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Abstract

We consider the diffusive Hamilton–Jacobi equation, with superquadratic Hamiltonian, homogeneous Dirichlet conditions and 
regular initial data. It is known from [4] (Barles–DaLio, 2004) that the problem admits a unique, continuous, global viscosity 
solution, which extends the classical solution in case gradient blowup occurs. We study the question of the possible loss of boundary 
conditions after gradient blowup, which seems to have remained an open problem till now.

Our results show that the issue strongly depends on the initial data and reveal a rather rich variety of phenomena. For any smooth 
bounded domain, we construct initial data such that the loss of boundary conditions occurs everywhere on the boundary, as well as 
initial data for which no loss of boundary conditions occurs in spite of gradient blowup. Actually, we show that the latter possibility 
is rather exceptional. More generally, we show that the set of the points where boundary conditions are lost, can be prescribed to 
be arbitrarily close to any given open subset of the boundary.
© 2017 Elsevier Masson SAS. All rights reserved.
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1. Introduction

We consider the initial-boundary value problem for the diffusive Hamilton–Jacobi equation:⎧⎪⎨
⎪⎩

ut − �u = |∇u|p, x ∈ �, t > 0,

u(x, t) = 0, x ∈ ∂�, t > 0,

u(x,0) = u0(x), x ∈ �.

(1.1)

Throughout this article, we assume that � is a C2+α smooth bounded domain of Rn, p > 2 and

u0 ∈ X := {
v ∈ C1(�); v ≥ 0 and v = 0 on ∂�

}
,
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endowed with the C1 norm. This problem has been studied by many authors in the past decades (see e.g. [22, Chap-
ter 40] and the references therein).

By standard theory [10], it is known that problem (1.1) admits a unique, maximal classical C1 solution u ≥ 0, such 
that u ∈ C2,1(� × (0, T ∗)) and u, ∇u ∈ C(� × [0, T ∗)). Here T ∗ = T ∗(u0) ∈ (0, ∞] denotes its existence time and 
the differential equation and the boundary conditions are satisfied in the pointwise sense for t ∈ (0, T ∗). Moreover, 
the solution satisfies the maximum principle estimate

‖u(t)‖∞ ≤ ‖u0‖∞, 0 < t < T ∗,

and the classical C1 solution can only cease to exist through gradient blowup:

T ∗ < ∞ =⇒ lim
t→T ∗ ‖∇u(t)‖∞ = ∞.

Actually, ∇u remains bounded away from the boundary and gradient blowup occurs only on ∂� (see [25]). Further-
more it is known (see, e.g., [1,2,23]) that T ∗ < ∞ whenever the initial data is suitably large. We also recall that this 
phenomenon does not occur when 1 ≤ p ≤ 2.

On the other hand, it was proved in [4] that problem (1.1) admits a unique global viscosity solution u ∈ C(� ×
[0, ∞)), where the boundary conditions have to be understood in the viscosity sense. Throughout this article, we shall 
denote this solution by u without risk of confusion, since the two solutions coincide on [0, T ∗). (The result in [4] is 
actually valid for any u0 ∈ C0(�), but this need not concern us here.) Moreover, u is actually smooth away from the 
boundary, namely

u ∈ C2,1(� × (0,∞))

and it solves the PDE in (1.1) in the classical sense in � × (0, ∞) (see Section 3 for details). It was next proved in [20]
that for t > T0 = T0(‖u0‖∞) sufficiently large, u is actually a classical solution again, namely u ∈ C2,1(� × (T0, ∞))

with u(·, t) = 0 on ∂�.
When gradient blowup occurs, the question of possible loss of boundary conditions for t ≥ T ∗ (hence actually in 

[T ∗, T0]) has remained essentially open. Namely, it is unknown whether or not u satisfies the boundary conditions 
u = 0 on ∂� × [T ∗, T0] in the classical sense. In what follows, we say that loss of boundary conditions occurs at a 
point x0 ∈ ∂� if u(x0, t) > 0 for some t ≥ T ∗.

The goal of this article is to give some answers to this question. A main conclusion is that loss of boundary 
conditions after gradient blowup may or may not occur, depending on the initial data. Furthermore, in case it 
occurs, the structure and size of the set of the points where boundary conditions are lost, strongly depends on the 
initial data. This is somewhat surprising and shows that the problem reveals a rather rich variety of phenomena.

Throughout this paper, we denote by ϕ1 the first Dirichlet eigenfunction of −� in �, normalized by 
∫
�

ϕ1 dx = 1.

2. Main results

For any u0 ∈ X, we define the loss of boundary conditions set by

L(u0) = {
x0 ∈ ∂�, u(x0, t) > 0 for some t > 0

}
.

Our first result shows that there exist initial data for which the loss of boundary conditions occurs everywhere on 
∂�, and moreover can be achieved at a common time.

