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Abstract

We prove that, for every ε ∈ (0, 1), every two C2+α-smooth (α > 0) circle diffeomorphisms with a break point, i.e. circle 
diffeomorphisms with a single singular point where the derivative has a jump discontinuity, with the same irrational rotation 
number ρ ∈ (0, 1) and the same size of the break c ∈ R+\{1}, are conjugate to each other via a conjugacy which is (1 − ε)-Hölder 
continuous at the break points. An analogous result does not hold for circle diffeomorphisms even when they are analytic.
© 2018 
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1. Introduction

The rigidity theory of circle diffeomorphisms is a classic topic in dynamical systems, which started with the work 
of Arnol’d [2] and was largely developed by Herman [8] and Yoccoz [23] (see also [9] and [15]). It concerns an 
implied regularity (often smoothness) of conjugacies between maps that belong to the same topological conjugacy 
class. Over the last twenty-five years a major focus has been put on understanding the rigidity properties of circle 
diffeomorphisms with a single singular point where the derivative has a jump discontinuity (circle maps with a break) 
or vanishes (critical circle maps). This paper presents the first rigidity result for circle maps with a break that holds for 
all irrational rotation numbers. It concerns a phenomenon not previously seen and establishes a result whose analog 
for circle diffeomorphisms does not hold.

The first result on the rigidity of circle diffeomorphisms concerns the smoothness of conjugations for analytic 
diffeomorphisms of a circle T1 = R/Z, close to a rotation Rρ : x �→ x + ρ mod 1, with ρ ∈ (0, 1)\Q. Arnol’d [2]
proved, using methods of Kolmogorov–Arnol’d–Moser theory, that any analytic circle diffeomorphism with a Dio-
phantine rotation number ρ, sufficiently close to the rotation Rρ , is analytically conjugate to Rρ . He also made a 
conjecture, proved almost two decades later by Herman [8], that the closeness to the rotation is not necessary for this 
claim to hold true. In fact, Herman proved that any C∞-smooth (Cω-smooth) circle diffeomorphism with a Diophan-
tine rotation number ρ is C∞-smoothly (Cω-smoothly) conjugate to the rotation Rρ . The required smoothness of the 
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maps was further weakened by Yoccoz [23], establishing generic C1+ε-rigidity, with ε > 0, of Cr smooth (r ≥ 3) cir-
cle diffeomorphisms. A natural approach to Herman’s theory is based on renormalization. Renormalizations of circle 
diffeomorphisms converge to linear maps with slope 1. A recent result [15] shows that C2+α-smooth circle diffeo-
morphisms with a Diophantine rotation number ρ of class D(δ), with 0 ≤ δ < α < 1, are C1+α−δ-smoothly conjugate 
to Rρ . A number ρ is Diophantine of class D(δ), for some δ ≥ 0, if there exists C > 0 such that |ρ − p/q| > C/q2+δ , 
for every p ∈ Z and q ∈ N. On the other hand, robust rigidity, i.e., rigidity for all irrational rotation numbers, does 
not hold even for analytic circle diffeomorphisms. In fact, Arnol’d constructed examples of analytic circle diffeomor-
phisms with the same Liouville (non-Diophantine) irrational rotation number for which the conjugacy is essentially 
singular.

We recently proved a sequence of results on the rigidity of circle maps with breaks that can be considered an 
extension of Herman’s theory of the linearization of circle diffeomorphisms. In [12,13], we proved that, for almost 
all irrational ρ ∈ (0, 1), any two C2+α-smooth circle diffeomorphisms with a break, with the same rotation number ρ
and the same size of the break c ∈R+\{1} (i.e., the same square root of the ratio of the left and right derivatives at the 
break point), are C1-smoothly conjugate to each other. This generic C1-rigidity result follows from the exponential 
convergence of renormalizations of these maps that we proved in [12]. In fact, in [12], we proved that, for all irrational 
ρ, renormalizations fn and f̃n of any two C2+α-smooth circle diffeomorphisms with a break T and T̃ , with the 
same irrational rotation number ρ and the same size of the break c approach each other exponentially fast (in the 
C2-topology), i.e., there exist λ ∈ (0, 1) and C > 0 such that

‖fn − f̃n‖C2[−1,0] ≤ Cλn. (1.1)

The exponential rate of convergence λ is universal and depends only on the size of the break c and α (for α < 1, 
λ = μα , with μ ∈ (0, 1) independent of α). Partial results concerning the convergence of renormalizations restricted to 
sets of rotation numbers of zero Lebesgue measure, were previously obtained in [10,16]. A set Srig of rotation numbers 
ρ for which C1-rigidity holds [12,13] can be characterized, using the continued fraction expansion ρ = [k1, k2, . . . ], 
as follows. Srig is the set of all ρ for which there exists a constant C1 > 0 and λ1 ∈ (λ, 1) such that kn+1 ≤ C1λ

−n
1

for all n ∈ 2N, if c < 1, or for all n ∈ 2N − 1, if c > 1. The difference between n odd and n even comes from the 
difference in the behavior of the corresponding subsequences of renormalizations. We also proved [11] that, although 
generic, C1-rigidity does not hold for all irrational rotation numbers. These results are analogous to those for circle 
diffeomorphisms. A recent result of one of us [19] shows that, for almost all irrational rotation numbers, C1+ε-rigidity 
of circle maps with breaks does not hold for any ε > 0, contrary to the case of circle diffeomorphisms. The set Snon
of rotation numbers for which C1+ε-rigidity does not hold includes all irrational numbers ρ ∈ (0, 1), for which there 
is subsequence of kn+1, with n ∈ 2N, if c < 1, or with n ∈ 2N − 1, if c > 1, which grows faster than linearly in n.

The smaller set of rotation numbers for which C1+ε-rigidity holds, for some ε > 0, for circle maps with breaks, in 
comparison to circle diffeomorphisms, is the consequence of the strongly unbounded geometry of these maps. While, 
in the case of circle diffeomorphisms, the ratio of lengths of neighboring elements of dynamical partitions Pn is at most 
of the order of the partial quotient kn+1, in the case of circle maps with a break, this ratio can be exponentially large 
in kn+1. This can also be compared with analytic critical circle maps whose bounded geometry, i.e., the property that 
this ratio is bounded, is ultimately responsible for their robust C1-rigidity. Namely, Khanin and Teplinsky proved [14]
that any two analytic critical circle maps with the same irrational rotation number and the same order of the critical 
point are C1-smoothly conjugate to each other. A critical point xc is said to be of order β > 1 if the derivative of the 
map for x near xc behaves as |x − xc|β−1. The result is based on the exponential convergence of renormalizations 
that was proved by de Faria and de Melo [7] for bounded type rotation numbers and extended to all irrational rotation 
numbers by Yampolsky [22]. In fact, de Faria and de Melo proved that a stronger, C1+ε-rigidity, of analytic critical 
circle maps holds for generic irrational rotation numbers [7]. They also proved that such a result cannot be extended to 
all irrational rotation numbers in the C∞-class of maps [6]. A local result of Khmelev and Yampolsky [18] suggested 
that the analytic case might be different. Nevertheless, for any ε > 0, Avila [3] constructed examples of analytic 
critical circle maps, with the same irrational rotation number and the same order of the critical point, that are not 
C1+ε -smoothly conjugate to each other. All positive rigidity results for critical circle maps with non-analytic critical 
points are, at the moment, conditional, due to the lack of proof of the convergence of renormalization in this case.

Contrary to the case of critical circle maps, as already mentioned above, robust C1-rigidity does not hold even for 
analytic circle maps with a break. In [11], we even constructed pairs of analytic circle maps with a break, with the 
same irrational rotation number and the same size of the break, for which no conjugacy between them is Lipschitz 
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continuous. The rotation numbers ρ of these maps have a rapidly growing (faster than some exponential function) 
subsequence of odd-indexed digits in the continued fraction expansion kn+1 of ρ, if c < 1, or even-indexed digits, if 
c > 1. In [11], we also proved that the conjugacy that maps the break point of one map into the break point of the 
other can be arbitrarily bad. More precisely, for any modulus of continuity, we constructed examples of analytic circle 
maps with a break, with the same irrational rotation number and the same size of the break, such that the conjugacy 
that maps the break point of one map into the break point of the other is not uniformly continuous with that modulus 
of continuity.

The main result of this paper is given by the following theorem.

Definition 1.1. Let x0 ∈ T1. A function ϕ : T1 → T1 is locally β-Hölder continuous or β-Hölder continuous at x0 or 
ϕ(x0) if there exists C > 0 such that, for all x ∈ T1,

C−1|x − x0|
1
β ≤ |ϕ(x) − ϕ(x0)| ≤ C|x − x0|β. (1.2)

The conjugacy is β-Hölder continuous if it is β-Hölder continuous at each x ∈ T1.

Theorem 1.2. Let ε ∈ (0, 1), c ∈ R+\{1}, α ∈ (0, 1) and let ρ be any irrational number in (0, 1). Then, for any two 
C2+α-smooth circle diffeomorphisms T and T̃ with break points at xc and x̃c, respectively, with the same rotation 
number ρ and the same size of the break c, there is a point x0 ∈ T1 such that the conjugacy ϕ : T1 → T1 that satisfies 
ϕ ◦ T ◦ ϕ−1 = T̃ and ϕ(x0) = x̃c is (1 − ε)-Hölder continuous at the break points.

Remark 1. For any ε > 0, this result establishes robust local (1 − ε)-Hölder rigidity of C2+α-smooth circle diffeo-
morphisms with a break. This is the first rigidity result for such maps that holds for all irrational rotation numbers. An 
analogous result does not hold for circle diffeomorphisms, even when they are analytic.

