define

Sδj (U)=ψ(2−δjDx)U.

Let χ0 ∈ C∞
0 (R), suppχ ⊂ { 1

4 ≤ |ξ | ≤ 4}, ξ = 1 in { 1
2 ≤ |ξ | ≤ 2}. Define{

a(ξ)= χ0(ξ)|ξ | 3
2 , h= 2−j ,

Lδ = ∂t + 1
2 (S(j−N)δW · ∂x + ∂x · Sδ(j−N)W)+ iχ0(hξ)|Dx | 3

2 .
(4.29)

Using (4.28), we have

Lδ�ju= Fj , where (4.30)
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Fj =�jf + 1

2
�j(T∂xWu)+

1

2

([TW ,�j ]∂xu+ ∂x[TW ,�j ]u
)+Rju+R′

j u+
1

2

{(
S(j−N)δW − S(j−N)W

)
∂x�ju+ ∂x

(
S(j−N)δW − S(j−N)W

)
�ju

}
. (4.31)

4.3. Semi-classical parametrix and dispersive estimate

Recall that ϕ is the cut-off function employed to defined the dyadic partition of size n = 0 in paragraph 2.1. To 
simplify the presentation, let us rescale the existence time to T = 1 and set h = 2−j , j ≥ 1,

E0 = L∞([0, T ];L∞(R)), E1 = L4([0, T ];W 1,∞(R)).
The main result of this paragraph is the following semi-classical dispersive estimate for the operator Lδ.

Theorem 4.7. Let δ < 1
2 and t0 ∈ R. For any u0 ∈ L1(Rd) set u0,h = ϕ(hDx)u0. Denote by S(t, t0)u0,h solution of 

the problem

Lδuh(t, x)= 0, uh(t0, x)= u0,h(x).

Then there exists F : R+ → R+ such that

‖S(t, t0)u0,h‖L∞(Rd ) ≤F(‖W‖E0)h
− 1

4 |t − t0|− 1
2 ‖u0,h‖L1(Rd ) (4.32)

for all 0 < |t − t0| ≤ h 1
2 and 0 < h ≤ 1.

We make the change of temporal variables t = h 1
2 σ (inspired by [21]) and set

Wh(σ, x)= S(j−N)δW(σh 1
2 , x), (4.33)

and denote the obtained semi-classical pseudo-differential operator by

Lδ = h∂σ + h 1
2Wh(h∂x)+ 1

2
h∂xWh + ia(hDx). (4.34)

For this new differential operator, we shall prove the corresponding (classical) dispersive estimate:

Theorem 4.8. Let δ < 1
2 and σ0 ∈ [0, 1]. For any u0 ∈L1(Rd) and u0,h = ϕ(hDx)u0, denote by ̃S(σ, σ0)u0,h solution 

of the problem

LδUh(σ, x)= 0, Uh(σ0, x)= u0,h(x).

Then there exists F : R+ → R+ such that

‖S̃(σ, σ0)u0,h‖L∞(Rd ) ≤ F(‖W‖E0)h
− 1

2 |σ − σ0|− 1
2 ‖u0,h‖L1(Rd ) (4.35)

for all σ ∈ [0, 1].

Theorem 4.8 will imply Theorem 4.7. Indeed, the relation

Lδuh(σ, x)= h 3
2 Lδuh(σh

1
2 , x),

yields

S̃(σ, σ0)u0,h(x)= S(h 1
2 σ,h

1
2 σ0)u0,h(x).

If Theorem 4.8 were proved then via the relation t = σh 1
2 ,

‖S(t, t0)u0,h‖L∞
x

= ‖S̃(σ, σ0)u0,h‖L∞
x

≤F(‖W‖E0)h
− 1

2 |σ − σ0|− 1
2 ‖u0,h‖L1(Rd )

≤F(‖W‖E0)h
− 1

4 |t − t0|− 1
2 ‖u0,h‖L1(Rd )

which proves Theorem 4.7.
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For the proof Theorem 4.8, we use the WKB method to construct a parametrix of the following integral form

Ũh(σ, x)= 1

2πh

∫∫
e
i
h
(ϕ(σ,x,ξ,h)−zξ)b̃(σ, x, z, ξ, h)u0,h(z)dzdξ (4.36)

where
(i) the phase ϕ satisfies ϕ(σ = 0) = xξ ,
(ii) the amplitude ̃b has the form

b̃(σ, x, ξ,h)= b(σ, x, ξ,h)ζ(x − z− σa′(ξ)) (4.37)

with ζ ∈ C∞
0 (R), ζ(s) = 1 if |s| ≤ 1 and ζ(s) = 0 if |s| ≥ 2.

We shall work with the following class of symbols.

Definition 4.9. For small h0 to be fixed, we set

O =
{
(σ, x, ξ,h) ∈ R4 : h ∈ (0, h0), |σ |< 1,1< |ξ |< 3

}
.

If m ∈ R and ρ ∈ R+, we denote by Smρ (O) the set of all functions f defined on O which are C∞ with respect to 
(σ, x, ξ) and satisfy

|∂αx f (σ, x, ξ,h)| ≤ Cαhm−αρ, ∀α ∈ N, ∀(σ, x, ξ,h) ∈ O.

Remark 4.10. Recall that

Wh(σ, x)= S(j−N)δ(W)(σh 1
2 , x)≡ φ(2−(j−N)δDx)W(σh

1
2 , x).

Hence, for any α ∈ N, there hold

|∂αx Wh(σ, x)| ≤ Cαh−δα‖W(σh 1
2 , ·)‖L∞ ,

|∂α+1
x Wh(σ, x)| ≤ Cαh−δα‖W(σh 1

2 , ·)‖W 1,∞ .
(4.38)

The following result for transport problems is elementary.

Lemma 4.11. If v is a solution of the problem

(∂σ +m(ξ)∂x + if ) v(σ, x, ξ)= g(σ, x, ξ), u|σ=0 = z ∈ C,

where f be real-valued, then v satisfies

|v(σ, x, ξ)| ≤ |z| +
σ∫

0

∣∣g(σ ′, x + (σ ′ − σ)a′(ξ), ξ)
∣∣dσ ′.

The existence of the parametrix is given in the following Proposition.