Theorem 1. Let p > 2. There exists u0 ∈ X such that L(u0) = ∂� and that, moreover,

u(x, t0) ≥ c0, x ∈ ∂�,

for some t0, c0 > 0. Furthermore, the same remains true for any v0 ∈ X with v0 ≥ u0.

Our next result shows that, at the opposite, there are gradient blowup solutions for which no loss of boundary 
conditions ever occurs.
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Theorem 2. Let p > 2. There exists u0 ∈ X such that T ∗(u0) < ∞ and L(u0) = ∅, i.e.,

u = 0 on ∂� × (0,∞).

At least in one space dimension, one can show that such u0 are rather exceptional (see Remark 2.2 for more 
comments).

Theorem 3. Let p > 2, n = 1 and let u0 be as in Theorem 2. Let v0 ∈ X, with v0 �≡ u0 and denote by v the corre-
sponding global viscosity solution of (1.1).

(i) If v0 ≥ u0, then L(v0) �= ∅.
(ii) If v0 ≤ u0, then T ∗(v0) = ∞.

Our last two results are concerned with some “intermediate” ranges of u0. We first consider initial data which are 
large in an integral sense (hence need not be the same as those in Theorem 1) and show that, as the size grows larger, 
the loss of boundary conditions occurs “near” every point of ∂�.

Theorem 4. Let p > 2. For any ε > 0, there exists a constant M = M(�, p, ε) > 0 such that if 
∫
�

u0ϕ1 dx ≥ M , then 
for any x0 ∈ ∂�, we have L(u0) ∩ Bε(x0) �= ∅.

Notice that, due to the continuity of u up to the boundary, L(u0) is a (relatively) open subset of ∂�. Our last result 
shows that one can find solutions for which the loss of boundary conditions occurs essentially only on a prescribed 
open subset of ∂�, and at a common time.

Theorem 5. Let p > 2. Let ω be any open set of Rn with ω ∩ ∂� �= ∅. Let ε > 0 and set ωε = ω + Bε(0). There exists 
u0 ∈ X such that

ω ∩ ∂� ⊂ L(u0) ⊂ ωε ∩ ∂�

and such that, moreover,

u(x, t0) ≥ c0, x ∈ ω ∩ ∂�, (2.1)

for some t0, c0 > 0.

Remark 2.1. We note that some solutions with single-point gradient blowup on the boundary (at T ∗(u0)) may develop 
loss of boundary conditions on some open subset of the boundary after T ∗(u0). Indeed, a closer inspection of the 
proof of Theorem 5 shows that one can construct u0 which satisfy the conclusions of Theorem 5 and at the same time 
verify the assumptions of [15, Theorem 1.1], guaranteeing single-point gradient blowup on the boundary, for suitable 
domains of R2.

Remark 2.2. As shown by Theorem 3, the solutions constructed in Theorem 2 constitute (strong) thresholds, real-
izing the transition from global classical existence to loss of boundary conditions. This parallels the phenomenon of 
transition from global existence to (complete) blowup for the reaction–diffusion equation

ut − �u = up (2.2)

(see [18,22], and the recent work [21] where the notion of strong threshold is studied). In this respect, gradient blowup 
without loss of boundary conditions plays the same role as “incomplete blowup” in the case of equation (2.2), which 
is the threshold behavior for supercritical p (i.e., n ≥ 3 and p > (n + 2)/(n − 2)).

For related results on the continuation of solutions after gradient blow-up, see [8,9,26]. We refer to [2,8,6,5,3,12,
24,25,11,15,19] for other aspects of gradient blowup phenomena, and to [13,14] for some physical background.
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3. Preliminaries

We set Q = � × (0, ∞) and denote the function distance to the boundary by

δ(x) = dist(x, ∂�).

We set �η = {x ∈ �; δ(x) > η} and recall that �η is smooth for η > 0 small. Moreover, denoting by νη the outer 
normal unit vector and dση the surface measure on ∂�η, we have the property

lim
η→0

∫
∂�η

dση =
∫
∂�

dσ and lim
η→0

∫
∂�η

V · νη dση =
∫
∂�

V · ν dσ, V ∈ (C(Q))n. (3.1)

We shall also need the following uniform version of the Poincaré inequality (see, e.g., [17]). Let k ∈ [1, ∞). For each 
ε > 0, there exists a constant C = C(�, ε, k) > 0 such that∫

�

|v|k ≤ C

∫
�

|∇v|k dx, v ∈
⋃

x0∈∂�

{v ∈ W 1,k(�); v|∂�∩Bε(x0) = 0} (3.2)

(v = 0 being understood in the sense of traces if v is not continuous).
We now turn to properties of the unique global viscosity solution u of (1.1). We refer to [7,4] for more details about 

viscosity solutions theory. We first recall that the global viscosity solution can also be viewed as the limit of global 
classical solutions of regularized problems. Namely, for each integer j ≥ 1, we set

Fj (ξ) = min
(|ξ |p, jp−2|ξ |2), ξ ∈R

n,

and, for u0 ∈ X, consider the problem⎧⎪⎨
⎪⎩

∂tuj − �uj = Fj (∇uj ), x ∈ �, t > 0,

uj (x, t) = 0, x ∈ ∂�, t > 0,

uj (x,0) = u0(x), x ∈ �.

