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Abstract

The well-known Ambrosetti–Prodi theorem considers perturbations of the Dirichlet Laplacian by a nonlinear function whose 
derivative jumps over the principal eigenvalue of the operator. Various extensions of this landmark result were obtained for self-
adjoint operators, in particular by Berger and Podolak, who gave a geometrical description of the solution set. In this text we show 
that similar theorems are valid for non-self-adjoint operators. In particular, we prove that the semilinear operator is a global fold. 
As a consequence, we obtain what appears to be the first exact multiplicity result for elliptic equations in non-divergence form. We 
employ techniques based on the maximum principle.
© 2018 
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1. Introduction

In this paper we study the solvability of the equation

−Lu = f (u) + g(x) (1)

with a Dirichlet boundary condition in a bounded C1,1-domain in Rn, where L is a uniformly elliptic operator in 
non-divergence form with bounded coefficients, f is a nonlinear function whose behavior at plus or minus infinity is 
different with respect to the first eigenvalue of L, and g is a given fixed function. Under such conditions the equation 
(1) is usually named of Ambrosetti–Prodi type, in honor of the celebrated work [3].

The large number of developments on Ambrosetti–Prodi type problems have gone, grosso modo, in two directions 
(more detailed statements and references will be given below): first, a precise count of solutions, a description of 
the solution set and of the action of the operator −L − f (·) on a natural function space are available if L is in 
divergence form, since then variational methods and theory of self-adjoint operators can be used; second, for more 
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general operators L only fixed-point methods are available, and they lead to partial existence results in which just a 
lower bound on the number of solutions is given, as well as an incomplete description of the solution set.

In the present work we bridge this apparent gap, and show that for any operator L in non-divergence form with 
continuous second-order coefficients and for any nonlinearity f whose derivative has range containing λ1(L) and 
contained in a determined interval around λ1(L), we can precisely count the solutions and describe the action of 
−L − f (·) on W 2,p(�), for any p ≥ n. Our approach, which is (necessarily) different from those in the previous 
works, uses techniques based on the maximum principle as well as elliptic regularity and results on the first eigenvalue 
of non-divergence form operators obtained by Berestycki, Nirenberg and Varadhan in [5].

To our knowledge, Theorem 1 below is the first result on exact multiplicity of solutions (i.e. exact number of 
solutions different from 0 or 1) for equations driven by an operator in non-divergence form.

Let us now give the detailed statement of our main result. We set

F(u) = −Lu − f (u), Lu := aij ∂i∂ju + bi∂iu + cu = tr(AD2u) + b.∇u + cu,

where the coefficients A(x), b(x), c(x) satisfy the following assumptions: for some constants � ≥ λ > 0,

A ∈ C(�), spec(A) ∈ [λ,�], |b|, |c| ≤ �.

We denote the principal eigenvalue of −L by λ1 = λ1(L, �) ∈ R (necessarily simple, isolated) and a positive associ-
ated eigenfunction by φ1 (see Section 2.1).

We consider Lipschitz functions f :R → R which satisfy the Ambrosetti–Prodi type hypothesis:

(AP)b for some constants a, b ∈R, a < λ1 < b, a ≤ f (x)−f (y)
x−y

≤ b for x �= y,
and for some M ≥ 0, we have f (s) ≥ max{bs − M, as − M} for all s ∈R.

Throughout the paper we will assume a = 0 – without loss, since the problem does not change if we replace L by 
L − a, f by f − a, and b by b − a.

We also assume some convexity of f .

(C) The function f is convex on R. Also, f is not in the form f (s) = λ1s +β , β ∈ R, in a left or a right neighborhood 
of s = 0.

We set X = {u ∈ W 2,p(�), u = 0 on ∂�}, Y = Lp(�) and consider the maps L, F : X → Y . From now on, if 
p > n when we say a constant depends on L we will mean it depends on n, p, λ, �, and a modulus of continuity of 
the coefficient matrix A. When p = n we have less control on the constants, and they may depend on L in a more 
complicated way.

Theorem 1. There exists B = B(L, �) > λ1 such that if f satisfies (C) and (AP)b with b < B , then the operator 
F(u) = −Lu − f (u) is a global topological fold from X to Y . More specifically, there exist (bi-Lipschitz) homeomor-
phisms �1 : X → X, �2 : Y → Y and hyperplanes W ⊂ X, Z ⊂ Y , such that X = W ⊕Rφ1, Y = Z ⊕Rφ1, for which 
the restriction (�2 ◦ F ◦ �1)|W is a homeomorphism, and

(�2 ◦ F ◦ �1)(w + tφ1) = −Lw − |t |φ1, (2)

for any t ∈ R, w ∈ W . For each w0 ∈ W , z0 ∈ Z, the map �2 keeps the line {z0 + tφ1, t ∈ R} invariant, while the 
map �1 transforms {w0 + tφ1, t ∈ R} into a curve which is asymptotically parallel to φ1 for large values of |t | (in the 
sense of (27), below).

In particular, the equation F(u) = z0 + tφ1 has exactly 2, 1 or 0 solutions in X, according to whether t is respec-
tively smaller than, equal to, or larger than a real number t̄(z0).

The hypotheses on f are essentially optimal for this type of multiplicity, even in the simplest case L = 	, f ∈
C2(R). Indeed, it is well-known that if Im(f ′) does not meet the spectrum of L then F is a homeomorphism, whereas 
when Im(f ′) contains more than one eigenvalue of L then there may be more than two solutions for some right-hand 
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sides (see for instance [1], [26]). Furthermore, in the recent work [12] it is shown that, under (AP)b, even if f ′′ is 
negative just at one point then there are right-hand sides z0 + tφ1 admitting at least four solutions.

We now discuss the main results on Ambrosetti–Prodi type problems obtained prior to Theorem 1. The original 
theorem assumes that f is a strictly convex C2 function such that f ′(R) = (a, b) contains the first but not the second 
eigenvalue of the Laplacian, see [3] and [23]. They prove that the critical set C of F with L = 	, defined from 
X̄ = C2,α(�) ∩ C0(�) into Ȳ = Cα(�), is a hypersurface homeomorphic to a hyperplane, which splits X̄ into two 
disjoint components A, B , i.e. X̄ = A ∪ C ∪ B . Ambrosetti and Prodi show that F is injective on C and F(C) also 
generates a split of Ȳ , Ȳ = S0 ∪ F(C) ∪ S2, into three connected components, in such a way that A and B are taken 
by F homeomorphically to S2. Later Dancer [13], Berestycki [4], de Figueiredo and Solimini [14], [16], obtained 
extensions of that result for self-adjoint second order operators in divergence form, giving characterizations of the sets 
A and B in terms of the Morse index of their elements as critical points of the energy functional, or of the coercivity 
of the associated linearized operator.