Remark 2. We emphasize that the construction of the (1 − ε)-Hölder continuous conjugacy in general requires a 
non-trivial “shift” of the preimage of the break point, i.e., for some irrational rotation numbers, x0 = ϕ−1(̃xc) �= xc. 
No previous rigidity result for circle maps with a break required such a “shift”. In fact, this is the first rigidity result 
for circle diffeomorphisms with a singular point in general which involves conjugacy which does not map the singular 
point of one map into the singular point of the other.

In addition to being part of the rigidity theory of circle homeomorphisms, rigidity results for circle maps with breaks 
are also important for understanding properties of the generalized interval exchange transformations. Although quite 
natural, these transformations were introduced only recently by Marmi, Moussa and Yoccoz [20]. They are obtained 
by replacing linear branches with slope 1 of an interval exchange transformation by smooth diffeomorphisms. Just as 
an interval exchange transformation of two intervals can be seen as a rigid rotation on a circle, a generalized interval 
exchange transformation of two intervals is a circle map with two break points. As these two points lie on the same 
orbit of the map, the map can be piecewise-smoothly conjugated to a circle map with one point of break. Marmi, 
Moussa and Yoccoz considered the linearizable case of an arbitrary number of intervals [20], when there are no break 
points. The special case of cyclic permutations, which corresponds to circle maps with more points of break, but with 
product of the sizes of breaks equal to 1, was considered by Cunha and Smania [4,5]. In this case, renormalizations 
approach piecewise linear maps. In the case of circle maps with breaks with the product of the sizes of breaks along 
some orbit not equal to 1, the renormalizations are essentially non-linear and approach piecewise fractional linear 
transformations.

This paper is organized as follows. In Section 2, we review basic facts about dynamical partitions and renormaliza-
tions of circle homeomorphisms – the main technical tools that we use in this paper. In Section 3, we give a criterion 
of (local) Hölder continuity of a conjugacy between two circle homeomorphisms. In Section 4, we obtain some gen-
eral estimates on the geometry of dynamical partitions. In particular, we show that the lengths of the corresponding 
fundamental intervals are asymptotically the same on the logarithmic scale. In Section 5, we prove that, after an ap-
propriate shift of indexes, the renormalized intervals of the next level partition inside the fundamental intervals of 
dynamical partitions are, in some sense, comparable. Finally, in Section 6, we construct a particular conjugacy and 
prove Theorem 1.2.
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2. Preliminaries

For every orientation-preserving homeomorphism T : T1 → T1 of the circle T1 := R/Z, there exists a (unique 
up to an additive integer constant) continuous and strictly increasing function T : R → R, called a lift of T , that 
satisfies T (x + 1) = T (x) + 1, for every x ∈ R. Poincaré showed that, for every such T : T1 → T1, there is a unique 
rotation number ρ, given by the limit ρ := lim

n→∞T n(x)/n mod 1, where T is any lift of T . Renormalizations of 

an orientation-preserving homeomorphism of a circle T , with a rotation number ρ ∈ (0, 1) are defined using the 
continued fraction expansion

ρ = 1

k1 + 1
k2+ 1

k3+...

, (2.1)

that we also write as ρ = [k1, k2, k3, . . . ]. The sequence of integers (kn)n∈N, called partial quotients, is infinite if and 
only if ρ is irrational. Every irrational ρ defines uniquely the sequence of partial quotients. Conversely, every infinite 
sequence of partial quotients defines uniquely an irrational number ρ as the limit of the sequence of rational conver-
gents pn/qn = [k1, k2, . . . , kn]. It is well-known that this sequence forms a sequence of best rational approximations 
of an irrational ρ, i.e., there are no rational numbers with denominators smaller or equal to qn, that are closer to ρ than 
pn/qn. The rational convergents can also be defined recursively by pn = knpn−1 + pn−2 and qn = knqn−1 + qn−2, 
starting with p0 = 0, q0 = 1, p−1 = 1, q−1 = 0.

To define renormalizations of an orientation-preserving homeomorphism of a circle T , with an irrational rotation 
number ρ, we start with a marked point x0 ∈ T1, and consider the marked trajectory xi = T ix0, with i ∈ N. The 
subsequence (xqn)n∈N indexed by the denominators qn of the sequence of rational convergents of the rotation num-
ber ρ, will be called the sequence of dynamical convergents. It follows from the simple arithmetic properties of the 
rational convergents that the sequence of dynamical convergents (xqn)n∈N for the rigid rotation Rρ has the property 
that its subsequence with n odd approaches x0 from the left monotonically and the subsequence with n even ap-
proaches x0 from the right monotonically. Since all circle homeomorphisms with the same irrational rotation number 
are combinatorially equivalent, the order of the dynamical convergents of T is the same.

The interval [xqn, x0], for n odd, and [x0, xqn ], for n even, will be denoted by �(n)
0 and called the n-th renormaliza-

tion segment associated to x0. The n-th renormalization segment associated to xi will be denoted by �(n)
i . It follows 

from the properties of the continued fractions that the only points of the orbit {xi : 0 < i ≤ qn+1} that belong to �(n−1)
0

are {xqn−1+iqn : 0 ≤ i ≤ kn+1}.
A certain number of images of �(n−1)

0 and �(n)
0 , under the iterates of the map T , cover the whole circle without 

overlapping beyond the end points and form the n-th dynamical partition of the circle

Pn := {T i�
(n−1)
0 : 0 ≤ i < qn} ∪ {T i�

(n)
0 : 0 ≤ i < qn−1}. (2.2)

The intervals �(n−1)
0 and �(n)

0 will be called the fundamental intervals of Pn. We also define �̄(n−1)
0 := �

(n−1)
0 ∪�

(n)
0

and the renormalization parameter an := |�(n)
0 |

|�(n−1)
0 | , characterizing the geometry of dynamical partitions.

The n-th renormalization of an orientation-preserving homeomorphism T : T1 → T1, with a rotation number ρ, 
with respect to the marked point x0 ∈ T1, is a function fn : [−1, 0] → R obtained from the restriction of T qn to 
�

(n−1)
0 , by rescaling the coordinates, in the following way. If τn is the affine change of coordinates that maps xqn−1

into −1 and x0 into 0, then

fn := τn ◦ T qn ◦ τ−1
n . (2.3)

Definition (2.3) is valid for all n ∈ N0, where N0 := N ∪ {0}, if and only if ρ is irrational; otherwise, n is less than 
or equal to the length of the continued fraction expansion of ρ. If we identify x0 with zero, then τn is exactly the 
multiplication by (−1)n/|�(n−1)

0 |. Here, and in what follows, |I | denotes the length of an interval I on the circle T1. 
Notice that fn(0) = an.

When necessary to state explicitly which marked point x0 the quantities �(n)
i , �̄(n−1)

0 , an, Pn, fn and τn are 

associated to, they are denoted by �(n)
(x0), �̄

(n−1)
(x0), an(x0), Pn,x0 , fn,x0 and τn,x0 , respectively.
i 0
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This paper concerns circle diffeomorphisms (maps) with a break, i.e., homeomorphisms of a circle for which there 
exists a point xc ∈ T1, such that

(i) T ∈ Cr(T1\{xc}),
(ii) T ′(x) is bounded from below by a positive constant on T1\{xc}, and

(iii) the one-sided derivatives T ′−(xc) and T ′+(xc) at xc are such that the size of the break

c :=
√

T ′−(xc)

T ′+(xc)
�= 1.

In this paper, we will reserve the notation �(n)
i , �̄(n−1)

0 , an, Pn, fn and τn for the quantities associated to the 

marked point x0 = xc. The corresponding quantities, associated to the map T̃ will be denoted by �̃(n)
i , ˜̄�(n−1)

0 , ̃an, 
P̃n, f̃n and ̃τn.

Since for circle maps with a break V := VarT1 lnT ′ < ∞, we have | ln(T qn)′(x)| ≤ V , for all x ∈ T1, by Denjoy’s 
lemma [21]. Therefore, we have the uniform bound

| lnf ′
n(x)| ≤ V, (2.4)

for all x ∈ [−1, 0].
It was proved in [17] that the renormalizations of circle maps with a break approach a particular family of fractional 

linear transformations. Namely (see also [12]), for every c ∈ R+\{1} and α ∈ (0, 1), there exists λ ∈ (0, 1) such that 
the renormalizations fn, n ∈ N0, of a C2+α-smooth circle map T , with a break of size c, satisfy

‖fn − Fn‖C2[−1,0] ≤ Cλn, (2.5)

for some C > 0, where Fn ≡ Fan,bn,Mn,cn : [−1, 0] → R,

Fn(z) := an + (an + bnMn)z

1 − (Mn − 1)z
, (2.6)

with

an := |�(n)
0 |

|�(n−1)
0 |

, bn := |�(n−1)
0 | − |�(n)

qn−1 |
|�(n−1)

0 |
, Mn := exp

⎛⎜⎝qn−1∑
i=0

xi∫
xqn−1+i

T ′′(x)

2T ′(x)
dx

⎞⎟⎠ . (2.7)

Further information on closeness of renormalizations for maps with the derivative in a Zygmund class (under suitable 
arithmetic conditions) have been obtained in [1].

We end this section with a few more comments about the notation. For functions f, g : D → R, with a domain D, 
we write f (x) = O(g(x)) if there is a constant K > 0, independent of x ∈ D, such that |f (x)| ≤ K|g(x)|. We write 
f (x) = (g(x)) if there is a constant K > 0, independent of x ∈D, such that K−1g(x) ≤ f (x) ≤ Kg(x).

3. A criterion of Hölder continuity of the conjugacy

In this section, we state and prove a criterion of Hölder regularity of the conjugacy.