(3.3)

Since each Fj has at most quadratic growth, problem (3.3) admits a unique global classical solution uj ≥ 0. Moreover 
uj is nondecreasing with respect to j by the comparison principle, and it is known (see [7] and [20]) that

lim
j→∞uj (x, t) = u(x, t), (x, t) ∈ Q.

As a consequence of this approximation procedure, one for instance easily recovers the maximum principle esti-
mate

‖u(t) − v(t)‖∞ ≤ ‖u0 − v0‖∞, t > 0 (3.4)

for all u0, v0 ∈ X (which yields in particular the continuous dependence in L∞).
Next, as a consequence of uniform interior estimates for the approximating solutions uj , one shows that

u ∈ C2,1(Q) (3.5)

and that u solves the PDE in (1.1) in the classical sense in Q. For that purpose, by standard parabolic regularity, it 
suffices to prove that ∇uj is bounded on compact subsets of Q, independently of j . Such a bound can be proved by 
a Bernstein argument with cut-off (see e.g. [16] in the elliptic case and [25] in the parabolic case; more specifically, 
this follows from a simple modification of the proof of [25, Theorem 3.2]).

Moreover, we have the following time-derivative estimate.

Lemma 3.1. Let u0 ∈ X and let u be the corresponding global viscosity solution of (1.1). Then, for all t > 0 we have 
ut (·, t) ∈ L∞(�). Moreover, for all t0 > 0, there exists a constant C(t0) > 0 such that

‖ut (t)‖∞ ≤ C(t0), t ≥ t0. (3.6)
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Proof. We may assume without loss of generality that t0 ∈ (0, T ∗(u0)). Let t ≥ t0 and h > 0. By estimate (3.4), we 
have

‖u(t + h) − u(t)‖∞ ≤ ‖u(t0 + h) − u(t0)‖∞.

Recall that u ∈ C2,1(� × (0, T ∗)) ∩ C2,1(� × (0, ∞)). Dividing by h and letting h → 0, we deduce that

‖ut (t)‖∞ ≤ ‖ut (t0)‖∞,

and the lemma is proved. �
On the other hand, we know that ∇u also satisfies the following Bernstein estimate: for each τ > 0, there exists a 

constant C(τ) > 0 such that

|∇u(x, t)| ≤ C(τ)δ−1/(p−1)(x), x ∈ �, t ≥ τ. (3.7)

This is proved in [25] for classical solutions, i.e., on (0, T ∗(u0)), but the proof remains valid for the global viscosity 
solution, using (3.5) along with estimate (3.6).

Finally, we give the following lemma, which will be useful for the proof of Theorem 3.

Lemma 3.2. Let u0, v0 ∈ X and λ > 1 be such that v0 ≥ λu0 and denote by u, v the corresponding global viscosity 
solutions of (1.1). Then

v ≥ λu in � × (0,∞).

Proof. Let j ≥ 1 and let uj , vj be the solutions of the approximating problems (3.3). Setting uj = λuj , we see that

∂tuj − �uj − Fj (∇uj ) = λ
[
min

(|∇uj |p, jp−2|∇uj |2
) − min

(
λp−1|∇uj |p, jp−2λ|∇uj |2

)]
≤ λ

[
min

(|∇uj |p, jp−2|∇uj |2
) − min

(|∇uj |p, jp−2|∇uj |2
)]

= 0 = ∂tvj − �vj − Fj (∇vj )

in Q. We deduce from the comparison principle that uj ≤ vj in Q and the result follows by passing to the limit 
j → ∞. �
4. Proof of Theorem 4

We first prove Theorem 4, since the result is (independently) used in the proof of Theorem 1. We adapt eigen-
function arguments used in [1,23] to prove gradient blowup for weak or classical solutions. It turns out that these 
arguments can be modified to establish the loss of boundary conditions for global viscosity solutions, making use of 
the Bernstein estimate (3.7).

