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Abstract

We consider the fragmentation equation

∂f

∂t
(t, x) = −B(x)f (t, x) +

y=∞∫
y=x

k(y, x)B(y)f (t, y)dy,

and address the question of estimating the fragmentation parameters – i.e. the division rate B(x) and the fragmentation kernel 
k(y, x) – from measurements of the size distribution f (t, ·) at various times. This is a natural question for any application where 
the sizes of the particles are measured experimentally whereas the fragmentation rates are unknown, see for instance Xue and 
Radford (2013) [26] for amyloid fibril breakage. Under the assumption of a polynomial division rate B(x) = αxγ and a self-similar 
fragmentation kernel k(y, x) = 1

y k0( x
y ), we use the asymptotic behavior proved in Escobedo et al. (2004) [11] to obtain uniqueness 

of the triplet (α, γ, k0) and a representation formula for k0. To invert this formula, one of the delicate points is to prove that the 
Mellin transform of the asymptotic profile never vanishes, what we do through the use of the Cauchy integral.
© 2018 L’Association Publications de l’Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

This paper presents a theoretical study about the identification of the functional parameters of the continuous frag-
mentation equation. There are many possible applications to this problem, e.g. flocculation [5], mining industry [3], 
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bacterial growth [23]. This question having first emerged from the application to amyloid fibril breakage [26], let us 
first explain briefly the motivation which guided this study.

In the biophysical article [26], the authors study how a set of aggregates of proteins (called amyloid fibrils) behaves 
when undergoing turbulent agitation. In vivo, amyloid fibrils break apart because of both enzymatic processes and 
agitation. The question addressed in [26] is to determine what is the effect of agitation on the fragmentation rate
(what is the probability that a fibril of given length breaks apart?) and fragmentation kernel (where a fibril is more 
likely to break apart?) of proteins of amyloid types. The method used is the identification of the parameters of a model 
describing the fragmentation process by minimizing a least squares functional, which represented the discrepancy 
between the experimental measurements and the model outputs, after parametrization of the problem. The best-fit 
model which came as an outcome in [26] happened to fall into the scope of assumptions where the asymptotic behavior 
of the fragmentation equation has been thoroughly studied (see [11] and the details provided in Section 1.1): a power 
law for the fragmentation rate, and a self-similar form for the fragmentation kernel. Our question was then: can these 
asymptotic results be used to estimate, in a non-parametric way, the fragmentation kernel and the power law of the 
fragmentation rate?

This leading idea – how to use measurements on the asymptotic distribution to estimate functional parameters 
of the equation – has been first initiated in [21] and continued e.g. in [6,10] for the growth-fragmentation equation. 
However, up to now, the studies were focused on the question of estimating the division rate, whereas the division 
kernel was assumed to be known. As shown below, estimating the fragmentation kernel reveals much more difficult, 
being a severely ill-posed inverse problem.

To our knowledge, very few studies exist on the question of estimating the division kernel from measurements of 
fragmenting particles. In [12], V.H. Hoang estimated the fragmentation rate on a growth-fragmentation process, but 
assumed much richer data since the sizes of daughter and mother particles are measured at each time of division – such 
precise measurements may be possible for growing and dividing individuals such as bacteria, but not for particles or 
polymers. In [13], V.H. Hoang et al. investigate a problem much closer to ours, for a growth-fragmentation equation 
with linear growth and constant fragmentation rate, taking into account a statistical treatment for the noise, but taking 
for granted the validity of a reconstruction formula of the same type as ours (see below Theorem 2, (iii)). Finally, we 
can also cite the least square approach used in [5], which also studies the question of estimating the fragmentation 
kernel on a more general dynamical system. The authors keep the time dependency of the equation and use a least 
squares approach on the cumulative distribution function.

1.1. Assumptions, notations and asymptotic behavior

Fragmentation processes describe the mechanisms by which particles can break apart into smaller pieces. In the 
simplest fragmentation models, the particles are fully identified by their size (or volume or number of elementary 
particles), which is a positive real number for continuous models. The fragmentation equation for one dimensional 
particles (or linear particles) describes the evolution of the density f (t, x) ≥ 0 of particles of size x ∈ R

+ at time 
t ≥ 0. In the continuous setting, the pure fragmentation equation is written⎧⎪⎪⎨⎪⎪⎩

∂f

∂t
(t, x) = −B(x)f (t, x) +

∞∫
x

k(y, x)B(y)f (t, y)dy,

f (x,0) = f0(x).

(1.1)

The expression pure fragmentation is to be understood here as a contrast with the growth-fragmentation equation [19]
or the coagulation-fragmentation equation [15].

Equation (1.1) expresses that particles of size x break apart into smaller pieces with a fragmentation rate B(x). The 
kernel describes the probability distribution of the mass of the pieces formed in each fragmentation event, assuming 
that such a fragmentation event takes place. The kernel k then satisfies

k(y, x) = 0 for x > y,

y∫
xk(y, dx) = 1. (1.2)
0
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In the case of binary fragmentation, i.e. when the particle breaks into exactly two parts, we moreover have a symmetry 

property: k(y, dx) = k(y, y −dx), which leads to the fact that 
y∫
0

k(y, dx) = 2. The parameters B and k are commonly 

chosen according to the particular physical process being modeled. Here we do the following assumptions – which 
happen to be satisfied by the best-fit model in the biological study [26].

Hyp-1 The fragmentation rate B(x) follows a power law: B(x) = αxγ , with γ > 0 and α > 0.
Since γ > 0, a long filament is more likely to break apart than a smaller one. Let us point out the specific case 
γ = 1 for which the probability that a filament breaks apart is directly proportional to its size.

Hyp-2 The kernel k(y, x) has a self-similar form, i.e. the abscissa x where the protein filaments of size y are likely to 
break up depends only on the ratio x/y. More specifically, we assume that there exists a bounded, non negative 
measure k0 such that

k(y, x) = 1

y
k0

(
x

y

)
(1.3)

and

supp (k0) ⊂ [0,1],
1∫

0

dk0(z) < +∞,

1∫
0

zdk0(z) = 1. (1.4)

Hyp-3 There exists ε > 0 such that k0 is a bounded continuous function on [1 − ε, 1] and on [0, ε],
Hyp-4 ∃ε > 0, 0 < η1 < η2 < 1 such that k0(z) ≥ ε, z ∈ [η1, η2].

A frequent example is to take dk0(z) = κ1(0,1)(z)dz with κ > 1 (κ = 2 for binary fragmentation): this may be in-
terpreted as the fact that for linear filaments, any location along a given filament has an equal probability to break 
apart.

Let us comment briefly our assumptions. We need Assumption (Hyp-3) to prove Theorem 2 below. We could also 
have relaxed it, as in [1,9], replacing it by the following

∃ν > 0, C > 0 s.t.

x∫
0

k0(dz) ≤ Cxν. (1.5)

However, this would reveal of no practical interest when tackling real data, and in order to avoid useless technical 
developments we stick here to Assumption (Hyp-3).

Assumption (Hyp-4) is the assumption (2.12) in [18], under which we have the asymptotic self-similar behavior 
that we recall below. Although this assumption is not useful in itself for the results contained in our study, all our 
approach relies on this asymptotic behavior.

For the sake of clarity, let us now rewrite the equation (1.1) where B and k are replaced by their specific expression.⎧⎪⎪⎨⎪⎪⎩
∂f

∂t
(t, x) = −αxγ f (t, x) + α

∞∫
x

yγ−1k0

(
x

y

)
f (t, y)dy,

f (0, x) = f0(x).

(1.6)

Under assumptions (Hyp-1), (Hyp-2) and (Hyp-4), if f0 ∈ L1
(
R

+, (1 + x1+m)dx
)
, with m > 1, Theorem 3.2. 

in [18] states that the fragmentation equation (1.6) has a unique solution in C([0, T ); L1(R+, xdx)) ∩ L1(0, T ;
L1(R+, xγ+mdx), where we define

L1(R+,μ) :=
{
f :R+ → R,

∞∫
0

|f (x)|dμ(x) < ∞
}
, L1(R+) = L1(R+, dx).

It can be seen by formal integration that equation (1.1) preserves the mass of the system, and that the total number of 
protein filaments is increasing with time
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d

dt

+∞∫
0

f (t, x)dx =
+∞∫
0

B(x)f (t, x)dx, number of clusters increases,

d

dt

+∞∫
0

xf (t, x)dx = 0, mass conservation.

(1.7)

Let us point out that there may exist non-preserving-mass solutions: uniqueness is true only in C([0, T );
L1(R+, xdx)) ∩ L1(0, T ; L1(R+, xγ+mdx). In particular, the fact that the solution is in L1(0, T ; L1(R+, xB(x)dx))

is crucial. For instance, for B(x) = x

2
(1 + x)−r , r ∈ (0, 1), k0 = 21[0,1], and for the initial condition f0 ∈

L1(R+, xdx) \ L1(R+, xB(x)dx) defined as

f0(x) = exp

⎛⎝−
x∫

0

3 − ru(1 + u)−1

2λ(1 + u)r + u
du

⎞⎠ , (1.8)

the author of [25] points out that there is a solution f (t, x) = exp(λt)f0(x) belonging to C([0, T ); L1(R+, (1 +x)dx))

and for which the total mass of the system increases exponentially fast.
Besides the well-posedness properties, the qualitative behavior of the fragmentation equation was also deeply 

explored, e.g. [1,11,18,19]. Under assumptions (Hyp-1), (Hyp-2), (Hyp-4), it has been proven (Theorem 3.2. in [18]) 
that the solution f (t, x) satisfies

lim
t→∞

+∞∫
0

x
∣∣f (t, x) − t

2
γ g

(
xt

1
γ
)∣∣dx = 0, (1.9)

where under the extra assumption (Hyp-3) the self-similar profile g satisfies (Theorem 1 of [9]):

∀k ≥ 0, xk+1g ∈ W 1,1(0,∞), xkg ∈ L∞ ∩ L1(0,∞), g ∈ W
1,∞
loc (0,∞) (1.10)

and is the unique solution in L1
loc(0, ∞) ∩ L1(xdx) to

zg′(z) + (2 + αγ zγ )g(z) = αγ

∞∫
z

1

u
k0

( z

u

)
uγ g(u) du, in D′(0,∞) (1.11)

∞∫
0

zg(z)dz = ρ. (1.12)

Notice that it follows from (1.10) that:

g ∈ L1(xkdx), ∀k ≥ 0. (1.13)

Assumption (Hyp-3) is necessary to have k ≥ 0 in (1.13), without assumption (Hyp-3) we only have g ∈ L1(xkdx)

for k ≥ 1, see [18].
Since the total mass of the solutions that we consider is preserved, the parameter ρ is determined by the initial 

condition: ρ :=
+∞∫
0

xf0(x)dx. Existence and uniqueness of (1.11) are detailed in [11], see also [17,9].

