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Abstract

We show that the Cauchy problem for a class of dispersive perturbations of Burgers’ equations containing the low dispersion
Benjamin—-Ono equation

du—D¥0u=0,(u?), O<a<l,

is locally well-posed in H* (R) when s > 5o := % - %' As a consequence, we obtain global well-posedness in the energy space

H%(R) as soon as 5 > sq, i.e. a > g
© 2018 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

This paper is concerned with the initial value problem for a class of dispersive perturbations of Burgers’ equation
containing in particular the low dispersion Benjamin—Ono equation

du — D%dpu = 8, (u?), (1.1)

where u = u(x, t) is a real valued function, x e R, r € R, o > 0 and D¢ is the Riesz potential of order —c, which is
given via Fourier transform by

DIG(E) = [£]°P(E) .
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The cases @ =2 and o = 1 correspond to the well-known Korteweg—de Vries (KdV) and Benjamin—Ono (BO) equa-
tions. In the case o = 0, d,u is a transport term, so that there is no dispersion anymore and equation (1.1) corresponds
merely to the inviscid Burgers equation.

While the Cauchy problem associated with (1.1) is now very well-understood in the case o > 1, our objective here
is to investigate the case of low dispersion when 0 < o < 1, which seems of great physical interest (see for example
the introductions in [20,22] and the references therein). In particular, in the case o« = %, the dispersion is somehow
reminiscent of the linear dispersion of finite depth water waves with surface tension. The corresponding Whitham
equation with surface tension writes

du — w(Dy)dxu + 9, (u?) =0, (1.2)

where u = u(x,t) is a real valued function, x € R, t € R, w(Dy) is the Fourier multiplier of symbol w(§) =
1 1

(%) ’ (1 + & 2)7 and t is a positive parameter related to the surface tension. Note that for high frequencies

w(€) ~ |&| %, which corresponds exactly to equation (1.1) in the L? critical case.
Equation (1.1) is hamiltonian. In particular, the quantities

M(u):/uz(x,t)dx, (1.3)
R
and
H(u):/(%|D%u(x,t)|2+§u3(x,t))dx (1.4)
R

are (at least formally) conserved by the flow associated to (1.1). Moreover, equation (1.1) is invariant under the scaling
transformation

w; (x, 1) = A%u(x, 2%t

for any positive number A. A straightforward computation shows that || || s = A° +a—3 5.1l 75, and thus the critical
index corresponding to (1.1) is 5, = % — o In particular, equation (1.1) is L>-critical for o = % and energy critical for
a=1

Next we recall some important facts about the initial value problem (IVP) associated with (1.1) in L2-based Sobolev
spaces H*(R) 2 For results in weighted Sobolev spaces, we refer to Fonseca, Linares and Ponce [10] and the references
therein. It was proved by Molinet, Saut and Tzvetkov [25], that, due to bad high-low frequency interactions in the
nonlinearity, the IVP associated with (1.1) cannot be solved by a contraction argument on the corresponding integral
equation in any Sobolev space H*(R), s € R, as soon as o < 2. Thus, one needs to use compactness arguments based
on a priori estimates on the solution and on the difference of two solutions at the required level of regularity.

Standard energy estimates, the Kato—Ponce commutator estimate and Gronwall’s inequality provide the following
bound for solutions of (1.1)

T
¢ Jo loxull codt
lullpsems < clluollmge Jo Nozullpgedt

Therefore, one way to obtain a priori estimates in H* is to control ||d,u]| 1L at the H*-level. This can be done easily
in H %+(R) by using the Sobolev embedding H %JF(R) <> L°°(R). In the Bejamin—Ono case « = 1, Ponce [31] used
the smoothing effects (Strichartz estimates, Kato type smoothing estimate and maximal function estimate) associated

with the dispersive part of (1.1) to obtain well-posedness in H 3 (R). Later on, Koch and Tzvetkov [21] introduced
a refined Strichartz estimate, derived by chopping the time interval in small pieces whose length depends on the

spatial frequency of the solution, which allowed them to prove local well-posedness for BO in H %JF(R). This refined
Strichartz estimate was then improved by Kenig and Koenig [17] and the local well-posedness for BO pushed down

2 Recall that the natural space where the quantities (1.3) and (1.4) make sense is H b (R), at least when o > %
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to H gt (R). Recently, Linares, Pilod and Saut [22] extended Kenig and Koenig’s result to (1.1) in therange 0 < o < 1
by proving that the corresponding initial value problem is well-posed in H*(R) for s > % — %"‘. Note that even very few

dispersion (when 0 < o <« 1) allows to enlarge the resolution space, which is not the case anymore when there is no
dispersion. Indeed, it is known that the IVP associated with Burgers’ equation is ill-posed in H 3 (R) (cf. Remark 1.6.
in [22]).

Another technique to obtain suitable estimates on the solutions at low regularity is the use of a nonlinear gauge
transformation which allows to weaken the bad frequency interactions in the nonlinear term. Such transformation
was introduced by Tao [34] for the Benjamin—Ono equation and enabled him to prove global well-posedness for BO
in H'(R). By using this gauge transformation in the context of Bourgain’s spaces X*-?, Burq and Planchon [6], respec-
tively Ionescu and Kenig [15], proved that the IVP associated with BO is well-posed in H %"’(R), respectively L*(R).
We also refer to Molinet and Pilod [26] for another proof of Ionescu and Kenig’s result with stronger uniqueness

result (for example unconditional uniqueness in H }T+(R)). In [13], Herr, Ionescu, Kenig and Koch were able to ex-
tend Tonescu and Kenig’s result to the whole range 1 < « < 2. By using a paradifferential gauge transformation, they
proved that the IVP associated to (1.1) is globally well-posed in L>(R) for 1 < a < 2.

Recently Molinet and Vento [29] introduced a new method to obtain energy estimates at low regularity for strongly
nonresonant dispersive equations. It starts with the classical estimate for the dyadic piece Pyu localized in turn of the
spatial frequency N,

t
IPyull3 ;> S I Pyuoli3, + sup / f Pydy(u?) Pyudxdt| . (1.5)
T ox Y te]0,T[
0 R
To control the last term on the right-hand side of the energy estimate (1.5), one performs a paraproduct decomposition
| pvaedpvu= [ apvzyzorvr [ o Py P (1.6)
Rx[0,1] Rx[0,¢] Rx[0,1]

and put the derivative on the lowest spatial frequencies by “integrating by parts”.? The idea is then to perform a dyadic
decomposition of each function in term of its modulation variable and to put one of them (the one with the greatest
modulation) in the space X*~!-!. This allows to recover at least |Q|N~!' where € is the resonance function. The
price to pay is to handle the characteristic function 19 ,; which appears after extending the functions to R? and is not
continuous in X*~1'1. On the positive side, the X*~!'! norm of u is relatively simple to control by using the classical
linear estimates in Bourgain’s spaces as follows

lulls11 S ol s + 18 13~ @2 S ol + 15 ) e (1.7)

Thus, for s > %, one can easily concludes the bilinear estimate since H*(R) is a Banach algebra. By using this
method, Molinet and Vento proved that the IVP associated with (1.1) is locally well-posed in H*(R) for s > 1 — %
when 1 <« < 2. Note that Guo [12] also proved local well-posedness in H*(R) for s > 2 —« when 1 <a <2
without using a gauge transformation. He used instead the short time Bourgain’s spaces in the way of Ionescu, Kenig
and Tataru in [16].

Throughout this paper we consider the class of dispersive equations

tt + Logiu = dx(u), (1.8)

where u = u(x, t) is a real-valued function, x € R, r € R, o > 0 and the linear operator L, satisfies the following
hypothesis.

Hypothesis 1. We assume that L, is the Fourier multiplier operator by iwy41 wWhere wy41 is a real-valued odd
function belonging to C!(R) N C*°(R*) and satisfying: There exists £y > 0 such that for any & > &, it holds

108 wei1(8) ~ 1E1T1F, B e{0,1,2), (1.9)

3 Since we work with frequency localized functions, this corresponds actually to use suitable commutator estimates.
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and
0P wot1(8) S 1E1*T17F, B> 3. (1.10)

Remark 1.1. We easily check that the following operators satisfy Hypothesis 1:
(1) The purely dispersive operator Ly = —D$ 0y, a > 0.

&
(3) The linear Intermediate Long Wave operator Ly 41 = 9, D, coth(D,) fora =1.

1 1
(2) The Whitham operator with symbol w(§) = & (M) (147822, t>0fora=1/2.

In this article, we show that the initial value problem (IVP) associated with (1.8) is locally well-posed in H*®(R)

for s > % — 57“ when 0 < o < 1, which improves Linares, Pilod and Saut’s result in [22].

Theorem 1.2. Assume that Ly satisfies Hypothesis 1 with 0 < a <1 and let s > s, = % - %T“. Then, for any
ug € H°(R), there exist T = T (||ugl| ggs) > 0 and a unique solution u of the IVP associated with (1.8) in the class

C(0,T]: H'(R) N X5 "' N L2(0, T : WSt (1-0)-.20(Ry). (1.11)
Moreover, for any 0 < T’ < T, there exists a neighborhood U of ug in H* (R) such that the flow-map data solution

vo > v is continuous from U into C([0, T'] : H* (R)).

Remark 1.3. In the case « = 1 and Ly41 = — D% 9y, our result provides a proof of the local well-posedness for BO in
H %JF(R). In other words, we recover Burq and Planchon’s result in [6] without using a gauge transformation.

If we assume moreover that the symbol wy 4 satisfies

lwg+1()| S 1&] for [§] S 1, (1.12)

we easily see that the Hamiltonian

1 1
Hs1 () = /(5|A“/Zu(x, D + g (x, 0)dx
R

where A%/? is the space Fourier multiplier defined by

1/2

v(§),

Wy +1 é)

§

as well as (1.3) are conserved by the flow associated to (1.8). Iterating Theorem 1.2, we obtain global well-posedness
as soon as o > %.

@(s)z‘

Corollary 1.1. Assume that Ly satisfies Hypothesis 1 and (1.12) with g < o < 1. Then the Cauchy problem associ-
ated with (1.8) is globally well-posed in the energy space H b (R).

Remark 1.4. The operators defined in Remark 1.1 also satisfy assumption (1.12).

Remark 1.5. Based on numerical computations by Klein and Saut [20], the global well-posedness of (1.1) was con-
jectured [20,22] in the L>-subcritical case o > % Here, we answer to part of this conjecture when o > g. Up to our
knowledge, this is the first global existence result for o < 1.



L. Molinet et al. / Ann. 1. H. Poincaré — AN 35 (2018) 1719-1756 1723

Remark 1.6. It would be interesting to obtain results on the dispersion decay of the solutions associated to small data
for (1.1) with low dispersion. Some progress in this direction were recently done by Ifrim and Tataru [14] for the
Benjamin—Ono equation.”*

Remark 1.7. In [23], Linares, Pilod and Saut showed that the solitary waves associated to (1.1) are orbitally stable
in the energy space H 3 (R) as soon as « > %, conditionally to the global well-posedness in H 3 (see Remark 2.1
in [23]). We also refer to Arnesen [2] and Angulo [1] for other proofs of this result. Theorem 2.14 in [23] combined
with Theorem 1.2 provides then a complete orbital stability result in the energy space as soon as o > %.

Now, we discuss the main ingredients in the proof of Theorem 1.2. Since it is not clear whether one can take
advantage of a gauge transformation in the case o < 1 or not, we elect to follow the energy method introduced in [29].
However, we need to add several key ingredients.