Recall that we denote by ϕ1 the first Dirichlet eigenfunction of −� in �, normalized by 
∫
�

ϕ1 dx = 1 and let λ1 > 0
be the corresponding eigenvalue. Let 0 < τ < t < ∞ and let η > 0 small. Since we only have u ∈ C2,1(Q) ∩ C(Q), 
we cannot directly integrate in �. Instead, we multiply the PDE in (1.1) by ϕ1 and integrate by parts on �η. This 
yields

[∫
�η

uϕ1 dx
]t

τ
=

t∫
τ

∫
�η

ϕ1�udxds +
t∫

τ

∫
�η

|∇u|pϕ1 dxds

=
t∫

τ

∫
�η

u�ϕ1 dxds +
t∫

τ

∫
∂�η

(ϕ1∇u − u∇ϕ1) · νη dσηds +
t∫

τ

∫
�η

|∇u|pϕ1 dxds.

Recall that

c1δ(x) ≤ ϕ1(x) ≤ c2δ(x), x ∈ �, (4.1)
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and ∫
�

δ−β(x) dx < ∞, for all β ∈ (0,1) (4.2)

(see e.g. [23]). Using (3.7), (4.1) and (3.1), we obtain

∣∣∣
t∫

τ

∫
∂�η

ϕ1∇u · νη dσηds

∣∣∣ ≤ C(τ)t

∫
∂�η

δ(p−2)/(p−1)(x) dση

≤ C(τ)tη(p−2)/(p−1)

∫
∂�η

dση

≤ C(τ)tη(p−2)/(p−1) → 0, as η → 0.

Also we note that, for all t > 0, we have∫
�

|∇u(t)|pϕ1 dx ≤ C(t)

∫
�

δ−p/(p−1)(x)δ(x) dx = C(t)

∫
�

δ−1/(p−1)(x) dx < ∞, (4.3)

owing to (3.7), (4.1) and (4.2). Using (3.1) and the fact that u ∈ C(Q), we may pass to the limit η → 0 to get

[∫
�

uϕ1 dx
]t

τ
= −λ1

t∫
τ

∫
�

uϕ1 dxds −
t∫

τ

∫
∂�

u∂νϕ1 dσds +
t∫

τ

∫
�

|∇u|pϕ1 dxds.

Using u ≥ 0 and ∂νϕ1 ≤ 0 on ∂�, and then passing to the limit τ → 0, we get, for all t > 0,

∫
�

u(t)ϕ1 dx ≥
∫
�

u0ϕ1 dx +
t∫

0

∫
�

|∇u|pϕ1 dxds − λ1

t∫
0

∫
�

uϕ1 dxds, (4.4)

hence in particular the finiteness of the integral of the gradient term in (4.4). Let k ∈ [1, p/2). By Hölder’s inequality, 
we have∫

�

|∇u|k dx =
∫
�

|∇u|kϕk/p

1 ϕ
−k/p

1 dx ≤
(∫

�

|∇u|pϕ1 dx
)k/p(∫

�

ϕ
−k/(p−k)

1 dx
)(p−k)/p

,

hence(∫
�

|∇u|k dx
)p/k ≤ C(k)

∫
�

|∇u|pϕ1 dx, (4.5)

owing to (4.1) and (4.2). In particular, in view of (4.3) and of u ∈ C(Q), we have

u(t) ∈ W 1,k(�), for all t > 0. (4.6)

Now assume that there exist ε > 0 and x0 ∈ ∂� such that u = 0 on (∂� ∩Bε(x0)) ×(0, ∞). Fixing any k ∈ (1, p/2), 
and taking (4.6) into account, we may apply the Poincaré inequality (3.2). This along with Hölder’s inequality and (4.5)
yields(∫

�

uϕ1 dx
)p ≤

(∫
�

uk dx
)p/k ≤ C(ε)

(∫
�

|∇u|k dx
)p/k ≤ C(ε)

∫
�

|∇u|pϕ1 dx.

Going back to (4.4), it follows that, for all t > 0,

∫
u(t)ϕ1 dx ≥

∫
u0ϕ1 dx + c0

t∫ [(∫
uϕ1 dx

)p − c
p

1

]
ds, (4.7)
� � 0 �
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for some constants c0, c1 > 0 depending on ε. Assume that∫
�

u0ϕ1 dx ≥ 2c1.

It then easily follows from (4.7) that 
∫
�

u(t)ϕ1 dx ≥ ∫
�

u0ϕ1 dx ≥ 2c1 for all t > 0. Consequently

∫
�

u(t)ϕ1 dx ≥
∫
�

u0ϕ1 dx + c0

2

t∫
0

(∫
�

uϕ1 dx
)p

ds =: H(t), t > 0,

hence H ′(t) ≥ (c0/2)Hp , which implies the finite time blowup of 
∫
�

u(t)ϕ1 dx. But this is a contradiction with the 
fact that u ∈ C(Q) (or with the estimate 

∫
�

u(t)ϕ1 dx ≤ ‖u(t)‖∞ ≤ ‖u0‖∞). �
5. Proof of Theorem 1

We shall modify an argument from [15] based on a radial auxiliary problem and a scaling argument. Consider the 
auxiliary problem⎧⎪⎨

⎪⎩
Vt − �V = |∇V |p, x ∈ B1(0), t > 0,

V (x, t) = 0, x ∈ ∂B1(0), t > 0,

V (x,0) = V0(x), x ∈ B1(0),

(5.1)

where V0 ∈ C1(B1(0)), with V0 radially symmetric and supported in B1/2(0). As a consequence of Theorem 4, proved 
in the previous section, we may choose V0 such that loss of boundary conditions occurs for V . Since V is radially 
symmetric, it follows that there exist t0, c0 > 0 such that

V (x, t0) = c0 for all x ∈ ∂B1(0).