Under additional assumptions, a polynomial rate of convergence for the limit (1.9) (corresponding to an exponential 
rate of convergence for the growth-fragmentation equation, i.e. a spectral gap) is obtained in [7,1,19]. Here we do not 
work under these supplementary assumptions.
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1.2. Formulation of the inverse problem

Let us assume that, as in [26], the observation consists in measurements of the sizes of polymers/aggregates in 
samples taken at different times. We discuss briefly in the conclusion how measurements – and their noise – may be 
further modeled, and in this paper we take for granted that from such measurements we are able to obtain estimates 
of the density distribution at several times.

The first inverse problem then states as follows: Given measurements of f (ti , x) solution to the equation (1.6) at 
various times ti , is it possible to estimate the functional parameters of (1.6), namely the triplet (α, γ, k0) ∈ (0, +∞) ×
(0, +∞) ×M+(0, 1)?

Following the idea of [21], we can take advantage of the asymptotic results recalled above, and, for sufficiently 
large times t , consider that measuring f (t, x) provides a measurement of the asymptotic profile g defined as the 
unique solution to (1.11) in L1((1 + xγ+1)dx). We are then led to reformulate the inverse problem as follows:

Inverse Problem (IP): Given a measurement of g(x) solution in L1((1 + xγ+1)dx) of Equa-
tion (1.11), is it possible to estimate the functional parameters of (1.11), namely the triplet 
(α, γ, k0) ∈ (0, +∞) × (0, +∞) ×M+(0, 1)?

Though this formulation strongly recalls the one obtained in previous studies [21,6] for the estimation of the division 
rate (here assumed to be given by the simple parametric form αxγ ), estimating the division kernel k0 reveals a much 
harder and more ill-posed problem.

Expliciting general conditions under which, for a given function g satisfying (1.10), there exists a triplet 
(α, γ, k0) ∈ R

+∗ × R+∗ ×M+(0, 1) such that g satisfies (1.11) is an interesting and difficult question in itself, how-
ever not directly useful to solve (IP), for which we can assume this existence – as it is often the case in the field of 
inverse problems – rather than prove it.

In this article, as a first theoretical step towards solving (IP), we thus focus on two important properties: uniqueness 
(Theorem 1), and how we can characterize such a triplet provided it exists (Theorem 2). Stability with respect to a 
noisy measurement of g has to be searched in a convenient regularity space, and, as the formulation (iii) of Theorem 2
shows a severe ill-posedness of the problem, this stability is expected to be very weak. Together with numerical 
solution, this will be the subject of future research.

2. Main results

Our method strongly relies on the Mellin transform of the equation, which, as in [6], appears to be a somewhat 
intrinsic feature of the equation: as shown below, it provides us with an explicit formulation of the kernel k0 in terms 
of the inverse Mellin transform of a functional of the Mellin transform of g.

2.1. Formulation of the stationary equation (1.11) in Mellin coordinates

We first recall the definition of the Mellin transform.

Definition 1. Let μ be a measure over R+. We denote by M[μ] the Mellin transform of μ, defined by the integral

M[μ](s) =
+∞∫
0

xs−1 dμ(x), (2.1)

for those values of s for which the integral exists.

Remark 1. If the integral exists for some u ∈ R, then, it converges for s ∈ u + iR. If the integral exists for u and v
in R, (u < v) then it exists for w ∈ (u, v). Thus, in general, the Mellin transform of a measure is defined in a vertical 
band of the complex plane.
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Since it has been proven in [9] that for all k ≥ 0, xk+1g ∈ W 1,1(R+) and xkg ∈ L∞(R+), we may define

G(s) := M[g](s), K0(s) := M[k0](s), e(s)≥ 1. (2.2)

We now use the Mellin transform in equation (1.11) to obtain a non-local functional equation.

Proposition 1. Suppose that a function g, satisfying properties (1.10), is a solution of the equation (1.11) in the sense 
of distributions on (0, ∞), for some kernel k0 compactly supported in [0, 1] and satisfying (1.4). Then, its Mellin 
transform:

G(s) =
∞∫

0

xs−1g(x)dx (2.3)

is well defined and analytic for all s ∈C such that e(s) ≥ 1, and it satisfies

(2 − s)G(s) = αγ (K0(s) − 1)G(s + γ ) ∀s ∈ C, e(s)> 1. (2.4)

Remark 2. As far as K0(s) �= 1, the equation (2.4) may also be written as

G(s + γ ) = �(s)G(s), with (2.5)

�(s) := 2 − s

αγ (K0(s) − 1)
. (2.6)

Since the support of the measure k0 is contained in [0, 1], it follows from (1.4) that |K0(s)| < 1 for e(s) > 2. We 
deduce that �(s) is analytic, and then the equation (2.4) is equivalent to (2.5), in that same region e(s) > 2.

Proof. The analyticity property of G in D1 follows from the property xrg ∈ L1(0, ∞) for all r ≥ 0 thanks to (1.10). 
By the integrability properties of g, the Mellin transform may be applied to both sides of (1.11). In particular, for all 
s > 1:

∞∫
0

xg′(x)xs−1dx = −s

∞∫
0

g(x)xs−1dx = −sG(s). (2.7)

On the other hand, using Fubini’s Theorem, that may be applied due to the integrability properties (1.10) of g and 
the hypothesis on k0, we obtain:

∞∫
0

xs−1

∞∫
x

1

u
k0

(x

u

)
uγ g(u) dudx =

∞∫
0

uγ g(u)

u∫
0

xs−1k0

(x

u

)
dxdu

=
∞∫

0

us+γ−1g(u)

1∫
0

ys−1k0 (y) dydu

= K0(s)G(s + γ ). (2.8)

It immediately follows from (2.7) and (2.8) that G satisfies (2.4). �
2.2. Uniqueness of the fragmentation rate and kernel

We use the formulation (2.4) of Proposition 1 to prove uniqueness of the parameters α, γ and of the measure k0. 
The assumptions on g to obtain uniqueness are fairly general, as stated in our first theorem.

Theorem 1 (Uniqueness of a triplet solution to the inverse problem). For any nonnegative function g satisfying

xk+1g ∈ W 1,1(0,∞), xkg∈ L1(0,∞), ∀k ≥ 1, (2.9)

there exists at most one triplet (γ, α, k0) ∈ R
+ ×R

+ ×M(0, 1) where k0 is a non negative measure satisfying (Hyp-2) 
and (Hyp-3), such that g is a solution of (1.11) in the sense of distributions.
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As said above, this is only a uniqueness result: the function g must satisfy many more conditions that are not 
completely general to really be the long time asymptotics of the fragmentation equation, and then for the parameters 
γ , α, and the measure k0 to exist.

Section 3 is dedicated to the proof of Theorem 1. Let us here briefly comment the result. The identity (1.9) shows 
that the profile g and the parameter γ describe the long time behavior of the solution f to (1.6).

According to Theorem 1, if such γ and k0 exist they are “encoded” in the equilibrium profile g. In other words, 
based only on the knowledge of the asymptotic profile g, it is theoretically possible to obtain information on the whole 
dynamics of the solution f .

The uniqueness of γ is based on the characterization given in Proposition 1 of Section 3, which uses the asymptotic 
behavior of some functional of G(s) when e(s) → ∞. Equivalently, this is linked to the behavior of g for large x, 
see also [1]. Since we cannot measure experimentally such a behavior, the theoretical characterization of Theorem 1
cannot be used in practice to estimate its value. To extract the values of γ from real measurements, we would need to 
use another characterization, based for instance on the knowledge of the time evolution of the first moment of the size 
distribution, given by (1.9), as described in Section 1.1.

Once the two parameters α and γ are proved to be unique, the uniqueness of the measure k0 is deduced from 
general properties of the Mellin transform, and does not give any constructive method to calculate its values. The next 
subsection is thus dedicated to a constructive characterization of k0.

2.3. Reconstruction of the fragmentation kernel

Once α and γ are known, we may apply Proposition 1, and formally dividing Equation (2.4) by G(s +γ ) we obtain

K0(s) = 1 + (2 − s)G(s)

αγG(s + γ )
. (2.10)

The properties of the kernel k0 are such that the inverse Mellin transform of K0 is well defined and equal to k0 (for in-
stance by Theorem 11.10.1 in [20] and the proof of the uniqueness theorem below). Therefore, by the equation (2.10), 
the kernel k0 is given by the inverse Mellin transform of 1 + (2−s)G(s)

αγG(s+γ )
. Although in order to prove the uniqueness of 

k0 it is sufficient to consider the Mellin transforms K0(s) and G(s) for real values of s, in order to take the inverse 
Mellin transform, it is necessary to use the values of 1 + (2−s)G(s)

αγG(s+γ )
for complex values of s. Moreover, we have to 

ensure that the denominator G(s + γ ) does not vanish.
Theorem 2 below provides an explicit formulation for k0 in terms of the Mellin transform of g.

Theorem 2. Suppose that g satisfies (2.9) and is the unique solution of equation (1.11) for some given parameters 
α > 0, γ > 0, and k0 a non negative measure, compactly supported in [0, 1], satisfying (Hyp-2) and (Hyp-3). Let G(s)

be the Mellin transform of the function g as defined in (2.3). Then, there exists s0 > 2 + γ such that

(i) |G(s)| �= 0, ∀s ∈ C; e(s) ∈ [s0, s0 + γ ],
(ii) K0(s) = 1 + (2 − s)G(s)

αγG(s + γ )
, for e(s) = s0

(iii) k0(x) = 1

2iπ

∫
e(s)=s0

x−s

(
1 + (2 − s)G(s)

αγG(s + γ )

)
ds.