In those works the focus was the decomposition of domain and counterdomain of F in components on which the 
restriction of F acts injectively. On the other hand, with a view on the solvability of the equation for a given right-hand 
side, Berger and Podolak [7], and Berger and Church [6] used a global Lyapunov–Schmidt decomposition to give a 
geometric description of the map F : it is a topological fold from H 2(�) ∩H 1

0 (�) into L2(�). We note that the notion 
of a fold we use is a (global) Banach space version of the original concept introduced by Whitney [28], [22], in his 
study of generic maps from the plane to the plane.

In a nutshell, the works [7], [6] rely on the fundamental fact that the “vertical” lines {z + tφ1, t ∈ R} ⊂ Y , z ⊥ φ1, 
when inverted by F , give rise to very special curves in the domain of F , the fibers. This follows from the global 
Lyapunov–Schmidt decomposition for F . Extensions of this approach (in [27], [11] and the references therein), still in 
the self-adjoint case, allow for less differentiability on the nonlinearity f , together with a larger choice of operators L. 
Thus, for example, folds are obtained for Schrödinger operators in bounded and unbounded domains, including the 
hydrogen atom and the quantum harmonic oscillator, the spectral (self-adjoint) fractional Laplacian.

When L is not self-adjoint, the convenient spectral estimates and integral representation of the equation are not 
available for constructing the Lyapunov–Schmidt decomposition. Prior to this work only topological methods, more 
precisely fixed-point theorems for Banach spaces, have been applied to nondivergence form equations (see [2], [15], 
[17], [18], [24], and the references in these papers; for a different approach to ODEs, see [22]). Topological methods 
cover a very large scope of problems, such as fully nonlinear equations or systems of equations, but have the important 
drawback that no exact count of solutions can be obtained and we are left with a rather poor description of the 
solvability of F(u) = g for different right-hand sides. Specifically, these results always state that for every given 
right-hand side z0 + tφ1 the problem has at least 2, at least 1 or 0 solutions according to whether t is respectively less, 
equal or larger than a real number t̄ (z0).

In Section 2 we will construct a global Lyapunov–Schmidt decomposition for F , for the first time in a non-
divergence setting. The core of the construction is an elliptic estimate which can be interpreted as a bi-Lipschitz 
bound of F on “horizontal” subspaces of X, which is uniform in the “heights” of these subspaces (Proposition 4 and 
its consequence Theorem 6, below). This estimate allows us to construct fibers and to prove basic properties about 
their geometry and asymptotic behavior at infinity, implying also the properness of F .

The Lyapunov–Schmidt decomposition may be taken as a robust starting point for numerics, following ideas devel-
oped for the self-adjoint case in [10], [20], but we do not handle the issue in this paper. We could also allow less regular 
domains, for instance domains � that satisfy an exterior cone condition, but will also not consider these technicalities 
here.

The last Section 3 is dedicated to the proof of Theorem 1. We deviate from and simplify the earlier approaches, 
which identify critical points of F by computing derivatives of the so-called height function along fibers. Here we 
observe that our assumptions and properties of the principal eigenvalue of L and its positive eigenfunction suffice to 
prove that no point in the image of F has three preimages. From the existence of fibers and the properness of F , the 
fold structure is then deduced from the more general Proposition 10.

Finally, we remark that when L is self-adjoint, the optimal value for B in Theorem 1 is the second eigenvalue of L. 
On the other hand, a more general L might not even have a second real eigenvalue, and such a simple explicit lower 
bound for B is not available. However, if p > n our proof does imply an explicit lower bound on B , depending on L
and �, in terms of the constants which appear in the basic estimates of the elliptic theory.
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2. The global Lyapunov–Schmidt decomposition

In this text, the letters C and c, indexed or not, denote positive constants which depend on the appropriate quantities 
and may change from line to line.

The convexity of the nonlinearity f plays no role in most of this section.

2.1. Preliminaries, basic results on principal eigenvalues

Let L be as in the introduction, and � be an arbitrary domain. We recall some basic facts about L from [5], related 
to maximum principles. The principal eigenvalue λ1(L, �) is defined by

λ1 = λ1(L,�) = sup

{
λ ∈R : ∃φ ∈ W

2,n
loc (�) such that

(L + λ)φ ≤ 0 in �

φ > 0 in �

}
.

The associated eigenspace is spanned by the eigenvector φ1 = φ1(L, �) > 0. It is also known that for the dual 
operator L∗ : Y ∗ = L

n
n−1 (�) → X∗, we have λ1(L

∗, �) = λ1(L, �) and φ∗
1 = φ1(L

∗, �) > 0 (see [8]).

Theorem 2 (Theorem 2.3, [5]). Let φ be an eigenfunction of −L with eigenvalue λ �= λ1. Then (i) Re(λ) > λ1, (ii) if 
φ is real, then it changes sign in �.

The following existence and uniqueness result holds.

Theorem 3 (Theorem 1.2, [5], and Theorem 9.13 in [19]). If λ1 > 0 then the map L : X → Y is a homeomorphism, 
and if Lu = h then

‖u‖X ≤ CABP

λ1
‖h‖Y

where CABP depends on n, λ, �, and �. If h ≤ 0, h �≡ 0 in � then u > 0 in �.

We will use the following characterization of λ1.

Proposition 1 (Corollary 1.1, [5]). If for some A ∈ R there exists a bounded φ ∈ W
2,n
loc (�) such that (L + A)φ ≥ 0

in �, lim supx→∂� φ(x) ≤ 0, and φ is positive somewhere in �, then

λ1(L,�) ≤ A.

The principal eigenvalue increases together with the zero-order coefficient of the operator, and decreases when the 
domain enlarges.