Proposition 3.1 (Criterion of local Hölder regularity). Let γ ∈ (0, 1) and x ∈ T1. Let T̃ , T : T1 → T1 be two 
orientation-preserving circle homeomorphisms and ϕ : T1 → T1 a homeomorphism satisfying

ϕ ◦ T ◦ ϕ−1 = T̃ . (3.1)

If there exist σ > 0 and δ > 0 such that, for all y ∈ T1 satisfying |x − y| < δ, there exist J ∈ N and a finite sequence 
of intervals �j ⊂ [x, y], j = 1, . . . , J , such that

(i)
J∑ |ϕ(�j )| ≥ σ |ϕ(x) − ϕ(y)|,
j=1
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(ii)
J∑

j=1
|�j | ≥ σ |x − y|,

(iii) (∀j : 1 ≤ j ≤ J ) |�j | ≥ σ |x − y|2,
(iv) (∀j : 1 ≤ j ≤ J ) |ϕ(�j )| ≥ σ |ϕ(x) − ϕ(y)|2,
(v) (∀j : 1 ≤ j ≤ J )

γ <
ln |ϕ(�j )|

ln |�j | < 2 − γ, (3.2)

then the conjugacy ϕ and its inverse ϕ−1 are 2γ − 1-Hölder continuous at x and ϕ(x), respectively.

Remark 3. In this paper, [x, y] denotes the shortest arc on T1 with end points at x and y. |x − y| denotes the shortest 
arc distance on T1, i.e., the length of [x, y].

Proof. It follows from (3.2) that, for all x ∈ T1 and all �j ⊂ [x, y] we have |ϕ(�j )| ≤ |�j |γ and |�j | ≤ |ϕ(�j )|γ . 
Using (i) and (iii), we have

|ϕ(x) − ϕ(y)| ≤ σ−1
J∑

j=1

|ϕ(�j )| ≤ σ−1
J∑

j=1

|�j |γ ≤ σγ−2|x − y|2γ−1. (3.3)

This proves that ϕ is 2γ − 1-Hölder continuous at x. The 2γ − 1-Hölder continuity of ϕ−1 at ϕ(x) is established 
similarly, using (ii) and (iv),

|x − y| ≤ σ−1
J∑

j=1

|�j | ≤ σ−1
J∑

j=1

|ϕ(�j )|
1

2−γ ≤ σ
1

2−γ
−2|x − y| 2

2−γ
−1

. (3.4)

and the fact that 1
2−γ

> γ , for γ ∈ (0, 1). �
It was shown in [11] that, for every c ∈ R+\{1}, there are irrational numbers ρ ∈ (0, 1) and pairs of circle diffeo-

morphisms T and T̃ with breaks at xc and ̃xc, respectively, with the same rotation number ρ and the same size of the 
break c, such that the conjugacy ϕ that satisfies (3.1) and ϕ(xc) = x̃c is not Hölder continuous at xc. The main goal 
of this paper is to determine a point x0, for any such pairs of maps, such that the assumptions of Proposition 3.1 are 
satisfied, with the intervals �j chosen from among the intervals of dynamical partitions Pn,x0 .

4. Estimates on the renormalization parameters

In the following, let T and T̃ be two circle diffeomorphisms with breaks at xc and ̃xc, respectively, with the same 
irrational rotation number ρ ∈ (0, 1) and the same size of the break c ∈ R\{1}. In this section, we obtain some general 
estimates on the renormalization parameters an and ̃an and show that the logarithms of the lengths of the corresponding 
fundamental intervals of T and T̃ are asymptotically the same.

Proposition 4.1. Let λ1 ∈ (λ, 1) and λ2 ∈ (
√

λ/λ1, 1). There exists C2 > 0 such that, if cn > 1 or if cn < 1 and 
kn+1 ≤ C1λ

−n
1 , then∣∣∣∣ ãn

an

− 1

∣∣∣∣ ≤ C2λ
n
2 . (4.1)

Remark 4. If cn > 1, (4.1) can actually be strengthened by replacing λ2 with λ.

Proof. Let λ3 ∈ (λ/λ2, λ1λ2). If cn < 1 and an ≥ C3λ
n
3, for some C3 > 0, the claim follows directly from the expo-

nential closeness of renormalizations (1.1), since λ2 > λ/λ3 and

|̃an − an| = |f̃n(0) − fn(0)| ≤ Cλn. (4.2)



K. Khanin, S. Kocić / Ann. I. H. Poincaré – AN 35 (2018) 1827–1845 1833
If cn > 1, the claim follows from the same estimate since, in that case, an is bounded from below by a positive constant 
(see Proposition 3.3 of [12]).

Now, assume that cn < 1 and an < C3λ
n
3. We assume that n is sufficiently large such that the renormalizations are 

concave downwards (see Proposition 3.6 of [12]). If ̃an/an > 1 + C2λ
n
2, then there is a constant C4 > 0 such that

|̃τn(�̃
(n)
qn−1)|

|τn(�
(n)
qn−1)|

> 1 + C4λ
n
2 . (4.3)

This follows from the fact that |τn(�
(n)
qn−1)| = f ′

n−1(ζ )|τn(�
(n)
0 )| = f ′

n−1(ζ )an, where ζ ∈ τn−1(�
(n)
0 ), and

|̃τn(�̃
(n)
qn−1)| = f̃ ′

n−1(̃ζ )|̃τn(�̃
(n)
0 )| = f̃ ′

n−1(̃ζ )̃an, where ζ̃ ∈ τ̃n−1(�̃
(n)
0 ), using again (1.1) and the Denjoy estimate 

(2.4). Namely,

|̃τn(�̃
(n)
qn−1)|

|τn(�
(n)
qn−1)|

= |f̃ ′
n−1(̃ζ )|

|f ′
n−1(ζ )|

ãn

an

> (1 +O(λn + an))(1 + C2λ
n
2) > 1 + C4λ

n
2 . (4.4)

Here, we have also used that |ζ − ζ̃ | ≤ C5an < C3C5λ
n
3, for some C5 > 0.

Furthermore, there is a constant C6 > 0 such that

|̃τn(�̃
(n+1)
0 )|

|τn(�
(n+1)
0 )|

= ãn+1

an+1

ãn

an

> (1 +O(λn))(1 + C2λ
n
2) > 1 + C6λ

n
2 . (4.5)

Therefore, there is a constant C7 > 0 such that

|̃τn(�̃
(n)
qn+1)|

|τn(�
(n)
qn+1)|

= ãn(1 + ãn+1(1 − f̃ ′
n(̃ζ

′)))
an(1 + an+1(1 − f ′

n(ζ
′)))

= ãn

an

(
1 + (̃an+1 − an)(1 − f̃ ′

n(̃ζ
′)) + an(f

′
n(ζ

′) − f̃ ′
n(̃ζ

′))
1 + an+1(1 − f ′

n(ζ
′))

)
> (1 +O(λn) + anO(λn + an))(1 + C2λ

n
2) > 1 + C7λ

n
2,

(4.6)

where ζ ′ ∈ τn(�
(n+1)
0 ) and ̃ζ ′ ∈ τ̃n(�̃

(n+1)
0 ). Here, we have used that |ζ ′ − ζ̃ ′| ≤ C8an ≤ C3C8λ

n
3, for some C8 > 0, 

in addition to using |τn(�
(n+1)
qn

)| = f ′
n(ζ

′)|τn(�
(n+1)
0 )| = f ′

n(ζ
′)an+1an and |̃τn(�̃

(n+1)
qn

)| = f̃ ′
n(̃ζ

′)|̃τn(�̃
(n+1)
0 )| =

f̃ ′
n(̃ζ

′)̃an+1ãn. We have also used (1.1) and the Denjoy estimate (2.4).
Since

|̃τn(�̃
(n)
qn−1+iqn

)|
|τn(�

(n)
qn−1+iqn

)|
= |̃τn(�̃

(n)
qn−1)|

|τn(�
(n)
qn−1)|

i−1∏
j=0

f̃ ′
n(̃ζj )

f ′
n(ζj )

,

|̃τn(�̃
(n)
qn−1+iqn

)|
|τn(�

(n)
qn−1+iqn

)|
= |̃τn(�̃

(n)
qn+1)|

|τn(�
(n)
qn+1)|

kn+1−1∏
j=i

(
f̃ ′

n(̃ζj )

f ′
n(ζj )

)−1

,

(4.7)

where ζj ∈ τn(�
(n)
qn−1+jqn

) and ̃ζj ∈ τ̃n(�̃
(n)
qn−1+jqn

), we can obtain that, for some C9 > 0,

|̃τn(�̃
(n)
qn−1+iqn

)|
|τn(�

(n)
qn−1+iqn

)|
> 1 + C9λ

n
2, (4.8)

for all 0 ≤ i ≤ kn+1 such that the intervals ̃τn(�̃
(n)
qn−1+iqn

) ⊂ [−1, −1 + λn
3] ∪ [−λn

3, 0]. All but at most order n of the 

intervals ̃τn(�̃
(n)
qn−1+iqn

) satisfy this condition. Starting with estimate (4.3) and using the first of the identities (4.7), we 
obtain

|̃τn(�̃
(n)
qn−1+iqn

)|
|τn(�

(n)
)|

> (1 + C4λ
n
2)(1 +O(λn

3))−C1λ
−n
1 , (4.9)
qn−1+iqn
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and, thus, (4.8) follows for i such that ̃τn(�̃
(n)
qn−1+iqn

) ⊂ [−1, −1 + λn
3]. Here, we have used that |f̃ ′

n(̃ζj ) − f ′
n(ζj )| ≤

C10λ
n
3, where C10 > 0, and λ < λ3 < λ1λ2. Similarly, starting with estimate (4.6) and using the second of the identities 

(4.7), we obtain (4.8) for i such that ̃τn(�̃
(n)
qn−1+iqn

) ⊂ [−λn
3, 0].