Proposition 4.12. There exists a phase ϕ of the form

ϕ(σ, x, ξ,h)= xξ − σa(ξ)+ h 1
2ψ(σ,x, ξ,h)

with ∂xψ ∈ S0
δ (O) and there exists a symbol b ∈ S0

δ (O) such that with the amplitude ̃b defined by (4.37), we have

Lδ

(
e
i
h
φb̃

)
= e ih φrh, (4.39)

where for any N ∈ N there holds

sup
σ∈[0,1]

∥∥∥∥∫∫ e
i
h
(ϕ(σ,x,ξ,h)−zξ)r(σ, x, z, ξ,h)u0,h(z)dzdξ

∥∥∥∥
H 1(Rx)

≤ hNFN
(‖W‖E0 + ‖W‖E1

)‖u0,h‖L1(R). (4.40)
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Proof. We proceed in several steps.
Step 1. Construction of the phase ϕ.

We find ϕ under the form

ϕ(t, x, ξ,h)= xξ − σa(ξ)+ h 1
2ψ(σ,x, , ξ, h) (4.41)

where ψ solves the following transport problem{
∂σψ + a′(ξ)∂xψ = −ξWh,
ψ |σ=0 = 0.

(4.42)

Denote m+ = max{m, 0}. Differentiating (4.42) with respect to x and ξ then using Lemma 4.11 together with (4.38)
and Hölder’s inequality we derive

|∂kξ ∂αx ψ(σ, x, ξ,h)| ≤ Ckα|σ | 3
4 h−δ(α+k−1)+‖W‖

L4([0,T ],W 1,∞
x )

, (4.43)

for (α, k) ∈ N2 and (σ, x, ξ, h) ∈ O.
Remark that in [2] where W ∈L∞([0, T ], W 1,∞(R)), one has the better estimate

|∂kξ ∂αx ψ(σ, x, ξ,h)| ≤ Ckα|σ |h−δ(α+k−1)+‖W‖
L∞([0,T ],W 1,∞

x )
. (4.44)

However, (4.43) is enough to get ∂xψ ∈ S0
δ (O) which is one of our main observations in making the argument of [2]

work. Consequently, the estimates from (4.17) to (4.30) in [2] still hold and thus we have by (4.29), [2]

r = h
(
∂σ b+ a′(ξ)∂xb+ if b+ hμ0

M1∑
l=0

el(h
δ∂x)

lb

)
ζ + i

4∑
j=1

rj (4.45)

with el ∈ S0
δ (O),

μ0 = 1

2
(
1

2
− δ) > 0, f =Wh∂xψ + a′′(ξ)(∂xψ)2 (real valued); (4.46)

and with

ρ(x, y)=
1∫

0

∂xϕ(σ,λx + (1 − λ)y, ξ,h)dλ,

the remainders r ′i s are then given by

r1 = chM−1

1∫∫∫
0

e
i
h
(x−y)ηκ0(η)(1 − λ)M−1∂My

{
a(M)(λη+ (ρ(x, y))̃b(y)

}
dλdydη, (4.47)

r2 =
M−1∑
k=0

ck,Mh
M+k

1∫∫
0

zMκ̂0(z)(1 − λ)M−1∂M+k
y

{
a(k)((ρ(x, y))̃b(y)

}
y=x−λhz dλdz. (4.48)

r3 =
M−1∑
k=0

k∑
j=1

c′j,khk∂
k−j
y

{
(∂kξ a)(ρ(x, y))b(y)

}
|y=xζ (j). (4.49)

r4 = 1

i
h
{
−a′(ξ)+ h 1

2Wh

}
bζ ′ (4.50)

where c, ck,M, c′jk are constants and κ0 ∈ C∞
0 (R), κ = 1 in a neighborhood of the origin.

Now, combining (4.43) with the fact that Wh ∈ S0
δ (O) (by (4.38)) we obtain the following estimate for f

|∂kξ ∂αx f (σ, x, ξ,h)| ≤ |σ | 3
4 h−δ(α+k)Fkα

(
‖W‖

L4([0,T ],W 1,∞
x )

)
‖W‖L∞([0,T ],L∞

x )
, (4.51)

∀(α, k) ∈ N2, ∀(σ, x, ξ, h) ∈ O.
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Step 2. Construction of the amplitude b.
According to the WKB method, one finds b under the form

b=
M−1∑
j=0

hjμ0bj (4.52)

where b0 solves{
∂σ b0 + a′(ξ)∂xb0 + if b0 = 0,

b0|σ=0 = χ1(ξ)

and bj , j ≥ 1, solves{
∂σ bj + a′(ξ)∂xbj + if bj = −∑M1

l=0 el(h
δ∂x)

lbj−1,

bj |σ=0 = 0.

Owing to Lemma 4.11 and the estimate (4.51), one can use induction for the preceding transport problems (see 
Lemma 4.7, [2]) to have

bj (σ, x, ξ,h)= χ1(ξ)cj (σ, x, ξ,h), ∀0 ≤ j ≤ J − 1 (4.53)

and the cj satisfies ∀(α, k) ∈ N2, ∀(σ, x, ξ, h) ∈ O,

|∂kξ ∂αx cj (σ, x, ξ,h)| ≤ h−δ(α+k)Fjkα
(‖W‖E0 + ‖W‖E1

)
. (4.54)

Step 3. Estimate for the remainder r .
Plugging (4.52) into (4.45) we obtain r = ∑5

j=0 rj with r5 = hMμ0bM−1ζ . We want to prove (4.40), i.e., for a.e. 
t ∈ [0, T ] and for all j = 1, ..5,∥∥∥∥∫∫ e

i
h
(ϕ(σ,x,ξ,h)−zξ)r(σ, x, z, ξ,h)u0,h(z)dzdξ

∥∥∥∥
H 1(Rx)

≤ hNFN
(‖W‖E0 + ‖W‖E1

)‖u0,h‖L1(R). (4.55)

Let us denote the function inside the norm on the left-hand side by Fjh . Using integration by parts, the proofs for 

‖Fjh ‖H 1
x

, j = 1, 2, 3, 5 remain unchanged compared to those in section 4.1.1, [2]. The only point that we need to take 
care of is the estimate for ‖F4‖H 1 since r4 contains Wh which is less regular than it was in [2]. Recall that

r4 = 1

i
h
{
−a′(ξ)+ h 1

2Wh

}
bζ ′.