Proposition 2 (Proposition 2.1, [5]). If V (x) ≥ 0, V �≡ 0 is a bounded function in �, then λ1(L + V, �) > λ1(L, �).

Theorem 4 (Theorem 2.4, [5]). Let �′ ⊂ � be an open subset and δ > 0 be such that |�′| ≤ |�| − δ. Then there exists 
η = η(L, �, δ) > 0 such that

λ1(L,�′) − λ1(L,�) ≥ η.

In the sequel we will need the following fact.

Proposition 3. There exists a constant B̃ = B̃(L, �) > λ1(L, �) such that for any bounded function V (x) with 
V (x) ≤ B̃ , the operator L̃u = Lu + V u has a nontrivial kernel if and only if 0 is the principal eigenvalue of L̃.

Proof. We take B̃ = λ1(L, �) + η, where η is obtained from Theorem 4 with δ = |�|/2. Then for every open set 
�′ ⊂ � satisfying |�′| ≤ |�|/2, λ1(L, �′) > B̃ .
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Suppose V (x) ≤ B̃ and u �≡ 0 with Lu + V (x)u = 0 in �, and u = 0 on ∂�. We show that u does not change sign 
in � (and so by Theorem 2 it is a principal eigenfunction). Define

�+
u := {x ∈ � : u(x) > 0} , �−

u := {x ∈ � : u(x) < 0},
and assume by contradiction that �+

u , �−
u �= �. At least one of the sets �+

u , �−
u (say �+

u ) has measure smaller than 
or equal to |�|/2. Use Proposition 1 with � replaced by �+

u , and φ = u to obtain

Lu + B̃u ≥ Lu + V (x)u = 0, u > 0 in �+
u , and lim sup

x→∂�+
u

u(x) = 0

and hence λ1(L, �+
u ) ≤ B̃ , a contradiction. �

We quote a quantitative Hopf lemma [25], which extends results by Brezis–Cabre [9] for L = 	, and by Krylov 
[21], who obtained the interior estimate.

Theorem 5 (Theorem 3.1, [25]). There exist ε, c > 0 depending on n, λ, �, p, and � such that, for each solution 
u ∈ W 2,p(�), p > n, of Lu ≤ 0, u ≥ 0 in �,

inf
�

u

d
≥ c

⎛
⎝∫

�

(−Lu)ε

⎞
⎠1/ε

,

where d(x) = dist(x, ∂�).

2.2. The decomposition

We decompose X and Y in direct sums of horizontal and slanted subspaces,

X = W ⊕ V , Y = Z ⊕ V,

where Z = vect(φ∗
1 )⊥ = (Rφ∗

1 )⊥, W = Z ∩X, V = vect(φ1) ⊂ X, Y . Clearly Z ∩V = {0}, as φ1, φ∗
1 > 0. Contrary to 

the case when L is a self-adjoint operator, this decomposition is not necessarily orthogonal with respect to the inner 
product in L2(�). For each g ∈ Y we split

g = Pg + (I − P)g = zg + hgφ1 ∈ Z ⊕ V

where P is the projection P : Z ⊕ V = Y → Z ⊕ V, z + v �→ z. Throughout the text, the letters w and z will be 
reserved, respectively, for elements of the horizontal spaces W , Z. From the closed graph theorem, the norms on X
and Y are equivalent to the direct sum norms, ‖g‖Y

∼= ‖Pg‖Z + ‖(I − P)g‖V , and we change from one norm to the 
other without warning.

For each g ∈ Y , g = zg + hgφ1, we write the equation F(u) = g as

F(w + tφ1) = zg + hgφ1 for the unknowns w ∈ W , t ∈R.

For each fixed t ∈ R we set Ft(w) = F(w + tφ1) and decompose the equation we want to solve as follows,{
PFt(w) = zg

(I − P)Ft (w) = hgφ1
for the unknowns w ∈ W , t ∈R. (3)

We will show in Proposition 5 below that the maps PFt : W → Z are bi-Lipschitz homeomorphisms, uniformly in 
t ∈ R (bi-Lipschitz means the inverse is also Lipschitz). We may thus solve the first equation in (3); then from the 
second equation in (3) we can write hg in terms of zg and t .

Theorem 6. There exists B = B(L, �) > λ1 such that if f satisfies (AP)b with b < B , then the operator F = −L −
f (·) admits a global Lyapunov–Schmidt decomposition: the map � : X → Y defined by

�(w + tφ1) = PFt (w) + tφ1,
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is a bi-Lipschitz homeomorphism and, identifying Z ⊕ V and Z ×R,

F̃ = F ◦ �−1 : Z ×R→ Z ×R is F̃ (z, t) = (z, h̃(z, t)),

where h̃ is the Lipschitz function given by

h̃(z, t) := 〈F(�−1(z + tφ1)),φ
∗
1 〉

〈φ1, φ
∗
1 〉 .

The following crucial coercivity bound for � is proved in Section 2.4 below.

Proposition 4. Let � be as in the previous theorem. There exists a constant B = B(L, �) > λ1 such that if f satisfies 
(AP)b with b < B , then for some c = c(L, �) > 0 we have

‖�(u) − �(ũ)‖Y ≥ c‖u − ũ‖X for all u, ũ ∈ X.

We now turn to the proof of Theorem 6. The following proposition is the main step in this proof.

Proposition 5. There exists B = B(L, �) > λ1 such that if f satisfies (AP)b with b < B , then the maps PFt : W → Z

are bi-Lipschitz homeomorphisms, uniformly in t .

Proof. For w, w̃ ∈ W , t ∈R, Proposition 4 with u = w + tφ1, ũ = w̃ + tφ1 gives

‖PFt(w) − PFt (w̃)‖Y ≥ c‖w − w̃‖X. (4)

Hence PFt is injective and its image is closed.
We will first prove Proposition 5 under the additional hypothesis that f ∈ C1, which will let us use the implicit 

function theorem for F .
Since the functions in X are continuous in �, it is easy to see that F : X → Y is a C1 function, with derivative at 

u ∈ X given by

DF(u) : X → Y 〈DF(u), v〉 = −Lv − f ′(u)v, v ∈ X.

Similarly, PFt : W → Z is C1 and, for every w ∈ W ,

D(PFt )(w) : W → Z , 〈D(PFt )(w), v〉 = −Lv − P
(
f ′(w + tφ1)v

)
, v ∈ W.