Let ξi and ξi+1 be the left and right endpoints of the interval τn(�
(n)
qn−1+iqn

). Let, similarly, ξ̃i and ξ̃i+1 be the 

left and right endpoints of the interval τ̃n(�̃
(n)
qn−1+iqn

). Let ri = ξ̃i − ξi . Estimates (4.8) imply that for i such that 

τ̃n(�̃
(n)
qn−1+iqn

) ⊂ [−1, −1 + λn
3], ri ≥ C11λ

n
2 |̃τn(�̃

(n)
qn−1+iqn

)|, for some C11 > 0, and n large enough. Here, we have 

also used that, for all such i, |̃τn(�̃
(n)
qn−1+iqn

)| is of the same order as 
∑i

j=0 |̃τn(�̃
(n)
qn−1+iqn

)|. This follows from the 

fact that for such i, f ′
n(ζi) − c−1

n = O(λn
3) and f̃ ′

n(̃ζi) − c−1
n = O(λn

3) and, therefore, the length of the intervals 

τ̃n(�̃
(n)
qn−1+iqn

) increases exponentially with i. Similarly, for i such that the intervals τ̃n(�̃
(n)
qn−1+iqn

) ⊂ [−λn
3, 0], we 

have ri ≤ −C12λ
n
2 |̃τn(�̃

(n)
qn−1+iqn

)|, for some C12 > 0, and n large enough. Let imin be the index i of the longest of 

the intervals τ̃n(�̃
(n)
qn−1+iqn

) ⊂ [−1, −1 + λn
3]. If such imin does not exist we set imin := 0. Similarly, let imax be the 

index i of the longest of the intervals τ̃n(�̃
(n)
qn−1+iqn

) ⊂ [−λn
3, 0]. If such imax does not exist, we set imax := kn+1. 

Since |̃τn(�̃
(n)
qn−1+iminqn

)| and |̃τn(�̃
(n)
qn−1+imaxqn

)| are at least of the order of λn
3, we obtain that rimin ≥ C13λ

n
2λn

3 and 
rimax ≤ −C13λ

n
2λn

3, for some C13 > 0, and all n large enough. We can now extend these estimates using the following 
relation

ri+1 = f̃ ′
n(̃ζ

′
i )ri +O(λn), (4.10)

where ̃ζ ′
i ∈ (ξi, ̃ξi). By iterating this relation, we obtain

ri ≥ rimin

i−1∏
j=imin

f̃ ′
n(̃ζ

′
j ) − C14λ

n

i−imin−1∑
k=0

i−1∏
j=i−k

f̃ ′
n(̃ζ

′
j ), (4.11)

where C14 > 0. For any κ > 0, there exists � > 0, such that if ζ̃ ′
i ∈ [−1, −1 + �], then |f̃ ′

n(̃ζ
′
i ) − c−1

n | < κ and if 

ζ̃ ′
i ∈ [−�, 0], then |f̃ ′

n(̃ζ
′
i ) − cn| < κ . Therefore, if κ is small enough, and i is such that ̃τn(�̃

(n)
qn−1+iqn

) ⊂ [−1, −1 +�], 
the derivatives in (4.11) are larger than and bounded away from 1. Consequently, the sum of the products in (4.11) is 
of the order of the maximal product. Therefore,

ri ≥ C13λ
n
2λn

3 − C15λ
n ≥ C16λ

n
2λn

3, (4.12)

for some C15, C16 > 0 and n large enough. Similarly, for i such that ̃τn(�̃
(n)
qn−1+iqn

) ⊂ [−�, 0], we obtain that

ri ≤ −C17λ
n
2λ

n
3, (4.13)

for some C17 > 0 and all n large enough. Using (4.10), each of the estimates (4.12) and (4.13) can be extended to i
such that ̃τn(�̃

(n)
qn−1+iqn

) ∩ (−1 + �, −�) �= ∅. This leads to a contradiction. The claim follows. �
Proposition 4.2. There exist C18, C19 > 0 such that, if cn < 1 and kn+1 > C18, then∣∣∣∣∣ lnan

1
2kn+1 ln cn

− 1

∣∣∣∣∣ ≤ C19 max

{
lnkn+1

kn+1
, λn

}
. (4.14)

Proof. Let us consider two subintervals of [−1, 0], L1 := [−1, −1 + 1/kn+1] and L2 := [f kn+1
n (−1) − 1/kn+1,

f
kn+1
n (−1)], and the set of points S := {f j

n (−1) : j = 1, . . . , kn+1}. Let m1 and m2 be the cardinalities of the sets 
S ∩ L1 and S ∩ L2, respectively. Then, there is C20 > 0 such that

kn+1 − (m1 + m2) ≤ C20 ln kn+1, (4.15)

since the cardinality of the set S\(L1 ∪ L2) is of the order of ln kn+1. This follows from the fact that, for cn < 1 and 
sufficiently large n, the second derivative of the renormalizations f ′′

n is bounded away from zero and negative (see 
Proposition 3.6 of [12]).
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If bn,1 = (fn)
′+(−1) and bn,2 = (fn)

′−(0), and M ≥ max
z∈[−1,0] |f

′′
n (z)|, then

C−1
21 b

−m1
n,1

kn+1
≤ |fn(−1) + 1| ≤ C21b

−m1
n,1

kn+1

(
1 − M

bn,1kn+1

)−m1

,

C−1
21 b

m2
n,2

kn+1
≤ |f kn+1

n (−1) − f
kn+1−1
n (−1)| ≤ C21b

m2
n,2

kn+1

(
1 + 2M

bn,2kn+1

)m2

,

(4.16)

for some C21 > 0. The last inequality is obtained under the assumption |f kn+1
n (−1)| < 1/kn+1. It follows from the 

Denjoy estimate (2.4) that

e−3V |f kn+1
n (−1) − f

kn+1−1
n (−1)| ≤ |fn(−1) + 1| ≤ e3V |f kn+1

n (−1) − f
kn+1−1
n (−1)|. (4.17)

Since both m1, m2 ≤ kn+1, this implies that, for some C22 > 0,

C−1
22 b

m2
n,2 ≤ b

−m1
n,1 ≤ C22b

m2
n,2. (4.18)

Using (4.15), for some C23 > 0, we have∣∣∣∣∣m1 − lnbn,2

lnb−1
n,1 + lnbn,2

kn+1

∣∣∣∣∣ ≤ C23 ln kn+1,∣∣∣∣∣m2 − lnb−1
n,1

lnb−1
n,1 + lnbn,2

kn+1

∣∣∣∣∣ ≤ C23 ln kn+1.

(4.19)

It follows that |f kn+1
n (−1)| < C24b

−m1
n,1 /kn+1 < 1/kn+1, for some C24 > 0, if kn+1 is large enough. Since, by (2.5), 

|bn,1 − F ′
n(−1)| ≤ Cλn and F ′

n(−1) = c−1
n +O(an) (due to Proposition 3.2 of [12]), the claim follows. �

Corollary 4.3. Let λ4 ∈ (λ1/3, 1). There exist C25 > 0 and N1 ∈N such that, for all n ≥ N1 such that cn < 1, we have∣∣∣∣ ln ãn

lnan

− 1

∣∣∣∣ ≤ C25λ
n
4 . (4.20)

Proof. Let λ1 = λ1/3. If kn+1 ≤ C1λ
−n
1 , the claim follows from Proposition 4.1. If kn+1 > C1λ

−n
1 , the claim follows 

from Proposition 4.2. We have also used the fact that, if cn < 1, then, for n ≥ N1 and N1 ∈N large enough, an < cn < 1
(see Proposition 3.3 in [12]). �
Proposition 4.4.

lim
n→∞

ln |�̃(n)
0 |

ln |�(n)
0 |

= 1. (4.21)

Proof. Let ε > 0. Since �(n)
0 = ∏n

k=1 ak , we have ln |�(n)
0 | = ln

n∏
k=1 : ck>1

ak + ln
n∏

k=1 : ck<1
ak . If N2 ∈N and N2 ≥ N1, 

using Proposition 4.1 and Corollary 4.3, we obtain

ln |�̃(n)
0 |

ln |�(n)
0 |

=1 +
ln

n∏
k=1 : ck>1

(1 +O(λk
2)) +

N2−1∑
k=1 : ck<1

lnakO(λk
4)

ln |�(n)
0 |

+

n∑
k=N2 : ck<1

lnakO(λk
4)

ln |�(n)
0 |

=1 + O(1) + �1(N2)

ln |�(n)|
+O(λ

N2
4 )

ln
n∏

k=N2 : ck<1
ak

ln |�(n)|
,

(4.22)
0 0
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where �1(N2) is a constant that depends on N2, but does not depend on n. Since |�(n)
0 | decrease at least exponentially 

with n and since, for sufficiently large k and ck > 1, ak are bounded both from above and from below by positive 
constants (see Proposition 3.3 of [12]), we have

ln
n∏

k=N2 : ck<1
ak

ln |�(n)
0 |

= 1 −
ln

N2−1∏
k=1 : ck<1

ak

ln |�(n)
0 |

−
ln

n∏
k=1 : ck>1

ak

ln |�(n)
0 |

=O(1) − �2(N2)

ln |�(n)
0 |

, (4.23)

where �2(N2) is a constant that depends on N2 only. It follows from (4.22) that if N2 has been chosen large enough, 
there exists N3 ≥ N2 such that, for all n ≥ N3, we have∣∣∣∣∣ ln |�̃(n)

0 |
ln |�(n)

0 |
− 1

∣∣∣∣∣ < ε. (4.24)

The claim follows. �
5. Estimates on the renormalized intervals of the next level partition and the shift of indexes

The following proposition was proved in [13].