Firstly, in order to close the bilinear estimate (1.7) in H*(R) for s < % we use the norm || - || L2150 which is in turn

estimated by using the refined Strichartz estimate as in [21,17,22]. Then, we can control the last term on the right-hand
side of (1.7) by using the fractional Leibniz rule as || J} (u?) ||L‘;°H; < ||u||LzTLgo ||J)fu||L<;oL§.

The norm || - || 2L is also an important ingredient to close the energy estimate (1.5). This creates a serious
technical difficulty. Indeed to handle some commutators with those norms, we need then to use a generalized Coifman—
Meyer theorem for multilinear Fourier multipliers m (&1, - - - , &,) satisfying the Marcinkiewicz type condition

n
0P m&, - &) S[[16177, vBeN.
i=1
Such a theorem was proved by Muscalu, Pipher, Tao and Thiele [30] in the bilinear case and can be deduced from a
result of Bernicot [3] in the multilinear case (see Section 2.3 for more details).
With this theorem in hand, we can estimate the first term of (1.6) corresponding to the high—high frequency in-
teractions by using the norms |ju|| xih and ||J xl_“u Il 121 a8 explained above. For the second term, we would like

to integrate by parts and use the || - || ys—1.1-norm as in [29] but the resonance relation |Q| ~ Ny, N5, would not
be sufficient to recover the “big” derivative we lost by using this norm. This is one of the main difficulty to work at
low dispersion o < 1. For this reason, we modify the energy by adding a cubic term, constructed so that the contribu-
tion of its time derivative coming from the linear part of the equation cancels out the high—low frequency term. It is
worth noticing that this modified energy is defined in Fourier variables in the same spirit of the modified energy in the
I-method [9]. We also refer to our recent works [27,28] on the modified Korteweg—de Vries equation both on the line
and on the torus for a similar strategy using a modified energy. Note that we gain a factor N,,;, Ny, on the additional
cubic term. On the other hand, the contribution of its time derivative coming from the nonlinear part of the equation
is of order four and contains one more spatial derivative. For o < 1, it is clear that when this spatial derivative falls on
the term with the highest spatial frequencies we should lose Nr;iln N;,;;‘ which is not acceptable for some high—low
frequency interaction terms. The crucial observation here is that there is a fundamental cancellation between two of
those terms exhibiting the baddest high—low frequency interactions.

Those ingredients are enough to derive a suitable a priori estimate for a solution of (1.8). However, things are
more complicated to get an estimate for the difference of two solutions # and u», since the corresponding equation
lacks of symmetry. For this reason, we are only able to derive an energy estimate for the difference w = u; — u»
at low regularity H°, o < 0, and with an additional weight on low frequency. This is sufficient for our purposes,
since we only need this estimate for the difference of solutions having the same low frequency part in order to prove
the uniqueness and the continuity of the flow map (cf. [15]). However, the bilinear estimate is not straightforward
as before when working with negative regularity H°, o < 0. To overcome this last difficulty, we follow the strategy
in [29] and work with the sum space Fo2 = x5 + X*()+ instead of working with X°~1! only.

Finally, it is worth noticing that even in the particular case of purely power dispersion where scaling invariance
occurs, equation (1.8) is L2-super critical for & < 1/2 and thus we will not be able to use a classical scaling argument

4 Note also that the authors give another proof of the well-posedness of the Benjamin—Ono equation in L2 without using the X* b structure but
still based on Tao’s renormalization argument together with modified energies.
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to prove the local existence result. Roughly speaking, our method consists in cutting the spatial frequencies of the
solution into two parts P<y, and P. y,. We gain some positive factor of the time 7' (but lose some positive factor
of Np) when estimating the low frequency part whereas we gain a negative factor of Ny when estimating the high
frequency part. This will allow us to close our estimates on ]0, T[ for smooth solution to (1.1) by taking Ng big
enough and 7' > 0 small enough. Finally, the continuity of the solution as well as the continuity with respect to initial
data will be proved by using a kind of uniform decay estimate on the high spatial frequencies of the solution.

The paper is organized as follows: in Section 2, we introduce the notation, define the function spaces and state some
important preliminary estimates related the generalized Coifman—Meyer theorem. In Section 3, we derive multilinear
estimates at the L?-level. Those estimates will be used in Sections 4 and 5 to prove estimates for the solution and the
difference of two solutions of the equation. Finally, we give the proof of Theorem 1.2 in Section 6.

2. Notation, function spaces and preliminary estimates
2.1. Notation

For any positive numbers a and b, the notation a << b means that there exists a positive constant C such thata < Cb,
and we denote a ~ b when a < b and b < a. We also write a < b if the estimate b < a does not hold. If x € R, x4,

respectively x_ will denote a number slightly greater, respectively lesser, than x. We also set (x) = (1 + xz)% .

Foru =u(x,t) € S’(Rz), Fu = u will denote its space~time Fourier transform, whereas F,u, respectively F;u
will denote its Fourier transform in space, respectively in time. For s € R, we define the Bessel and Riesz potentials
of order —s, J; and D}, by

Jiu=F; (&) Feu) and Dju = F (|E° Feu).
Throughout the paper, we fix a smooth cutoff function 1 such that
ne C(C;O(R)v 0< n=< 1, M,y = I and Supp(’?) C[-2,2]. 2.1

We set ¢ (£) := (&) — n(2¢). Let ¢ € C3°(R) be such that a‘i[l ,, =1 and supp () C £[1, 4]. For I € Z, we define
1

G2 (€)= Q27E),  Pu(E) =0 () :=¢(27E),
and, for [ € N*,

Yy (§,7) = ¢y (T — we+1(8)).

By convention, we also denote

V1€, 1) =021 — ©at1(5))).

Any summations over capitalized variables such as N or L are presumed to be dyadic. Unless stated otherwise, we
work with homogeneous dyadic decomposition for the space frequency variables and non-homogeneous decompo-
sitions for modulation variables, i.e. these variables range over numbers of the form {2% : k € Z} and {2* : k € N}
respectively. Then, we have that

N
doen@E) =1 YeeR', supp(@n) C (5 <[5 <2N). N e (2 :ke),
N>0

and
Zm(s, 1)=1 V(E, 1)eR?, Le{2":keN).
L>1
Let us define the Littlewood—Paley multipliers by

Pyu=F oy Feu).  Poyu=F;'(@nFeu) Qru=F'(yLFu).

P>y = ZKzN Pk, PZN = ZKzN P.g, P<y = ZKSN Pk, P<y = ZKSN Peg, Q> := ZKzL Qg and
Q<1 = ZKsL Qk . For the sake of brevity we often write uy = Pyu, u<y = P<yu, - -
Finally, if N, N, are two dyadic numbers, we denote N1 vV N, = max{Ny, N2} and N A N = min{Ny, N, }.
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2.2. Function spaces

For 1 < p < 0o, L? denotes the usual Lebesgue space and for s € R, H® is the L2-based Sobolev space with norm
| flles = 1IJS fllz2. If B is a space of functions on R, 7 > 0 and 1 < p < 0o, we define the spaces L’;Bx and L7 B,
by the norms

1Al s, = WA Lr o7y and Ifllpp, = I IBIL @) -
If M is a normed space of functions, we will denote M its subspace associated with the weighted norm:

lullgy = 17 (11 Fee@))ll -

For s, b € R we introduce the Bourgain space X*-? associated with the dispersive Burgers’ equation as the comple-
tion of the Schwartz space S(R?) under the norm

luall 5.0 = 4E)* (T — @arp1 ()" Frxal| 2.
We will also work in the sum space F*? = X s=lbts + X%+ endowed with the norm

llull ps.o = inf {lu; ooy + luallyses s u=ur+ us}. (2.2)
For s € R, we define our resolution space Y* by the norm

—se)+(1—a)-

lullys = lull oo g + lallsr 4 170 ) o 2.3)
We will also need to consider the space Z* equipped with the norm

lullze = el ggopy +llull g + 17700 o

Finally, we will use restriction in time versions of these spaces. Let T > 0 be a positive time and M be a normed space
of space—time functions. The restriction space Mt will be the space of functions u : R x ]0, T[ — R satisfying

lullpr, =inf{l|[@]lar : 2 : Rx R— R, U|rxjo,r[ = u} < 00.
2.3. Generalized Coifman—Meyer theorem

Definition 2.1. For n > 1 and x a bounded measurable function on R”, we define the multilinear Fourier multiplier
operator IT) on S(R)" by

n
I (fi, .0 f)) () = / X8 [ FiEpe~@tidg, .. dg, . 24)
R~ j=1
If o is a permutation of {1, ..., n}, then it is clear that
I (fis oo f) =T (foys s fom) (2.5)

where x5 (&1, ....&) = x(&s(1)s - - -, Eo(ny). For any ¢ > 0, we define R} =R" x 10, ¢[ and for uy,...u,41 € S(R?),
we set

G;l’x(ul, e Upy]) = f l'l')'( U1, uy)tine) dxdr. (2.6)
R,

When there is no risk of confusion, we will write G} = G} , with x € L>(R").
From Plancherel theorem, it is not too hard to check that

G;l,x(ul, e Upy]) = / H;l? (Upg1,u2, ..., up)u dxdt 2.7
R,
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where x (€1,...,&) = x(— Z?:l &,&,...,&,). We deduce from (2.5)—(2.7) that

G?,X W1, s Upt1) = G?’XJ (Uo(ys -5 Ua(n+1)) (2.8)

for any permutation o of {1, ...,n + 1} with an implicit symbol x, € L (R") satisfying || x5 |z < || x ||z
The classical Coifman—Meyer theorem [8] states that if x is smooth away from the origin and satisfies the
Hormander—Milhin condition

19 x () < 1E17F, (2.9)

for sufficiently many multi-indices 8 € N”, then the operator I"I;l( is bounded from LP!(R) x --- x LP»(R) to LP(R)
and satisfies

T s Sl ST s (2.10)

j=1
aslongasl<pj§+oo,1§p<+ooandlzil+...pin_
In the sequel, we will need the following generalized version of Coifman—Meyer’s theorem.

Theorem 2.2. Let 1 < py,---, pp < +00 and 1 < p < +00 satisfy % = p—ll +Ln Assume that f1, ..., fn € S(R)
are functions with Fourier variables supported in {|€| ~ N;} for some dyadic numgers Ni, ..., Ny.
Assume also that x € C°°(R") satisfies the Marcinkiewicz type condition

VB=(B1,.... B N", [P x®IS] 16177, (2.11)

i=1

on the support of [[7_, fi(&). Then,

T Cfreee s e S T es (2.12)

j=1

with an implicit constant that doesn’t depend on Ny, ..., Ny.

Remark 2.3. Condition (2.9) is too restrictive for our purpose. For instance if N; < N; are dyadic numbers and

x &1, 86) =on, EDon, (62),

then x clearly satisfies condition (2.11), but |0g, x (51, &2)| ~ N]_l > Nz_1 ~ | (&1, &)|71, so that x does not sat-
isfy (2.9).

Theorem 2.2 was proved by Muscalu, Pipher, Tao and Thiele [30] in the case of bilinear Fourier multipliers® (in
dimension 2).

One could certainly prove Theorem 2.2 by extending the arguments in [30] to the multilinear case.® Instead, we
will deduce Theorem 2.2 as a Corollary of Bernicot’s theorem in [3].