We now show that D(PFt)(w) = −L − Pf ′(w + tφ1) : W → Z is an isomorphism for every w ∈ W . From (4), it 
is injective. To prove surjectivity, it suffices to show that it is a Fredholm operator of index 0. Recall that we assume 
a = 0, by (AP)b and the remark following it, and thus λ1 = λ1(L, �) > 0, L : X → Y is an isomorphism (Theorem 3) 
and hence the restriction L|W : W → Z is an isomorphism too. Also, the operator v ∈ W �→ P

(
f ′(w + tφ1)v

) ∈ Z is 
compact, since P : Y → Z is continuous, f ′ is bounded, and W is compactly embedded in Z.

Thus PFt : W → Z is a local diffeomorphism so, from the inverse function theorem, its image is open. Since the 
image is also closed, PFt is surjective, hence, bijective. By (4) the inverse of PFt is Lipschitz, uniformly in t ∈ R. 
Finally, by (AP)b and the definition of the projection P it is trivial to check that

‖PFt(w) − PFt (w̃)‖ ≤ C‖w − w̃‖,
for some constant C which does not depend on t .

For the general case of a Lipschitz function f satisfying (AP)b, we approximate f by smooth functions fk :R → R

which also satisfy (AP)b and converge uniformly to f as k → ∞. For instance, the bump function ψδ :R → R,

ψδ(x) = 1

δ
ψ(x/δ),

with ψ(x) = χ[−1,1](x) exp
(
(|x|2 − 1)−1

)
yields the smooth functions
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fδ(x) :=
∫
R

f (s)ψδ(x − s)ds =
∫
R

f (x − s)ψδ(s)ds. (5)

Since f is uniformly continuous, fδ → f uniformly as δ = 1/k → 0.
The associated maps Fk : X → Y , u �→ −Lu − fk(u) are smooth and converge uniformly to F . Indeed, if ε > 0

and N is such that for all k ≥ N and s ∈R we have |fk(s) − f (s)| < ε/|�| 1
n , then

‖Fk(u) − F(u)‖Y = ‖fk(u) − f (u)‖Y < (ε/|�| 1
n )|�| 1

n = ε .

Thus the maps PFk,t (w) = PFk(w + tφ1) are smooth diffeomorphisms which converge uniformly to an injective 
map PFt with a closed image. Take z ∈ Y and wk ∈ W for which PFk,t (wk) = z. Then we have

‖z − PFt (wk)‖Y = ‖PFk,t (wk) − PFt(wk)‖Y → 0 as k → ∞.

As the image of PFt is closed, z is in the image of PFt , i.e. PFt is surjective. Uniform Lipschitz continuity for the 
inverses (PFt )

−1 : Z → W again follows from (4). �
We are ready to prove Theorem 6.

Proof. From the previous proposition, the maps � and � = �−1 are well defined. To see that � is Lipschitz, take 
u = w + tφ1, ũ = w̃ + t̃φ1 ∈ W ⊕ V and compute:

‖�(u) − �(ũ)‖Y ≤ C
(‖PFt(w) − PFt̃ (w̃)‖Y + |t − t̃ |)

≤ C
(‖F(u) − F(ũ)‖Y + |t − t̃ |) ≤ C

(‖u − ũ‖Y + |t − t̃ |) .

To show that � is Lipschitz, for t, ̃t ∈R and z, ̃z ∈ Z,

‖�(z + tφ1) − �(z̃ + t̃φ1)‖X ≤ ‖(PFt )
−1(z) − (PFt̃ )

−1(z̃) + (t − t̃ )φ1‖X

≤ C‖z − z̃ + (t − t̃ )φ1‖Y ≤ C(‖z − z̃ + |t − t̃ |) ,

where for the second inequality we use Proposition 4 with

u = (PFt )
−1(z) + tφ1, ũ = (PFt̃ )

−1(z̃) + t̃φ1 .

From the definitions of F and �, (F ◦�)(z+ tφ1) = z+ h̃(z, t)φ1, for some real number h̃(z, t). Recall that z ∈ Z, 
so that z is orthogonal to φ∗

1 . We must then have

h̃(z, t) = 〈(F ◦ �)(z + tφ1),φ
∗
1 〉

〈φ1, φ
∗
1 〉 . �

2.3. Fibers and heights, properness of F

In this section we assume f satisfies (AP)b with b < B , where B > λ1 is defined by Proposition 4.
Fix z ∈ Z. From the definition of � and the results from the previous section, every horizontal affine subspace 

W + tφ1 is taken by F to a surface F(W + tφ1) which projects homeomorphically onto Z. In particular, this surface 
meets each line {z + hφ1, h ∈ R} ⊂ Y at a single point z + h̃(z, t)φ1, which is the image of a point w(z, t) + tφ1 ∈
W ⊕ V . Thus for each z ∈ Z we can define the fiber

uz(t) = u(z, t) := w(z, t) + tφ1 = �(z + tφ1) = �−1(z + tφ1)

as the inverse of the slanted line {z + tφ1, t ∈ R} ⊂ Y . In this way we also define the height function h̃ = h̃(z, t), by

F(u(z, t)) = −Lu(z, t) − f (u(z, t)) = z + h̃(z, t)φ1.

We rephrase some Lipschitz properties of F and � from the previous section.

Proposition 6. For every z ∈ Z, the map t �→ u(z, t) = �(z + tφ1) is Lipschitz uniformly in z. The height h̃(z, t)
is Lipschitz in both z and t . The equation F(u) = g = zg + tgφ1 ∈ Z ⊕ V has as many solutions as the equation 
h̃(zg, t) = tg , for the unknown t ∈ R.
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Proposition 7. As |t | → ∞, h̃(z, t) → −∞ uniformly in z ∈ Z.