On the support of all derivatives of ζ one has |x − z− σa′(ξ)| ≥ 1. Now, by (4.43)

h
1
2 ∂xψ ≤ Ch 1

2 |σ | 3
4 ≤ ch 1

2

hence using (4.41) we deduce that

|∂ξ (ϕ(σ, x, ξ,h)− zξ)| = |x − z− σa′(ξ)− h 1
2 ∂ξψ | ≥ 1

2
for h small enough. Therefore, we can integrate by parts N times in the integral defining F4 using the vector filed

L= h

i∂ξ (ϕ(σ, x, ξ,h)− zξ)∂ξ .

Taking into account the fact that for all α ∈ N, on the support of ζ , 〈x − z− σa′(ξ)〉 ≤ C and (due to (4.38), (4.54)
and (4.43))

|∂αξ r4(σ, x, ξ,h)| ≤ C(1 + ‖Wh(σ)‖L∞
x
)h1−αδFα

(‖W‖E0 + ‖W‖E1

)
,

|∂α+1
ξ (ϕ(σ, x, ξ,h)− zξ)| ≤ C(1 + ‖W‖E1)h

−αδ
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we obtain

‖F 4
h (σ )‖L2

x
≤ h1+N(1−δ)(1 + ‖Wh(σ)‖L∞

x
)Fα

(‖W‖E0 + ‖W‖E1

)×
×

∫
|u0,h(z)|dz

∫
|χ1(ξ)|dξ

≤ h1+N(1−δ)FN
(‖W‖E0 + ‖W‖E1

)‖u0,h(z)‖L1
x
.

Similarly, one gets

‖∂xF 4
h (σ )‖L2

x
≤ h1+N(1−δ)(1 + ‖∂xWh(σ )‖L∞

x
)FN

(‖W‖E0 + ‖W‖E1

)‖u0,h(z)‖L1
x

≤ h1+N(1−δ)(1 + h−δ‖W(σh 1
2 )‖L∞

x
)FN

(‖W‖E0 + ‖W‖E1

)‖u0,h(z)‖L1
x

≤ h(N+1)(1−δ)FN
(‖W‖E0 + ‖W‖E1

)‖u0,h(z)‖L1
x
.

Therefore, we end up with

sup
σ∈[0,1]

‖F 4
h (σ )‖H 1(R) ≤ hN(1−δ)FN(‖W‖E0 + ‖W‖E1)‖u0,h(z)‖L1

x
,

which concludes the proof. �
With the preceding Proposition in hand, we turn to prove Theorem 4.8.

Proof of Theorem 4.8. Without loss of generality, we take σ0 = 0. By a scaling argument, it suffices to prove the 
dispersive estimate (4.35) for the operator S̃ for σ = 1. Indeed, let σ1 ∈ (0, 1], making the following changes of 
variables

τ = σ

σ1
, x̄ = x

σ1
, h̄= h

σ1

we see that the operator Lδ becomes

L̄δ = h̄∂τ + h̄ 1
2 W̄h(h̄∂x̄)+ 1

2
h̄

3
2 (∂x̄W̄h)+ i|h̄Dx̄ | 3

2

where

W̄h(τ, x̄)= σ
1
2

1 Wh(σ1τ, σ1x̄).

Observe that there exists C > 0 independent of σ1 ∈ (0, 1] for which there holds∥∥W̄h∥∥E0
+ ∥∥W̄h∥∥E1

≤C.
Suppose that the dispersive estimate (4.35) for Lδ were proved for σ = 1, it then would imply the same estimate 
for L̄δ with τ = 1. Calling S̄ the propagator of L̄δ , we have for all σ ∈ [0, 1]

S̃(σ,0)u0(x)= (S̄( σ
σ1
)ū)(

x

σ1
), ū(

x

σ1
)= u0(x).

Taking σ = σ1 then it would follow that

∥∥S̃(σ1)u0
∥∥
L∞(R) =

∥∥∥∥S̄(σ1

σ1
)ū

∥∥∥∥
L∞(R)

≤ C

h̄
1
2

‖ū0‖L1(R) ≤
Cσ

1
2

1

h
1
2 σ1

‖u0‖L1(R) ≤
C

|hσ1| 1
2

‖u0‖L1(R) ,

which is the estimate (4.35) for Lδ at σ = σ1. Therefore, it suffices to prove (4.35) for σ = 1.
Now, in view of (4.36) and Proposition 4.12 we have

LδŨh(σ, x)= Fh(σ, x) (4.56)

with

sup ‖Fh(σ )‖H 1
x (R))

≤ CNhNFN
(‖W‖E0 + ‖W‖E1

)‖u0,h‖L1(R). (4.57)

σ∈[0,1]
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By integrating by parts we can show that Ũh is a good parametrix at the initial time (see (4.53), [2]) in the following 
sense

Ũh(0, ·)= u0,h + v0,h, ‖v0,h‖H 1(R) ≤ CNhN‖u0,h‖H 1(R). (4.58)

Combining (4.56), (4.58) and the Duhamel formula gives

S(σ,0)u0,h =R1 +R2 +R3

with ⎧⎪⎨⎪⎩
R1 = Ũh(σ, x),
R2 = −S(σ,0)v0,h,

R3 = − ∫ σ
0 S(σ, r)[Fh(r, x)]dr.

We shall successively estimate Ri . First, by Sobolev’s inequalities and (4.58),

‖R2(σ )‖L∞
x

≤C‖S(σ,0)v0,h‖H 1
x

= C‖v0,h‖H 1
x

≤CNhN‖u0,h‖L1 .

Next, for R3 we estimate

‖R3(σ )‖L∞
x

≤
σ∫

0

‖S(σ, r)[Fh(r, x)]‖H 1
x
dr ≤

σ∫
0

‖Fh(r, x)‖H 1
x
dr.

Then, by virtue of the estimate (4.57) we deduce that

‖R3(σ )‖L∞
x

≤ hNFN
(‖W‖E0 + ‖W‖E1

)‖u0,h‖L1(R).