Remark 3. Since under our assumptions the function K0 is only bounded, the integral in point (iii) is understood in the 
sense of distributions, as the second derivative of the inverse Mellin transform of K0(s)

s2 (as it is done in theorem 11.10.1 
in [20]).

Section 4 is dedicated to the proof of Theorem 2.
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3. Proof of Theorem 1: uniqueness

This section is dedicated to the proof of Theorem 1. In a first step we prove the uniqueness of (α, γ ), thanks to 
the characterization of γ given by Proposition 1. In a second step, we prove the uniqueness of k0, using well-known 
properties of the Mellin transform.

In all this section, we assume that the assumption (2.9) of Theorem 1 is satisfied.

3.1. Uniqueness of (α, γ )

The uniqueness of (α, γ ) may be proved at least in two different ways, that use the same property of the solution, 
namely the behavior of its moments G(s), s ∈ [2, +∞), when s → ∞.

The first way relies on the estimates obtained in [1], Theorem 1.7, that states that there exists a constant C > 0 and 
an exponent p ≥ 0 such that

g(x) ∼ Cxpe
− α

γ
xγ

, as x → ∞
from where we deduce

log

(
1

g

)
∼ α

γ
xγ , as x → ∞

which leads to the uniqueness of (α, γ ).
We give here a second proof of the uniqueness of (α, γ ) because our measure k0 does not satisfy the hypotheses 

imposed in [1]. It uses estimates on the Mellin transform of g, instead of direct estimates on g itself. However both 
proofs strongly rely on the behavior of high order moments of the function g.

Proposition 1 (Necessary condition for γ ). Suppose that g is a function satisfying (2.9) and solves the equation 
(1.11) for some parameters γ > 0, α > 0 and some non negative measure k0, compactly supported in [0, 1], satisfying 
(Hyp-2) and (Hyp-3). Let G be the Mellin transform of g for e(s) ≥ 2. Then:

(i) The value of the parameter α is uniquely determined by the value of γ (and the function g itself).
(ii) Given any constant R > 0:

lim
s→∞, s∈R+

s G(s)

G(s + R)
=
⎧⎨⎩

0, ∀R > γ

αγ, if R = γ

∞, ∀R ∈ (0, γ )

(3.1)

Remark 4. In order to take the limits in (3.1) we need G(s) to be defined for all s real large enough. We need then the 
function g to satisfy condition (2.9).

The proof of Proposition 1 follows immediately from the two following lemmas.

Lemma 1. Under the same hypothesis as in Proposition 1, the value of the parameter α is uniquely determined by the 
value of γ and

lim
s→∞, s∈R

sG(s)

G(s + γ )
= αγ.

Proof of Lemma 1. As seen in Proposition 1, the function G is analytic in the domain

{s,e(s) ≥ 2} .

Since g(x) ≥ 0, it follows that G(s) > 0 for all s ≥ 2. By condition (Hyp-2) on the kernel k0, for all s > 2, K0(s) <
K0(2) = 1. It is then possible to divide both terms of equation (2.4) by γG(s + γ )(K0(s) − 1) to obtain
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(2 − s)G(s)

γG(s + γ )(K0(s) − 1)
= α, ∀s > 2. (3.2)

Since K0(1) = 2, taking s = 1 in (3.2) determines α knowing only G and γ as

α = G(1)

γG(1 + γ )
. (3.3)

Lemma 6 in Appendix 6.1 proves

lim
s→∞K0(s) = 0. (3.4)

Combining (2.4), (3.2) and (3.4) leads to:

lim
s→∞

(s − 2)G(s)

G(s + γ )
= αγ, (3.5)

which ends the proof of Lemma 1. �
Lemma 2. Under the same hypothesis as in Proposition 1,

lim
s→∞, s∈R

sG(s)

G(s + R)
=
{

0, ∀R > γ,

∞, ∀R ∈ (0, γ ).
(3.6)

Proof. We first obtain some information on the asymptotic behavior of G(s) for s ∈ R and s → ∞.

First Step. On the asymptotic behavior of G as s → ∞, s ∈R. The idea is to use that for s > 2, we have K0(s) < 1
and equation (2.4) is then equivalent to (2.5), (2.6). Since the function � satisfies

lim
s→∞

A�(s)

s
= 1, A = αγ,

the equation (2.4) may be considered as being close, for s large, to the following equation:

AG(s + γ ) = sG(s), s ≥ 2, G(2) = ρ. (3.7)

This is a small variation of the functional equation that defines the Gamma function, where A = γ = 1. It follows by 
Wielandt’s theorem (cf. [22]) that it has a unique analytical solution A,γ , given, for all s > 2, by

A,γ (s) = c
( γ

A

) s
γ



(
s

γ

)
, (3.8)

where  is the Gamma function and c is a constant uniquely determined by the condition G(2) = ρ. The asymptotic 
behavior of A,γ (s) as s → ∞ is obtained using Stirling’s formula:

A,γ (s) ∼ c

√
2πγ

s

( γ

A

) s
γ

(
s

eγ

) s
γ
(

1 +O
(

1

s

))
, s → ∞

= c
√

2πγ s− 1
2 e

s
γ

(log s−1−log A)

(
1 +O

(
1

s

))
. (3.9)

We define now:

C(s) = G(s)

A,γ (s)
. (3.10)

Since G satisfies (2.5) and A,γ solves (3.8) we deduce that for all s ≥ 2:

C(s + γ ) = G(s + γ )

A,γ (s + γ )
= A�(s)G(s)

sA,γ (s)
= �(s)C(s) (3.11)

where: �(s) = A�(s)

s
, �(s) = s − 2

A(1 − K0(s))
.

Lemma 6 (see Appendix 6.1) proves that K0(s) = k0(1) + o
( 1) as s → ∞ and then,
s s
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�(s) = s − 2

s(1 − K0(s))
= 1 + k0(1) − 2

s
+ θ(s),

θ(s) ∈ C([2,∞)), θ(s) = o

(
1

s

)
, s → ∞. (3.12)

We deduce from (3.11) that, for all q ≥ 2 fixed and all N ∈ N
∗:

C (q + Nγ ) = C (q + (N − 1)γ )�(q + (N − 1)γ )

= C (q + (N − 2)γ )�(q + (N − 2)γ )�(q + (N − 1)γ )

= . . . . . . . . . . . .

= C (q)�(q)�(q + γ ) . . .� (q + (N − 2)γ )�(q + (N − 1)γ ) ,

and then

C (q + Nγ ) = C(q)

N−1∏
k=0

�(q + kγ ) . (3.13)

Given now any s > 2, there exists a unique real number ρs ∈ (0, γ ) and a unique integer ks such that

s = 2 + ρs + γ ks. (3.14)

We may write

C(s) = C(2 + ρs + γ ks) = C(2 + ρs)

ks−1∏
k=0

�(2 + ρs + γ k) . (3.15)

Similarly, for any s > 2 and γ̃ > 0, there exists a unique real number ρ̃s ∈ (0, γ ) and a unique integer k̃s such that

s + γ̃ = 2 + ρ̃s + γ k̃s (3.16)

and

C(s + γ̃ ) = C(2 + ρ̃s + γ k̃s) = C(2 + ρ̃s)

k̃s−1∏
k=0

�(2 + ρ̃s + γ k) . (3.17)

We wish to estimate now the products in the right hand side terms of (3.15) and (3.17). To this end we notice that:

log

(
N−1∏
k=0

�(q + kγ )

)
=

N−1∑
k=0

log (�(q + kγ )) =
N−1∑
k=0

log

(
1 + k0(1) − 2

q + kγ
+ θ(q + kγ )

)

=
N−1∑
k=0

(
k0(1) − 2

q + kγ

)
+

N−1∑
k=0

(
log

(
1 + k0(1) − 2

q + kγ
+ θ(q + kγ )

)
−
(

k0(1) − 2

q + kγ

))

= (k0(1) − 2)

γ

N−1∑
k=0

1
q
γ

+ k
+ Wq(N).

We estimate the first term thanks to the asymptotic properties of the digamma function, that we denote ψ . Since 
ψ(z + 1) = ψ(z) + 1

z
we get, as N → ∞:

N−1∑
k=0

1
q
γ

+ k
= ψ(N + q

γ
) − ψ(

q

γ
) = log(N) + ωq(N),

where ωq(s) is a continuous function on r > 0 such that, for any R > 2 there exists CR > 0 for which:

|ωq(s)| ≤ CR, ∀s > 2, ∀q ∈ (2,R).
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We now estimate the term Wq(N). For all ε > 0 and all R > 2, there exists Mε > 0 such that for all q ∈ (2, R):

|Wq(N)| ≤
Mε∑
k=0

∣∣∣∣log

(
1 + k0(1) − 2

q + kγ
+ θ(q + kγ )

)
−
(

k0(1) − 2

q + kγ

)∣∣∣∣+ ε

N−1∑
k=Mε

|k0(1) − 2|
q + kγ

≤ CMε(q) + ε

N−1∑
k=0

|k0(1) − 2|
q + kγ

= CMε(q) + ε
|k0(1) − 2|

γ

(
ψ

(
N + q

γ

)
− ψ

(
q

γ

))
≤ CMε(q) + ε

|k0(1) − 2|
γ

(
log(N) + ωq(N)

)
. (3.18)

We deduce that
N−1∏
k=0

�(q + kγ )≤N
k0(1)−2

γ e�(q,N),

�(q,N) = k0(1) − 2

γ
ωq(N) + Wq(N).

Then by (3.18), for all ε > 0 and for any R > 2, there exists two positive constants C1,R and C2,R such that for all 
q ∈ (2, R) and all N sufficiently large:

C1,R N
(k0(1)−2)−ε|k0(1)−2|

γ ≤
N−1∏
k=0

�(q + kγ ) ≤ C2,R N
(k0(1)−2)+ε|k0(1)−2|

γ . (3.19)

Consider now any γ̃ > 0. By definition of the function C(s) we have:

sG(s)

G(s + γ̃ )
= sA,γ (s)C(s)

A,γ (s + γ̃ )C(s + γ̃ )
.