Proof. We expand the expression for h̃(z, t) in Theorem 6, using u(z, t) = w(z, t) + tφ1, w ∈ W , Lw ∈ Z:

h̃(z, t) = 〈F(u(z, t)),φ∗
1 〉

〈φ1, φ
∗
1 〉

= 〈−Lw(z, t) − tLφ1, φ
∗
1 〉

〈φ1, φ
∗
1 〉 − 〈f (u(z, t)),φ∗

1 〉
〈φ1, φ

∗
1 〉 = λ1t − 〈f (u(z, t)),φ∗

1 〉
〈φ1, φ

∗
1 〉

≤ λ1t + M
〈1, φ∗

1 〉
〈φ1, φ

∗
1 〉 − b

〈w(z, t), φ∗
1 〉 + t〈φ1, φ

∗
1 〉

〈φ1, φ
∗
1 〉 ≤ (λ1 − b)t + C, (6)

where we used (AP)b. Since λ1 < b, for t → +∞ we have h̃(z, t) → −∞. The bound does not depend on z ∈ Z, 
implying uniform convergence. The case t → −∞ is similar: replace b by a = 0 in (6), again by (AP)b. �
Proposition 8. The map F : X → Y is proper.

Proof. From Theorem 6, it suffices to establish the properness of

F̃ : Z ⊕ V → Z ⊕ V , (z, t) �→ (z, h̃(z, t)) .

Now, if (zk, h̃(zk, tk)) is a convergent sequence then (zk, tk) is precompact, since by Proposition 7 the sequence {tk}
is bounded. �

Next, we show that fibers at infinity are essentially parallel to φ1, that is, w(z, t) is o(t) as |t | → ∞. Here we use 
the convexity of f .

Lemma 1. For every z ∈ Z,

lim|t |→∞‖w(z, t)

t
‖X = lim|t |→∞

∥∥u(z, t)

t
− φ1

∥∥
X

= 0.

Proof. Fix z ∈ Z. By Proposition 4, for some C > 0,

o(t) + ∥∥PFt (0)

t

∥∥
Y

≥ ∥∥z

t
− PFt(0)

t

∥∥
Y

= 1

|t | ‖PFt(w(z, t)) − PFt(0)‖Y ≥ C
∥∥w(z, t)

t

∥∥
X
,

so it suffices to prove that

1

|t | ‖PFt(0)‖Y = 1

|t | ‖Pf (tφ1(x))‖Y → 0 as t → ±∞.

Say t → +∞. Since f is convex, (f (t) − f (0))/t is nondecreasing and bounded (by (AP)b), hence convergent to 
some number b̃ ≤ b. In the limit, the expression

f (tφ1(x))

t
= f (tφ1(x))

tφ1(x)
φ1(x)

converges pointwise to b̃φ1(x), whose projection is the origin. The result follows by dominated convergence. �
2.4. Proof of Proposition 4

The proposition is proved if we find numbers ρ, c0 ∈ (0, 1], depending only on L and �, such that if f satisfies 
(AP)b with b = λ1 + ρ, then for every u, ũ ∈ X,

‖�(u) − �(ũ)‖Y ≥ c0 ‖u − ũ‖X. (7)

We use the product norms ‖u‖ = ‖w‖ + |t |‖φ1‖, if u = w + tφ1, w ∈ vect(φ∗)⊥ and normalize φ1 so that ‖φ1‖X = 1.
1
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Fix u = w + tφ1, ũ = w̃ + t̃φ1 ∈ X, u �= ũ. By the definition of �,

�(u) − �(ũ) = L(w − w̃) + P(f (u) − f (ũ)) + (t − t̃ )φ1.

Set

v := w − w̃

‖w − w̃‖X

∈ W, τ := |t − t̃ |
‖u − ũ‖X

∈ [0,1],
and

ψ := (1 − τ)Lv + P(f (u) − f (ũ))

‖u − ũ‖X

(8)

= L(w − w̃)

‖u − ũ‖X

+ P(f (u) − f (ũ))

‖u − ũ‖X

With this notation, statement (7), equivalent to Proposition 4, becomes

‖ψ‖Lp(�) + τ ≥ c0(L,�). (9)

From now on we assume that τ ≤ 1/2 (else (9) holds with c0 = 1/2). Set

q(x) :=
⎧⎨
⎩

f (u(x)) − f (ũ(x))

u(x) − ũ(x)
if u(x) �= ũ(x)

0 if u(x) = ũ(x).

From Lemma 1.1 in [5], λ1 ≤ C(L, �). Thus (AP)b implies q ∈ L∞(�), with

0 ≤ q ≤ λ1 + ρ ≤ C1(L,�).

Observe that

f (u) − f (ũ)

‖u − ũ‖X

= q(x) ((1 − τ)v + τφ1) , (10)

and hence, for C2 = C2(L, �) = ‖P‖ C1,∥∥∥∥P(f (u) − f (ũ))

‖u − ũ‖X

∥∥∥∥
Y

≤ C2 (‖v‖Y + τ) . (11)

We now apply the classical W 2,p-estimate (see for instance Theorem 9.13 in [19]) to (8), seen as an elliptic equation 
satisfied by v. Thus, if C3 = C3(L, �) is the constant from that estimate, by using (11) we get

1 = ‖v‖X ≤ C3

1 − τ

(‖ψ‖Y + C2(‖v‖Y + τ) + ‖v‖L∞(�)

)
≤ C4(‖ψ‖Y + τ + ‖v‖L∞(�)) (12)

for some C4 = C4(L, �), where we also used ‖v‖Y = ‖v‖Lp(�) ≤ |�|1/p‖v‖L∞(�).
From now on we suppose ‖ψ‖Y + τ ≤ 1/(2C4) (else (9) holds, by setting c0 = 1/(2C4)). Then by (12)

‖v‖L∞(�) ≥ 1

2C4
=: c1. (13)

On the other hand we also have, by the embedding X ↪→ C0,α(�) for some fixed α < 1, that, for some C5 = C5(�),

‖v‖Cα(�) ≤ C5‖v‖X = C5. (14)

If p > n we have more, since then X ↪→ C1,α(�) for α ∈ (0, 1 − n/p), and

‖v‖C1,α(�) ≤ C′
5‖v‖X = C′

5. (15)

This estimate and v = 0 on ∂� imply that v/d is Hölder continuous:∥∥∥v
∥∥∥

α
≤ C′′

5 , for d(x) = dist(x, ∂�) . (16)

d C (�)
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Alternatively, the last estimate can be deduced in a standard fashion from the general Harnack inequality for v/d , 
proved in [25]. Clearly, (16) holds if v is replaced by its positive or negative parts v+ and v−, which are compositions 
of v and a Lipschitz function with Lipschitz constant equal to one.