Theorem 2.4 (/3], Theorem 1.3). Suppose 1 < p1,...,pp <00, 1 <p<ooand1/p=1/p1+ ...+ 1/py. Assume
that y € C*°(R") satisfies

[Ti (21
dy.(§,0)11°

for some Ay, ..., Ay >0 and where d,_is the metric defined by dy(§,0) = >_i_, Ai|&;|. Then we have for any smooth
functions fi,..., fn € S(R)

VB=(B1,.... B eN", 3Py (&)< (2.13)

5 Note that even the extremal case where one the pi is equal to o0 is proved.
6 Personal communication by Terence Tao.
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T Cfr s fd) e ST Uil (2.14)

i=1

with an implicit constant that doesn’t depend on A.

Proof of Theorem 2.2. Noticing that

T (free fi) = i fo)

with ¥ (1, -+, &) = x (&1, -+, &) [1/=; d~n, (&), it suffices to show that ¥ satisfies (2.13) for suitable Ay, -,

An > 0. But setting A = (%—’l' Ny

N, 1), this is easily checked since on the one hand

n n

v - —vi 2(r) ¢ i —Bi

0P x@1S 20 @[V G STV P,
y<pB i=1 i=1

and on the other hand,

Bi
n N,
1_[;1=1 |)\'l|ﬁ[ ~ Hi:l (W’) ~ li[N_ﬂi
d,(E,0 18 18 i
2.(§,0) ( Sy ‘lé\’,l) il

for |&| ~ N;. O

Remark 2.5. It is worth noticing that if two symbols x, x2 satisfy (2.11), then this condition also holds for the product
function yp x». This is easily obtained thanks to the Leibniz rule.

Lemma 2.6. Let 0 < « < 1. Let Ny < Nj be two dyadic numbers. Then the symbol y defined on R? by
N{N¥
Q2(81,62)

where 2 is defined in (3.1), satisfies the Marcinkiewicz condition (2.11) on the set {(&1,&) € R? : |&1] ~ N,
|E2] ~ N2}

x(&1,86) =

Proof. Let (£1, &) € R? be such that |&| ~ N; and |£| ~ Na. First we estimate 32 Q, (&1, &) for B = (B1, B2) € N2.
From Lemma 3.1 and the mean value theorem we easily get that

108 Qo (81, £2)| S NINSTP2if g1 =0, B2 > 0, (2.15)
108, E) SNSTPL i g > 1, 82> 1or B=(1,0), (2.16)
0P (&1, &) SNITTPLir g > 2,8 =0, (2.17)

Now classical derivative rules lead to

1 1 .
P @.J) i
(s |5 X w11 0.,

r€Cp 0<i<p;
0<j=<B2

where

Cp= 1y =Wijo=i<p : DT ovii=1Bl Y ivij=p1. Y. jvij=5h
0=j=P2 o<i<p 0<i<pi 0<i<py
0<j=pB2 0<j=pB2 0=<j=pB2

Therefore, we deduce from (3.2) as well as (2.15)—(2.16)—(2.17) that
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|&11P11821P210P x (51, &)

NN P2 j B arisiy (a+1—i— )y,
< 71\, 1,0 (N]Naij)yo’j' N - i.O. N, —i= i,]
VeC,g (N1N§)IBIH1 ]l:!) 2 lll 1 ]<1i_<[/31 2
1<j<p>
< max N, VN2 ,
}/EC;}
with
B2 Bi
Ay =ZVO,]‘ +Z(a+ 1 —Dyio— B2
j=0 i=2
and
B2
By =ayio+ ) (@—wj+ Y (a+l—i—jyij+p—alfl
Jj=0 1<i<p
1<j<p>

Noticing that for y € Cg we have

B2
Br=IBl—Bi= D vij— Y. ivij=y.wj— », =Dy

0<i<p 0<i<pi Jj=0 1<i<p;
0<j<B2 0<j<B2 0<j<B2
we infer
y—erm—Z(z —Dyio+ Y. =Dy,
1<i<pi
0<j<B
_(XZV10+ Z @ - ])sz
I<i<pi
1<j<B

Similarly, we get

By=a|-IBl+wotviot Y. vij|+|B— D ivii— Y. G-y,

0<i<py 0<i<p 1<i<pi

1=j=ph2 I=j=p2 1=j=p2
Bi
=—a) yio— », G—Dyj.
i=2 1<i<p
1<j<p

We conclude that A, > 0 and A, = —B,,, which provides

A,+B
|sl|ﬁ'|sz|ﬂ2|aﬂx<sl,sz>|5né%xN/ SO
yelg

1 1
2.4. Basic estimates on the sum space F%2 = X~11 4 x0.(2)+

By definition of sum space in (2.2), we always have by taking the trivial decompositions (u1,u2) =

(w1, uz) = (0, u) that
||uI|F0,% <min{|julx-1.1, [lu IIXO,(%)+ }.

The next lemma tells us when the reverse holds true.

(u,0) or

(2.18)



L. Molinet et al. / Ann. 1. H. Poincaré — AN 35 (2018) 1719-1756 1729

Lemma 2.7. Let u € FO’% and L, N be two dyadic numbers.
If1 <L < N?, then

1021wl SNLTNQz unl o - (2.19)
IfL > (N)?, then

_1
10> runllyz, S L7205 unll o) - (2.20)
Proof. It directly follows from the estimate

1
102wz, S LTV LTIz unll oy O (221)

3. LZ-multilinear estimates
3.1. L2%-bilinear estimates

We follow the strategy in [29] to show L>-bilinear estimates related to the dispersive symbol.
Let us define the resonance function of order 2 associated with (1.1) by

2061, 8) = wer161 +8&2) — wer1(61) — wer1(52) (3.1

where wy 41 is the dispersive symbol defined in Hypothesis 1. For &1, &, &3 € R, it will be convenient to define the
quantities |Eax| > 1&Emed| = |&min| to be the maximum, median and minimum of |£1], |&>| and |&3| respectively.
For the sake of completeness, we recall a few results proved in [29].

Lemma 3.1 (/29], Lemma 2.1). Let o > 0. Let £1, & € R, and &3 = — (&1 + &). Then
(221,82 ~ |§min||§max|a- (3.2)

Lemma 3.2 (/29], Lemma 2.3). Let L > 1, 1 < p < oo and s € R. The operator Q <y, is bounded in Lf)H)f uniformly
inL>1.

For any T > 0, we consider 17 the characteristic function of the interval ]0, T[ and use the decomposition

high Tow -
lr =17%+17%,  18%@ =n@/R)ir(r) (3.3)

for some R > 0.

Lemma 3.3 (/29], Lemma 2.4). Forany R > 0 and T > 0, it holds
high _
7% START (3.4)

and

115 % I S 1. (3.5)
Lemma 3.4 (/29], Lemma 2.5). Let u € L2(R?). Then forany T > 0, R > 0 and L > R, it holds

1OLAF R 2 S| Qi 2

We are now in a position to prove the main result of this section.
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Proposition 3.5. Let 0 < o < 1. Assume 0 <t < 1 and u; € Z°, i = 1,2, 3 are functions with spatial Fourier support
in {|€| ~ N;} with N; dyadic. Let x € C*°(R?) satisfy the Marcinkiewicz condition (2.11).

If Npin S 1, then
|G MURTRTEBS N,,im||ul||L;>cL§||M2||L3X||M3||Lgx . (3.6)

If Nypin > 1, then

3
1
-2 1
G2, uz )| S N2 NS T il o (3.7)
i=1

where Gt2qx is defined in (2.6).
Proof. From (2.8) we may always assume N; < N < N3. Estimate (3.6) is easily obtained thanks to Plancherel
identity and Bernstein inequality. Thus it remains to deal with the case N1 > 1. By localization considerations, G%X

. . 1+5 _ .
vanishes unless Ny ~ N3. Setting R =N, * N7 ! we split GIZ,X as

hi
G,%le,uz,ua)— 2 (U wy uz) + GE (1% ug, u3)
G2 Jhigh + G[Z,low’ (3.8)
where G2 (u,v,w) = fRZ l'[2 (u, v)w and 1?’5}’, ll”w are defined in (3.3).
The contribution of G}’ hlg " is estimated thanks to Lemma 3.3 as well as Holder inequality by
2,high high
G S N2 IR Nl ll oo p2 luall oo 2 sl oo 2 (3.9)

_«

<N TN H||u Il 2o
i=1

2,low

To evaluate the contribution of G;>*"", we use Lemma 3.1 and we get

G =G (Q e (1R 1), u, u3)
+ Goo(Q<<N|N3m(1[’OIR£u1)s QleNgMZ3 M})
+ G2 Qe ve (1811, Oy Ne iz, Qo NoU3)

—. G2 low | GtZéow + Gt2 éow . (3.10)

2, low

It is worth noticing that since Nj > 1, we have R < N1 N3'. Therefore the contribution of G;"|"" is easily estimated

thanks to Lemma 3.4, Theorem 2.2 and estimate (2.21) by

2,low

2 l
G 7TS I (@ vy vg (LR 1) u) 21 llusll 200

SO 5w we (17 RuD 2 Nuallpoor2lusll 2y
3

—(bys _q l_a
S Y A, Dy LTINS 4||u1||F0,%||uz||zo||u3||zo
leNlNg
1_«a 3
Lo

SN 2N T T il o, (3.11)

i=1
where in the last step we used that 0 < o < 1. Using again Theorem 2.2, Holder inequality and Lemma 2.7 we estimate

the contribution of G2 low by
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2,low 1
G2 S Qaening (LR U 200 1Q 2wy wgall 2 24 U3l o 2
—1 0 1
S (NINS) T N3Ny (| Qe ve (LR uD) || 2 0o 2l o,y llusllzo

o
S l
Qe ne( ,?}é’m)lILtzL;o—) l[uzll zollus |l zo

. (3.12)
On the other hand, observe that an interpolation argument provides

1

a 1
<N, TZNS_“)* (N]z+

(2—1y < . >
N2 Nunll 200 S llunlizo if N 2T
Since Q«1 =1 — Q> , we deduce that

(3.13)
%+% low < *%4’% g
Ny 1 Qaemne (R un 2o SNy 2 llunll 2o + Ny 1@ veunl 2
_1 _ g
Slutlo+ Y @2V LTINON oy
L>N|N§

< lluy |l 0. (3.14)

Combining (3.12)—(3.14) we infer

3
1 «
2,low —277 A,(1—)
GE I SNy 2 NS [ il 0.

i=1
Finally, using Lemma 3.2, the contribution of G>"

;3 is estimated in the same way. O
3.2. L?-trilinear estimates

We first state an elementary estimate.

Proposition 3.6. Ler 0 <« < 1. Assume O <t <l andu; € 7Z%i=1,2,3,4 are functions with spatial Fourier support
in {|€| ~ N;} with N; dyadic. Let x € C®(R3) satisfy the Marcinkiewicz condition (2.11).
Then it holds that

4
O= _oe (b- _e 0
IG?,X(ul,uz,u3,u4)I5N12 (N1)"4N,>(N2) 4Nm1}x]_[||uillzo.

(3.15)
i=1
Proof. We get from (2.12) together with Holder and Bernstein inequalities that

3 3
1G7 s uz, uz, ua) | S T ey ua, us)ll o lluall oo 2

0
S Nmaxlluill g2 poo-luall 2 poo- lusllpoop2 lluallpee 2
We conclude the proof of estimate (3.15) combining

(- :
llun 200 SN2 lunlipger2 if NS,
with (3.13). O

(3.16)
Now we define the resonance function of order 3 by

Q3(81,82,83) = war1(61 +& +&3) — war1(61) — 0 t1(52) — @0e+1(83).