Since for all s ≥ 2 and γ̃ > 0 the real numbers ρs and ρ̃s defined in (3.14) and (3.16) are in (0, γ ), we have by (3.19):

C(s)

C(s + γ̃ )
= C(2 + ρs)

C(2 + ρ̃s)

∏ks−1
k=0 �(2 + ρs + γ k)∏k̃s−1
k=0 �(2 + ρ̃s + γ k)

≤ C
C(2 + ρs)

C(2 + ρ̃s)
k

(k0(1)−2)+ε|k0(1)−2|
γ

s k̃

−(k0(1)−2)+ε|k0(1)−2|
γ

s .

for some constant C > 0. By definition ks < s/γ and if s → ∞, since ρ̃s ∈ (0, γ ) it is easy to check that k̃s >

(s + γ̃ − 2 − γ )/γ > s/2γ for s large enough. On the other hand, notice that for all s > 2 and γ̃ > 0, we have by 
definition 2 + ρs ∈ (2, 2 + γ ) and 2 + ρ̃s ∈ (2, 2 + γ ). Since the function C is continuous on [2, ∞) and strictly 
positive, there exists a positive constant C such that, for all s > 2 and γ̃ > 0:

C(2 + ρs)

C(2 + ρ̃s)
≤ C.

It then follows that for some constant C > 0:

C(s)

C(s + γ̃ )
≤ Cs

2ε|k0(1)−2|
γ , ∀s > 2. (3.20)

A similar argument shows that for some constant C′ > 0:

C(s)

C(s + γ̃ )
≥ C′s

−2ε|k0(1)−2|
γ , ∀s > 2. (3.21)

We deduce from (3.9):

sA,γ (s)

A,γ (s + γ̃ ))
= s− 1

2 se
s
γ

(log s−1−log A)

− 1
2

s+γ̃
γ

(log(s+γ̃ )−1−log A)

(
1 +O

(
1

s

))
as s → ∞. (3.22)
(s + γ̃ ) e
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Simple calculus gives:

−1

2
log(s + γ̃ ) + s + γ̃

γ
(log(s + γ̃ ) − 1 − logA) =

= −1

2
log s +O(

1

s
) + s

γ
(1 + γ̃

s
)(log s + γ̃

s
+O(

1

s2 ) − 1 − logA)

= −1

2
log s + s

γ
(log s + γ̃

s
− 1 − logA) + γ̃

γ
(log s − 1 − logA) +O

(
1

s

)
as s → ∞

and

1

2
log(s) + s

γ
(log s − 1 − logA) = 1

2
log(s) + s

γ
(log s − 1 − logA) as s → ∞,

from where

s− 1
2 se

s
γ

(log s−1−log A)

(s + γ̃ )− 1
2 e

s+γ̃
γ

(log(s+γ̃ )−1−log A)
= seO( 1

s
)

e
γ̃
γ

+O( 1
s
)+ γ̃

γ
(log s−1−log A)

= se
O( 1

s
)− γ̃

γ
− γ̃

γ
(log s−1−log A)

, s → ∞

and:

sA,γ (s)

A,γ (s + γ̃ ))
= A

γ̃
γ s

1− γ̃
γ

(
1 +O

(
1

s

))
as s → ∞. (3.23)

From (3.10), (3.20), (3.21) and (3.23) we deduce that for any γ̃ > 0 and any ε > 0 small, there exists two positive 
constants C1 and C2 such that for all s sufficiently large:

C1s
1− γ̃

γ
− 2ε|k0(1)−2|

γ ≤ sG(s)

G(s + γ̃ )
≤ C2s

1− γ̃
γ

+ 2ε|k0(1)−2|
γ . (3.24)

Second Step. End of the proof of Lemma 2.
We may conclude now the proof of Lemma 2 using the estimates (3.24) as follows. Suppose that γ̃ > γ . Then, we 

choose ε > 0 in (3.24) small enough in order to have:

1 − γ̃

γ
+ 2ε|k0(1) − 2|

γ
< 0.

It follows from the upper estimate in (3.24) that

lim
s→∞

sG(s)

G(s + γ̃ )
= 0.

If, on the other hand γ̃ < γ we choose ε > 0 (3.24) small enough in order to have

1 − γ̃

γ
− 2ε|k0(1) − 2|

γ
> 0.

As a consequence of the lower estimate in (3.24) we deduce that

lim
s→∞

sG(s)

G(s + γ̃ )
= ∞.

This concludes the proof of (3.6) and of Lemma 2. �
Proof of Proposition 1. Property (i) and property (ii) for R = γ follow Lemma 1. Property (ii) for R > 0, R �= γ

follows from Lemma 2. �
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Proof of Theorem 1. From the formula (2.4), and since by definition G(s +γ ) is strictly positive for s ∈ [1−γ, +∞)

we can divide by G(s + γ ) and obtain formula (2.10), i.e.

K0(s) := 1 + G(s)(2 − s)

αγG(s + γ )
, 1 ≤ s < +∞.

This determines uniquely the Mellin transform K0(s) of the measure k0 for all s ≥ 1. We want to use now a uniqueness 
theorem for the Laplace transforms of measures. The Laplace transform of a measure μ is defined as

L(μ)(s) =
∞∫

0

e−sydμ(y).

We claim now that K0(s) is the Laplace transform of the non negative measure dμ0(y) defined on (0, ∞) by

dμ0(x) = e2x T # xdk0(x), with T (x) = − log(x). (3.25)

We recall that the pushforward measure μ of a measure ν by the function T , that we denote μ = T #ν, is such that for 

all ψ ∈ L1(dμ), we have 
∫

(ψ ◦ T )dν =
∫

ψdμ. Indeed, using (3.25),

K0(s) =
1∫

0

xs−1dk0(x) =
1∫

0

xs−2xdk0(x) =
1∫

0

e(s−2) log xxdk0(x)

=
∞∫

0

e−(s−2)x T #xdk0(x) =
∞∫

0

e−sx dμ0(x)

= L(μ0)(s). (3.26)

Suppose now that k(1)
0 and k(2)

0 are two measures, satisfying (Hyp-2) and (Hyp-3), such that the same function g, 

satisfying (2.9) solves the equation (1.11) for k(1)
0 and k(2)

0 . Then, by Proposition 1 their Mellin transforms, K(1)
0 and 

K
(2)
0 respectively, satisfy (2.10) and then K(1)

0 (s) = K
(2)
0 (s) for all s ≥ 1. The Laplace transforms of the corresponding 

non negative measures μ(1)
0 and μ(2)

0 are then equal for all s ≥ 1. It follows that μ(1)
0 = μ

(2)
0 (cf. Theorem 8.4. in [4]), 

and then k(1)
0 = k

(2)
0 . �

Remark 5. The method used to prove the uniqueness of the triplet is based on the fact that under hypotheses on k0, the 
Mellin Transform K0(s) for s ∈ R goes to 0 as s goes to +∞ with a convergence rate of at least 1/s. This is a point 
which could be relaxed, by assuming (1.5) with a power ν > −1 as in [1]: the convergence could then be slowlier and 
Lemma 6 needs to be adapted, but it would still be sufficient.

4. Reconstruction of k0

This section is dedicated to the proof of Theorem 2. To reconstruct the kernel k0 from the function g and the 
parameters α and γ , we want to do an inverse Mellin transform of the functional of G(s) given in (2.10). This 
requires to integrate this functional on a line s0 + iR with s0 > 2, see Formula (iii) in Theorem 2. Since it is necessary 
to divide by the function G(s + γ ), we have to prove that G(s + γ ) does not vanish on the line s0 + γ + iR. We 
already know that this is true for real values s ≥ 1, but is not known for s ∈C.

To do so, Proposition 2 defines an explicit expression for a solution G̃(s) to (2.4), from which it is easy to deduce 
that G̃ does not vanish. This expression (4.1) is obtained using the Cauchy integral, see Lemma 3. However, since the 
equation (2.4) may admit several solutions, we need to prove that G̃(s) given by (4.1) is equal to the Mellin transform 
G(s) of the solution g to (1.11). This is done by studying the inverse Mellin transform of G̃ (Lemma 4) and then using 
a uniqueness result of solutions to the equation (1.11) (Theorem 3).

As a first, the following lemma obtains a solution of problem (2.4).
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Proposition 2 (Solution to Problem (2.4)). Let k0 satisfy the hypotheses (Hyp-2), (Hyp-3). For any s0 > 2 + γ , define 
the complex valued function G̃ for e(s) ∈ (s0, s0 + γ ) as

G̃(s) = exp

(
− 1

γ

∫
e(σ )=s0

log
(
�(σ)

){ 1

1 − e
2iπ s−σ

γ

− 1

2 + e
2iπ

s0−σ

γ

}
dσ

)
, (4.1)

where log(z) denotes the following determination of the logarithm:

log(z) = log |z| + i arg z, arg z ∈ [0,2π) (4.2)

and the function �(s) is defined by (2.6) in Remark 2. Then, the function G̃ may be extended analytically to C by the 
formula

G̃(s) = exp

(
− 1

γ

∫
e(σ )=s0

log
(
�(σ)

){ 1

1 − e
2iπ s−σ

γ

− 1

2 + e
2iπ

s0−σ

γ

}
dσ

)
e

k
2 log(�(s0+i�m(s))), (4.3)

with e(s) ∈ (s0 + kγ, s0 + (k + 1)γ ) for k ∈ Z. Moreover, G̃ solves (2.4) in C.

Formula (4.3) is only valid for e(s) /∈ s0 + γ Z, but the proof below shows that it can be continuously extended 
to C.