We now establish a useful property of v.

Lemma 2. There exist constants ε, ν > 0 depending only on L and �, and subdomains ω1, ω2 ⊂ � with measures 
|ω1|, |ω2| ≥ ν, such that

v ≥ ε in ω1, and v ≤ −ε in ω2.

Proof. We first record the following

Fact. If g ∈ Cα(�) is such that ‖g‖Cα(�) ≤ A and g(x0) ≥ a > 0 (resp. g(x0) ≤ −a < 0) for some x0 ∈ �, then

g ≥ a

2

(
resp. g ≤ −a

2

)
in Bν(x0) ∩ �, where ν =

( a

2A

)1/α

.

This is immediate from the definition of the Hölder seminorm

g(x0) − g(x) ≤ ‖v‖Cα |x − x0|α, i.e. g(x) ≥ g(x0) − ‖g‖Cα |x − x0|α.

We prove Lemma 2. By (13), there exists x1 ∈ � such that either v(x1) ≥ c1 or v(x2) ≤ −c1. Say the first happens. 
Then the fact above and (14) imply v ≥ ε1 = c1/2 in ω1 = Bν̄1(x1) ∩ � = Bν̄1(x1), where ν̄1 = (c1/(2C5))

1/α . It is 
clear that

|ω1| = |Bν̄1(x1)| ≥ ν1 > 0,

for some ν1 which depends only on ν̄1 and n, i.e. on L and �.

Recall that v ∈ Z, which means that 〈v, φ∗
1〉 = 0 where φ∗

1 > 0 is the principal eigenfunction of the dual operator. 
In other words, 

∫
�

v+φ∗
1 = ∫

�
v−φ∗

1 . We assume φ∗
1 is normalized so that 

∫
�

φ∗
1 = 1, and estimate

sup
�

v− ≥
∫
�

v−φ∗
1 =

∫
�

v+φ∗
1

≥ c1

2

∫
ω1

φ∗
1 ≥ c1

2
inf
x∈�

∫
Bν̄1 (x)∩�

φ∗
1 =: c2.

Note that the positive constant c2 depends only on c1, ν1, �, and φ∗
1 , and therefore only on the operator L and the 

domain �. This proves Lemma 2.
However, it would certainly be nice to know that the constants in our estimates depend only on bounds on the 

coefficients of L – see the remark on the constants which precedes Theorem 1. The last estimate does not immediately 
give us such control, because of the rather obscure behavior of φ∗

1 .
By working a bit more we will now show that a more explicit lower bound for sup� v− can be obtained if p > n, in 

terms of the constants in the basic elliptic estimates (the ABP inequality, the various forms of the Harnack inequality 
and the regularity estimates). This eventually yields the statements on the dependence of the constants, given before 
Theorem 1.

We introduce the auxiliary function ζ ∈ X, the solution of{
Lζ = −χ(x) in �

ζ = 0 on ∂�,
(17)

where χ(x) = χω1(x) denotes the indicator function of the set ω1 = Bν1(x1). This equation has a solution since 
λ1 = λ1(L, �) > 0 so L : X → Y is an isomorphism (Theorem 3), by (AP)b and the remark following it.

By applying Theorem 5 to (17) we get, for some c̄ = c̄(L, �),

ζ ≥ c̄|ω1|1/ε d ≥ c̄ν
1/ε

d in �.
1
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Normalize now φ∗
1 so that 〈φ∗

1 , d〉 = ∫
�

φ∗
1d = 1. We have the chain of estimates

sup
�

v−

d
≥

∫
�

v−

d
φ∗

1d =
∫
�

v−φ∗
1 =

∫
�

v+φ∗
1

≥ c1

2

∫
ω1

φ∗
1 = c1

2
〈φ∗

1 , χ〉 = c1

2
〈φ∗

1 ,−Lζ 〉 = c1

2
〈−L∗φ∗

1 , ζ 〉

= λ1
c1

2

∫
�

φ∗
1ζ ≥ λ1

c1

2
c̄ν

1/ε
1

∫
�

φ∗
1d = λ1

c1

2
c̄ν

1/ε
1 := c2.

Thus sup�
v−
d

> c2 = c2(L, �) > 0. We now apply the fact above to v−
d

, by using (16), to find a point x2 ∈ � and 

some ν̄2 > 0 such that v
−
d

> c2/2 in ω̂2 = Bν̄2(x2) ∩ �. Set

ω2 = ω̂2 ∩ {x ∈ � : d(x) ≥ ν̄2/2}.
The measure of ω2 is controlled below by a constant ν2 > 0 which depends only on � and ν̄2, and we have

v− ≥ c2

2
d ≥ c2ν̄2

4
in ω2.

Lemma 2 is proved. �
We continue with the proof of Proposition 4. Define

ρ := min
{

1,
η1

2
,
η2

2

}
,

where ηi = ηi(L, �) > 0 is determined by Theorem 4, applied with �′ = � \ ω̄i (ωi are given by Lemma 2).
By the definition of P there exists s ∈ R such that (recall also (10))

P
f (u) − f (ũ)

‖u − ũ‖X

= f (u) − f (ũ)

‖u − ũ‖X

+ sφ1

= q(x) ((1 − τ)v + τφ1) + sφ1.

Then (8) can be written as

Lv + q(x)v = 1

1 − τ
ψ − τ

1 − τ
q(x)φ1 − sφ1. (18)

Assume first that s ≤ 0.
Since q ≤ λ1 + ρ ≤ C1(L, �), ‖φ1‖L∞(�) ≤ C5‖φ1‖X = C5, we get from (18)

Lv + (λ1 + ρ)v ≥ −2|ψ | − 2C5(λ1 + ρ)τ ≥ −C6(|ψ | + τ) in �. (19)

Set

L̃ = L + λ1 + ρ, ξ = C6(|ψ | + τ).

To summarize, we have⎧⎪⎪⎨
⎪⎪⎩

L̃v ≥ −ξ in �

v ≥ ε in ω1
v ≤ −ε in ω2
v = 0 on ∂�.