Finally, from (4.36) we have

Ũh(σ, x)=
∫
K(σ,x, z,h)u0,h(z)dz

with

K(σ,x, z,h)= 1

2πh

∫
e
i
h
(ϕ(σ,x,ξ,h)−zξ)b̃(σ, x, z, ξ, h)dξ.

Because σ = 1 is fixed, the proof of Proposition 4.8, [2] still works and we obtain for some F : R+ → R+ independent 
of all parameters

|K(1, x, z,h)| ≤ 1

h
1
2

F
(‖W‖E0 + ‖W‖E1

)
.

This gives

‖R1(1)‖L∞
x

= ‖Ũh(1)‖L∞
x

≤ h− 1
2 F

(‖W‖E0 + ‖W‖E1

)‖u0,h‖L1 .

The proof is complete. �
4.4. The semi-classical Strichartz estimate

Combining the dispersive estimate (4.32) with the usual T T ∗ argument and Duhamel’s formula, we obtain the 
Strichartz estimate on the small time interval [0, h 1

2 ].

Corollary 4.13. Let Ih = [0, h 1
2 ] and uh be a solution to the problem

Lδuh(t, x)= f (t, x), uh(0, x)= 0

with supp f̂ ⊂ {c1h
−1 ≤ |ξ | ≤ c2h

−1}. Then there exists F : R+ → R+ (independent of uh, f, W, h) such that

‖uh‖L4(Ih,L
∞(R)) ≤ h− 1

8 F
(‖W‖E0 + ‖W‖E1

)‖f ‖L1(Ih,L
2(R)).
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Finally, we glue these estimates together both in frequency and in time to obtain the semi-classical Strichartz 
estimate for u on [0, T ].

Theorem 4.14. Let I = [0, T ] and s0 ∈ R. Let W ∈ E0 ∩ E1 and f ∈ L4(I ; Hs0− 1
2 (R)). If u ∈ L∞(I, Hs0(R)) is a 

solution to the problem(
∂t + TW∂x + i|Dx | 3

2

)
u= f,

then for every ε > 0, there exists Fε (independent of u, f, W ) such that

‖u‖
L4(I ;Cs0− 1

4 −ε
∗ (R))

≤ Fε ( )
(
‖f ‖

L4(I ;Hs0− 1
2 −ε

(R))
+ ‖u‖L∞(I ;Hs0 (R))

)
, (4.59)

where

 = ‖W‖E0 + ‖W‖E1 + ‖∂xη‖L∞
t L

∞
x
.

Proof. Throughout this proof, we denote F = F(‖W‖E0 + ‖W‖E1) and RHS the right-hand side of (4.59). Remark 
first that by (4.30) we have Lδuh = Fh, where Fh is given by (4.31).
Step 1. Let χ ∈ C∞

0 (0, 2) be equal to one on [ 1
2 , 

3
2 ]. For 0 ≤ k ≤ [T h−1] − 2 define

Ih,k = [kh 1
2 , (k + 2)h

1
2 ], χh,k(t)= χ

( t − kh 1
2

h
1
2

)
, uh,k = χh,k(t)uh.

Then

Lδuh,k = χh,kFh + h− 1
2χ ′( t − kh 1

2

h
1
2

)
uh, uh,k(kh, ·)= 0.

Applying Corollary 4.13 to each uh,k on the interval Ih,k we obtain, since χh,k(t) = 1 for (k + 1
2 )h ≤ t ≤ (k + 3

2 )h,

‖uh‖
L4((k+ 1

2 )h
1
2 ,(k+ 3

2 )h
1
2 );L∞(R))

≤ h− 1
8 F( )

(
‖Fh‖L1(Ih,k;L2(R)) + h− 1

2 ‖χ ′( t − kh 1
2

h
1
2

)
uh‖L1(Ih,k;L2(R))

)
≤ h− 1

8 F( )
(
h

3
8 ‖Fh‖L4(Ih,k;L2(R)) + ‖uh‖L∞(I ;L2(R))

)
.

Raising to the power 4 both sides of the preceding estimate, summing over k from 0 to [T h− 1
2 ] − 2 and then taking 

the power 1/4 we get

‖uh‖L4(I ;L∞(R)) ≤F( )
(
h

1
4 ‖Fh‖L4(I ;L2(R)) + h− 1

4 ‖uh‖L∞(I ;L2(R))

)
. (4.60)

Set ν = 1
2 − δ. Multiplying both sides of the above inequality by h−s0+ 1

4 +ν and taking into account the fact that uh
and Fh are spectrally supported in annuli of size h−1, it follows that

‖uh‖L4(I ;L∞(R))h
−s0+ 1

4 +ν ≤ F( )
(
‖Fh‖L4(I ;Hs0−1+δ(R)) + ‖uh‖L∞(I ;Hs0−ν (R))

)
. (4.61)

Step 2. We now estimate ‖Fh‖L4(I ;Hs0−1+δ(R)), where recall from (4.31) that

Fh =�jf + 1

2
�j(T∂xWu)+

1

2

([TW ,�j ]∂xu+ ∂x[TW ,�j ]u
)+Rju+R′

j u+
1

2

{(
S(j−N)δW − S(j−N)W

)
∂x�ju+ ∂x

(
S(j−N)δW − S(j−N)W

)
�ju

}
. (4.62)

Since W ∈ L4(I, W 1,∞(R)), we can apply the symbolic calculus Theorem A.5 (i), (ii) to have
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‖�j(T∂xWu)‖L4(I ;Hs0−1+δ(R)) + ‖[TW∂x + ∂xTW ,�j ]u‖L4(I ;Hs0−1+δ(R))
≤C‖W‖L4(I ;W 1,∞(R))‖u‖L∞(I ;Hs0−1+δ(R)).

(4.63)

Next, remarking that the spectrum of !j := (
S(j−N)δW − Sj−NW

)
∂x�ju is contained in a ball of radius C 2j we 

can write for fixed t

‖!j(t, ·)‖Hs0−1+δ(R) ≤ C 2j (s0−1+δ)‖(SjW − SjδW)∂x�juh)(t, ·)‖L2(R)

≤ C 2j (s0−1+δ)‖(SjW − SjδW(t, ·)‖L∞(R)2
j (1−s0)‖uh(t, ·)‖Hs0 (R).