Next, since ∂� is smooth, one can find ρ > 0 such that, for all x0 ∈ ∂�, there exists x1 = x1(x0) such that

Bρ(x1) ⊂ � and ∂� ∩ ∂Bρ(x1) = {x0}. (5.2)

We now use the scale invariance of the equation and set

w(x0;x, t) = ρβV
(
ρ−1(x − x1), ρ

−2t
)
, (x, t) ∈ Bρ(x1) × [0,∞),

with β = (p − 2)/(p − 1). A straightforward computation shows that w(x0; ·, ·) is the solution of (5.1) with B1(0)

replaced by Bρ(x1) and V0 replaced by ρβV0(ρ
−1(x − x1)). Now choose u0 ∈ X such that

u0 ≥ ρβ‖V0‖∞ in �′
ρ := {x ∈ �; ρ/2 ≤ δ(x) ≤ 3ρ/2}.

For any x0 ∈ ∂�, the function w(x0; ·, 0) is supported in Bρ/2(x1) ⊂ �′
ρ , owing to (5.2), hence u0 ≥ w(x0; ·, 0) in 

Bρ(x1). By the comparison principle, it follows that u ≥ w(x0; ·, ·) in Bρ(x1) × [0, ∞), hence in particular,

u(x0, ρ
2t0) ≥ w(x0;x0, ρ

2t0) = ρβV
(
ρ−1(x0 − x1), t0

) = c0ρ
β > 0.

The conclusion for u0 follows. The assertion for v0 ≥ u0 is then an immediate consequence of the comparison princi-
ple. �
6. Proof of Theorem 2

Fix φ ∈ X, φ �≡ 0 and, for λ > 0, consider uλ the solution of (1.1) with initial data u0 = λφ. By, e.g., [23] we know 
that T ∗(λφ) = ∞ for λ small and T ∗(λφ) < ∞ for λ large. We may thus define

λ∗ = inf{λ > 0; T ∗(λφ) < ∞} ∈ (0,∞).

We shall prove that uλ∗ has the desired properties.
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First, since uλ = 0 on ∂� × (0, ∞) for all λ ∈ (0, λ∗), it follows from the L∞ continuous dependence estimate (3.4)
that

uλ∗ = 0 on ∂� × (0,∞).

Next, by [23], the trivial solution is asymptotically stable in X. Namely, there exists ε0 = ε0(�, p) > 0 such that, 
for any v0 ∈ X,

‖v0‖X ≤ ε0 =⇒ T ∗(v0) = ∞ and lim
t→∞‖v(t)‖X = 0.

On the other hand, by [20], we know that there exists t0 > 0 such that

uλ∗(t) ∈ X for all t ≥ t0 and lim
t→∞‖uλ∗(t)‖X = 0.

Consequently, there exists t1 > t0 such that ‖uλ∗(t1)‖X < ε0(�, p).
Now assume for contradiction that T ∗(λ∗φ) = ∞. Then by continuous dependence in X of classical solutions, 

there exists η > 0 such that

if |λ − λ∗| < η, then T ∗(λφ) > t1 and ‖uλ(t1)‖X < ε0.

By the above asymptotic stability property, it follows in particular that T ∗(λφ) = ∞ for all λ ∈ (λ∗, λ∗ + η). But this 
contradicts the definition of λ∗. The proof is complete. �
7. Proof of Theorem 3

Assume without loss of generality that � = (−1, 1). Set

β = (p − 2)/(p − 1), cp = (p − 2)−1(p − 1)
p−2
p−1 .

For any w0 ∈ X, denoting by w the corresponding solution of (1.1), we know from [6] and [22, Theorem 40.14] that, 
if T ∗(w0) < ∞, then

lim
x→x0

w(x,T ∗(w0))

δβ(x)
= cp, for some x0 ∈ {−1,1}. (7.1)

Next, for any t > 0 and any x0 ∈ {−1, 1}, we claim that

w(x0, t) = 0 =⇒ lim sup
x→x0

w(x, t)

δβ(x)
≤ cp. (7.2)

Consider the case x0 = −1 (the other case being similar). For a fixed t > 0, we let

y(x) = (wx(x, t) − C1(x + 1))+,

where C1 = C(t) is given by (3.6). The function y satisfies

y′ + yp = (wxx − C1)χ{wx>C1(x+1)} + (wx − C1(x + 1))
p
+, for a.e. x ∈ (−1,0].