Proposition 5.1. ([13]) Let λ5 = max{λ2, λ
(1+α)α
8(2+α) }. There exists C26 > 0 such that, for all n ∈N such that either cn > 1

or cn < 1 and kn+1 ≤ C1λ
−n
1 , we have∣∣∣∣∣∣

|̃τn(�̃
(n)
qn−1+iqn

)|
|τn(�

(n)
qn−1+iqn

)|
− 1

∣∣∣∣∣∣ ≤ C26λ
n
5, (5.1)

for all i such that 0 ≤ i < kn+1.

Let xi := T i(xc).

Proposition 5.2. For every α ∈ (0, 1), ρ ∈ (0, 1)\Q and c ∈ R+\{1}, there exists λ ∈ (0, 1) and, for every 
C2+α-smooth circle map T with a break of size c and rotation number ρ, there exists C27 > 0, such that, if cn < 1
then, for every i = 1, . . . , qn, we have

‖fn,xi−qn
− F (0)

n ‖C2[−1,0] ≤ C27(λ
n + an), (5.2)

where

F (0)
n (z) = cnz

1 + (1 − cn)z
. (5.3)

Proof. The proof of the claim is similar to the proof of (2.5), using Proposition 3.2 of [12] and the fact that 
|�(n)

0 (xi−qn )|
|�(n−1)

0 (xi−qn )| = (an), for i = 1, . . . , qn − 1, due to the bounded distortion of the ratio 
|�(n)

0 |
|�(n−1)

0 | under the action 

of T −i . �
Let Sn,xi

:= {f j
n,xi

(−1) : j = 1, . . . , kn+1}.

Proposition 5.3. Let ε1 > 0 and let n1 = n1(n, i) be the cardinality of Sn,xi
∩ M1, where M1 := [−1, −1 + ε1]. There 

exists C28 > 0 such that, if cn < 1 and kn+1 > C28n, then, for i = 0, . . . , qn − 1,

n1 = 1

2
kn+1 +O(λnkn+1 + lnkn+1). (5.4)
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Proof. Since the distortion of the ratio 
|�(n)

i−qn
|

|�(n−1)
i−qn

| under T qn−i is bounded, |�(n−1)
i | = |�(n−1)

i−qn
|(1 + O(an)), for i =

1, . . . , qn − 1. It follows that, for sufficiently large n, the cardinality of the set Sn,xi−qn
∩ M1, that we will denote by 

n̄1, can differ from n1 by at most 2. Here, we have used Proposition 5.2 and, therefore, that the distance between 
successive points f j

n,xi−qn
(−1) grows exponentially with j . Using Proposition 5.2 again, in particular that the second 

derivative of fn,xi−qn
is bounded both from below and above by negative constants and that the derivatives f ′

n,xi−qn
(−1)

and f ′
n,xi−qn

(0) can be made arbitrary close to c−1
n and cn, respectively, by choosing n and kn+1 sufficiently large, one 

can prove, completely analogously to the proof of the first inequality in (4.19) (see the proof of Proposition 4.2), that

n̄1 = lnbn,xi−qn ,2

lnb−1
n,xi−qn ,1 + lnbn,xi−qn ,2

kn+1 +O(ln kn+1), (5.5)

where bn,xi−qn ,1 = (fn,xi−qn
)′+(−1) and bn,xi−qn ,2 = (fn,xi−qn

)′−(0). Here, we have also used the fact that the cardinal-
ity of the set Sn,xi−qn

∩ (M1\L1) (see the proof of Proposition 4.2) is of the order of lnkn+1.
Since it follows from Proposition 4.2 and Proposition 5.2 that (fn,xi−qn

)′+(−1) −c−1
n =O(λn) and (fn,xi−qn

)′+(0) −
cn =O(λn), for kn+1 > C28n and C28 > 0 sufficiently large, the claim follows from (5.5). �

Let x̃i := T̃ i (̃xc) and S̃n,̃xi
:= {f̃ j

n,̃xi
(−1) : j = 1, . . . , kn+1}. An immediate corollary of Proposition 5.3 is the 

following.

Corollary 5.4. Let λ6 ∈ (λ1, 1). Let ε1 > 0 and let n1 and ̃n1 be the cardinalities of Sn,xi
∩ M1 and S̃n,̃xi

∩ M1, where 
M1 := [−1, −1 + ε1]. There exists K1 > 0, depending on T and T̃ only, such that, if cn < 1 and kn+1 > C1λ

−n
1 , then, 

for i = 0, . . . , qn − 1,

|n1 − ñ1| ≤ K1ε(n)kn+1, (5.6)

where ε(n) = λn + ln kn+1
kn+1

≤ (λn
6).

The following proposition shows that, after a proper shift of indexes, in, the lengths of the intervals ̃τn(�̃qn−1+iqn)

and τn(�qn−1+(i+in)qn) are of the same order.

To simplify the notation, let Ji := τn(�
(n)
qn−1+iqn

) and J̃i := τ̃n(�̃
(n)
qn−1+iqn

). It follows from Proposition 5.2 that, 

for cn < 1, kn+1 ≥ C1λ
−n
1 and n large enough, the renormalizations fn and f̃n are uniformly concave downwards 

with derivatives at −1 and 0 close to c−1
n and cn, respectively. Therefore, there are unique points z∗

n and ̃z∗
n such that 

f ′
n(z

∗
n) = 1 and f̃n(̃z

∗
n) = 1. Let i(n) and ̃i(n) be the indexes of two intervals Ji(n) and J̃̃i(n) such that z∗

n ∈ Ji(n) and 
z̃∗
n ∈ J̃̃i(n) . We define

in := i(n) − ĩ(n). (5.7)

If i(n) or ̃i(n) is not defined uniquely, we choose in to take the value that maximizes |in|.
It follows from Corollary 5.4 that |in| < C29ε(n)kn+1, for some C29 > 0.

Proposition 5.5. For sufficiently small ε2 > 0, there exists C30 > 0, such that if cn < 1 and kn+1 ≥ C1λ
−n
1 then, for 

every i satisfying 0 ≤ i ≤ kn+1 and |i − ĩ(n)| ≤ ε2λ
−n, we have∣∣∣∣∣∣ln

|̃τn(�̃
(n)
qn−1+iqn

)|
|τn(�

(n)
qn−1+(i+in)qn

)|

∣∣∣∣∣∣ ≤ C30. (5.8)

Proof. It is easy to see that the lengths of the intervals Ji(n) and J̃̃i(n) are of order 1. It follows that, for every � > 0, 
there exists C31 > 0, such that for all i such that (Ji+in ∪ J̃i ) ∩ M0 �= ∅, where M0 = (−1 + �, −�), we have

C−1
31 ≤ |J̃i | ≤ C31. (5.9)
|Ji+in |
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We will now extend this estimate for i such that 0 ≤ i ≤ kn+1 and |i − ĩn| ≤ ε2kn+1, using the recursion relation

|J̃i+1|
|Ji+in+1| = |J̃i |

|Ji+in |
f̃ ′

n(̃ζi)

f ′
n(ζi+in )

, (5.10)

where ζi ∈ Ji and ̃ζi ∈ J̃i . If i
(n)
min and i(n)

max are the smallest and largest values of i such that (Ji+in ∪ J̃i ) ∩ M0 �= ∅, we 
have

|J̃i |
|Ji+in |

=
|J̃

i
(n)
min

|
|J

i
(n)
min+in

|
i
(n)
min−1∏
j=i

(
f̃ ′

n(̃ζj )

f ′
n(ζj+in )

)−1

, (5.11)

for i < i
(n)
min, and

|J̃i |
|Ji+in |

=
|J̃

i
(n)
max

|
|J

i
(n)
max+in

|
i−1∏

j=i
(n)
max

f̃ ′
n(̃ζj )

f ′
n(ζj+in )

, (5.12)

for i > i
(n)
max, as long as 0 ≤ i < kn+1 and 0 ≤ i + in < kn+1. It follows from Proposition 5.2 that, for any κ > 0, there 

exists � > 0, such that if ζi, ̃ζi ∈ M1, where M1 = [−1, −1 + �], then |f ′
n(ζi) − c−1

n | < κ and |f̃ ′
n(̃ζi) − c−1

n | < κ and 
if ζi, ̃ζi ∈ M2, where M2 = [−�, 0], then |f ′

n(ζi) − cn| < κ and |f̃ ′
n(̃ζi) − cn| < κ .

Since the second derivatives f ′′
n and f̃ ′′

n are bounded, it follows from (5.11) that

|J̃i |
|Ji+in |

=
|J̃

i
(n)
min

|
|J

i
(n)
min+in

|
i
(n)
min−1∏
j=i

(1 +O(max{|Jj+in |, |J̃j |}) + λn))

=
|J̃

i
(n)
min

|
|J

i
(n)
min+in

|

⎛⎜⎝1 +
i
(n)
min−1∑
j=i

O(max{|Jj+in |, |J̃j |})
⎞⎟⎠

(
(1 + λn)imin−i

)

=
|J̃

i
(n)
min

|
|J

i
(n)
min+in

| (1 +O(�))(1).

(5.13)

In the last step, we have used that i(n)
min − i ≤ ĩ(n) − i ≤ ε2λ

−n
1 , for � small enough. We have also used the fact that, for 

all j satisfying i ≤ j < i
(n)
min, Jj+in , J̃j ⊂ M1. This follows from the fact that |̃i(n) − in| > C32λ

−n
1 , for some C32 > 0, 

and, therefore, |̃i(n) − i| ≤ ε2λ
−n
1 < |̃i(n) − in|, for ε2 > 0 small enough. This proves the claim for i < i

(n)
min.