Proof. We first obtain an explicit solution in terms of a new variable ζ defined as follows:

ζ = T (s) = e
2iπ

s−s0
γ . (4.4)

The conformal mapping T transforms the complex plane C into the Riemann surface denoted S, associated to the 
logarithmic function. Every point ζ of each sheet of this surface is characterized uniquely by its modulus |ζ | and the 
determination of its argument θ , with θ ∈ (2kπ, 2(k + 1)π) for the kth sheet. The function ϕ̃ defined as

∀ζ ∈ S : ϕ̃(ζ ) = ϕ̃(T (s)) = �(s) (4.5)

is meromorphic in S. Any vertical infinite strip in C of the form e(
s−s0

γ
) ∈ (− ε

2π
, 1 + ε

2π
) for some ε > 0, is 

transformed by T into a portion D(ε) of S defined by

D(ε) =
{
ζ ∈ S; ζ = reiθ , θ ∈ (−ε,2π + ε), r > 0

}
. (4.6)

In particular, the map T is a bijection between the strip {z ∈ C | s0 < e(z) < s0 + γ } and its image T
({z ∈ C | s0 <

e(z) < s0 + γ }) where:

T ({z ∈ C | s0 < e(z) < s0 + γ }) =
{
ζ ∈ C; ζ = |ζ |eiθ , θ ∈ (0,2π)

}
(see Fig. 1). The inverse of T on T

({z ∈C | s0 < e(z) < s0 + γ }) is then given by:

T −1(ζ ) = s0 + γ

2iπ
log(ζ ).

Notice also that:{
if e(s) → (s0)

+ then arg(ζ ) → 0+,

if e(s) → (s0 + γ )− then arg(ζ ) → (2π)−,
(4.7)

where the function arg(·) is determined as in (4.2), i.e. arg(z) ∈ [0, 2π).
We look for a solution G̃ of (2.4) of the form:

G̃(s) = F(T (s)). (4.8)

If G̃ has to be analytic in e(s) ∈ (s0 − εγ
2π

, s0 + γ + εγ
2π

) and must satisfy the equation (2.4) in that strip, then the 
function F should be analytic on D(ε) and satisfy:
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Fig. 1. Holomorphic change of coordinates sends the green strip s0 − εγ

2π
< e(s) < s0 + γ + εγ

2π
(Left) into the green subdomain D(ε) (Right) 

of the Riemann surface associated to the logarithmic function. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

F(r − i0) = ϕ(r)F (r + i0), ∀r > 0, (4.9)

where we define, for all r > 0:

F(r + i0) := lim
η→0+ F(reiη), F (r − i0) := lim

η→0+ F(rei(2π−η)), ϕ(r) := lim
η→0+ ϕ̃(reiη). (4.10)

In order to make appear the multiplicative functional equation (4.9) as a typical Carleman equation [2] (additive), 
we look for the function F(ζ ) of the form

F(ζ ) = eP (ζ ) (4.11)

where the function P(ζ ) is such that:

P(r − i0) = log(ϕ(r)) + P(r + i0), ∀r > 0. (4.12)

The existence of such a function P with the suitable properties is proved in the following lemma.

Lemma 3. Let k0 satisfy the hypotheses (Hyp-2), (Hyp-3). The function P(ζ ) defined for all ζ ∈ D(0) by

P(ζ ) = − 1

2iπ

+∞∫
0

log(ϕ(w))
{ 1

w − ζ
− 1

w + 1

}
dw (4.13)

and can analytically be extended on S, its unique analytic continuation satisfying the equation (4.12). Moreover, the 
analytical continuation of P (which we will denote by P as well) on S has a simple expression

P(ζ ) = P(ζ̃ ) + k

2
log(ϕ(|ζ |)), arg(ζ ) ∈ (2kπ,2(k + 1)π), k ∈ Z, (4.14)

where ζ̃ ∈ D(0), |ζ | = |ζ̃ |, arg(ζ̃ ) ≡ arg(ζ ) mod (2π).

Remark 6. In the definition of P(ζ ), we could choose as well a fraction 1
w+a

instead of 1
w+1 , for any a > 0, or any 

function h(w) rendering (4.13) convergent. The difference between two such definitions of P(ζ ) would be given by a 
converging integral, namely
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1

2iπ

+∞∫
0

log(ϕ(w))
{
h(w) − 1

w + 1

}
dw,

which is independent of ζ . This would lead to a multiplicative constant for the definition of F , hence of G̃. The 
function h could be determined by the normalization G̃(2) = ρ as in (1.12); however to keep it simple, we stick here 

to the choice h(w) = 1

w + a
and a = 1.

Proof of Lemma 3. From the hypothesis on k0 we have, for all s ∈C such that e(s) > 2:

|K0(s)| ≤
1∫

0

|xs−1|dk0(x) =
1∫

0

xe(s)−1|dk0(x) <

1∫
0

xdk0(x) = 1.

Therefore, the function �(s) is analytic in the domain of C defined by e(s) > 2 and �(s) �= 0 in that domain. 
Suppose now that s0 > 2. By definition, T is a bijection from the strip{

s ∈C;e(s) ∈
(
s0 − εγ

2π
, s0 + εγ

2π

)}
,

into the piece of the Riemann’s surface:{
z ∈ S; z = |z|eiθ , θ ∈ (−ε, ε)

}
.

Since by definition, ϕ̃(ζ ) = �(T −1(ζ )), we deduce that ϕ̃ is analytic on the domain 
{
ζ ∈ S; ζ = |z|eiθ , θ ∈ (−2ε,2ε)

}
and ϕ̃(ζ ) �= 0 in that domain. The function log ϕ̃(ζ ) is then well defined in that domain. It follows from Lemma 8 (in 
Appendix 6.3) that, for all ζ /∈R

+:

+∞∫
0

|log(ϕ(w))|
∣∣∣∣ 1

w − ζ
− 1

w + 1

∣∣∣∣ dw < ∞

and the function P is then well defined and analytic in D(0) ={
ζ ∈ S; ζ = |z|eiθ , θ ∈ (0,2π)

}
.

The analyticity of P on the domain D(ε) follows from the analyticity of the function log(ϕ(w)) on 
{
z ∈ S; z =

|z|eiθ , θ ∈ (−ε, ε)
}
, a deformation of the contour of integration from R+ to rays eiθ

R
+ with |θ | < ε and using 

Lemma 8.
From Sokhotsky–Plemelj formulas (see Appendix 6.2), applied to the test function f (w) = −1

2iπ
(2+r) log(ϕ(w))

(w+1)
we 

obtain, for all r > 0:

P(r + i0) = −1

2
log(ϕ(r)) − 1

2iπ
P .V .

∞∫
0

log(ϕ(w))
{ 1

w − r
− 1

w + 1

}
dw,

P (r − i0) = 1

2
log(ϕ(r)) − 1

2iπ
P .V .

∞∫
0

log(ϕ(w))
{ 1

w − r
− 1

w + 1

}
dw.

(4.15)

The notation P.V . stands for the usual principal value of Cauchy.
If we take now the difference between these two formulas we deduce that, for all r > 0:

log(ϕ(r)) = P(r − i0) − P(r + i0),

from which we deduce, by induction, the formula (4.14). �
End of the proof of Proposition 2. We deduce that the function

F(ζ ) = exp (P (ζ )) (4.16)

given by
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F(ζ ) = exp
(

− 1

2iπ

+∞∫
0

log(ϕ(w))
{ 1

w − ζ
− 1

w + 1

}
dw

)
, ζ ∈ D(0), (4.17)

can be analytically continued in S and satisfies (4.9). Using the change of variables (4.4) in (4.17) gives the expression 
(4.1) for the function G̃. From (4.14), we moreover get the two following useful formulae, for ζ ∈ S and ζ̃ ∈ D(0), 
with arg(ζ ) ∈ (2kπ, 2(k + 1)π), |ζ | = |ζ̃ | and arg(ζ ) − arg(ζ̃ ) = 2kπ :

F(ζ ) = exp(P (ζ̃ )) exp

(
k

2
log (ϕ(|ζ |))

)
, (4.18)

G̃(s) = exp

(
− 1

γ

∫
e(σ )=s0

log
(
�(σ)

){ 1

1 − e
2iπ s−σ

γ

− 1

1 + e
2iπ

s0−σ

γ

}
dσ

)
exp

(
k

2
log (�(s0 + i�m(s)))

)
,

with (s) ∈ (s0 + kγ, s0 + (k + 1)γ ). �
For s0 − εγ

2π
> 2, both functions G̃ and G are analytic on 

{
s ∈ C; e(s) ∈ (s0 − εγ

2π
, s0 + (2π+ε)γ

2π
)
}

and satisfy 

(2.4), but nothing guarantees yet that G = G̃. We notice for instance that for �(s) = s and γ = 1, the functions

s �→ 1

2
(s) and s �→ 1

2
(s)

[
1 + sin(2πs)

]
(4.19)

are two distinct solutions to the equation (s + 1) = s(s). The first one never cancels whereas the second one does. 
Our purpose now is to show that the inverse Mellin transform of G̃ exists, belongs to L1((1 + xγ+1)dx) and satisfies 
(1.11): we then conclude by uniqueness of solutions to (1.11) in L1((1 + xγ+1)dx), see e.g. Theorem 3.1. in [18], and 
by the properties of the inverse Mellin transform, see Theorem 11.10.1 in [20].

Theorem 3. Let g be the solution to the stationary equation (1.11) satisfying (2.9), and G̃ the function defined in (4.1)
for s0 > 2 + γ . Then

g(x) = 1

2iπ

∫
e(s)=u

G̃(s)x−sds, ∀u > s0. (4.20)

The proof of Theorem 3 is done in two steps. We first prove that the inverse Mellin transform of G̃, that we denote 
g̃, is a function, with suitable integrability properties on (0, ∞). The theorem then follows using a uniqueness result 
for the solutions of the equation (1.11).

The results are based on the behavior of ϕ̃ on the kernel k0, see Lemma 8 in Appendix 6.3). From this, we derive 
the asymptotic behavior of F(ζ ) as |ζ | goes to 0 or to ∞.