For &1, &, &3, &4 € R, it will be convenient to define the quantities |£,4x| > |&sup| = |€rna] = 1Emin| to be the maximum,
sub-maximum, third-maximum and minimum of |&{], |&>], |£3| and |&4| respectively.
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Lemma 3.7. Let @ > 0. Let £1, &2, &3 € R and &4 = — (&1 4 & + &3). If we assume that |&,in| < |&thal then it holds
12381, &2, E3)| ~ |&tnallEmax | (3.17)

Proof. Without loss of generality, we may assume |£1] < |&2] < |&3] ~ |&4|. Then, estimate (3.17) is a consequence
of the identity
Q3(81,62,83) =252 + 83, 81) + 22(62, 63)

combined with Lemma 3.1. O

Proposition 3.8. Ler 0 <o < 1. Assume 0 <t <1 and u; € Z% i=1,2,3,4are functions with spatial Fourier sup-
port in {|€| ~ N;} with N; dyadic satisfying Npin < Nipa and Npyax > 1. Let x € C®(R3) satisfy the Marcinkiewicz
condition (2.11). Then,

(3)- -1 1
G 1z, 13, ug)] S N2 (Nija) ™2 4N(a°‘)+]"[||u,||zo (3.18)

min

Proof. From (2.8) it is sufficient to consider the case N1 < N, < N3 ~ N4. Moreover, we may assume that NzNj‘ >1
and N> > 1 since otherwise the claim follows from estimate (3.15). We proceed now as in the proof of Proposition 3.5.

First we decompose G as G, """ + G°" with

G iy ua, w3, ug) = G2, (lhlg UL, U2, U3, Ug) = / 2 (1% uy, uz, u3)ugdxdt
RrR2
1+ . . . .
and R = N2+4 Ny < MN, + . The high-part is easily estimated thanks to Lemma 3.3 by

4
L1
| S RTINENG [T uill ez, (3.19)
i=1

|G3 ,high

which is acceptable. To deal with the low-part, we decompose with respect of the modulation variables. Thus
GM'M= > GL(QL, (%R u1). Qryua. Qryus, Oryits).
Li,L,L3,Lyg

According to (3.17) the above sum is nontrivial only for L,y 2 NgN % In the case where L,,,, = L1, we deduce
from (2.12)—(2.21)—(3.13) and Lemma 3.4 that

3,low ( ) 0 I
G 1S Ny N1 Qg a2 Nl 2o sl o 2l 2o 2

~(3) - (3)- 7 3-§ N0
S DL W TVLTINONTTNG N gy lluallzolluslzolluall o

leNsz
Do =45 eay,
SNTN, TN T T T a0

In the same way, we get that the sum over L,,,, = L3 is controlled by

3,low ()— 0 !
IG5 I SNy * 4+||Q<<N2Nf(lt?1%)u1)”L°°L2||Q2N2Nf”2||L2||”3||LIZL§O—||“4||L?°L)2C

< Y @D vy NN NP

~

LzZNzNX[

ol g2 luall o1 sl zolluall zo

4
B —3—% (-
<N? N2 NG T T il 0.
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Arguing similarly and using (3.14), the sum over L,,,x = L3 can be estimated by

310w (3)- 5,0 !
G371 S NPT NG 1 Qaemsvg 1R uD o2 | Qg il 21 20- 10> vy vetes 2 lluall Lo 2

~

L3 zNzN:

-+, -1 (3= 3—% 1,0
S D0 Ly TTVLTINONTNY N unllpperz luallzolusll oy luallz0

4
(- 3= o1
SNTN, TN T il 0
i=1
Finally we easily check that the bound in the case L, = L4 is obtained similarly. Gathering all these estimates we
get the desired result. O

4. Estimates for a smooth solution
The aim of this section is to get suitable a priori estimates of a solution of (1.8) in the space Y* < Z* for s > s,.
4.1. Bilinear estimate

Proposition 4.1. Assume that 0 < T <1 and s > 0. Let u be a smooth solution to (1.8) defined in the time inter-
val [0, T'). Then

a1 Nl s + Nl 3 oo - 4.1)

Proof. By using the fractional Leibniz rule (cf. Kenig, Ponce and Vega [19]), we have for s > 0
el st S ol st + 19210
S luoll s + 13 M) 2 (42)
Sluollms + llullp2 poollull gy - O

4.2. Refined Strichartz estimate

Let us first recall the following Strichartz estimate:
—1)/4
P21 D U Dol 3,0 S ol 2, w0 € LP(R), (4.3)

where Uy () = e'le+! is the free evolution operator associated to (1.8). This estimate is a direct consequence of
Theorem 2.1 in [18] applied with ¢ = (1 — n)wy+1. From this we get following the proof of Proposition 2.3 in [22]
(see also [17]) the refined Strichartz estimate:

Lemma 4.2. Let O <o < 1. Assume that 0 < T <1 and § > 0. Let u be a solution to

(0 + Loy)u=F 4.4

defined on the time interval [0, T]. Then, there exist 0 < k1, k2 < % such that

| Pyt 3 e S TIDT ™ Pl oo o + T2 DTV Py Py (45)
and

Pyl 2 e S TNDL ™ Pyl oy + TN D™D Py F 2 (4.6)

for any dyadic number N > 1.
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Proof. (4.5) is proven in [[22], Proposition 2.3] (see also [17]). To prove (4.6) we modified slightly the procedure
(see [27] for a similar modification). Let N > 1 and let I = [a, b] C R be an interval of length |I| S TN —% for some
fixed § > 0 and 0 < k < 1. From (4.3) and Holder’s inequalities, we easily get

1Us ()PNuoanngN “ TN g2 4.7)

for any 2 < p <4 and ug € L*>(R). By the TT* method and P. Tomas argument, this leads to

’

la s (AL
H/Ua('—f/)PNf(t/)dt/”L!;L;oSN SN

with p’ = #— forany 2 < p, p’ <4andany f € Lp Ll We need this estimate but on the retarded Duhamel operator

(t,x)— fa U (t — )Py f(t',x)dr’. Taking p =2 and p’ > 2, this can be done by applying Christ-Kiselev Lemma
(see [7] and also [33]). We then get

k]

1—a
SN2 (TN N7 AN
LiLe

PLI

t
H / Uy (t —1") Py f(thdl

and Holder inequalities then yields

1—a K )
SNTTINTZfl 2 - (4.8)

2
L3L

t
H / Ug(t —1") Py f(thdl'

Now, chopping out the interval [0, 7] in small intervals of length TN =3 we have [0,T] =U jes1j where I; =
laj,b;l, ||~ TN~% and #J ~ T'7%N°. Since uy satisfies d;,uy — Lo41un = Fy on each interval I; we have

1

2
||“N||L2Loo = ”uN” 2 roo
L L

jeJ

< (X v —apun @iy o+ ZH/ Ut — ) F()dr

jelJ JjeJ 4

L

>2
2L°°
Ij X

and (4.7)—(4.8) yield

ez e SNF TN lun )

jeJ
1
l—a K 1) 3
+NTT7N—7(Z/||FN(L I3, dr)’
jel !
1—a—4§
<T7_ZN ||MN||L°°L2+T2N 2 ||FN||L2L1,

which leads to (4.6) by Bernstein inequalities. O

Proposition 4.3. Let 0 < o < 1. Assume that 0 < T < 1 and s > sy. Let u be a smooth solution to (1.8) defined on the

_1
time interval [0, T). There exists 0 < k < % such that if 0 < T < |lull ;0 s, then
T “'x
s—s5q)+(1—0)_
170w o < 2Tl ey <1 4.9)

Proof. From Bernstein’s inequality, we easily estimate the low frequencies part:

s+ (1—a)—
”Pfl-lx(s so)+(1—a) I/t||L2TL00<T2”u”L°°L2
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Taking § = 1 in (4.5), summing over N > 1 and using the fractional Leibniz rule, we deduce
(s—sa)+(1—a)— 2
1P 20w e STl g2 + TN D) 2
ST ||u||L7°9H; + 7" ||14||L2TL;>o ||“||L;°H;.

Noticing that for s > s, and 0 <« < 1, itholds (s — s4) + (1 — )~ > 0, we obtain (4.9) by combining the two above
estimates and taking k = k1 Vkz. O

Corollary 4.1. Let 0 <« < 1. Assume that 0 <T <1 and s > sy. Let u be a smooth solution to (1.8) defined on the

time interval [0, T). There exist 0 < k < 5 and Co > 1 such that if 0 < T <« ”u”LmH“ then

lully; < Collullzems - (4.10)

Proof. We have to extend the function u from ]0, T'[ to R. For this we introduce the extension operator pr defined by

pr W) (1) == U () Us (=1 (0))upar (1)) (4.11)

where 7 is the smooth cut-off function defined in Section 2.1 and w7 is the continuous piecewise affine function
defined by

0 for <0
ur@®)y=4 t for re[0,T].
T for t>T

According to classical results on extension operators (see for instance [24]), forany 1/2 <b <1, f + nf(ur(})) is
linear continuous from H?([0, T]) into H?(R) with a bound that does not depend on T > 0.
First, the unitarity of the free group Uy (-) in H*(R) easily leads to

lor @llLee s S Nulur (D lens S lullpge s + lu@)las + [lu(T)ll A - (4.12)
Second, the definition of the X?:®-norm leads, for 1 /2<b<1landf €R,to
Lo @)llxo.s = lln Ua(=pr (Dl () oo S WUa(=ull oo, 7110y loell oo - (4.13)
Finally, for 6 € R,
197 pr @l 200 S 10U (=) IO 12 -0o,01:250) + 190l 100
+ InUa (=) Ua (D)D)l 217 400l 19)
whereas (4.3) leads to

17U (=)L O) | L2100, 0 Lo0y S 1 P<1 NV (— >19u<0>||LzH1 F 1Pt Ua (=) T u(O) ] 27

S luOliz2 + A M(O)IILZ S u O s
and in the same way

InUe (=) U (T) L u(T) | 1217 o0 120y S NU(Tu(T) | otz = I gy1ze -

Noticing that, for0 <o <1,s — s +1 —a =5 — 3 1 4o T5s5— Z’ this ensures that
18707 o )| e S IO IO 0 o
Hlu (Ol gs—e + Nu(T) | gs— (4.14)

for any ¢ > 0.

Gathering (4.12)—(4.14), we thus infer that for any (7,s) € ]R*+ x R, pr is a bounded linear operator from
C(0,T]; H*(R)) N XST_l’1 N L%W;S_S“)—Hl_a)”oo into Y* with a bound that does not depend on (7, s). Therefore
(4.1) and (4.9) lead to (4.10). O
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4.3. Energy estimate

Applying the operator Py with N > 0 dyadic to equation (1.8), taking the L? scalar product with Pyu and inte-
grating on ]0, #[ we obtain

(NP1 PyuC. )7, = [ Pyuollzys + (N)* / Pyd.(u®) Pyu (4.15)
R,

Let No >2° and N > Ny. Define Jy by

T = (NY? / Py () Py, @.16)
Ry

By localization considerations, we get

Py (u®) = 2Py (uanu) + Py (usyi>y).