According to the convolution formula,

(SjW − SjδW)(t, x)=
∫

Rd

φ̌(z)
(
W(t, x − 2−j z)−W(t, x − 2−jδz)

)
dz,

where φ̌ is the inverse Fourier transform of the Littlewood–Paley function φ. It follows that

‖(SjW − SjδW)(t, ·)‖L∞(R) ≤ C 2−jδ‖W(t, ·)‖W 1,∞(R).

Therefore, we obtain

‖(SjδW − SjW
)
∂x�ju‖L4(I ;Hs0−1+δ(R)) ≤ C ‖W‖E1‖uh‖L∞(I ;Hs0 (R)). (4.64)

Similarly, it also holds that

‖∂x
(
SjδW − SjW

)
�ju‖L4(I ;Hs0−1+δ(R)) ≤ C ‖W‖E1‖uh‖L∞(I ;Hs0 (R)). (4.65)

Now, combining (4.63), (4.64), (4.65) and Lemma 4.5 and the fact that 0 < δ < 1
2 we conclude

‖Fh‖L2(I ;Hs0−1+δ(R)) ≤ C ‖fh‖L4(I ;Hs0−1+δ(R)) + ‖W‖E1‖uh‖L∞(I ;Hs0 (R)). (4.66)

In view of (4.61) we arrive at

‖uh‖L4(I ;L∞(R))h
−s0+ 1

4 +ν ≤ F( )
(
‖fh‖L4(I ;Hs0−1+δ(R)) + ‖uh‖L∞(I ;Hs0 (R))

)
. (4.67)

Finally, for every given ε we choose δ = 1
2 − ε = 1

2 − ν and end up with the desired estimate:

‖u‖
L4(I ;Cs0− 1

4 −ε
∗ (R))

= sup
h

‖uh‖L4(I ;L∞(R))h
−s0+ 1

4 +ε ≤ RHS. �
5. Proof of Theorems 1.1, 1.2, 1.3

Throughout this section, we assume that (η, ψ) is a solution to (1.2) with the regularity given by (4.1):⎧⎨⎩ (η,ψ) ∈ C
0([0, T ];Hs+ 1

2 (R)×Hs(R))∩L4([0, T ];Wr+ 1
2 ,∞(R)×Wr,∞(R)),

s > r >
3

2
+ 1

2
.

For any real number σ , let us denote the Sobolev-norm and the Strichartz-norm of the solution as

Mσ(T )= ‖(η,ψ)‖
L∞([0,T ];Hσ+ 1

2 ×Hσ ), Mσ (0)= ‖(η,ψ)|t=0‖
H
σ+ 1

2 ×Hσ , (5.1)

Nσ (T )= ‖(η,ψ)‖
L4([0,T ];Wσ+ 1

2 ,∞×Wσ,∞)
. (5.2)

From the Strichartz estimate (4.59) we have for any ε > 0

‖u‖
L4(I ;Ws− 1

4 −ε,∞
)
≤Fε

(
‖W‖E0 + ‖W‖E1 + ‖∂xη‖L∞

t L
∞
x

)(
‖f ‖

L4(I ;Hs− 1
2 )

+ ‖u‖L∞(I ;Hs)
)
. (5.3)

We shall estimate the norms of W and u, which appear on the right-hand side of (5.3), in terms of Ms and Ns .
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Lemma 5.1. We have

‖u‖L∞([0,T ];Hs) ≤ F(Ms(T )).

Proof. By definition (4.5), u is given by

u=� ◦ κ − Ṫ(∂x�)◦κκ = κ∗
g�− Rline�.

Lemma 5.1 then follows from Theorem 3.4 and Theorem 3.5 (ii). �
Lemma 5.2. We have

‖W‖E0 ≤F(Ms(T )), ‖W‖E1 ≤ F(Ms(T ))(1 +Nr(T )).

Proof. Recall from (4.16) that W is given by

W = (V ◦ κ)(∂xχ ◦ κ)+ ∂tχ ◦ κ.
First, by Sobolev’s embedding and Lemma 4.2 4., ‖W‖L∞

t L
∞
x

≤F(Ms(T )). To estimate ‖W‖E1
we compute

∂xW = (∂xV ◦ κ)(∂xχ ◦ κ)∂xκ + (V ◦ κ)(∂2
xχ ◦ κ)∂xκ + (∂t ∂xχ ◦ κ)∂xκ.

Using the expression (1.3) for V together with the Hölder estimate for the Dirichlet–Neumann operator proved in 
Proposition 2.21, [15], we obtain for a.e. t ∈ [0, T ],

‖∂xV (t)‖L∞
x

≤ F(‖η(t)‖
H
s+ 1

2
,‖ψ(t)‖Hs )

(
1 + ‖ψ(t)‖Wr,∞

)
. (5.4)

On the other hand, Lemma 4.2 3. gives ‖∂xχ‖L∞
t L

∞
x

≤ F(Ms(T )), hence

‖(∂xV ◦ κ)(∂xχ ◦ κ)∂xκ‖L4
t L

∞
x

≤F(Ms(T ))(1 +Nr(T )). (5.5)

The other two terms in the expression of ∂xW can be treated in the same way. �
Corollary 5.3. For every 0 <μ < 1

4 , there exists F : R+ → R+ such that

‖u‖
L4(I ;Ws− 1

2 +μ,∞
(R))

≤ F(Ms(T )+Nr(T )). (5.6)

Proof. In view of the Strichartz estimate (5.3) and Lemma 5.1, Lemma 5.2, there holds

‖u‖
L4(I ;Ws− 1

2 +μ,∞
(R))

≤ F(Ms(T )+Nr(T ))
(
‖f ‖

L4(I ;Hs− 1
2 (R))

+ 1
)
. (5.7)

On the other hand, from the estimate (4.17) we have

‖f ‖
L4(I ;Hs− 1

2 (R))
≤F(Ms(T ))(1 +Nr(T )),

which concludes the proof. �
Having established the estimate (5.6) for u, we now go back from u to the original unknown (η, ψ). To this end, 

we proceed in 2 steps:

u= k∗�−→�−→ (η,ψ).