(20)

In addition,

λ1(L̃,� \ ω̄i) = λ1(L,� \ ω̄i) − (λ1 + ρ)

≥ λ1 + ηi − (λ1 + ρ) ≥ ηi

2
,
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by the choice of ρ and Theorem 4. Hence by Theorem 3 we can solve the problem{
L̃ζ = ξ in � \ ω̄2

ζ = 0 on ∂(� \ ω̄2),
(21)

and obtain

‖ζ‖L∞(�\ω̄2) ≤ CABP

η2/2
‖ξ‖Ln(�) ≤ CABP

η2/2
|�|1/n−1/p‖ξ‖Lp(�) =: C7‖ξ‖Lp(�).

Assume by contradiction that

‖ξ‖Lp(�) <
ε

C7
. (22)

Then the function v = v + ζ satisfies

L̃v ≥ 0 in � \ ω̄2, v ≤ 0 on ∂(� \ ω̄2), v > 0 in ω1 ⊂ � \ ω̄2.

Thus Proposition 1 implies λ1(L̃, � \ ω̄2) ≤ 0, contradicting λ1(L̃, � \ ω̄2) ≥ η2/2.
Hence (22) fails, which is what we wanted to prove, since

C6(‖ψ‖Lp(�) + |�|1/pτ ) ≥ ‖ξ‖Lp(�) ≥ ε

C7

implies (9) by taking

c0 := min

{
1

2
,

1

2C4
,

ε

C6C7 max{1, |�|1/p}
}

.

If s ≥ 0, instead of (19) we have

L(−v) + (λ1 + ρ)(−v) ≥ −C6(|ψ | + τ)

so we can repeat the same argument, interchanging ω1 and ω2.
Proposition 4 is proved. �

3. Proof of Theorem 1

Take B = B(L, �) in the hypothesis of Theorem 1 to be the minimum of the constants B̃ and B , defined in 
Proposition 3 and Proposition 4, respectively.

Proposition 9. Under the hypotheses of Theorem 1, no point of Y has three preimages under F .

Proof. Such preimages would have to lie in the same fiber, that is, for some z ∈ Y there exist t1 < t2 < t3 and 
ui = uz(ti) = wi + tiφ1 ∈ WX ⊕ V with F(ui) = z + tφ1 for a common height t . Then

−L(u2 − u1) − (f (u2) − f (u1)) = 0 , −L(u3 − u2) − (f (u3) − f (u2)) = 0.

We consider the potentials

Vi,j (x) :=
⎧⎨
⎩

f (ui(x)) − f (uj (x))

ui(x) − uj (x)
if uj (x) �= ui(x)

0 if ui(x) = uj (x).

Clearly a = 0 ≤ Vi,j ≤ b < B , and( − L − V2,1
)
(u2 − u1) = 0 ,

( − L − V3,2
)
(u3 − u2) = 0 in �. (23)

By Proposition 3, u3 −u2 and u2 −u1 are principal eigenfunctions and do not change sign throughout �. They are 
positive: indeed, as 〈wi − wj , φ∗

1 〉 = 0,

〈ui − uj ,φ
∗
1 〉 = λ1〈(ti − tj )φ1, φ

∗
1 〉 = λ1(ti − tj )〈φ1, φ

∗
1 〉 > 0.

Hence u3 > u2 > u1 in � and the potentials V2,1, V3,2 are continuous.
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The convexity of f implies that for any α1, α2, α3 ∈ R

α1 < α2 < α3 =⇒ f (α2) − f (α1)

α2 − α1
≤ f (α3) − f (α2)

α3 − α2
.

If equality happens, the function f is affine in [α1, α3].
Set αi = ui(x) to obtain V2,1(x) ≤ V3,2(x) for x ∈ �. From Proposition 2 and the fact that 0 is the principal 

eigenvalue of both −L − V2,1 and −L − V3,2, we must have V2,1 ≡ V3,2 in �. Thus, by the continuity of ui and f ,

f (t) = αt + β , for t ∈ I = [infu1, supu3] ,

so that V2,1 = V3,2 = α, and α = λ1 by (23) and u2 − u1 > 0. Also ui(x) = 0 for x ∈ ∂�, so that 0 ∈ I . This is a 
contradiction with (C). �

The second hypothesis in (C) is indeed necessary. If for instance f (s) = λ1s + β in some interval (0, M) then for 
t ∈ (0, M/ maxφ1),

F(tφ1) = −Ltφ1 − f (tφ1) = tλ1φ1 − tλ1φ1 − β = −β,

that is, the equation F(u) = −β has a full segment of solutions.

Proposition 10. For a Banach space E, consider the continuous proper map

G : E ×R→ E ×R , (e, t) �→ (e, g(e, t)) .

Suppose that no point in E × R has three preimages under G. If some point has two preimages, G is a global fold, 
that is, there are homeomorphisms

σ1, σ2 : E ×R→ E ×R , σ1(e, t) = (e, g1(e, t)) , σ2(e, t) = (e, g2(e, t)),

such that (σ2 ◦ G ◦ σ1)(e, t) = (e, −|t |). Otherwise G is a homeomorphism.

Proof. The argument breaks in simple steps.

Step 1: Height functions g(e, .) may have only four distinct topological types.
By properness, on each vertical line le = {(e, t), t ∈ R}, e ∈ E,

lim
t→∞g(e, t) = ±∞ , lim

t→−∞g(e, t) = ±∞
where the signs of both limits are not necessarily the same: there are two possibilities in which they are the same and 
two in which they are different.

By hypothesis, there are no three points in a vertical line le in the domain taken to the same point by G. A continuous 
real function which has infinite limits at plus and minus infinity and which sends no three points to the same image 
has exactly one of the following four properties (to which we will refer as types): (i) it is strictly increasing on R; 
(ii) it is strictly decreasing on R; (iii) it is strictly increasing to the left of some real number and strictly decreasing to 
the right of that number; (iv) it is strictly decreasing to the left of some real number and strictly increasing to the right 
of that number. Observe that the type of a function is determined by the signs of its limits at plus and minus infinity.

Step 2: All heights of G are of the same type.
By a connectivity argument, it suffices to prove that, for a fixed e0, there is a neighborhood N of e0 for which all 

height functions g(e, .) for e ∈ N have the same limit. For example, suppose by contradiction that ek → e0 are such 
that

(+) lim
t→∞g(ek, t) = ∞ , (−) lim

t→∞g(e0, t) = −∞ .