Lemma 4. For any ε > 2π , the inverse Mellin transform of G̃ defined in the sense of distributions as

g̃(x) = 1

2iπ

∫
e(s)=u

G̃(s)x−sds (4.21)

for u ∈
(
s0 − εγ

2π
, s0 + (2π+ε)γ

2π

)
, satisfies:

g ∈ L1((x + xγ+1)). (4.22)

Proof. We first prove that the integral in (4.21) is convergent. To this end we first recall that G̃ is analytic in 
the domain 

{
s ∈C;e(s) ∈ (s0 − εγ

2π
, s0 + εγ

2π
)
}

(cf. Proposition 2). It then follows that for all x > 0 and u ∈
(s0 − εγ

2π
, s0 + γ + εγ

2π
) fixed, the function |G̃(u + iv)x−u−iv| is locally integrable with respect to v. Let us see now 

what is the asymptotic behavior of |G̃(u + iv)| for u ∈ (s0 − εγ
2π

, s0 + γ + εγ
2π

) fixed when |v| → ∞. This will be eas-
ier in terms of the variable ζ introduced in (4.4) and the function F defined in (4.8), whose expression was obtained 
in (4.18):
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F(ζ ) = exp
(

− 1

2iπ

+∞∫
0

log(ϕ̃(w))
{ 1

w − ζ̃
− 1

w + 1

}
dw

)
exp

(
k

2
log (ϕ(|ζ |))

)
,

ζ̃ ∈ D(0), ζ = ζ̃ e2ikπ ,

where ϕ̃ is defined in (4.5).
Notice that if s = u + iv+kγ with u ∈ (s0, s0 + γ ) fixed, k ∈ Z and v ∈ R, this yields in terms of the variable 

ζ = T (s) = e
2iπ

s−s0
γ :

ζ = e
−2π v

γ e
2iπ

u−s0
γ e2ikπ = reiθ e2ikπ ,

r = e
−2π v

γ ∈ (0,∞),

θ = 2π
u − s0

γ
∈ (0,2π), fixed.

Our goal is then to estimate the behavior of F(ζ ) as |ζ | → ∞ and |ζ | → 0 and θ ∈ (0, 2π), k ∈ Z fixed. By Lemma 8

F(ζ ) = exp

(
− 1

2iπ

(
I (ζ̃ )+O(1)

))
exp

(
k

2
log (ϕ(|ζ |))

)
,

where

I (ζ̃ ) =
∞∫

0

log |logw|
(

1

w − ζ̃
− 1

w + 1

)
dw.

We have then, as |ζ | → ∞ or |ζ | → 0:

|F(ζ )| =
∣∣∣ exp

(
− 1

2iπ
I (ζ̃ )+k

2
log (ϕ(|ζ |))+O(1)

})∣∣∣= exp

(
− 1

2π
�m(I (ζ ))+k

2
e (log(ϕ(|ζ |)))+O(1)

)
.

By Lemma 8

log(ϕ̃(ζ )) = log |log |ζ || +O(1), for |ζ | → 0+ or |ζ | → ∞.

We can use this expression for ζ → |ζ | and obtain

e
(

log(ϕ(|ζ |)))= log |log |ζ || +O(1), for |ζ | → 0+ or |ζ | → ∞.

By Lemma 9 and Lemma 10

−�m(I (ζ )) = − log |log(|ζ |)| (π − θ) +O(1), as |ζ | → ∞ or |ζ | → 0.

Finally we obtain

|F(ζ )| = exp

(
− log | log |ζ |π − θ − 2kπ

2π
+O(1)

)
We deduce that for ζ such that θ ∈ (0, π) and k ≤ 0,

|F(ζ )| = o(1), as |ζ | → 0 and |ζ | → ∞. (4.23)

Using the change of variables (4.4), (4.8), it follows from (4.23) that for all u ∈ (s0 − εγ
2π

, s0 + γ

2
) fixed:

|G̃(s)| = o(1), as |�m(s)| → ∞, e(s) = u. (4.24)

The function G̃ is analytic in the strip e(s) ∈ (s0 − εγ
2π

, s0 + (2π+ε)γ
2π

) and bounded as |s| → ∞ for e(s) ∈
(s0 − εγ

2π
, s0 + γ

2
). Its inverse Mellin transform ̃g is then uniquely defined as a distribution on (0, ∞) by (4.21) in the 

sense of distributions, where u may take any value in the interval (s0 − εγ
2π

, s0 + γ
) using Theorem 11.10.1 in [20].
2
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Let us now study the regularity of g̃. Let us assume u < s0, i.e. for instance k = −1. Then, there is b > 1 such that

|F(ζ )| ≤ Ce− bπ
2π

log(log |ζ |), |ζ | → 0, |ζ | → ∞.

Therefore,

|G̃(u + iv)| ≤ C|v|− b
2 , |v| → ∞, b > 1,

and
∞∫

−∞

∣∣G̃(u + iv)
∣∣2 dv < ∞.

This shows that for any u < s0 the function G̃u(v) : v → G̃(u + iv) is such that G̃u ∈ L2(R). It follows that its Fourier 
transform also belongs to L2(R):

∞∫
−∞

∣∣∣∣∣∣
∞∫

−∞
G̃(u + iv)e−ivzdv

∣∣∣∣∣∣
2

dz < ∞. (4.25)

Using the change of variables z = logx we deduce:

∞∫
−∞

∣∣∣∣∣∣
∞∫

−∞
G̃(u + iv)e−ivzdv

∣∣∣∣∣∣
2

dz =
∞∫

−∞

∣∣∣∣∣∣
∞∫

−∞
G̃(u + iv)e−iv log xdv

∣∣∣∣∣∣
2

dx

x

=
∞∫

−∞

∣∣∣∣∣∣
∞∫

−∞
G̃(u + iv)x− 1

2 −ivdv

∣∣∣∣∣∣
2

dx. (4.26)

Then, since

g̃(x) = 1

2π

v=∞∫
v=−∞

G̃(u + iv)x−(u+iv)dv, u ∈ (s0, s0 + γ ),

it follows from (4.25) and (4.26) that:

g̃(x) = ix−u

∞∫
−∞

G̃(u + iv)x−ivdv,

|g̃(x)| = x−u+ 1
2

∣∣∣∣∣∣
∞∫

−∞
G̃(u + iv)x− 1

2 −ivdv

∣∣∣∣∣∣ .
Hence g̃(x)xu− 1

2 ∈ L2
x as soon as u < s0.

We recall that the value of g̃ defined by (4.21) does not depend on u. Let us choose s0 > 2 and ε > 0 such that 
g̃ ∈ L1(x + xγ+1).

Asymptotic behavior of g̃ around x = +∞.

∞∫
1

x1+γ |g̃(x)|dx =
∞∫

1

x1+γ−u+ 1
2

∣∣∣∣∣∣
∞∫

−∞
G̃(u + iv)x− 1

2 −ivdv

∣∣∣∣∣∣dx

≤
⎛⎜⎝ ∞∫

1

∣∣∣∣∣∣
∞∫

−∞
G̃(u + iv)x− 1

2 −ivdv

∣∣∣∣∣∣
2

dx

⎞⎟⎠
1/2 ⎛⎝ ∞∫

1

x2(1+γ−u)+1dx

⎞⎠1/2

,
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the last integral in the right hand side being convergent whenever

2(1 + γ − u) + 1 < −1,⇐⇒ γ + 1 < u − 1,

i.e. whenever we choose s0 such that

2 + γ < u < s0.

Notice that this also implies that

∞∫
1

x|g̃(x)|dx < ∞.

Asymptotic behavior of g̃ around x = 0.

1∫
0

x|g̃(x)|dx =
1∫

0

x1−u+ 1
2

∣∣∣∣∣∣
∞∫

−∞
G̃(u + iv)x− 1

2 −ivdv

∣∣∣∣∣∣dx

≤
⎛⎜⎝ 1∫

0

∣∣∣∣∣∣
∞∫

−∞
G̃(u + iv)x− 1

2 −ivdv

∣∣∣∣∣∣
2

dx

⎞⎟⎠
1/2 ⎛⎝ 1∫

0

x2(1−u)+1dx

⎞⎠1/2 (4.27)

The last integral in the right hand side is convergent whenever

2(1 − u) + 1 > −1 ⇐⇒ u < 2,

then we need to choose u < 2. To be allowed to take u < 2 with 2 + γ < s0, we need to impose that ε satisfies

2 > u > s0 − εγ

2π
> 2 + γ − εγ

2π
, i.e. ε > 2π.

Notice that (4.27) also implies that

1∫
0

x1+γ g̃(x)dx < ∞.

Thus, if s0 > 2 + γ and ε > 2π , the function g̃ defined by (4.21) with u ∈ (s0 − εγ

2π
, s0 + γ

2
) satisfies g̃ ∈ L1((x +

xγ+1)dx). �
In order to prove that g̃ and g are the same we first show the following lemma.

Lemma 5. The function g̃ defined by (4.21) satisfies the equation (1.11).

Proof. By construction G̃ is analytic in the region 
{
s ∈ C;e(s) ∈ (s0 − εγ

2π
, s0 + (2π+ε)γ

2π
)
}

and satisfies

(2 − s)G̃(s) = αγ (K0(s) − 1)G̃(s + γ ) (4.28)

on that region. We take the inverse Mellin transform in both sides of (4.28) term by term. Since (2 − s)G̃(s) is again 
analytic in the strip u ∈ (s0 − εγ

2π
, s0 + (2π+ε)γ

2π
) and G̃(s) is bounded as |s| → ∞ in that strip, we deduce that the 

inverse Mellin transform of (2 − s)G̃(s) is a well-defined distribution. Moreover:

1

2iπ

∫
e(s)=u

(2 − s)G̃(s)x−sds = 2g̃(x) − 1

2iπ

∫
e(s)=u

sG̃(s)x−sds

Using the well-known identity:
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1

2iπ

∫
e(s)=u

sG̃(s)x−s−1ds = − ∂

∂x

⎛⎜⎝ 1

2iπ

∫
e(s)=u

G̃(s)x−sds

⎞⎟⎠
we obtain:

1

2iπ

∫
e(s)=u

(2 − s)G̃(s)x−sds = 2g̃(x) + x
∂g̃

∂x
.