Using (5.12), one can similarly obtain

|J̃i |
|Ji+in |

=
|J̃

i
(n)
max

|
|J

i
(n)
max+in

| (1 +O(�))(1), (5.14)

for i > i
(n)
max satisfying i − ĩ(n) ≤ ε2λ

−n
1 , and ε2 > 0 small enough. The claim follows. �

An immediate corollary of the previous proposition is the following.

Corollary 5.6. Under the assumptions of Proposition 5.5, we have∣∣∣∣∣∣
ln |̃τn(�̃

(n)
qn−1+iqn

)|
ln |τn(�

(n)
qn−1+(i+in)qn

)|
− 1

∣∣∣∣∣∣ ≤ C30

| ln |τn(�
(n)
qn−1+(i+in)qn

)||
. (5.15)

Proposition 5.7. Let λ6 ∈ (λ1, 1) and ε2 > 0. There exists C33 > 0 such that, if cn < 1 and kn+1 ≥ C1λ
−n
1 , for all i

such that 0 ≤ i < kn+1 and |i − ĩ(n)| > ε2λ
−n, we have
1
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∣∣∣∣∣∣
ln |̃τn(�̃

(n)
qn−1+iqn

)|
ln |τn(�

(n)
qn−1+(i+in)qn

)|
− 1

∣∣∣∣∣∣ ≤ C33λ
n
6 . (5.16)

Proof. Let i(n)
l and i(n)

r be the smallest and largest values of i for which (5.8) holds. Since ̃i(n) − i
(n)
l and i(n)

r − ĩ(n)

are at least of the order of λ−n
1 , it follows from Proposition 5.2 that there is C34 > 0 such that | ln |J̃

i
(n)
l

||, | ln |J̃
i
(n)
r

|| ≥
C34λ

−n
1 . Corollary 5.6 then implies that there exists C35 > 0 such that∣∣∣∣∣∣

ln |J̃
i
(n)
l

|
ln |J

i
(n)
l +in

| − 1

∣∣∣∣∣∣ ,
∣∣∣∣∣ ln |J̃

i
(n)
r

|
ln |J

i
(n)
r +in

| − 1

∣∣∣∣∣ ≤ C35λ
n
1 . (5.17)

We will now extend this estimate for 0 ≤ i < i
(n)
l and i(n)

r < i < kn+1, using the following relation

ln |J̃j+1|
ln |Jj+1+in |

= ln |J̃j | + ln(T̃ qn)′(̃zj )
ln |Jj+in | + ln(T qn)′(zj+in )

, (5.18)

where zj ∈ �
(n)
qn−1+jqn

and ̃zj ∈ �̃
(n)
qn−1+jqn

.

We will first extend the estimate (5.17) to i(n)
r < i < kn+1; for 0 ≤ i < i

(n)
l , the analysis is similar. By iterating 

(5.18), we obtain

ln |J̃i |
ln |Ji+in |

=
ln |J̃

i
(n)
r

| + ∑i−1
j=i

(n)
r

ln(T̃ qn)′(̃zj )

ln |J
i
(n)
r +in

| + ∑i−1
j=i

(n)
r

ln(T qn)′(zj+in )
. (5.19)

For i(n)
r < j < imax := min{kn+1, kn+1 − in}, the derivatives satisfy∣∣∣∣∣ (T̃ qn)′(̃zj )

(T qn)′(zj+in )
− 1

∣∣∣∣∣ ≤ C36λ
n, (5.20)

for some C36 > 0, since (T qn)′(zj ) = f ′
n(ζj ) and (T̃ qn)′(̃zj ) = f̃ ′

n(̃ζj ) and, for sufficiently large n, all the points 

ζj+in , ̃ζj belong to an interval L2 := [−d, 0], where 0 < d ≤ c
C37λ

−n
1

n , for some C37 > 0. Here, we have also used 
that, by Proposition 5.2, for i(n)

r < j < imax, |f ′
n(ζj+in ) − cn| = O(λn) and |f̃ ′

n(̃ζj ) − cn| = O(λn). Therefore, for 
i
(n)
r < i < imax, we obtain

ln |J̃i |
ln |Ji+in |

− 1 = (i − i
(n)
r )O(λn)

ln |Ji+in |
+O(λn

1) = (i − i
(n)
r )O(λn)

(λ−n
1 ) + (i − i

(n)
r )

+O(λn
1) =O(λn

1). (5.21)

If in > 0, then imax < kn+1. To extend estimate (5.17) to i satisfying imax < i < kn+1, we use the following estimate, 
similar to (5.19), which was also obtained from (5.18),

ln |J̃i |
ln |Ji+in |

= ln |J̃imax−1| + ∑i−1
j=imax−1 ln(T̃ qn)′(̃zj )

ln |Jimax+in−1| + ∑i−1
j=imax−1 ln(T qn)′(zj+in )

. (5.22)

For imax ≤ j < kn+1, however, the derivatives (T̃ qn)′(̃zj ) and (T qn)′(zj+in ) can differ by (at most) a constant, as 
follows from Proposition 5.2. The number of these terms, however, is bounded by in and is, therefore, of the order of 
ε(n)kn+1, which is small in comparison to kn+1. For imax ≤ i < kn+1, we, therefore, obtain

ln |J̃i |
ln |Ji+in |

− 1 = kn+1O(λn
1) + kn+1O(ε(n))

ln |Ji+in |
=O(λn

1) +O
(

lnkn+1

kn+1

)
, (5.23)

taking into account that | ln |Jimax || = (kn+1). The claim follows. �
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6. Choice of the conjugacy and proof of the main result

In the previous section, we considered intervals of dynamical partitions Pn and P̃n of circle diffeomorphisms with 
a break T and T̃ , constructed with the corresponding marked points xc and ̃xc, respectively. For the map T , we will 
now consider intervals of dynamical partitions Pn,x0 , constructed with a marked point x0 that will be defined below.

We will assume that the rotation number ρ ∈ (0, 1)\Q of T and T̃ is such that there is an infinite increasing 
sequence of positive integers (�i)i∈N such that, for all n ∈N for which cn < 1, we have:

(i) kn+1 > C1λ
−n
1 , if n = �i , for some i ∈ N;

(ii) kn+1 ≤ C1λ
−n
1 , if n �= �i , for any i ∈N.

If this is not the case, i.e., if the sequence (�i)i∈N is finite or empty, the claim of Theorem 1.2 follows directly from 
the fact that T and T̃ are conjugate to each other via a C1-smooth conjugacy ϕ that satisfies ϕ(xc) = x̃c [12,13].

For all n ∈ N such that n = �i , for some i ∈ N, let in := in, where in is the integer defined by (5.7). For all n ∈ N

such that n �= �i , for any i ∈N, we define in := 0.
Let x(n)

0 := T
∑n

m=1 imqmxc, for n ∈N, and x(0)
0 := xc.

Notice that |x(�i)
0 − x

(�−1)

0 | is of the order of the length of i�i
consecutive “long” intervals of partition P�i+1, 

nearest to the point x(�i−1)

0 . Since the number of such intervals is small compared to k�i+1, they all belong either to 

�
(�i−1)
0 (x

(�i−1)

0 ) or to �(�i−1)
−q�i−1

(x
(�i−1)

0 ). The following proposition gives an estimate on this distance.

Proposition 6.1. Let ε3 > 0. There exist N4 ∈ N and C38 > 0 such that, for all n ≥ N4, we have

a�i
(x

(�i−1)

0 ) ≤ C38c
( 1

2 −ε3)k�i+1

�i
(6.1)

and

|x(�i )
0 − x

(�i−1)

0 | ≤ C38c
( 1

2 −ε3)k�i+1

�i
|�(�i−1)

0 (x
(�i−1)

0 )|. (6.2)

Proof. Since k�i+1 > C1λ
−�i

1 , Proposition 5.3 implies that a�i
(x

(�i−1)

0 ) = c
1
2 k�i+1+O(λn

6)k�i+1

�i
. Since

|x(�i )
0 − x

(�i−1)

0 | = O
(
c
O(ε(n)k�i+1)

�i

)
a�i

(x
(�i−1)

0 )|�(�i−1)
0 (x

(�i−1)

0 )|, (6.3)

the claim follows. �
Let �0 := 0. Let sn := max{i ∈ N0 : �i ≤ n}.

Proposition 6.2.

x0 := lim
n→∞x

(n)
0 ∈ T1. (6.4)

Proof. Let n > m. It follows from Proposition 6.1 that

|x(n)
0 − x

(m)
0 | = |x(�sn )

0 − x
(�sm)

0 | ≤
sn∑

i=sm+1

|x(�i )
0 − x

(�i−1)

0 | ≤ C39

sn∑
i=sm+1

λ
�i

1 ≤ C40λ
�sm+1
1 , (6.5)

where C39, C40 > 0, and, therefore, (x(n)
0 )n∈N is a Cauchy sequence on T1 and, thus, convergent. �

Lemma 6.3. There exists C41 > 0 such that the following holds for 0 ≤ j < kn+1. For all n ∈ N such that n �= �i , for 
all i ∈N, we have∣∣∣∣∣∣ln

|̃τn(�̃
(n)
qn−1+jqn

)|
|τn,x0(�

(n)
q +jq (x0))|

∣∣∣∣∣∣ ≤ C41. (6.6)

n−1 n
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If n = �i , for some i ∈N, we have∣∣∣∣∣∣ln
|̃τn(�̃

(n)
qn−1+jqn

)|
|τn,x0(�

(n)
qn−1+jqn

(x0))|

∣∣∣∣∣∣ ≤ C41 max{1, λn
6| ln |τn,x0(�

(n)
qn−1+jqn

(x0))||}. (6.7)