For a.e. x ∈ (−1, 0] such that wx(x, t) > C1(x + 1), we thus have

(y′ + yp)(x) ≤ (wxx − C1 + |wx |p)(x, t) ≤ 0

by (1.1) and (3.6). Therefore, we have y′ + yp ≤ 0 a.e. on (−1, 0]. By integration, it follows that y(x) ≤ ((p − 1)(x +
1))

− 1
p−1 , hence wx(x, t) ≤ ((p − 1)(x + 1))

− 1
p−1 + C1 on (−1, 0]. Assuming w(−1, t) = 0, a further integration then 

yields

w(x, t) ≤ cp(x + 1)β + C1(x + 1), x ∈ (−1,0],
and claim (7.2) is proved.

Let now u0 ∈ X be such that T ∗(u0) < ∞ and

u = 0 on ∂� × (0,∞). (7.3)
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We first prove assertion (i) and consider v0 ∈ X such that v0 ≥ u0 and v0 �≡ u0. Pick t0 such that 0 < t0 < T ∗(v0) ≤
T ∗(u0). It follows easily from the Hopf Lemma that v(·, t0) ≥ λu(·, t0) in � for some λ > 1. By Lemma 3.2, we 
deduce that v ≥ λu in � × [t0, ∞). Next applying (7.1) with w = u, it follows that there exists x0 ∈ {−1, 1} such that

lim sup
x→x0

v(x,T ∗(u0))

δβ(x)
≥ λcp > cp.

As a consequence of (7.2) applied with w = v, we deduce that v(x0, T ∗(u0)) > 0.
To prove assertion (ii), we consider v0 ∈ X such that v0 ≤ u0 and v0 �≡ u0. Picking t0 such that 0 < t0 < T ∗(u0) ≤

T ∗(v0) and arguing similarly as before, we deduce that v ≤ λu in � × [t0, ∞) for some λ < 1. By (7.3) and (7.2)
applied with w = u, for any t ≥ t0 and any x0 ∈ {−1, 1}, it follows that

lim sup
x→x0

v(x, t)

δβ(x)
≤ λcp < cp.

As a consequence of (7.1) applied with w = v, we deduce that T ∗(v0) = ∞. The result is proved. �
8. Proof of Theorem 5

First, following [15, Lemma 2.3], we fix a smooth function h ≥ 0 in Rn such that

h(x) =
{

1, x ∈ ω

0, x ∈ R
n \ ωε

(8.1)

and we consider the elliptic problem{
−�ψ = 1, x ∈ �,

ψ = h, x ∈ ∂�.
(8.2)

We have

−�(c1ψ) = c1 ≥ |∇(c1ψ)|p, x ∈ �, (8.3)

with c1 := ‖∇ψ‖−p/(p−1)

L∞(�) > 0.

Next, by the continuity of ψ in �, we may find ρ ∈ (0, ε/3) such that

ψ ≥ 1/2 in {x ∈ �; dist(x,ω ∩ ∂�) ≤ 2ρ}. (8.4)

Taking ρ smaller and owing to the regularity of ∂�, we may also assume that for all x0 ∈ ∂�, there exists a point 
x1 = x1(x0) such that

Bρ(x1) ⊂ � and ∂� ∩ ∂Bρ(x1) = {x0}. (8.5)

Now let V0 be as in the proof of Theorem 1. Taking ρ even smaller, we may also assume that

ρβ‖V0‖∞ <
c1

2
.

We may thus choose u0 ∈ X such that

u0 = 0 in {x ∈ �; dist(x,ω ∩ ∂�) ≥ 2ρ},
u0 ≤ c1

2
in {x ∈ �; dist(x,ω ∩ ∂�) < 2ρ}

and

u0 ≥ ρβ‖V0‖∞ in �′′
ρ := {x ∈ �; δ(x) ≥ ρ/2 and dist(x,ω ∩ ∂�) ≤ 3ρ/2}. (8.6)

In particular, in view of (8.4), we have

u0 ≤ c1ψ in �.
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By (8.3) and the comparison principle, we deduce that

u ≤ c1ψ in � × (0,∞),

hence in particular L(u0) ⊂ ωε ∩ ∂�, due to (8.1), (8.2).
On the other hand, for each x0 ∈ ω ∩ ∂�, we can prove the loss of boundary conditions at x0 by arguing similarly 

as in the proof of Theorem 1. Namely, recalling (8.5), we set

w(x0;x, t) = ρβV
(
ρ−1(x − x1), ρ

−2t
)
, (x, t) ∈ Bρ(x1) × [0,∞),

where V is as in the proof of Theorem 1 and β = (p −2)/(p −1). The function w(x0; ·, 0) is supported in Bρ/2(x1) ⊂
�′′

ρ , owing to (8.5), hence u0 ≥ w(x0; ·, 0) in Bρ(x1) by (8.6). By the comparison principle, it follows that u ≥
w(x0; ·, ·) in Bρ(x1) × [0, ∞), hence in particular,

u(x0, ρ
2t0) ≥ w(x0;x0, ρ

2t0) = ρβV
(
ρ−1(x0 − x1), t0

) = c0ρ
β > 0.