We consider now the Mellin transform of the right hand side of (4.28). Since the function K0 is analytic and bounded 
for e(s) > 1 and the function G̃(s) is analytic for ∈C and bounded for e(s) ∈ (s0 − εγ

2π
, s0 + (2π+ε)γ

2π
), the inverse 

Mellin transform of (K0(s) −1)G̃(s +γ ) is a well-defined distribution for u > 1 and u +γ ∈ (s0 − εγ
2π

, s0 + (2π+ε)γ
2π

). 
Let us then choose u ∈ (s0 − εγ

2π
, s0 + εγ

2π
). Notice that 1 < 2 < s0 − εγ

2π
from where u > 1 too. Then,

1

2iπ

∫
e(s)=u

(K0(s) − 1)G̃(s + γ )x−sds = 1

2iπ

∫
e(s)=u

K0(s)G̃(s + γ )x−sds − 1

2iπ

∫
e(s)=u

G̃(s + γ )x−sds

We first have:

1

2iπ

∫
e(s)=u

G̃(s + γ )x−sds = 1

2iπ

∫
e(σ )=u+γ

G̃(σ )x−σ+γ ds = xγ

2iπ

∫
e(σ )=u+γ

G̃(σ )x−σ ds.

Since u ∈ (s0 − εγ
2π

, s0 + εγ
2π

), we have u + γ ∈ (s0 + (2π−ε)γ
2π

, s0 + (2π+ε)γ
2π

) and then

xγ

2iπ

∫
e(σ )=u+γ

G̃(σ )x−σ ds = g̃(x)

from where

1

2iπ

∫
e(s)=u

G̃(s + γ )x−sds = xγ g̃(x).

We use now the definition of K0 in terms of k0 to write:

1

2iπ

∫
e(s)=u

K0(s)G̃(s + γ )x−sds = 1

2iπ

∫
e(s)=u

∞∫
0

k0(y)ys−1dyG̃(s + γ )x−sds

=
∞∫

0

k0(y)

⎛⎜⎝ 1

2iπ

∫
e(s)=u

G̃(s + γ )

(
x

y

)−s

ds

⎞⎟⎠ dy

y
.

Using the same argument and the same choice of u as before:

1

2iπ

∫
e(s)=u

G̃(s + γ )

(
x

y

)−s

ds =
(

x

y

)γ

g̃

(
x

y

)

from where:

1

2iπ

∫
e(s)=u

K0(s)G̃(s + γ )x−sds = xγ

∞∫
0

k0(y)y−γ g̃

(
x

y

)
dy

y
.
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Using the change of variable y = x
z

we deduce

1

2iπ

∫
e(s)=u

K0(s)G̃(s + γ )x−sds =
∞∫

x

k0

(
x

z

)
zγ−1g̃(z)dz.

This shows that the function g̃ satisfies the equation (1.11) and proves Lemma 5. �
We may now proceed to prove Theorem 3.

End of the proof of Theorem 3. By Lemma 5 the function g satisfies the equation (1.11) and by Lemma 4, g ∈
L1((x + xγ+1)). Then by the uniqueness Theorem 3.1 of [11], p. 110 we deduce that g̃ = g. �
Proof of Theorem 2. By Proposition 2 the function G̃ is analytic and bounded on the domain D =

{
s ∈ C; e(s) ∈

(s0 − εγ
2π

, s0 + (2π+ε)γ
2π

)
}

and then, by classical properties of the Mellin transform (cf. Theorem 11.10.1 in [20]) 

G̃(s) = M[g̃](s), for s ∈ D. Since by Theorem 3 g = g̃, we deduce that G = G̃ on D. It follows in particular that |G|
does not vanish on D, and this proves point (i).

We may then divide both terms of equation (2.4) by G(s + γ ) to obtain equation (2.10) and this shows the point 
(ii).

Since the function K0 is bounded, applying Theorem 11.10.1 in [20] we have

k0(x) = x2

2iπ

d2

dx2

∫
e(s)=s0

x−s

s2 K0(s)ds,

that we write also, in the sense of distributions

k0(x) = 1

2iπ

∫
e(s)=s0

x−sK0(s)ds,

and applying point (ii) we get point (iii). �
5. Conclusion

In this study, we provided a first theoretical ground to the question of estimating the function parameters of a pure 
fragmentation equation from its solution. To this purpose, we departed from its self-similar asymptotic profile, along 
the lines of previous studies carried out for the growth-fragmentation equation [6,21].

We proved two main results: uniqueness for the fragmentation rate and kernel, and a reconstruction formula for the 
fragmentation kernel based on the Mellin transform of the equation. The most delicate point lies in the proof of the 
reconstruction formula. This requires to prove that the Mellin transform of the asymptotic profile does not vanish on 
a vertical strip of the complex plane – a property far from obvious achieved with the use of the Cauchy integral and a 
careful study of the asymptotic behavior of the function on vertical lines of the complex plane.

With these results however, the inverse problem of reconstructing the function parameters of the fragmentation 
equation is far from being solved in practice.

First, stability of the reconstruction formula (iii) of Theorem 2 needs to be studied in an adapted space, and this 
inverse problem appears as severely ill-posed, as most problems of deconvolution type. Stability could then lead to 
error estimates, to take into account the fact that the asymptotic profile is measured with a certain noise in a certain 
space.

To go further, it would also be of interest to take into account a convenient statistical modeling of the measurement 
noise. A natural one, mimicking the experiments carried out in [26], would be to assume that at times ti , the measure-
ment consists in a sample of fibrils, whose sizes (xi

1, · · ·xi
ni

) are measured. A first assumption would then be, in the 
spirit of [8], to assume that these samples are realizations of i.i.d. random variables, whose density f (ti , x) satisfies 
the fragmentation equation. This leads to other difficult and interesting questions in statistics: indeed, the samples are 
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naturally not independent, but a theoretical justification of this assumption could be investigated, as done for instance 
in [14] for the case of an age-structured process.

Concerning the fragmentation rate, we shall need a new estimation method, since ours strongly uses the behavior 
of the asymptotic profiles for very large sizes, what is out of reach in practice. Finally, numerical tests and application 
to real data shall be carried out in a future work.

6. Appendices

6.1. Behavior of K0(s) for s ∈ (0, ∞), large

The following lemma states that if k0 is continuous in a neighborhood of x = 1, the Mellin transform K0 converges 
to 0 as 1/s when e(s) goes to ∞. The proof is a variation on the Laplace method [24] through the change of variable 
z = e−x .

Lemma 6. Under hypothesis (Hyp-3):

K0(s) = k0(1)

s
+ o

(
1

s

)
, s → ∞, s ∈ R. (6.1)

If we also assume that, for some ε > 0 there exists r > 1 and Cr > 0 such that, for all x ∈ (1 − ε, 1):

|k0(x) − k0(1)| ≤ Cr | log(x)|r
then

K0(s) = k0(1)

s
+ o

(
1

sr

)
, s → ∞, s ∈ R. (6.2)

Proof. Let us evaluate the limit as s → ∞ of the following expression

sK0(s) = s

1−ε∫
0

k0(x)xs−1 dx + s

1∫
1−ε

k0(x)xs−1 dx. (6.3)

We first notice that:∣∣∣∣∣∣s
1−ε∫
0

k0(x)xs−1 dx

∣∣∣∣∣∣≤ s(1 − ε)s−1

1−ε∫
0

k0(x)dx ≤ 2s exp ((s − 1) ln(1 − ε)) −→
s→∞ 0, (6.4)

and so the first term in the right hand side of (6.3) goes to zero exponentially fast. On the other hand, using the change 
of variable x = y1/s :

s

1∫
1−ε

k0(x)xs−1 dx =
1∫

(1−ε)s

k0(y
1/s)dy (6.5)

Since by (Hyp-3) k0 is continuous on [1 − ε, 1], it follows that, for all y ∈ (1 − ε, 1)s :

(i) k0(y
1/s) ≤ max

x∈[1−ε,1] k0(x) < ∞

(ii) lim
s→∞ k0(y

1
s ) = k0(1)

(iii) lim
s→∞(1 − ε)s = 0

and we deduce by the Lebesgue’s convergence Theorem:
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lim
s→∞ s

1∫
1−ε

k0(x)xs−1 dx = k0(1).

This shows (6.1). In order to prove (6.2) we use that

s

1∫
1−ε

xs−1 dx = 1 − (1 − ε)s

to write:∣∣∣∣∣∣s
1∫

1−ε

k0(x)xs−1 dx − k0(1)

∣∣∣∣∣∣≤ s

1∫
1−ε

|k0(x) − k0(1)|xs−1 dx + k0(1)(1 − ε)s

≤ Crs

1∫
1−ε

(logx)rxs−1 dx + k0(1)(1 − ε)s .

It may be checked that

1∫
1−ε

(logx)rxs−1 dx = s−r ( (1 + r,−s log(1 − ε)) − (1 + r))

and since s ( (1 + r,−s log(1 − ε)) − (1 + r)) is bounded as a function of s, (6.2) follows. �
Remark 7. If k0 satisfies (Hyp-2), (Hyp-3), (Hyp-4), and if moreover k0 ∈ L1(0, 1), the Riemann Lebesgue theorem 
guarantees us that

K0(s) −→
Im(s)→±∞ 0. (6.6)

If k0 is a general measure, this property may not be true anymore. The measures such that (6.6) is satisfied are known 
as the Rajchman measures. See for example [16] for a characterization of the Rajchman measures in term of what sets 
they annihilate (i.e. give measure zero).

6.2. The Sokhotsky–Plemelj formula

The Sokhotsky–Plemelj formula (see a proof in [20] page 33) is an identity among distributions which states in 
one of its variants that

Lemma 7 (Sokhotsky–Plemelj formula). For a ∈R,

lim
ε→0

1

w − ae±iε
= P.V .

1

w − a
± iπδ(w − a), D′(R), (6.7)

or in other terms, for a test function f

lim
ε→0

∞∫
0

f (w)

w − ae±iε
dw = P.V .

∞∫
0

f (w)

w − a
dw ± iπf (a), a ∈R. (6.8)

6.3. Three auxiliary lemmas

The first lemma gives an estimate on log(ϕ̃(w)) as |ζ | goes to 0 or +∞ with a fixed argument θ .
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Lemma 8 (Estimate on log(ϕ)). Suppose that the determination of the logarithm function is chosen as in (4.2). Then 
for s0 large enough, and ζ ∈C\ R+:

log(ϕ̃(ζ )) = log |log |ζ || +O(1), for |ζ | → 0+ or |ζ | → ∞. (6.9)

Proof. By definition, for any ζ ∈ C\R+ (identified with the first sheet of the Riemann’s surface), there is a unique 
s ∈C with e(s) ∈ (s0, s0 + γ ) such that ϕ̃(ζ ) = �(s). We have

�(s) = s − 2

αγ (1 − K0(s))
. (6.10)

Since K0(2) = 1 and k0 is supported over [0, 1] and satisfies (Hyp-4), we have, for any s such that e(s) > 2

|K0(s)| ≤ K0(e(s)) < 1.