Moreover, from the fundamental theorem of calculus, we easily get

Py (uanu) =uenuy + N7 Qe , 1),

where we used the bilinear Fourier multiplier notation introduced in Definition 2.1 with

1
x (1, 86) = —i/¢’(N_1(9$1 +§2))d6.
0

Inserting this into (4.16) and integrating by parts we deduce Jy = J, ,\1, +J ]\2, where

Ty = <N>2~Y/ (Bxu<<NPNu +2N 710 1% (U u)) Pyu

and

Tn=—(N)>" " /PNIMPNNIMPI%EQXM. (4.17)

Since Py P~y = Py, we may rewrite J 1{] more symmetrically as

Ty = (N / Py (Bettn Py Pt + 2N 710,12 @ity P2yi0) ) P

R,
:NZS/Hil(axu«N,PNNM)PNNM (4.18)
R,
with
NHY\2s
xite &= (1) (¢N<sz> 2% ;€2X(§1,§2)¢~N(§2)> O (61 + ). (4.19)

Note that the function y satisfies the condition (2.11). This decomposition of Jy motivates the definition of our
modified energy. For Ny > 1, u € H*(R), with s € R, and N > 0 dyadic we define
S Pyul?, for N < No

X 4.20
%”PNM”iz +cEp()  for N> Np, (4.20)

En(u) =En(u, No) ={

where
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Enu) = f %a»@(a)m@z)m(—s] — £)dEdE

R2

Q2 (&1, &) is the quadratic resonance relation defined in (3.1), and c is a real constant to be fixed later.
We define the modified energy at the H*-regularity by using a nonhomogeneous dyadic decomposition in spatial
frequency’

E*(u) = E*(u, No)= Y _(N)*|En (. No)|. (4.21)
N>1

Next, we show that if s > s, and Ny > 2° is large enough then the modified energy E°(u) is equivalent to the

H*-norm of u.

Lemma 4.4 (Coercivity of the modified energy). Let 0 < a < 1 and let u € H* (R) with s > sq. Then for any Ny >
(1+ lull ), it holds

S 1 25 2 1 23 2
B @ Noy = 5 YN IPwulE | = 2 D0 (NP Ipwal} (4.22)
N>1 N>Ny

Proof. We infer from (4.21) and the triangle inequality that

1
‘E‘Y(M,No)— 5 2 NZIPNulgy| S Y N¥[Ey@]. (4.23)
N>1 ! N>Ny

Thanks to Young and Bernstein’s inequalities we have
1
NZIEN@] S Y NPWIN TN [3xum, 2| Povull72
Ni<N (4.24)
SN+ NI ull e | Povuel s -

Finally, we conclude the proof of (4.22) gathering (4.23)—(4.24) and the fact that Z | Pyt~ Z (N)Y= (| Pyul?,.

N>1 N=1
O

We now state the main estimate of this subsection.

Proposition 4.5. Ler 0 <o < 1. Let s > 5" > 54, 0 < T < 1 and u € Y} be a solution of (1.8) on [0, T]. Then for any
No > 1 we have

3 _ _
sup E*(u(t), No) S E*(uo, No) + (TNG + Ng™ ) 4 Ny )l + lull?, el (4.25)
t€l0,T[ T T T

where the implicit constant only depends on «.

Proof. Let 0 <7 < T < 1. First, assume that N < Ny = 2°. By using the definition of £y in (4.20), we have

%&v(u(m: f Py (u®) Pyudx
R

which yields after integrating between 0 and ¢ and applying Holder and Bernstein’s inequalities that

7 This means that when summing over N, we keep all the low frequencies together and by convention P; = P<j.
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EN )] = 1En o)) + | f Pyd: () Pyu
R,
3
SIEN @) +1 N2 Py @) o 11 Paull ooz -
Thus, we deduce after taking the supreme over ¢ € [0, T[ and summing over N < Ny that
3
sup Y (NPEn@)] S Y (NP[Enuo) + T Ny lull o2 e 7o0 s (4.26)
te]O’T[NsNg N<Np

where we used that, since s > 0, N*|| PN(MZ)”L‘;OL; < ||u||L%oL§ |lu ||L;°H;.
Now, for N > Ny, we take the extension it = p7 (1) defined in (4.11). To simplify the notation we drop the tilde in
the sequel. We first notice that

t

(N)BEn (u(t)) = (N)* En (ug) + (N)** / Py (u®) Pyu + c(N)** / %Sb(/)dﬂ
R, 0
=1 (N)2En(uo) + In (1) + cKn (@), (4.27)

where Jy (t) = J[l,(t) + Jl\z,(t) is defined in (4.16), (4.17), (4.18).

Estimate for J. 1%, We get from Proposition 3.5 that

ITNOIS Y N¥IGF(un,, u~n,, Pyosu)|
N]E/N

o

2s—s/+1 e 254+ (1—a)
S ) NETRTIN ey lys ey s | Pl
N]E/N
Since s > % — % and s’ > sy, we deduce that
2 Sq—s' 2 (sa—5") 2
sup > TNOIS D NS5 o ullys S No™ ™ llullyo s (4.28)
1€10.TT N> v, N>Np

It remains to estimate 7, 1\1, + ¢y . Using equation (1.8) we obtain

/CN(I)=—N2S/mi%l(%ﬂ(&ﬂrwaﬂ(&)—wa+1($))u/<<\1v(§1)u’~7v($2)u’~7v(—€)
Q(&1,&)
R?
2 [ x161,82) T ey~ (g
+N /—92(51,52)51P<<N8"(u YEDu~y )i~y (=)
R?
+N% / %sm@v@ohﬁu%@z)m(—s)
R?
NZS/ Xl(flsfz) — /N\ P 8)( 2N(_
+ 2 492(51,52)&“«1\](51)” N(&2) Py 0x (u=)(—§)
R[

=Ty + KN+ K3 + Ky
Taking ¢ = 1 this leads to estimate ,7/\1, + Ky = IC}V + IC%V + IC?V.

Estimate for IC}V. We have

Ky@oy=N>* " > (Nle)_lNlZ/Hi’Cl (UNy s N3, U~N)U~N
NN N2VN32N1 R,
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where

Ni;N¢% 2
xxc1 (61,62, 83) = ix1(81 + 82, 83) G 1_'_52 &) Sl ;2&) én, (61 +82),
’ i

with x; defined in (4.19). From Lemma 2.6, xx1 satisfies (2.11). Therefore we get from Proposition 3.6 that

_ - _a_g (Mo _a_y
KNOIS Y Y NINTN,2 T (Na) 57 N2 (N3) 77 (Va v N3)™*
NN Nz\/N32N1
X Nluny lyst s Ny w13

_ 1_a_
SNT Y NUND TS ul s
NN

where in the last step we used that % — ¢ — s <0. We thus infer that

sup Y K]S (NG ™+ Ng™ ™) a2 el
te]O,T[N>N0

Estimates for IC]2V + IC]3V. Using, as in Subsection 4.3, that
Py () = 2ugnuy + 2N T (Qeuan, o) + Poy (s yus ),

where yx satisfies (2.11), we decompose ICIZV + IC?V as IC?\,1 + IC?\,2 + IC?\? with

N0 =282 [ ZEE 2 ) [0, remiton ) G (—8) + T G20 o) (5
Ea 2(81.62)

R0 =28 [ LS [, 0T @ - i (—8)
R? ’

+ N (E2) F (0. 115 (Oxut e, ) (—6)],
and

L&) .
K3 = N / KU1 02 e o (€D [ Fi (9 Py (s ytes ) )i ()
2 Q2(81,%2)

+ TN () F (0 Py (s yits ) (=8)]-
Estimate for IC13V1. We have

K3 (1) = —2iN* f (é—l) (€1, E2) Tt (1) (iE2) Ty (E3)iTN (2 — E3)iTN (—E1 — £2)

R}

—2iN¥ / (é—lz) (€1, £2) st oy (EVIN (E2) (—i (€1 + E2) ey (E3)T<N (— (61 + &2 + £3)).

R

Now a change a variables leads to

Ko =28 Y / 0 (€1, 62, &) xun, ()N, (E)T<N (E3)0 N (—§)

Ny ,N2<<NR?

with § =& + &, 4+ &3 and

1739

(4.29)

(4.30)
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(€1, £y E3) = (é—;) (€1, 62+ E3)(Er + E3) — (g—;) (E1.E3)(E1 + £3).

Let us rewrite o as follows:

01,6, 69) = [(é—l) 61,61 +6) - (;‘2—1) @, &)} PN (E)Es
N <§) &1 8 + 8w, ()6
2
- (é—lz) (€1, 63, (6DE1.

According to Lemma 2.6 and Remark 2.5, it is easy to check that Ny N* (é—lz) (61,5 + &), N%ESNZ (£2)& and thus

M (&) €16 + 8w ()8 satisfy (2.11). In the same way, N (ZL) (61, 6w, (6 satisfies (2.11). Now

we get from the mean value theorem that for any multi-indice 8 = (81, 0, 83), there exists |§ﬂ| ~ N such that

aﬁ[( )(51,51+s3)— (é—lz) (51,53)]=a<ﬂ1’ﬁ3><9 )(51 sz+sa)—a</f‘lﬁ3>< )(51,53)
— 5B /33+1)( )(51,5/3)52

On the other hand, for any 8 = (81, B2, f3) with 8> > 1, we have

aﬁ[( )(sl,slm)—(—)(51,53)]—a<ﬂ1ﬁ2+ﬂ3>< )(sl £ +&).

It thus follows from Lemma 2.6 that YN [(ﬂ) (1, &1 + ) — (é—lz) (&, 53)] satisfies (2.11). Therefore we de-
N%o satisfies (2. 11) Rewriting IC?\,] as

duce that yx31 = vaN

N1V Ny

31 25— 3

Ky =2N""* E N HX 21 (Ox Ny UNy s U~ N)U~N
N1, NaN R,

we get from estimate (3.15) that

l 0(7/ l_ 7%7/
N OIS N > (N Vv NN (N 75 NG (N2) 375 N [, [y sy sl 1 -
Ni,Ny<KN

Recalling that % — % — s’ <0, it follows as in (4.29) that

sup 3 KOS N ™+ Vg™ ™)l . “31)
te]0, T[N>N0

Estimate for IC?\%. We only deal with the first term IC?V21 of the sum in IC?\% since the other is estimated similarly. With
the notation of Section 2.3 we obtain

K¥' (@) =2N> Z NlNz(NlNa)_l/ sy UNTs UNy s Une N U~ N
N1, N KN R,
with

N N® & & §2+€3
Q1,6 +&)N N2 N

Noticing that xx-321 (&1, &2) satisfies condition (2.11), estimate (3.15) implies that

X321 (81,62, 83) = — 161,62 + &) x (62, &3)
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21 - (3 =g/ (D) ey »
KN OIS N 3 NaNy T (ND T3 N2 (N) ™5 N gy [y e, Ly e 15 -
N1, N2 &N

which again, as in (4.29), leads to

sup § KR 0] S (Ng ™ + N )+)||u||?”, lluell2s . (4.32)
T
1€10.T1 N =N, T

Estimate for IC?\?. We follow again the same arguments. We only deal with the first term IC13V31 of the sum in K 13\,3 and
rewrite it as

K3 (@) = N Z Z Nl(NlN"‘)—lN/I'I?(IC331 (UNy s UNy, U Ny U~N
Ni<KN N ZN R,
with
NN §1 &2+63

a1 b2 8) =i b+ 8) g s ey

p~n (&2 +&3).