Fix μ ∈ (0, 14 ).
Step 1. By definition (4.5), � ◦ κ = u + Ṫ∂x�◦κκ . It is easy to see that∥∥Ṫ∂x�◦κκ

∥∥
L∞
t H

s+ 1
2

x

≤F(Ms(T ))

and thus by Sobolev’s embedding and the estimate (5.6)

‖� ◦ κ‖
4 s− 1 +μ,∞ ≤F(Ms(T )+Ns(T )).

L (I ;W 2 )
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We then may estimate

‖�(t)‖
W
s− 1

2 +μ,∞ = ‖� ◦ κ ◦ χ(t)‖
W
s− 1

2 +μ,∞

≤ ‖�(t) ◦ κ(t)‖
W
s− 1

2 +μ,∞
x

F(‖χ ′(t)‖
W
s− 3

2 +μ,∞)

≤ ‖�(t) ◦ κ(t)‖
W
s− 1

2 +μ,∞F(Ms(T )),

which implies

‖�‖
L4(I ;Ws− 1

2 +μ,∞
)
≤ F(Ms(T )+Ns(T )).

Step 2. By definition of � and the inequality ‖ · ‖Cσ ≤ Cσ‖ · ‖Wσ,∞ for any σ > 0, the preceding estimate gives

‖Tpη‖
L4(I ;Cs−

1
2 +μ

∗ )

+ ‖Tq(ψ − TBη)‖
L4(I ;Cs−

1
2 +μ

∗ )

≤F(Ms(T )+Ns(T )). (5.8)

1. Since

sup
t∈[0,T ]

M
−1/2
0 (p(−1/2)(t))+ sup

t∈[0,T ]
M

1/2
1 (p(1/2)(t))≤ F(Ms(T ))

it follows from (A.6) that

‖Tp(−1/2)η‖
L4(I ;Cs−

1
2 +μ

∗ )

≤ F(Ms(T ))‖η‖L4(I ;Cs−1+μ∗ )
≤F(Ms(T )).

Consequently, we have

‖Tp(1/2)η‖
L4(I ;Cs−

1
2 +μ

∗ )

≤ F(Ms(T )+Ns(T )).

Since p(1/2) ∈ �1/2
1 is elliptic, applying (A.8) yields η = T1/p(1/2)Tp(1/2)η + Rη where R is of order −1 and for any 

σ ∈ R,

sup
t∈[0,T ]

‖R(t)‖
Cσ∗ →Cσ+1∗ ≤F(Ms(T )).

Thus,

‖η‖
L4(I ;Cs+μ∗ )

≤ F(Ms(T )+Nr(T )). (5.9)

Likewise, we deduce from (5.8) that

‖ψ − TBη‖
L4(I ;Cs−

1
2 +μ

∗ )

≤ F(Ms(T )+Nr(T )).

Owing to (5.9) and the fact that ‖B‖L∞
t L

∞
x

≤F(Ms(T )), we obtain

‖ψ‖
L4(I ;Cs−

1
2 +μ

∗ )

≤F(Ms(T )+Nr(T )).

In summary, we have proved that for all (η, ψ) solution to (1.2) with⎧⎨⎩ (η,ψ) ∈ C
0([0, T ];Hs+ 1

2 (R)×Hs(R))∩L4([0, T ];Wr+ 1
2 ,∞(R)×Wr,∞(R)),

s > r >
3

2
+ 1

2

(5.10)

there holds for any μ < 1
4 ,

‖η‖
L4(I ;Cs+μ∗ )

+ ‖ψ‖
L4(I ;Cs−

1
2 +μ

∗ )

≤ F(Ms(T )+Nr(T ))

and thus (since μ < 1
4 is arbitrary)

N 1 (T )≤ F(Ms(T )+Nr(T )), (5.11)

s− 2 +μ
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where Mσ(T ), Nσ (T ) are respectively the Sobolev-norm and the Strichartz norm defined in (5.1). (5.11) is the semi-
classical Strichartz estimate announced in Theorem 1.1.

Of course, (5.11) is meaningful only if r < s − 1
2 + μ. Under this constraint, using an interpolation argument 

(see [4], page 88, for instance) we can make appear a factor T in front of (Ms(T ) +Nr(T )):
Nr(T )≤ F

(
T
(
Ms(T )+Nr(T )

))
.

On the other hand, in Theorem 1.1 [15] it was proved that the following energy estimate at the regularity (5.10) holds

Ms(T )≤F
(
F(Ms(0))+ TF(Ms(T )+Nr(T ))

)
.

Consequently, we end up with a closed a priori estimate for the mixed norm Ms(T ) +Nr(T ) as announced in Theo-
rem 1.2:

Ms(T )+Nr(T )≤ F
(
F(Ms(0))+ TF(Ms(T )+Nr(T ))

)
. (5.12)

Finally, by virtue of the contraction estimate for two solutions (ηj , ψj ) j = 1, 2 in the norm Ms−1,T +Nr−1,T estab-
lished in Theorem 5.9, [15] (whose proof actually makes use of Theorem 4.14) one can use the standard method of 
regularizing initial data (see section 6, [15]) to solve uniquely the Cauchy problem for system (1.2) with initial data 
(η0, ψ0) ∈Hs+ 1

2 (R) ×Hs(R) with s > 2 + 1
2 −μ for any μ < 1

4 . The proof of Theorem 1.3 is complete.
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Appendix A. Paradifferential calculus

Definition A.1. 1. (Zygmund spaces) Let

1 =
∞∑
p=0

�p

be a dyadic partition of unity. For any real number s, we define the Zygmund class Cs∗(Rd) as the space of tempered 
distributions u such that

‖u‖Cs∗ := sup
q≥0

2qs
∥∥�qu∥∥L∞ <+∞.

2. (Hölder spaces) For k ∈ N, we denote by Wk,∞(Rd) the usual Sobolev spaces. For ρ = k + σ , k ∈ N, σ ∈ (0, 1)
denote byWρ,∞(Rd) the space of functions whose derivatives up to order k are bounded and Hölder continuous with 
exponent σ .

Let us review notations and results about Bony’s paradifferential calculus (see [8,23]). Here we follow the presen-
tation of Métivier in [23] and [3].