Therefore, ω ∩ ∂� ⊂ L(u0) and (2.1) holds. The theorem is proved. �
Conflict of interest statement

No conflict of interest.

Acknowledgements

Most of this work was done during a visit of Ph. Souplet at the Dipartimento di Matematica of Università di Roma 
Tor Vergata in April 2016. He wishes to thank this institution for the kind hospitality.

References

[1] N. Alaa, Weak solutions of quasilinear parabolic equations with measures as initial data, Ann. Math. Blaise Pascal 3 (1996) 1–15.
[2] N.D. Alikakos, P.W. Bates, C.P. Grant, Blow up for a diffusion–advection equation, Proc. R. Soc. Edinb., Sect. A 113 (1989) 181–190.
[3] J.M. Arrieta, A. Rodriguez-Bernál, Ph. Souplet, Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up 

phenomena, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 3 (2004) 1–15.
[4] G. Barles, F. Da Lio, On the generalized Dirichlet problem for viscous Hamilton–Jacobi equations, J. Math. Pures Appl. 83 (2004) 53–75.
[5] S. Benachour, S. Dabuleanu, The mixed Cauchy–Dirichlet problem for a viscous Hamilton–Jacobi equation, Adv. Differ. Equ. 8 (2003) 

1409–1452.
[6] G.R. Conner, C.P. Grant, Asymptotics of blowup for a convection–diffusion equation with conservation, Differ. Integral Equ. 9 (1996) 

719–728.
[7] M. Crandall, H. Ishii, P.L. Lions, User’s guide to viscosity solutions of second order partial differential equation, Bull. Am. Math. Soc. 27 

(1992) 1–67.
[8] M. Fila, G.M. Lieberman, Derivative blow-up and beyond for quasilinear parabolic equations, Differ. Integral Equ. 7 (3–4) (1994) 811–821.
[9] M. Fila, J. Taskinen, M. Winkler, Convergence to a singular steady-state of a parabolic equation with gradient blow-up, Appl. Math. Lett. 20 

(2007) 578–582.
[10] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice Hall, 1964.
[11] J.-S. Guo, B. Hu, Blowup rate estimates for the heat equation with a nonlinear gradient source term, Discrete Contin. Dyn. Syst. 20 (2008) 

927–937.
[12] M. Hesaaraki, A. Moameni, Blow-up positive solutions for a family of nonlinear parabolic equations in general domain in R

N , Mich. Math. J. 
52 (2004) 375–389.

[13] M. Kardar, G. Parisi, Y.C. Zhang, Dynamic scaling of growing interfaces, Phys. Rev. Lett. 56 (1986) 889–892.
[14] J. Krug, H. Spohn, Universality classes for deterministic surface growth, Phys. Rev. A 38 (1988) 4271–4283.
[15] Y.-X. Li, Ph. Souplet, Single-point gradient blow-up on the boundary for diffusive Hamilton–Jacobi equations in planar domains, Commun. 

Math. Phys. 293 (2009) 499–517.
[16] P.-L. Lions, Quelques remarques sur les problèmes elliptiques quasilinéaires du second ordre, J. Anal. Math. 45 (1985) 234–254 (in French).
[17] V.G. Maz’ya, Sobolev Spaces, Springer, 1985.
[18] W.-M. Ni, P. Sacks, J. Tavantzis, On the asymptotic behavior of solutions of certain quasilinear parabolic equations, J. Differ. Equ. 54 (1984) 

97–120.
[19] A. Porretta, Ph. Souplet, The profile of boundary gradient blow-up for the diffusive Hamilton–Jacobi equation, Int. Math. Res. Not. (2016), 

http://dx.doi.org/10.1093/imrn/rnw154, in press.
[20] A. Porretta, E. Zuazua, Null controllability of viscous Hamilton–Jacobi equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 29 (2012) 

301–333.