Then, thanks to estimate (3.15), we get

1
331 25—5'+5g (3)- B
R OIS NETTHs0 NN NPT ND TSN Sl o llws s i, s e s

Ni«N N3 2N
(2s—5"+54) —2s4 2 2
SNGTED N NI 2w, s -
szN
This leads to
33 (Sa—s") 2 2
sup Y IKROIS NG a2 3. (4.33)
te]O,T[N>N0

Combining (4.26)—(4.27)—(4.28)—(4.29)—(4.31)—(4.32)—(4.33), we conclude the proof of Proposition 4.5. O

Corollary 4.2. Let 0 < < 1. Let s > 54, 0 < T < 1 and u € Y3 be a solution of (1.8) on [0, T]. Then for any No > 1
we have

Sup Z <N>2S
1€10.T1 N N,

Enu(t), No) = E (o, No)| S (Ng™ ™ 4+ Ny ) (llully + llully) (434)

Proof. According to (4.27), it suffices to bound

sup Y [T +Kn )]

t€0.T N 2N,
and the result follows from by combining (4.28)—(4.29)—(4.31)—-(4.32)—(4.33). O

5. Estimates for the difference of two solutions

In this section, we provide the needed estimates for the difference w of two solutions u, v of (1.8). fw=u —v
and z =u + v, then

(0 — La+1)w = 9y (zw) . (5.1)

The lack of symmetry in the nonlinear term of (5.1) prevents us to estimate w in Y3, s > s,. To overcome this
difficulty, we will rather work at a lower regularity level o < 0 and more precisely with

1 o 3
ae]—§+z,mln(0,s—2+§a)[. (5.2)
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Remark 5.1. For ¢ € ]0, 1] and s > 5, = % — %a, it holds —% + % <Oands —2+ %a > —% + %. Therefore, the

definition interval in (5.2) is never empty. Moreover, it is worth noticing that —o < % —§ <su<s.

le—a—&—(o—sa)_,oo

Since we are not able to control the X ‘;_1’1 N L2T part of w for o < 0 we need to bound the

difference in the sum space F 2. Finally, to treat some low—high interactions in the energy estimates, we also need
. . . . 50
to add a weight on the low space frequencies so that w will take place in Z" .

5.1. Bilinear estimate

Proposition 5.2. Let 0 < o < 1. Assume that 0 < T <1, s > 54 and —% + % <o <min(0,s — 2+ %a). Let 7 € Y;
and let w € 7(; be a solution of (5.1) on 10, T[ with wg € HO. Then it holds

lwlizo12 S lwollge + (1 lizlly) lzllys lwll e me - (5.3)

Proof. Let w = p7(w) and Z = p7(z) be the extensions defined in (4.11) and let W satisfying (5.1) with 9, (Zw) as
second hand member. We will estimate the extension w = nw of w where 5 is the smooth cut-off function defined
in (2.1). To simplify the notation we drop the tilde in the sequel. For Ny > 1 to be chosen later, we rewrite zw as

zw = P<pn,(zw) + Z [ZSNUMN +Z~Nw§N+ Z ZN1w~N1]
N>No Ni>N
=t Jeng + IoN + I I (5.4)

Duhamel formula, (2.18), as well as classical Bourgain’s estimate on the linear evolution (cf. [5], [11]) and (2.18) lead
to

[N

L S lwollz + 19 Czw) |y

I,h h,l h,h
S llwollze + 1 <o llxeo + 12, + I 2y lxo0 + 12N o -

2
Now, using that 0 < —o < s, we easily bound the contribution of the low frequency part J<y, by

1 1
1<npllxao S > NZN)T I Py Gw)ll oot S NG I2llzsems lwllzoe g - (5.5)
N<Ny
The contribution of the high—low interactions Jﬁ’[f,o is also easily bounded as follows

h,l
1723 xr0 S D (N llz~wll 2 oo lwn e
N> Ny

< Y lawlzpellwliens
N=>Ny
Slizllyslwllpe e (5.6)
where in the next to the last step we used that o < 0 yields (N )7 |lw< || L2 < lwl] L go - To bound the contribution

of the low-high interactions Ji’lh\,o we write

12
L,h 2 2
100 S [ (D2 N> lzgyuwnniZs) |

1
N> Ny
1/2
2 2 2
)X W lzgntieoniiz) )
N>Ny !

S |lzllzge llwll ag

L

Szl pellwllzgeng - (5.7)
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Now we deal with the (high-high) interactions term

1200 ot S D0 | D0 PNQL(QLzN Qrywen,)

N>No || Lyyax > NN -1
NN TR Fotl=a

. o _1 _1
To estimate the contribution of the sum over L > NN, we take advantage of the X°+1:(=2)+_part of Fo+l. 72,
Therefore this term is bounded by

o D IPNQLGNwn) i1,

N>No [ >NN¢
S

1 1
Sy Y NTILED Py Oramwen) 2
N>No [>NN{

Ni>»N
< O'+(l)+ (7%)+
S D NTFRE NN w2 lwew o2
N>Ny Ni>»>N
1 (=5 =0)+  (sq—8)+(a—1)
S D0 NTTOE YN TN llzw, lys lw~w, e me
N> Ny Ni>N
1
—5)+ 1 (@—1
<Y NG 7y wl o g
N>Ny
Slzlyslwlizens » (5.8)

where we used that —5 — 0 + (s¢ —5) + (@ — 1)1 < —0 — (1 = 5) <0since 0 < —0 < % — . The contribution of

the region L < NN{ and L1 2 NNY is estimated by

Y 10ann (@3 nnaznwony)llxoo

N>Ngy
Np>N

1
S Z Z N2 Qs nnwzn wan, 2
N>Ng Nyp»N

1
1 -1
S D D NN zwm ko lww ez
N>No Ni>N

1
1 l—o—s—
SYONTI Y N T e lwl e ag
N>Ny Ni>N

1,
S D0 NT 2l lwli e e
N> Ny

—14+4
SNy Clzlixs-nlwlize s, (5.9)

where we used that —a —s + 1 — 0 < s4 — s < 0 to sum over Nj. Finally the contribution of the last region can be
bounded thanks to Lemmas 3.2 and 2.7 by

D 1Q«enne (Qannezn, @z nnew~ny)llxeo
N>Ngy

Ni>»N
1
S D0 N Qennazy, O>nnvew~n N2z
N>Ny
Ni>»N
1
1 -1
< 2 NTRWN) T Nillaw lerz lwm I oy

N>Ngy
Ni>N
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1
— L l—a—s—
< Z N°~2 Z N T J||Z||L§>°H;||w||Fg,1

[N

N>No NN
1og
<Y N S||Z||L$°H;||w||Fa,%
N> Ny

—14+¢
SNy 4||Z||L1°CH§||U)||FU,%, (5.10)

where we used that (NNf‘)_% < (NNf‘)_lNl, since @ < 1. Gathering (5.5)—(5.10) we obtain

1 1
o 2 32
ol oy = erllwolizze + c2(Ng + Dlizllyp llwlizge g + 3Ny IIZIIy;IIwIIFa,% ,

T

1
2
where c1, ¢2,c3 > 1. This yields the desired result by taking Ny = [2¢3(1 + ||Z||y7{)]2 and concludes the proof of
Proposition 5.2. 0O

5.2. Refined Strichartz estimate

Proposition 5.3. Let 0 < o < 1. Assume that 0 < T <1, s > s, and —% + % <o <min(0,s — 2+ %Ol). Let z € Y;
and w € 2; be a solution of (5.1) on 10, T[. Then

—Se)+(1—ar)_
1570w o S (A 2l Nl gy - (5.11)

Proof. The low frequency part is estimated by

1— + Oa _ 3 -1 ]
I1P<y 1}~ w]| 2 ST2 ) (NN Jwn o2
N<I
1
STl g
To estimate the high frequency part of the LHS of (5.11), we decompose zw as in (5.4) and we use Lemma 4.2 with
6=1to get
—se)+(1—a)_ 0— _
N0y 12 oo S NOTllwnligeng + N7 llzgywnllps
1_a
771+‘L< - - )
+N lzavwenliz g + D lzvwen 2
Ni»N
0— 0_
SN Nwnlizgag + N7 llzll 2 pe lwllzge g
1_a —s—
+ N2TS N g oyl w oo g (5.12)

where we used that 0 < 0 and s + o > 0. Summing over N > 1, using that s > s, > % — %, (5.11) follows. O

Corollary 5.1. Let 0 <o < 1. Assume that 0 < T <1, 5 > sy and —% + % <o <min(0, s — 2+ 3a). Let z € Y3 and
w e f; be a solution of (5.1) on 10, T[ such that wq € H’. Then

lwlizg S (4 2l (lwollze + 1wl e ) (5.13)

Proof. By the property of the extension w = pr(w) defined in (4.11) we have

J)gofso,)Jr(l —a)_

lwllze S Iwll ooy + lwlizs + 1 wli2z= (5.14)

and the result follows by gathering this last estimate with (5.3) and (5.11). O
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5.3. Energy estimate

For Ny > 1, we define the modified energy for the difference w of two solutions # and v by
3l Pywi, for N' < No

g z,w, Nog) = T~ o~
N ( 0) {%HPNwIIi%—G—clg}\,(z,w)—i—czé’]zv(z,w) for N > Ny,

where

En(zw) = / (g) (&1, E2)E1 7 (E1) Poyw (&) Poyw(—& — £)dEdE,
R2 g
and

~

Ex(z,w) = / (%) (E1.£) (&) + E)Wan (1) Poyz(E) Poyw(—&) — £2)dE1dE .

R2

1745

(5.15)

2 is defined in (3.1), X1, X2 are symbols satisfying the Marcinkiewicz condition (2.11) and defined later in the proof
of Proposition 5.5, and ¢7, ¢; are real constants that will be fixed later in the proof of Proposition 5.5.
We define the modified energy at the H-regularity associated with the difference of two solutions by using a

homogeneous dyadic decomposition in spatial frequency
E%(z,w, No)= Y _(N"HX(N)*|En(z. w, No)| .
N>0

Lemma 5.4 (Coercivity of the modified energy). Let 0 <a < 1,5 > 54, 0<T <1 and —% +7
%a). LetzeY; and w € f; be a solution of (5.1). Then for No > (1 + ||Z||H;)% it holds

~ 1 _ 1 _
\E“(z,w,No)—EZwP”(N DAIPywlzy| <5 Do (INPTINTD2IPywl, .
N>0 N>Ny '

Proof. We infer from (5.16) and the triangle inequality that, for No > 1,

~ 1 -
B ow, Noy=3 YW@ (V2 Py wl

N=>0
< Z N2”|§1{,(z,w)|+ Z N20|512V(z,w)|.
N> Ny N>Ny

Thanks to Young and Bernstein’s inequalities we have for N > Ny > 1,
~ 1
N¥[EY @ w) S Y NN TN [9xzw, iz lw~nll7
Ni&N
SN+ Nzl lwn iy -
Similarly we bound the contribution of 51%/ for N > No > 1 by
_1
NZO' |g}2v(z’ w)i S Z NU—S+1—(¥N] 2 <N1_1>_1 <N1>—O'
NN
X lwn, lIge lz~nllag lw~n | g
SNzt lwlize lz~nlas lw~n 1l g -
Finally, we conclude the proof of (5.17) gathering (5.18)—(5.19)—(5.20) and the

DN Pywl,. O
N>0

(5.16)

<o <min(0,s —2+

(5.17)

(5.18)

(5.19)

(5.20)

fact that |wlgzo ~
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Proposition 5.5. Let O <« < 1. Let s > 54, 0 < T <1 and —% + %‘ <o <min(0,s — 2 + %oe). Let u,v € Yy two

solutions of (1.8) such that w =u — v € 7(;. Then, setting z =u + v, it holds

sup E°(z(t), w(t), No) S E° (2(0), w(0), No)-l—(TNO + N ) lzlyy lwii3,
t€]0,T[

-5+ S -2 -1
+(N, Dt N(gv )+ + N, Y+ )+)(||u||§; + ||v||§;)||w||27;, (5.21)
wherey:s—Z—l—%ot—a > 0.