Definition A.2. 1. (Symbols) Given ρ ∈ [0, ∞) and m ∈ R, �mρ (R
d) denotes the space of locally bounded func-

tions a(x, ξ) on Rd × (Rd \ 0), which are C∞ with respect to ξ for ξ �= 0 and such that, for all α ∈ Nd and all ξ �= 0, 
the function x �→ ∂αξ a(x, ξ) belongs to Wρ,∞(Rd) and there exists a constant Cα such that,
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∀ |ξ | ≥ 1

2
,

∥∥∥∂αξ a(·, ξ)∥∥∥
Wρ,∞(Rd )

≤Cα(1 + |ξ |)m−|α|.

Let a ∈ �mρ (Rd), we define for every n ∈ N the semi-norm

Mm
ρ (a;n)= sup

|α|≤n
sup

|ξ |≥1/2

∥∥∥(1 + |ξ |)|α|−m∂αξ a(·, ξ)
∥∥∥
Wρ,∞(Rd )

. (A.1)

When n = [d/2] + 1 we denote Mm
ρ (a; n) =Mm

ρ (a).
2. (Classical symbols) For any m ∈ R and ρ > 0 we denote by �mρ (R

d) the class of classical symbols a(x, ξ) such 
that

a(x, ξ)=
∑

0≤j≤[ρ]
a(m−j)

where each a(m−j) ∈ �m−j
ρ−j is homogeneous of degree m − j with respect to ξ .

Definition A.3 (Paradifferential operators). Given a symbol a, we define the paradifferential operator Ta by

T̂au(ξ)= (2π)−d
∫
χ(ξ − η,η)̂a(ξ − η,η)ψ(η)̂u(η) dη, (A.2)

where ̂a(θ, ξ) = ∫
e−ix·θ a(x, ξ) dx is the Fourier transform of a with respect to the first variable; χ and ψ are two 

fixed C∞ functions such that:
(i) ψ is identical to 0 near the origin and identical to 1 away from the origin,
(ii) there exists 0 < ε1 < ε2 < 1 such that

χ(η, ξ)=
{

1 if |η| ≤ ε1(1 + |ξ |),
0 if |η| ≥ ε2(1 + |ξ |) (A.3)

and for any (α, β) ∈ N2 there exists Cα,β > 0 such that

∀(η, ξ) ∈ Rd × Rd,
∣∣∣∂αη ∂βξ χ(η, ξ)∣∣∣ ≤ Cα,β(1 + |ξ |)−α−β. (A.4)

Definition A.4. An operator T is said to be of order m ∈ R, or equivalently (−m)-regularized, if for all μ ∈ R it is 
bounded from Hμ to Hμ−m and from Cμ∗ to Cμ−m∗ .

Symbolic calculus for paradifferential operators is summarized in the following theorem.

Theorem A.5 (Symbolic calculus). ([23, Chapter 6]) Letm ∈ R and ρ ∈ [0, ∞). Denote by ρ the smallest integer that 
is not smaller than ρ and n1 = [d/2] + ρ + 1.
(i) If a ∈ �m0 (Rd), then Ta is of order m. Moreover, for all μ ∈ R there exists a constant K such that

‖Ta‖Hμ→Hμ−m ≤KMm
0 (a), (A.5)

‖Ta‖Cμ∗ →C
μ−m∗ ≤KMm

0 (a). (A.6)

(ii) If a ∈ �mρ (Rd), b ∈ �m′
ρ (R

d) with ρ > 0. Then TaTb − Ta"b is of order m +m′ − ρ where

a"b :=
∑

|α|<ρ

(−i)α
α! ∂αξ a(x, ξ)∂

α
x b(x, ξ).

Moreover, for all μ ∈ R there exists a constant K such that∥∥TaTb − Ta"b
∥∥
Hμ→Hμ−m−m′+ρ ≤KMm

ρ (a;n1)M
m′
0 (b)+KMm

0 (a)M
m′
ρ (b;n1), (A.7)∥∥TaTb − Ta"b

∥∥
C
μ∗ →C

μ−m−m′+ρ∗
≤KMm

ρ (a;n1)M
m′
0 (b)+KMm

0 (a)M
m′
ρ (b;n1). (A.8)
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(iii) Let a ∈ �mρ (Rd) with ρ > 0. Denote by (Ta)∗ the adjoint operator of Ta and by a the complex conjugate of a. 
Then (Ta)∗ − Ta∗ is of order m − ρ where

a∗ =
∑

|α|<ρ

1

i|α|α!∂
α
ξ ∂
α
x a.

Moreover, for all μ there exists a constant K such that∥∥(Ta)∗ − Ta
∥∥
Hμ→Hμ−m+ρ ≤KMm

ρ (a;n1), (A.9)∥∥(Ta)∗ − Ta
∥∥
C
μ∗ →C

μ−m+ρ∗ ≤KMm
ρ (a;n1). (A.10)

Definition A.6 (Paraproducts and Bony’s decomposition). Let 1 =∑∞
j=0�j be a dyadic partition of unity as in (2.4)

and N ∈ N be sufficiently large such that the function χ defined in (2.8):

χ(η, ξ)=
∞∑
p=0

φp−N(η)ϕp(ξ)

satisfies conditions (A.3) and (A.4).
Given a, b ∈ S ′ we define formally the paraproduct

T Pau=
∞∑

p=N+1

Sp−Na�pu (A.11)

and the remainder

R(a,u)=
∑

j,k≥0,|j−k|≤N−1

�ja�ku (A.12)

then we have (at least formally) the Bony’s decomposition

au= T Pau+ T Pua +R(a,u).

We shall use frequently various estimates about paraproducts (see Chapter 2, [7] and [3]) which are gathered here.

Theorem A.7.

1. Let α, β ∈ R. If α+ β > 0 then

‖R(a,u)‖
H
α+β− d2 (Rd )

≤K ‖a‖Hα(Rd ) ‖u‖Hβ(Rd ) , (A.13)

‖R(a,u)‖Hα+β(Rd ) ≤K ‖a‖Cα∗ (Rd ) ‖u‖Hβ(Rd ) , (A.14)

‖R(a,u)‖
C
α+β∗ (Rd ) ≤K ‖a‖Cα∗ (Rd ) ‖u‖Cβ∗ (Rd ) . (A.15)

2. Let s0, s1, s2 be such that s0 ≤ s2 and s0 < s1 + s2 − d
2 , then

‖T Pau‖Hs0 ≤K ‖a‖Hs1 ‖u‖Hs2 . (A.16)

3. Let m > 0 and s ∈ R. Then

‖T Pau‖Hs−m ≤K ‖a‖C−m∗ ‖u‖Hs , (A.17)

‖T Pau‖Cs−m∗ ≤K ‖a‖C−m∗ ‖u‖Cs∗ . (A.18)

Proposition A.8.