http://refhub.elsevier.com/S0294-1449(17)30039-2/bib416C6161s1
http://refhub.elsevier.com/S0294-1449(17)30039-2/bib414247s1
http://refhub.elsevier.com/S0294-1449(17)30039-2/bib415253s1
http://refhub.elsevier.com/S0294-1449(17)30039-2/bib415253s1
http://refhub.elsevier.com/S0294-1449(17)30039-2/bib426144s1
http://refhub.elsevier.com/S0294-1449(17)30039-2/bib4244s1
http://refhub.elsevier.com/S0294-1449(17)30039-2/bib4244s1
http://refhub.elsevier.com/S0294-1449(17)30039-2/bib4347s1
http://refhub.elsevier.com/S0294-1449(17)30039-2/bib4347s1
http://refhub.elsevier.com/S0294-1449(17)30039-2/bib43494Cs1
http://refhub.elsevier.com/S0294-1449(17)30039-2/bib43494Cs1
http://refhub.elsevier.com/S0294-1449(17)30039-2/bib464Cs1
http://refhub.elsevier.com/S0294-1449(17)30039-2/bib465457s1
http://refhub.elsevier.com/S0294-1449(17)30039-2/bib465457s1
http://refhub.elsevier.com/S0294-1449(17)30039-2/bib467269s1
http://refhub.elsevier.com/S0294-1449(17)30039-2/bib4748s1
http://refhub.elsevier.com/S0294-1449(17)30039-2/bib4748s1
http://refhub.elsevier.com/S0294-1449(17)30039-2/bib484Ds1
http://refhub.elsevier.com/S0294-1449(17)30039-2/bib484Ds1
http://refhub.elsevier.com/S0294-1449(17)30039-2/bib4B505As1
http://refhub.elsevier.com/S0294-1449(17)30039-2/bib4B53s1
http://refhub.elsevier.com/S0294-1449(17)30039-2/bib4C53s1
http://refhub.elsevier.com/S0294-1449(17)30039-2/bib4C53s1
http://refhub.elsevier.com/S0294-1449(17)30039-2/bib4C696Fs1
http://refhub.elsevier.com/S0294-1449(17)30039-2/bib4D61s1
http://refhub.elsevier.com/S0294-1449(17)30039-2/bib4E5354s1
http://refhub.elsevier.com/S0294-1449(17)30039-2/bib4E5354s1
http://dx.doi.org/10.1093/imrn/rnw154
http://refhub.elsevier.com/S0294-1449(17)30039-2/bib505As1
http://refhub.elsevier.com/S0294-1449(17)30039-2/bib505As1


A. Porretta, Ph. Souplet / Ann. I. H. Poincaré – AN 34 (2017) 1913–1923 1923
[21] P. Quittner, Threshold and strong threshold solutions of a semilinear parabolic equation, Adv. Differ. Equ. (2017), to appear.
[22] P. Quittner, Ph. Souplet, Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States, Birkhäuser Adv. Texts: Basel Textb., 

Birkhäuser Verlag, Basel, 2007.
[23] Ph. Souplet, Gradient blow-up for multidimensional nonlinear parabolic equations with general boundary conditions, Differ. Integral Equ. 15 

(2002) 237–256.
[24] Ph. Souplet, J.L. Vázquez, Stabilization towards a singular steady state with gradient blow-up for a convection–diffusion problem, Discrete 

Contin. Dyn. Syst. 14 (2006) 221–234.
[25] Ph. Souplet, Q.S. Zhang, Global solutions of inhomogeneous Hamilton–Jacobi equations, J. Anal. Math. 99 (2006) 355–396.
[26] Th. Tabet Tchamba, Large time behavior of solutions of viscous Hamilton–Jacobi equations with superquadratic Hamiltonian, Asymptot. 

Anal. 66 (2010) 161–186.

http://refhub.elsevier.com/S0294-1449(17)30039-2/bib5175s1
http://refhub.elsevier.com/S0294-1449(17)30039-2/bib5153s1
http://refhub.elsevier.com/S0294-1449(17)30039-2/bib5153s1
http://refhub.elsevier.com/S0294-1449(17)30039-2/bib536F75s1
http://refhub.elsevier.com/S0294-1449(17)30039-2/bib536F75s1
http://refhub.elsevier.com/S0294-1449(17)30039-2/bib5356s1
http://refhub.elsevier.com/S0294-1449(17)30039-2/bib5356s1
http://refhub.elsevier.com/S0294-1449(17)30039-2/bib535As1
http://refhub.elsevier.com/S0294-1449(17)30039-2/bib5454s1
http://refhub.elsevier.com/S0294-1449(17)30039-2/bib5454s1

	Analysis of the loss of boundary conditions for the diffusive Hamilton-Jacobi equation
	1 Introduction
	2 Main results
	3 Preliminaries
	4 Proof of Theorem 4
	5 Proof of Theorem 1
	6 Proof of Theorem 2
	7 Proof of Theorem 3
	8 Proof of Theorem 5
	Conﬂict of interest statement
	Acknowledgements
	References