Proof. We argue as in the proof of Proposition 4.5. To deal with the low frequencies N < Ny, we use equation (5.1)
to deduce

d ~
E&v(z(t), w(r)) = / Py oy (zw) Pyw
R
for any ¢ € (0, T']. Integrating this on (0, ) it follows after a dyadic decomposition of Py (zw) that

~ ~ 3
1EN (), wDI S 1EN@O), wO)| + N2Tlzgyllze 2 lwnllierz lwn e

3
+ ) NT|zy, Irser2 llw~ny g 2 lwnllpoer2
Ni>N

=:1En(2(0), w(0))| + Iy + Iy .

On the one hand, we infer
N YN Iy <TN? . _
( YANYTIN S IIZIIL;OLgIIwIIL%onlleIIL;oH;,

by using that (N 1) (N)° lw<n ||L(;OL% < ||w||L%oﬁo. On the other hand, recalling that 0 < —o < s, we get

_ _ — 3
(NT2NY Ly S N T NN Wzl Nl g lwn oz
Therefore, we deduce by summing over N < Ny that

Y ANTHEN I EN (1), w(D)))]

N<Ny
S Y NN 0, w O+ TNG el 10 g
N<Ny

We consider now the case N > Ny. We take the extensions w = pr(w) and Z = pr(z) defined in (4.11), and we
drop the tilde in the sequel. Arguing as in the proof of Proposition 4.5, we get

(N"HHN)ZEv(t) = (NTHYHN)P EN(0) — Tn + G KN + &Ly

with

Ty = (NN / Py (zw) Py dyw
R,
and
> 20 d ’ ’
Ky = (N"H2(N) / 5N(t )dt', ﬁN_ /E v (@)dt.
0

Proceeding as in the Section 4.3, we split jN as J, 1\]/ + J 1\2, + J /3 with
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~1 2 2
JIy=N U/H;] (02N> WAN)WA~N,

R,

52 2 2

Jy=N afn)a(w<<N,Z~N)axw~Ns
R,

Iy = N (2N W~N)Ox Wy,
NIZNR,

20
where 71 =~ (V") and (61,6 = (VP (452) 7 9d 6 + ).

Estimate for J 1%, We infer from Proposition 3.5 that

=3 1 o —s—o+(l—a)
RIS D NoHITiN, Hllzw, lys lw~w, lizo llwy Il zo
leN

< A Ga—58)+ s 2
SNzl wli,
where in the last step we used that —s — o + (1 — @)1 < —(s — s¢)+ < 0 to sum over N;. Therefore we get

STITH SN zlys lwl e (5.22)
N>Ny

Estimate for -7, Al, + C1 IEN. We deduce using equation (5.1) that

Ky= —Nz"/ (é—;) (61, £2)i&1 (@a11(§1) + Wat1(52) — o 11(E)) Ty (EDW~N (52) W (—E)

R

+N2“/ <é—12> (&1, 82081 Pen 0, (1 + v) (BTN (E2) D (—£)

R?
X‘l — - —
+ Nz“/ <Q—2> (&1, 82)512«N (§1) P~n Ox (2w) (52)w~n (=)
R
le — — — 0
+ NZ”/ <Q—2> (&1, 52)812«N ()W~ (52) P~y Ox (zw) (—§)
R
= —Th + KN+ K3 + K5
We choose ¢; = —1 so that the first term on the right-hand side cancels out with -7, ]}, and it suffices to estimate
Sl 2 13
Ky + Ky +Ky.
Estimate for /’6}\, The contribution of Ezlv may be treated exactly as K ]lv in the proof of Proposition 4.5. We obtain

STIRM S Ny + NS (lulids + 130 llwl %o (5.23)
N> Ny

Estimate for IEIZV + IE?V We decompose P~y (zw) into dyadic pieces as follows:
Poy(zw) = zenw~y + N T3 0c2an won) + PanE~nwey) + Pan @ nwsn). (5.24)

As in the proof of Proposition 4.5, this leads to estimate Z‘}:l IE?V] where IE?V] denotes the contribution to EZZV + IE?V
of the jth term in the RHS of (5.24). '
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Estimate for Iz?\,l and E?vz Since in these terms, both occurrences of w are localized at frequency ~ N, they may be

estimated as K 13\,1 and K 13\,2 in the proof of Proposition 4.5. We infer that

3 AR+ IRRD < N ™ + Ng ™M) izl w12
N>Ny

(5.25)

Estimate for IE?\? It suffices to consider the contribution IE}\?I of IE%V to IZ%? since the contribution to E?v can be

estimated in exactly the same way.

-4 )a — — —
K3 =N2"/<Q—) (51, £2)612<n (61) Pon (2~ Nw< y) (E2) W~ N (—§)
R? ?
= > > NY(NIN%” 1N1N/ %ess N WNy 2 2N ) WAN
Ni<N N, <N
where

NiN® &1 $2+§3

Q81,8 +&3) Ny o~n (&2 +&3)

Xx»1(E1,5,8)=ix1(6, 6+ &)

satisfies (2.11). Estimate (3.15) gives

_e (I _a
K¥'NS Y Y NeH “0e N O (N END (M) llzw, yollows oz o lwenl 2

N1<N N, <N
1— h- _a_g (D _a_
SNOHImOE N NN SNy TN T Nzl lwl zo llzn lys llwe Dl 2o
Ni<N N, <N
. 1 o 1 o . .
Slnce——Z—s<0and§—z—a>O,th1sy1e1ds
331 St — 2 2 (50 —5) 2 2
IRV Y Nzl lwlgg S NV s lwl e
N> Ny N>Ny

Estimate for IE?\;‘ Again, we only estimate the contribution of

R = N> f (s%) (1, £61 7N (§1) Poy B (25 N w3 N (€2) N (=)

R?
_ 20 ay—1 3
= N(NIN®) T NIN | Tz ., (@Nys 2N WaN, ) WAN -
K
N1 <N Ny>»>N R,

It follows from estimate (3.15) that

1
>341 _ap(=s—0)4 A (3)- _e_
WS Y. Y NNy TN NG T8 iz llys llzws s llwes L zo oy Il zo
Ni<N Ny>N

SNG4 213 w12,

where in the last step we used that s + 0 > 0 and } 5 — 7 — 5 < 0. We conclude that

1341 (Sa—s) 2 2
D IR S NG Dzl lwl e
N> Ny

(5.26)

(5.27)
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Estimate for —j 1%, + c~221v. Using equation (5.1) we rewrite L N as

Ly= —NZ"/ (?2_22> (61, £2)i (51 + £2) (@a+1(81) + @at1(52) — Wa+1(6)) Weeh (E1)ZN (E2) Wn (=)

R?
+ N / (g) (81,62 (&1 + &) Pecy 0 (2w) (1) TN (62) Dy (—£)
R? ’
1 20 212 Y 9 (u 2 WN
+ EN /<9_> 61,861 +E2)wen (1) Py ox (W) (E2)w~n (—§)
R? :
1 20 )’(2 T /\2 WnN
+3N f (9_2) (€1, 62) (51 + E2) W (€1) P~y 0x (22) (52) 0N (—§)
R?

XVZ — e —
+ Nz”/ <9—2> €1, 8) &1 +E)wen (E1 N (62) P~y 0x (zw) (—E)
R?
. 72 ~1 =2 3 ~4
==In+Ly+Ly+Ly+ Ly
where we used that z = u + v solves
_ — 2 2 _l 2 2
(0r — Lotz =0x(u” +v%) = 2(ax(w )+ 0x(z7))on]0, TT.
Taking ¢; = —1 it remains to estimate 24}:1 va
Estimate for Z}v ‘We may rewrite this term as
L\ = Z Z N2 (N\NHTINN, / Py, (ZNZU)N3)H%(L1 (Z~Ns WAN)
N1<N N2,N3 R,
with

NiN¢ L& +6
Q (=& —&,6)N N

The contribution Z}Vl of the region where Ny vV N3 < N is estimated thanks to (3.15) by

X1 (€1, 8) =ixa(—&1 — &, &)

~ Ly _a_g (D= _a_
T DD D A 7 e A e
Ni<KN N,VN3SN
X llzn, s lwws ze iz s lw~nllzo
S NI+ zllys lwlzo Nz s lwenl 2o

where we used that % —%—s<0and % — & — 0 > 0. For the other contribution Z}\%, we must have No ~ N3 and by
virtue of (3.15) again, we deduce that

12 —s42—3q)_ rr—(s+0) A70
LS Y >0 N NSO ON Iz s lwas Nl zo lz~n llys w20
Ni <N N»~N3>N

2 ¢ —C
SN2 =5zl ys [lwll 2o Iz s lw~nll 27

where we used that s +0 >0 and —s + 1 — 43_10‘ < sy — § for @ < 1. Therefore we infer that

STIEN SN 2l lwll e (5.28)
N> Ny
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Estimate for Z%v We need to bound
E%\, = Z Z N20+2(N1N°l)—1 / PNN(w;vzu)A/S)l_[%L2 (Wyy, W~pN)
Ni<N N2,N3 R,

where
NiN* 5_251 +&
Q1,61 —-&)N N

Ki2(E1.E2) = ’Eiz@l, —£ — &)

We may always assume N2 < N3. The contribution E%\,l of the sum over Ny ~ N3 > N is estimated thanks to Propo-

sition 3.8 by

_1 —25+(1—a)
|< E E N* 2+4N N, Nww, 1 zollwn, lys lw~n, llys lwn | zo
Ni<N Np>»>N

SN 4°‘>+||w||yv||w||fa,

where in the first step we used thato < s — 2 + 301 and in the last step we used that o > —% +7>

used the weight (N~ ) of Z° to sum over N1 < 1. This leads to
(Sq—s—1+%) (o —S
> ILNIS N 2wl lwliZe S No*wllgs llwllZs
N>Ny
Similarly, we bound the contribution Z%VZ of the sum over N1 < N> and N3 ~ N by
43 —(5- 1«
LIS Y NXOTHmOe N T NG Tl [ o llws ll g0 lwn 15
N1&«KN2<N3~N

2(c—s+2—3 -1 2 2
SN2 w2, (w5,

BN—

_. We also

(5.29)

where in the last step we used that o > —%. We also used the weight (N, 1) of Z° to sum over N < 1. Setting

y:s—2+%a—a>0,thisleadst0
—2y+(a—1
3RS NG T w ) 2a w3
N> Ny

To deal with the last region N3 ~ N and N; S Nj, we use estimate (3.15) to get

_ _a _a_ (
B Y Y N0 N T DT ) T N DTN T w2 s Lz w1

Ni<N Ny <N,

<N2(a s+2—3a)+2(a— 1)+(1+N“_2U)||w|| o'”w”y(‘,

(5.30)

where in the last step we used that 4 5 — 4 —0 > 0since o <0 and that —% — 3 —0<0sinceo > 7 — % It follows

that

2y+2 1 o
D ILRIS (g PO 4 NGO wlify i,
N> Ny
and we deduce gathering (5.29)—(5.30)—(5.31) that

—2y+(a—1 «—
3 LA S NG T NI (el + 10 w2
N>Ny

(5.31)

(5.32)

Estimate for Zi, + E‘}V Performing a dyadic decomposition for P~y (z%) and Py (zw), we get from (4.30) and (5.24)

that
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5
U i
LY+ L= L4

i=1

with

Ly = Nz"/ (é—i) (61, 8)(E1 + ) <N (§1)
R?

x [0 Ceanzom) @I (=€) + 28 )0 Gaanon) (—6) |

LY = N> / (g) (&1, 62) (€1 + E)Wan (€D [Fe (013 (drzaen . 2)) (EDWn (—)
R? ?
+ 2oy (E2) i (0, T3 (e e, w)) (=)

~ ] X e~ —_—
5= N2 / (;%) (51, 82) (61 + ED Wl (E1)Fx (B Pon (2323 1)) (E) TN (—5),

2
R?
LY = N / (é—i) (61,62 (€1 +E)Wan (617N (62) Fx (Bx Pon (v w y)) (—6),
R?

and

~

LY =N%¥ / (é—z) (51, E2) (&1 + ED W (E1) TN (E2) F (Bx Pon (25 N W N)) (—E).
R?