1. If uj ∈Hsj (Rd) (j = 1, 2) with s1 + s2 > 0 then

‖u1u2‖Hs0 ≤K ‖u1‖Hs1 ‖u2‖Hs2 , (A.19)

if s0 ≤ sj , j = 1, 2, and s0 < s1 + s2 − d/2.
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2. If s ≥ 0 then

‖u1u2‖Hs ≤K(‖u1‖Hs ‖u2‖L∞ + ‖u2‖Hs ‖u1‖L∞). (A.20)

3. If s ≥ 0 then

‖u1u2‖Cs∗ ≤K(‖u1‖Cs∗ ‖u2‖L∞ + ‖u2‖Cs∗ ‖u1‖L∞). (A.21)

4. Let β > α > 0. Then

‖u1u2‖C−α∗ ≤K ‖u1‖Cβ∗ ‖u2‖C−α∗ . (A.22)

Theorem A.9.

1. Let s ≥ 0 and consider F ∈ C∞(CN) such that F(0) = 0. Then there exists a nondecreasing function F : R+ →
R+ such that, for any U ∈Hs(Rd)N ∩L∞(Rd),

‖F(U)‖Hs ≤ F
(‖U‖L∞

)‖U‖Hs . (A.23)

2. Let s ≥ 0 and consider F ∈ C∞(CN) such that F(0) = 0. Then there exists a nondecreasing function F : R+ →
R+ such that, for any U ∈Cs∗(Rd)N ,

‖F(U)‖Cs∗ ≤ F
(‖U‖L∞

)‖U‖Cs∗ . (A.24)

Theorem A.10 (Paralinearization). ([7, Theorem 2.92]) Let r, ρ be positive real numbers and F be a C∞ function 
on R such that F(0) = 0. Assume that ρ is not an integer. There exists a nondecreasing function F : R+ → R+ such 
that for any u ∈Hμ(Rd) ∩Cρ∗ (Rd),∥∥F(u)− T PF ′(u)u

∥∥
Hμ+ρ(Rd ) ≤F(‖u‖L∞(Rd ))‖u‖Cρ∗ (Rd ) ‖u‖Hμ(Rd ) .

Appendix B. Proof of some technical lemmas

B.1. Proof of Lemma 2.1

Let fn ∈ C(Rd), g ∈C∞(Rd) be two nonnegative functions satisfying

fn(t)=
{

1, if |t | ≤ 2−n + 1
4 ,

0, if |t |> 2n+1 − 1
4

and

g(t)= 0, if |t | ≥ 1

4
,

∫
Rd

g(t)dt = 1.

We then define φ(n) = fn ∗ g. It is easy to see that φ(n) ≥ 0 and satisfies condition (2.1). To verify condition (2.2) we 
use ∂αφ(n) = fn ∗ ∂αg to have

xβ∂αφ(n)(x)=
∫

Rd

xβfn(x − y)∂αg(y)dy

=
∑

β1+β2=β

∫
Rd

(x − y)β1fn(x − y)yβ2∂αg(y)dy,

=
∑

β1+β2=β

(
(·)β1fn

) ∗ (
(·)β2∂αg

)
(x).

Each term on the right-hand side is estimated by∥∥((·)β1fn
) ∗ (

(·)β2∂αg
)∥∥

1 ≤ ∥∥(·)β1fn
∥∥

1

∥∥(·)β2∂αg
∥∥

1
L L L
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where 
∥∥(·)β2∂αg

∥∥
L1 is independent of n. It remains to have a uniformly bound with respect to n for 

∥∥(·)β1fn
∥∥
L1 . To 

this end, one can choose the following piecewise affine functions

fn(t)=

⎧⎪⎨⎪⎩
1, if |t | ≤ 2−n + 1

4 ,

0, if |t |> 2−n + 1
2 ,

−4(|t | − 2−n − 1
2 ), if 2−n + 1

4 ≤ |t | ≤ 2−n + 1
2 .

B.2. Proof of Lemma 2.3

1. Let 1 ≤ p ≤ q ≤ ∞. The estimates for �j follow immediately from those of Sj since �0 = S0 and �j =
Sj − Sj−1, ∀j ≥ 1. By Definition 2.2 we have for each n ∈ N, Sju = fj ∗ u where fj is the inverse Fourier transform 
of φj , where φ ≡ φ(n). With r satisfying

1

p
+ 1

r
= 1 + 1

q

we get by Young’s inequality∥∥∂αSj∥∥Lp→Lq
≤ ∥∥∂αfj∥∥Lr .

The problem then reduces to showing that∥∥∂αfj∥∥Lr ≤Cα2j (|α|+ d
p

− d
q
)

which in turn reduces to∥∥∥∂αF−1φ(n)

∥∥∥
Lr

≤ Cα,
which is true by virtue of (2.2).

2. The boundedness of the operators 2jμ�j , j ≥ 1 from Wμ,∞(Rd) to L∞(Rd) is proved in Lemma 4.1.8, [23]. 
Following that proof we see that∥∥∥2jμ�j

∥∥∥
Wμ,∞→L∞ ≤ 2jμ

∫
Rd

|x|μ|gj (x)|dx := I,

where gj is the inverse Fourier transform of ϕj = φj − φj−1. Owing to (2.2) it holds that

∀α ∈ Nd, ∃Cα > 0,∀(j, n) ∈ N∗ × N,
∫

|xαgj (x)|dx ≤ Cα2−j |α|.

Thus, if μ ∈ N we have the result. If μ = δn + (1 − δ)(n + 1) for some δ ∈ (0, 1), n ∈ N we use Hölder’s inequality 
to estimate

I ≤ 2jμ
(∫

|x|n|gj (x)|dx
)δ (∫

|x|n+1|gj (x)|dx
)1−δ

≤ Cμ2jμ2−jnδ−j (n+1)(1−δ) = Cμ
which concludes the proof.
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