By properness, the inverse of the compact set K = {(ek, 0)k} ∪ {(e0, 0)} is a compact set, and therefore lies in ∪k(ek ×
[−M, M]) for some M ∈ R. Then by the property (+), we must have g(ek, M +1) ≥ 0 for each k, and thus g(e0, M +
1) ≥ 0, contradicting (−).
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If one g(e, .) is of the first two types, G is a homeomorphism. For the rest of the proof, we suppose that g(e, .) is 
of the third type: in particular each function g(e, .) is strictly unimodal, that is, g(e, t) is strictly increasing for t < T , 
and strictly decreasing for t > T , for some T = T (e) ∈ R.

Step 3: Maxima of height functions, as well as points where they are attained, vary continuously across vertical lines.
Let T (e) be the value of t ∈ R at which g(e, t) attains its maximum. The map e ∈ E �→ T (e) is well defined by the 

unimodality.
We show the continuity of T at an arbitrary e0 ∈ E. Set T0 = T (e0) and take ε > 0. For L, R satisfying

L < T0 < R , T0 − L < ε/2 , R − T0 < ε/2 ,

take d > 0 so that

g(e0, T0) − g(e0,L) > d , g(e0, T0) − g(e0,R) > d .

By the continuity of G, there is δ > 0 for which, if |e − e0| < δ, then

|g(e,L) − g(e0,L)| , |g(e,T0) − g(e0, T0)| , |g(e,R) − g(e0,R)| < d/3 .

If |e − e0| < δ, g(e, T0) is larger than g(e, L) and g(e, R): for example, to estimate g(e, T0) − g(e, L), write

g(e,T0) − g(e0, T0) + g(e0, T0) − g(e0,L) + g(e0,L) − g(e,L) > −d/3 + d − d/3 = d/3 .

Thus the point T (e) where g(e, t) attains its maximum is still between L and R, by the unimodality of g(e, .). Since 
R − L < ε, we also have |T (e) − T (e0)| < ε. The continuity of the maximal value z ∈ E �→ g(e, T (e)) is now 
immediate.

Step 4: The global normal form.
The homeomorphisms

τ1, τ2 : E ×R→ E ×R , τ1(e, t) = (e, t + T (e)) , τ2(e, s) = (e, s − g(e,T (e)))

yield the map G̃ = τ2 ◦ G ◦ τ1, whose critical set C̃ together with its image G̃(C̃) coincide with the horizontal plane 
E × {0}. In addition, G̃|

C̃
is the identity. Moreover, the restrictions of G̃ on the half-spaces

G̃− : E × (−∞,0] → E × (−∞,0] and G̃+ : E × [0,∞) → E × (−∞,0]
are also homeomorphisms.

Set ν(z, t) = (z, −t). The juxtaposition of the maps G̃− and ν ◦ G̃+ along E × {0} is a homeomorphism j :
E ×R → E ×R, and it is easy to see that G̃ ◦ j−1 : E ×R → E ×R takes (e, t) to (e, −|t |).

The proposition is proved, setting σ1 = τ1 ◦ j−1, and σ2 = τ2. �
We finally complete the proof of Theorem 1.

Proof of Theorem 1. Let F̃ = F ◦ �−1 : Z ×R → Z ×R be the map defined in Theorem 6. From Proposition 9 no 
point has three preimages under F , and hence under F̃ .

From the previous proposition, F̃ is either a homeomorphism or a global fold. It is not a homeomorphism, since 
from Proposition 7 on both extremes of each fiber there are points which have the same image under F .

Let σ1, σ2 be the maps given by Proposition 10, applied to F̃ . Define the map ψ̃ : X = W ⊕Rφ1 → Y = Z ⊕Rφ1
by ψ̃(w + tφ1) = −Lw + tφ1.

Finally, we set

�1 = �−1 ◦ σ1 ◦ ψ̃ : X → X, �2 = σ2 : Y → Y.

With this definition and Proposition 10, we easily check that (2) holds.
Obviously �2 leaves vertical lines invariant, by the definition of σ2. To show the asymptotic property of �1, 

observe that by the definition of this map for each fixed w ∈ W the point �1(w + tφ1) is on the fiber generated by 
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z = −Lw, and

�1(w + tφ1) = �−1(−Lw, t̂ ), (24)

where t̂ = t̂ (w, t) is the number for which there exists a point ŵ ∈ W such that

F(ŵ + (t̂ + c1)φ1) =
{ −Lw + (t − c2)φ1 if t ≤ c2, and t̂ < 0

−Lw − (t − c2)φ1 if t ≥ c2, and t̂ > 0.
(25)

Here c1, c2 are real constants whose values are irrelevant to our computation below (they depend only on w, and are 
related to the maximum of the height function on the fiber generated by z = −Lw). By (25) and the properness of F
it is clear that limt→±∞ t̂ = ±∞.

We are going to show that

lim
t→−∞

t

t̂
= λ1 − ã, lim

t→∞
t

t̂
= b̃ − λ1, (26)

where ã := lims→−∞ f (s)
s

< λ1, b̃ := lims→∞ f (s)
s

> λ1 (see the proof of Lemma 1), from which we infer the asymp-
totics

lim
t→−∞

�1(w + tφ1)

t
= 1

λ1 − ã
φ1, lim

t→∞
�1(w + tφ1)

t
= 1

b̃ − λ1
φ1 (27)

in X, thanks to (24) and Lemma 1.
Exactly like in the proof of Lemma 1 we can show that

lim
|t̂ |→∞

‖ ŵ

t̂
‖X ≤ C lim

|t̂ |→∞
1

|t̂ | ‖PFt̂+c1
(ŵ) − PFt̂+c1

(0)‖ = 0.

Writing (25) in the form

−L(ŵ + (t̂ + c1)φ1) − V (x)(ŵ + (t̂ + c1)φ1) = −Lw ± (t − c2)φ1

where V (x) = f (ŵ + (t̂ + c1)φ1)/(ŵ + (t̂ + c1)φ1) converges to b̃ as t → ∞ (resp. to ã as t → −∞), multiplying 
by φ∗

1 and integrating, dividing by t̂ and letting t̂ → ±∞, we arrive at (26). �
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