Estimate for Z‘I‘Vl Arguing as for the term K ]3\,1 in the proof of Proposition 4.5, we obtain

~ N1V N.

41 20+1 N1V N2 3

£A = E N%t NN G;(WN;, Z~N+ ZN;» W~N).
N1, N2 <N

The contribution Z‘}V“ of the sum over N < N is bounded thanks to Proposition 3.6 by

~ l o l _ o
LPNS Y Y Nt N v o N () (5.33)
Ni<N N, <N
X lwny llze lz~nllys 12w, lys [wan [l zo
SNz llwll e (5.34)

Using Proposition 3.8, the other contribution E‘]‘V]z is estimated by

1
412 —(x —(5)- 1o
NS D NTONT TN T wwy g llzn s 1w s Tyl zo
N1<Ny <N
(@ 2 2
SNzl w2, (5.35)

since s > % — %, o—s+2< %a and where we also used the weight (Nl_l) of Z° to sum over Np < 1. Combining

estimates (5.34)—(5.35) we infer that
—(D+

LIS NG+ Ny Dzl w2 (5.36)
N>Ny

Estimate for E‘I‘Vz Noticing that

~ N
42 2041 2 3
Ly = E N —N Na G; (WN;, T~N, ZNy» W~N),
1
Ni,Na<KN
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it is clear that we may follow the same lines as the estimate for Z‘}Vl to prove

N - -($)
Y IERIS NG T+ Ny Pzl lwlie (5.37)
N>Ny

Estimate for Z‘}\?, Z‘}\f' and Z‘}VS It is not too hard to check that Z‘]‘\? and Z‘}vs may be estimated as Z%,l above, whereas
we can deal with E‘}V“ by following the bounds on L',%VZ and ﬁ%\?. Thus we get

~ o ~ —2y4(a—1 Sor—$
Y ALRI+ 1L +I1ERD < (NG 770 4 NS 2l w1 (5.38)
N> Ny
This concludes the proof of Proposition 5.5. O

6. Proof of Theorem 1.2
LetusfixO<a <1.
6.1. Lipschitz bound and uniqueness

Let s > sq, 0 < T <1 and assume that u € Y; and v € Y3 are two solutions to (1.8) on ]0, T associated with
initial data ug, vop € H®(R) such that ug — vg € ZZ(R). We fix —% + % <o <min(0,s — 2+ %a) and set w =u — v.
It is clear that w(0) = wqg € H’ and the continuous embedding from Y3 into Z7 ensures that w € Z5. Now, from

Duhamel formula we have
'

P<yw(t) = P<1Uqy () wo + / Ug(t — 1) P<1y (u? — v (¢") dt’
0
and thus,

1
< < . -1 3 2 2
IP=1wl 2 S IP<twl oz S llwoll2 + 30 NINTON I Py = ) e
N<I

2 2
Slhwollz2 + el + 1017 -

Moreover, classical linear estimates in the context of Bourgain’s space (cf. [5], [11]) lead to

2 2 2 2
|P<twlige-t S lwoll2 + 1P<t e = 0Dl 3 < lwollg2 + oo+ 10170,
These estimates combined with (5.14) and the fact that w € Z5, ensure that w € 7‘;.
.. .. . 2
Combining Corollary 5.1, Lemma 5.4 and Proposition 5.5, we obtain that, for any No > (1 + lzll oo mrs) e s

3 —(%) w— —2y+(a—1
101 sgze < lwoliZo + (TNG + N 27 g% 4 Ny 2770

LPH, ~
2 2 5\3 2
X (1 llully, +lvlly;) IIU)IIL%oﬁ:
where y =s —2 + %a — o > 0. Taking No > (1 + ||u||%,s + ||v||%,s)% with
T T

§ = min {(%),, (s —sa)r (1 —a)_+2y}>0.
This forces
IIwIIL;gﬁ;’ S llwollge (6.1)
for 0 < 7" Sminf (1 + ul, + oI35, 7.
Therefore, taking ug — vo = 0, we obtain that u = v on ]0, T’[. Noticing, that equation (1.1) ensures that u;, v; €

L®0, T; H*"2(R)) and thus u, v € C([0, T]; L2(R)), it follows that v(T") = u(T"). Repeating this argument a finite
number of times we extend the uniqueness result on ]0, 7'[.
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6.2. A priori estimates on smooth solutions

According to [32] (see also [4] to get the continuity of the flow-map) for any uo € H? (R), with 6 > 3, there exists
a positive time T = T (|luol| z3) and a unique solution u € C([0, T'; HY(R)) to (1.8) emanating from uy. Moreover,
for any fixed R > 0, the map ug — u is continuous from the ball of H (R) of radius R centered at the origin into
C([0, T]; H*(R)).

Let ug € H*(R). From the above result u¢ gives rise to a solution u € C([0, T*[; H*(R)) to (1.8) with T* >
T (|luoll ) and

im (u(t)| s =400 if T* < +oo. (6.2)
tT*

Let0<T < T*. Since u € C([0, T]; H®(R)) is a solution to (1.8), we must have u; € L*°(0, T; H>*(R)) and thus
it is easy to check that u € YYQ for any 6 € R and

}lgb leellys = lluoll o - (6.3)

In the sequel, k > 0 and C¢ > 1 are the constants appearing in Corollary 4.1.
1
We claim that there exist Ag > 0, 0 < By < 1 such that T* > Ap(1 + luoll ) Po and, for any 5o < s/ <3,
1

lellyy = 22Colluoll e with T = Ag(1 + [lull )~ #o . (6.4)
Indeed, fixing s, < s’ < 3, it follows from (6.3) that

Ay ={T €10, T*[: IIMII;, <2*C3lluol®, }

T
is a non empty interval of R . Let us set To = sup Ay. We proceed by contradiction, assuming that Tp < Ao(1 +
1

lluoll ;) Po since otherwise we are done. Note that by continuity

2 402 12
||M||Y;(/) =27Cglluoll 7,y -

According to Corollary 4.1, Lemma 4.4 and Proposition 4.5, there exist Cy, Ca > 1 and 0 < g9 < 1 such that for any

§ > Sq, No > C1(1 + ||u0||Hva)a and any 0 < T < min{eq||uo| ”,, To}, it holds
Il < 4C3 ol + Ca(TNG + NS ™% 4 Ny ™)1+ luoll )2l (6.5)

_1
We take Ag < g9 and By < « so that min{80||u0||H_f,, To} = To and thus, by continuity, (6.5) is satisfied with
T = Ty. Now, applying (6.5) with s = 3, No = [8Ca2(1 + ||u0||HS/)2]%+, where § = min{a, s’ — 5o}, and T =
3
min{Tpy, (8C2N; )1}, we get
luell3s < 8CGlluolzys - (6.6)

Therefore, taking Ag < g9 and By < x small enough so that

% -1 2 (23_6)+ -1 _1
BCNG) ™ =[8C2(8C21 + luoll yo1?) 7] = Aol + luoll ) 70

we obtain that (6.6) is satisfied with T = Ty. In view of (6.2), this forces T* > Ty. Now taking s = s’ and proceeding
in the same way we get

2 2 2
, <8 ;.
IIMIIY; =8CqlluollZ;,
0
But since T* > Tp, by continuity this ensures that ||u||?/s, < 24C§||u0||?{s, for some Ty < T < T* which contradicts

the definition of 7. This concludes the proof of (6.4).
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Note that Lemma 4.4 and Corollary 4.2 then ensure that for any Ng > C(1 + ||ug|| grse) v , it holds

1PNt ]2 o e S I P=Ngtol2, + (N “* + N§™ ™) (1 + Jlug | )’ 6.7)

LOCH: ~

where T > 0 is defined as in (6.4).
6.3. Local existence in H¥(R), s > s,

Now let us fix s > s, and ug € H*(R). We set ug,, = P<,up and we denote by u, € C([0, T,)); H*(R)) the
solutions to (1.8) emanating from ug ,. Setting
_1
T = Ao(1 + lluollms) Po, (6.8)

it follows from (6.4) that for any n € N*, 7> > T and
lunllyy < lluoll s - (6.9)
Let —5 + <o <min(0,s —2+ %oz). Forn >m > 1, clearly ug,,, — uo,m € ZZ(R) and thus (6.1) ensures that

lun = wmliLes, vg S No.n = womllge S I Pemuollas

where 0 < T" = T"(|lugl| ;»v) < T. This last inequality combined with (6.7) ensure that
2s—
||Mn — Um ”L;‘;,H\S g Zvo(Y o) ” P<N0 (un - um)”L;o,,H,? (610)
2 2
+||PZN0un||L;O//H§ + ”PZNoum”L;ONH;

2(s—
S NoC T NP0 s + IP=yuol s
HN NG+ uoll ) (6.11)
for any No > C1(1+ [|uoll gse) @ . This proves that {u,} is a Cauchy sequence in C ([0, T”]; H*(R)) and thus converges
to some u in this space. It is then not hard to check that u € Y3, and is a solution to (1.8) emanating from u¢. By the

uniqueness result, this is the only one. Repeating this argument a finite number of times we obtain that actually {u,}
converges to u in C([0, T]; H*(R)) with T defined in (6.8).

6.4. Continuity of the solution-map

Finally, to prove the continuity with respect to initial data, we take a sequence {ué} C Bpys(0,2]|ugllgs) that
converges to uq in H*(R). We denote by respectively u/ and u;, the associated solutions to (1.8) emanating from
respectively u)) and P—,uj. Noticing that

mgrﬂoo jup | P>m (Mo) las =0,

we infer from (6.11) that

lim sup |lu/ — Mn||L°° e =0
n%+oo]€N

with T = T" (lu| zr+) > 0. From
lu! —ull o s < llu’ — Mf;||L°°Hf + lJuz, — unllLe s + llun — ullLse

and the contlnulty with respect to initial data in H3 (R) (note that P<,up and P<,ug belong to H*°(R)), it fol-
lows that u/ — u in C ([0, T"]; H*(R)). Iterating this process a finite number of times we obtain that u/ — u in
C([0, T]; H*(R)) with T defined in (6.8) which completes the proof of Theorem 1.2.
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