Proof. Consider first the case n �= �i , for any i ∈ N. We would like to estimate the ratio

|τn(�
(n)
qn−1+jqn

)|
|τn,x0(�

(n)
qn−1+jqn

(x0))|
=

|τ
n,x

(�sn )

0
(�

(n)
qn−1+jqn

(x
(�sn )

0 ))|
|τn,x0(�

(n)
qn−1+jqn

(x0))|
sn∏

i=1

|τ
n,x

(�i−1)

0
(�

(n)
qn−1+jqn

(x
(�i−1)

0 ))|
|τ

n,x
(�i )

0
(�

(n)
qn−1+jqn

(x
(�i )
0 ))|

. (6.8)

Notice that x
(�i)
0 = T i�i q�i x

(�i−1)

0 . The ratio in the product is the reciprocal of the distortion of the ratio

|τ
n,x

(�i−1)

0
(�

(n)
qn−1+jqn

(x
(�i−1)

0 ))| under the action of T i�i q�i and can be estimated as

|τ
n,x

(�i−1)

0
(�

(n)
qn−1+jqn

(x
(�i−1)

0 ))|
|τ

n,x
(�i )

0
(�

(n)
qn−1+jqn

(x
(�i )
0 ))|

= 1 +O

⎛⎝i�i q�i
−1∑

j=0

|�(n−1)
j (x

(�i−1)

0 )|
⎞⎠ = 1 +O(c

( 1
2 −ε3)C1λ

−�i
1

�i
), (6.9)

since n > �sn .
To estimate the ratio in front of product in (6.8), notice that Proposition 6.1 implies

|x0 − x
(�sn )

0 | = O(c
( 1

2 −ε3)C1λ
−�sn+1
1

�sn+1
)|�(�sn+1−1)

0 (x
(�sn )

0 )|. (6.10)

Due to the Denjoy estimate (2.4), the distances |T qn−1(x0) − T qn−1(x
(�sn )

0 )| and |T qn−1+qn(x0) − T qn−1+qn(x
(�sn )

0 )|
are of the same order. Since, �sn+1 > n, we have that |�(�sn+1−1)

0 (x
(�sn )

0 )| ≤ eV |�(n)
qn−1(x

(�sn )

0 ))| and, therefore, using 
(6.10), we obtain

|�(n)
qn−1(x

(�sn )

0 ))| − |�(n)
qn−1(x0))|

|�(n)
qn−1(x

(�sn )

0 ))|
=O(c

( 1
2 −ε3)C1λ

−�sn+1
1

�sn+1
) (6.11)

and

|�(n−1)
0 (x

(�sn )

0 ))| − |�(n−1)
0 (x0))|

|�(n−1)
0 (x

(�sn )

0 ))|
=O(c

( 1
2 −ε3)C1λ

−�sn+1
1

�sn+1
). (6.12)

Let ξj,x0 := T qn−1+jqnx0 and ξ
j,x

(�sn )

0
:= T qn−1+jqnx

(�sn )

0 . Let rj := |ξj,x0 − ξ
j,x

(�sn )

0
|. Since the distortion of the 

ratio r0/|�(n)
qn−1(x

(�sn )

0 ))| under the action of T jqn , for j = 1, . . . , kn+1, is bounded, we obtain that the ratio in front of 
the product in (6.8) can be estimated as

|τ
n,x

(�sn )

0
(�

(n)
qn−1+jqn

(x
(�sn )

0 ))|
|τn,x0(�

(n)
qn−1+jqn

(x0))|
= 1 +O(c

( 1
2 −ε3)C1λ

−�sn+1
1

�sn+1
). (6.13)

Therefore, the ratio in (6.8) can be estimated as

|τn(�
(n)
qn−1+jqn

)|
|τn,x0(�

(n)
qn−1+jqn

(x0))|
=

sn+1∏
i=1

(
1 +O(c

( 1
2 −ε3)C1λ

−�i
1

�i
)

)
= 1 +O(c

( 1
2 −ε3)C1λ

−�1
1

�1
). (6.14)

The first claim, (6.6), follows from this estimate and Proposition 5.1. To prove the second claim, (6.7) (for n = �i , for 
some i ∈N), we similarly have
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|τn(�
(n)
qn−1+(j+in)qn

)|
|τn,x0(�

(n)
qn−1+jqn

(x0))|
=

|τ
n,x

(�sn )

0
(�

(n)
qn−1+jqn

(x
(�sn )

0 ))|
|τn,x0(�

(n)
qn−1+jqn

(x0))|
|τ

n,x
(�sn−1)

0

(�
(n)
qn−1+(j+in)qn

(x
(�sn−1)

0 ))|
|τ

n,x
(�sn )

0
(�

(n)
qn−1+jqn

(x
(�sn )

0 ))|

·
sn−1∏
i=1

|τ
n,x

(�i−1)

0
(�

(n)
qn−1+(j+in)qn

(x
(�i−1)

0 ))|
|τ

n,x
(�i )

0
(�

(n)
qn−1+(j+in)qn

(x
(�i )
0 ))|

.

(6.15)

Using the same arguments as above, we can estimate the first ratio and the product of the ratios. To estimate the second 
ratio, notice that n = �sn and �(n)

qn−1+(j+in)qn
(x

(�sn−1)

0 ) = �
(n)
qn−1+jqn

(x
(�sn )

0 ). We, therefore, obtain

|τn(�
(n)
qn−1+(j+in)qn

)|
|τn,x0(�

(n)
qn−1+jqn

(x0))|
=

sn+1∏
i=1

(
1 +O(c

( 1
2 −ε3)C1λ

−�i
1

�i
)

)
= 1 +O(c

( 1
2 −ε3)C1λ

−�1
1

�1
). (6.16)

The claim (6.7) follows from identity (6.16), Proposition 5.5 and Proposition 5.7. �
Proposition 6.4.

lim
n→∞

ln |�̃(n)
0 |

ln |�(n)
0 (x0)|

= 1. (6.17)

Proof. Let ε4 > 0. We will estimate first

ln
|�(n−1)

0 (x0)|
|�(n−1)

0 |
= ln

|�(n−1)
0 (x0)|

|�(n−1)
0 (x

(�sn )

0 )|
+

sn∑
i=1

ln
|�(n−1)

0 (x
(�i )
0 )|

|�(n−1)
0 (x

(�i−1)

0 )|
. (6.18)

We use the same notation as in the proof of Lemma 6.3. Since x(�i)
0 = T i�i q�i x

(�i−1)

0 , using the Denjoy estimate (2.4)
and (6.10), we have∣∣∣∣∣ln |�(n−1)

0 (x0)|
|�(n−1)

0 |

∣∣∣∣∣ ≤ C42c
( 1

2 −ε3)C1λ
−�sn+1
1

�sn+1
+ V

sn∑
i=1

|i�i
|, (6.19)

where C42 > 0. Therefore,∣∣∣∣ln |�(n−1)
0 (x0)|
|�(n−1)

0 |

∣∣∣∣
| ln |�(n−1)

0 ||
≤

C42c
( 1

2 −ε3)C1λ
−�sn+1
1

�sn+1
+ V

∑sn
i=1 |i�i

|∑n−1
i=1 | lnai |

≤
C42c

( 1
2 −ε3)C1λ

−�sn+1
1

�sn+1
+ V C29

∑sn
i=1 ε(�i)k�i+1

C43
∑sn

i=1 k�i+1
,

(6.20)

for some C43 > 0. The last quantity can be made arbitrarily small for n ≥ N5, by choosing N5 ∈ N and C1 large 
enough (such that �1 is sufficiently large).

The claim now follows from

ln |�̃(n−1)
0 |

ln |�(n−1)
0 (x0)|

= ln |�̃(n−1)
0 |

ln |�(n−1)
0 | + ln

|�(n−1)
0 (x0)|
|�(n−1)

0 |

(6.21)

and Proposition 4.4 since, for n ≥ N5,∣∣∣∣∣ ln |�̃(n−1)
0 |

ln |�(n−1)
0 (x0)|

− 1

∣∣∣∣∣ < ε4. � (6.22)

Let ϕ be the conjugacy between T and T̃ that satisfies (3.1) and ϕ(x0) = x̃c.
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Lemma 6.5.

lim
n→∞ max

0≤j<kn+1

ln |�̃(n)
qn−1+jqn

|
ln |�(n)

qn−1+jqn
(x0)|

= 1, lim
n→∞ min

0≤j<kn+1

ln |�̃(n)
qn−1+jqn

|
ln |�(n)

qn−1+jqn
(x0)|

= 1. (6.23)

Proof. The claim follows from Lemma 6.3 and Proposition 6.4, taking into account that

∣∣∣∣∣∣
ln |�̃(n)

qn−1+jqn
|

ln |�(n)
qn−1+jqn

(x0)|
− 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
ln

|̃τn(�̃
(n)
qn−1+jqn

)|
|τn,x0 (�

(n)
qn−1+jqn

(x0))|
+ ln

|�̃(n−1)
0 |

|�(n−1)
0 (x0)|

ln |�(n)
qn−1+jqn

(x0)|

∣∣∣∣∣∣∣∣∣ , (6.24)

and that max0≤j<kn+1 |�qn−1+jqn(x0)| decreases at least exponentially with n. �
Proposition 6.6.

lim
n→∞ max

0<j≤kn+2

ln |�̃(n+1)
jqn+1

|
ln |�(n+1)

jqn+1
(x0)|

= 1, lim
n→∞ min

0<j≤kn+2

ln |�̃(n+1)
jqn+1

|
ln |�(n+1)

jqn+1
(x0)|

= 1. (6.25)

Proof. Notice that �(n+1)
jqn+1

(x0) ⊂ �
(n)
qn+1−qn

(x0), for 0 < j ≤ kn+2. Since

|�̃(n+1)
jqn+1

|
|�(n+1)

jqn+1
(x0)|

= |�̃(n+1)
qn+jqn+1

|
|�(n+1)

qn+jqn+1
(x0)|

(T qn)′(z)
(T̃ qn)′(̃z)

, (6.26)

where z ∈ �
(n+1)
jqn+1

(x0) and ̃z ∈ �̃
(n+1)
jqn+1

, we have

∣∣∣∣∣∣
ln |�̃(n+1)

jqn+1
|

ln |�(n+1)
jqn+1

(x0)|
− 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣

(
ln |�̃(n+1)

qn+jqn+1
|

ln |�(n+1)
qn+jqn+1

(x0)|
− 1

)
ln |�(n+1)

qn+jqn+1
(x0)| + ln (T qn )′(z)

(T̃ qn )′ (̃z)

ln |�(n+1)
jqn+1

(x0)|

∣∣∣∣∣∣∣∣∣∣
. (6.27)

The claim follows from the latter identity by using Denjoy bound (2.4) and Lemma 6.5 since |�(n+1)
jqn+1

(x0)| ≤
eV |�(n+1)

qn+jqn+1
(x0))|. �

Proposition 6.7. If n �= �i , for any i ∈N, then

an(x0) = (an). (6.28)

Proof. Similar to (6.8), we have

an

an(x0)
= |τn(�

(n)
0 )|

|τn,x0(�
(n)
0 (x0))|

=
|τ

n,x
(�sn )

0
(�

(n)
0 (x

(�sn )

0 ))|
|τn,x0(�

(n)
0 (x0))|

sn∏
i=1

|τ
n,x

(�i−1)

0
(�

(n)
0 (x

(�i−1)

0 ))|
|τ

n,x
(�i )

0
(�

(n)
0 (x

(�i )
0 ))|

. (6.29)

The ratio in the product is the reciprocal of the distortion of the ratio |τ
n,x

(�i−1)

0
(�

(n)
0 (x

(�i−1)

0 ))| under the action of 

T i�i q�i and, since n > �sn , it can be estimated, similar to (6.9), as

|τ
n,x

(�i−1)

0
(�

(n)
0 (x

(�i−1)

0 ))|
|τ (�i ) (�

(n)
0 (x

(�i )
0 ))|

= 1 +O

⎛⎝i�i q�i
−1∑

j=0

|�(n−1)
j (x

(�i−1)

0 )|
⎞⎠ = 1 +O(c

( 1
2 −ε3)C1λ

−�i
1

�i
). (6.30)
n,x0
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To estimate the ratio in front of product in (6.29), notice that, due to (6.10) and Denjoy estimate (2.4), we obtain

|�(n)
0 (x0))|

|�(n)
0 (x

(�sn )

0 ))|
= 1 +O(c

( 1
2 −ε3)C1λ

−�sn+1
1

�sn+1
) (6.31)

and

|�(n−1)
0 (x0))|

|�(n−1)
0 (x

(�sn )

0 ))|
= 1 +O(c

( 1
2 −ε3)C1λ

−�sn+1
1

�sn+1
). (6.32)

Therefore, the ratio in (6.29) can be estimated as

an

an(x0)
=

sn+1∏
i=1

(
1 +O(c

( 1
2 −ε3)C1λ

−�i
1

�i
)

)
= 1 +O(c

( 1
2 −ε3)C1λ

−�1
1

�1
). (6.33)

The claim follows. �
Proof of Theorem 1.1. To prove the claim we will verify that the assumptions of Proposition 3.1 are satisfied with 
x = x0 and the intervals �j chosen among the intervals of partitions Pn,x0 , for n ∈ N. Proposition 6.4, Lemma 6.5
and Proposition 6.6 give us that, for every ε > 0, there exists N6 ∈ N such that, for all n ≥ N6, 0 ≤ j̄ < kn+1 and 
0 < ĵ ≤ kn+2,

1 − ε

2
<

ln |�̃(n)

qn−1+j̄ qn
|

ln |�(n)

qn−1+j̄ qn
(x0)|

,
ln |�̃(n−1)

0 |
ln |�(n−1)

0 (x0)|
,

ln |�̃(n+1)

ĵqn+1
|

ln |�(n+1)

ĵqn+1
(x0)|

< 1 + ε

2
. (6.34)

Let us choose δ > 0 small enough such that the interval [x0 − δ, x0 + δ] is contained inside the interval �̄(N6)
0 . For 

every y ∈ (−δ, δ), there exists n > N6, such that the interval [x0, y] ⊂ �
(n−1)
0 (x0) and [x0, y] �⊂ �

(n+1)
0 (x0). Consider 

the following partitions of �(n−1)
0 (x0): Qn+1,x0 := {�(n)

qn−1+j̄ qn
(x0) : 0 ≤ j̄ < kn+1} ∪ {�(n+1)

0 (x0)} and

Gn+1,x0 := Qn+1,x0\{�(n)
qn+1−qn

(x0)} ∪ {�(n+2)
qn+1−qn

(x0)} ∪ {�(n+1)

ĵqn+1
(x0) : 0 < ĵ ≤ kn+2}. (6.35)

Denote the corresponding partitions of �̃(n−1)
0 by Q̃n+1 and G̃n+1, respectively.

Recall that if cn > 1, an and ̃an are bounded from below by a positive constant (see Proposition 3.3 in [12]). Due 
to Proposition 6.7, an(x0) is also bounded from below by a positive constant.

Consider first the case cn < 1. It follows from the discussion above and the Denjoy estimate (2.4) that the lengths 
of the intervals �(n)

qn+1−qn
(x0), �

(n)
0 (x0) and �(n+1)

0 (x0) are of the same order. Due to the Denjoy estimate (2.4), for 
every C44 > 0, there exists ε5 > 0, such that if kn+1 ≤ C44, then an(x0) > ε5. For every ε6 > 0, there exist �1 > 0, 
N7 ≥ N6, and C44 > 0 such that if n ≥ N7 and kn+1 > C44, then |f ′

n,x0
(z) − cn| ≤ ε6, for z ∈ [−�1, τn,x0(T

−qnx0)]. 
Therefore, the length of the intervals �(n)

qn−1+j̄ qn
(x0) ⊂ τ−1

n,x0
([−�1, 0]) decreases exponentially with j̄ . Consequently, 

if y ∈ �
(n)

qn−1+j̄ qn
(x0), for some j̄ , there is an interval of partition Qn+1,x0 whose length is of the same order as |x0 −y|: 

if j̄ < kn+1 − 1, then there is j such that j̄ < j < kn+1 and |�(n)
qn−1+jqn

(x0)| = (|x0 − y|); if j̄ = kn+1 − 1, then 

|�(n+1)
0 (x0)| = (|x0 − y|). Similarly, if j̄ < kn+1 − 1, then |�̃(n)

qn−1+(j̄+1)qn
| = (|ϕ(x0) − ϕ(y)|); if j̄ = kn+1 − 1, 

then |�̃(n+1)
0 | = (|ϕ(x0) − ϕ(y)|). This interval satisfies conditions (i)–(iv) of Proposition 3.1. By (6.34), condition 

(v) of Proposition 3.1 is also satisfied with γ = 1 − ε
2 .

If cn > 1, |�(n+1)
0 (x0)| can actually be much smaller than |�(n)

qn+1−qn
(x0)|, if kn+2 is very large. In this case, we need 

to consider the extended partition Gn+1,x0 of �(n−1)
0 (x0). Since the lengths of the intervals �(n)

qn+1−qn
(x0), �

(n)
0 (x0)

and �(n−1)
0 (x0) are of the same order, if y ∈ �

(n)

qn−1+j̄ qn
(x0) and j̄ < kn+1 − 1, then |�(n)

qn+1−qn
(x0)| = (|x0 − y|)

and |�̃(n)
qn+1−qn

(x0)| = (|ϕ(x0) − ϕ(y)|). If y ∈ �
(n)
qn+1−qn

(x0), then either y ∈ �
(n+2)
qn+1−qn

(x0) or y ∈ �
(n+1)

ˆ (x0) for 

jqn+1
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some ĵ satisfying 0 < ĵ ≤ kn+2. Since cn+1 < 1, for every ε7 > 0, there exist �2 > 0, N8 ≥ N6 and C45 > 0 such that 
|f ′

n+1,xqn+1−qn
(z) −c−1

n | ≤ ε7, for z ∈ [−1 +�2, τn+1,xqn+1−qn
(T 2qn+1x0)], for n ≥ N8 and kn+2 > C45. Similar analysis 

as before gives us that if y ∈ �
(n+2)
qn+1−qn

(x0) or y ∈ �
(n+1)

ĵqn+1
(x0) for some ĵ < kn+2, there is j satisfying ĵ < j ≤ kn+2, 

|�(n+1)
jqn+1

(x0)| = (|x0 − y|) and |�̃(n+1)
jqn+1

| = (|ϕ(x0) − ϕ(y)|); if y ∈ �
(n+1)
qn+1 (x0), then |�(n+1)

0 (x0)| = (|x0 − y|)
and |�̃(n+1)

0 | = (|ϕ(x0) −ϕ(y)|). Therefore, conditions (i)–(iv) of Proposition 3.1 are satisfied. By (6.34), condition 
(v) of Proposition 3.1 is also satisfied with γ = 1 − ε

2 .
Proposition 3.1 shows that ϕ and ϕ−1 are (1 − ε)-Hölder continuous at x0 and ̃xc, respectively. By exchanging the 

roles of T and T̃ , due to the symmetry in the definition (5.7), we can easily see that ϕ−1 and ϕ are (1 − ε)-Hölder 
continuous at ϕ(xc) and xc, respectively. The claim follows. �
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