Then, for e(s) > 2 fixed, there is a constant C such that

�(s) = Cs + O(1), as �m(s) → ±∞,

which is by the definition (4.5) of ϕ̃,

ϕ̃(ζ ) = �
(
s0 + γ

2iπ
log(ζ )

)
= Cγ

2iπ
log(ζ ) + O(1), as |ζ | → 0+, |ζ | → ∞.

The expression of log(ϕ̃(ζ )) is then given by

log(ϕ̃(ζ )) = log |log |ζ || + O(1), as |ζ | → 0+ and |ζ | → ∞. (6.11)

This ends the proof of Lemma 8. �
To describe the asymptotic behavior of F for |ζ | → 0 and |ζ | → +∞, we need to understand the behavior of the 

imaginary part of

∞∫
0

log ϕ̃(w)

(
1

w − ζ
− 1

w + 1

)
dw (6.12)

as |ζ | → 0 and |ζ | → +∞ for ζ ∈ D(0) = C\ R+. This is done through the following two lemmas.

Lemma 9. For ζ ∈ D(0), denoting ζ = reiθ , θ ∈ (0, 2π),

�m

⎛⎝ ∞∫
0

(
1

w − ζ
− 1

w + 1

)
dw

⎞⎠= O(1), |ζ | → 0, |ζ | → ∞. (6.13)

Proof. For |ζ | small, the Lebesgue dominated convergence theorem guarantees that

+∞∫
1

(
1

w − ζ
− 1

w + 1

)
dw →|ζ |→0

+∞∫
1

(
1

w
− 1

w + 1

)
dw = O(1), |ζ | → 0.

Then, we write

1∫
0

(
1

w − ζ
− 1

w + 1

)
dw =

1∫
0

dw

w − ζ
−

1∫
0

dw

w + 1
,

and a straightforward integration gives us

1∫
1

w − ζ
dw = log(1 − ζ ) − log(−ζ ) = − log(−ζ ) + O(1), |ζ | → 0.
0
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Hence

�m

⎛⎝ ∞∫
0

(
1

w − ζ
− 1

w + 1

)
dw

⎞⎠= − arg(−ζ ) + O(1) = O(1), |ζ | → 0.

For |ζ | large, the Lebesgue dominated convergence theorem guarantees that

1∫
0

(
1

w − ζ
− 1

w + 1

)
dw →|ζ |→∞−

1∫
0

dw

w + 1
dw = O(1), |ζ | → ∞.

Then, we write

∞∫
1

(
1

w − ζ
− 1

w + 1

)
dw =

2r∫
1

(
1

w − ζ
− 1

w + 1

)
dw +

+∞∫
2r

(
1

w − ζ
− 1

w + 1

)
dw,

where we recall that r = |ζ |. We deal with the first term using a straightforward integration

2r∫
1

(
1

w − ζ
− 1

w + 1

)
dw = log(2r − ζ ) − log(1 − ζ ) − log(2r + 1) + log(2),

thus

�m

⎛⎝ 2r∫
1

(
1

w − ζ
− 1

w + 1

)
dw

⎞⎠= arg(2 − eiθ ) − arg(1 − reiθ ) = O(1), |ζ | → ∞.

The second term needs more details. We write
∞∫

2r

(
1

w − ζ
− 1

w + 1

)
dw =

∞∫
2r

ζ

w(w − ζ )
dw +

∞∫
2r

dw

w(w − ζ )
−

∞∫
2r

ζ + 1

w(w − ζ )(w + 1)
dw.

The Lebesgue theorem gives us

∞∫
2r

dw

w(w − ζ )
−

∞∫
2r

ζ + 1

w(w − ζ )(w + 1)
dw →|ζ |→∞ 0,

and we have
∞∫

2r

ζ

w(w − ζ )
dw =

∞∫
2r

ζ

w2
(

1 − ζ
w

)dw =
∞∑

k=0

ζ k+1

∞∫
2r

dw

wk+2 =
∞∑

k=1

1

k

(
eiθ

2

)k

= −Log

(
1 − eiθ

2

)
.

Using the series expansion

∞∑
k=1

zk

k
= −Log(1 − z),

where Log(z) is the principal determination of the logarithm (taken with Arg(z) ∈ (−π, π]). Hence

�m

⎛⎝ ∞∫
0

(
1

w − ζ
− 1

w + 1

)
dw

⎞⎠= −Arg

(
1 − eiθ

2

)
+ O(1) = O(1), |ζ | → ∞.

This ends the proof of Lemma 9. �
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The next Lemma gives the asymptotic behavior of the imaginary part of the following integral I (ζ )

I (ζ ) =
∞∫

0

log |logw|
(

1

w − ζ
− 1

w + 1

)
dw.

Lemma 10. For ζ ∈ D(0), denoting ζ = reiθ , θ ∈ (0, 2π)

�m(I (ζ )) = log |log(r)| (π − θ) +O (1) , as |ζ | → 0 and |ζ | → ∞. (6.14)

The proof of Lemma 10 uses the following expressions, for all A > 0, where γE denotes the Euler’s constant:

A∫
0

log |logw|wkdw = −�((k + 1) log(A)) + (A)k+1 log |log(A)|
k + 1

, k ≥ 0, (6.15)

1∫
A

log |logw| dw

wk+1 = γE − �(−k log(A)) + logk + (A)−k log | log(A)|
k

, k �= 0, (6.16)

1∫
A

log |logw| dw

w
= − log(A)(−1 + log | log(A)|, (6.17)

A∫
1

log |logw|wkdw = γE + log(k + 1) − �((k + 1) log(A)) + (A)k+1 log |log(A)|
k + 1

, k ≥ 0, (6.18)

∞∫
A

log |logw| dw

wk+2 = −�(−(k + 1) log(A)) + (A)−(k+1) log | log(A)|
k + 1

, k ≥ 0, (6.19)

where

�(z) = −P.V .

∞∫
−z

e−t dt

t
, �

(
1

x

)
∼

x→0
exp

(
1

x

)(
x + O(x2)

)
.

Proof of Lemma 10

Lemma 10 is describing the asymptotic behavior of the imaginary part of I (ζ ) as |ζ | → 0 and |ζ | → +∞, with 
arg(ζ ) ≡ θ ∈ (0, 2π), and extends easily then to arg(ζ ) = 0.

Step I. Limit as |ζ | → 0. We split the integral I (ζ ) in three terms

I (ζ ) = I1(ζ ) + I2(ζ ) + I3(ζ ),

I1(ζ ) =
1∫

0

log |logw| dw

w − ζ
, I2 = −

1∫
0

log |logw| dw

w + 1
= (log 2)2

2
,

I3(ζ ) =
∞∫

1

log |logw|
(

1

w − ζ
− 1

w + 1

)
dw.

(6.20)

We first notice that, by Lebesgue’s convergence theorem I3(ζ ) converges towards a finite real limit:

lim|ζ |→0
I3(ζ ) =

∞∫
log |logw|
w(w + 1)

dw, (6.21)
1
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so that the behavior of I is dominated by the behavior of I1(ζ ). We cut it into three pieces:

I1(ζ ) =
r/2∫
0

log |logw| dw

w − ζ
+

2r∫
r/2

log |logw| dw

w − ζ
+

1∫
2r

log |logw| dw

w − ζ

= I1,1(ζ ) + I1,2(ζ ) + I1,3(ζ ).

Study of the first integral I1,1(ζ ) = ∫ r/2
0 log |logw| dw

w−ζ

Since in the first integral 0 < w < |ζ |/2, we may write

r/2∫
0

log |logw| dw

w − ζ
=

r/2∫
0

log |logw| dw

ζ(w
ζ

− 1)
= −

∞∑
k=0

ζ−(k+1)

r/2∫
0

log |logw|wkdw.

Let us recall that we defined r := |ζ |. Using Formula (6.15) for k ≥ 0 and A = r
2 , we have

r/2∫
0

log |logw|wkdw = rk+1 log |log(r/2)|
(k + 1)2k+1 −

−
( r

2

)k+1
(

1

(k + 1)2 log(r/2)
+O

(
1

(k + 1)3 log(r/2)2

))
,

(6.22)

as |ζ | → 0, then

r/2∫
0

log |logw| dw

w − ζ
= − log |log(r/2)|

∞∑
k=0

( |ζ |
ζ

)k+1 1

(k + 1)2k+1 +

+ 1

log(r/2)

∞∑
k=0

( |ζ |
ζ

)k+1 1

2k+1(k + 1)2

(
1 +O

(
1

(k + 1) log(r/2)

))
, |ζ | → 0.

Using the series expansion

∞∑
k=1

(
ζ

2|ζ |
)k 1

k
= −Log

(
1 − ζ

2|ζ |
)

where Log(z) is the principal determination of the logarithm (taken with Arg(z) ∈ (−π, π])

I1,1(ζ ) =
r/2∫
0

log |logw| dw

w − ζ
= log |log(r/2)|Log

(
1 − |ζ |

2ζ

)
+O

(
1

| log r|
)

, |ζ | → 0. (6.23)

Study of the third integral I1,3(ζ ) = ∫ 1
2r

log |logw| dw
w−ζ

Similarly, using that 2|ζ | < w in the third integral, we write:

1∫
2r

log |logw| dw

w − ζ
=

1∫
2r

log |logw| dw

w(1 − ζ
w

)
=

∞∑
k=0

ζ k

1∫
2r

log |logw| dw

wk+1 ,

from where, using formula (6.16) for k �= 0 and A = 2r :

1∫
log |logw| dw

wk+1 = (2r)−k log | log(2r)|
k

+ γE + logk

k
+ (2r)−k

k2 log(2r)

(
1 +O

(
1

k log(2r)

))
,

2r
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as |ζ | → 0, and then

1∫
2r

log |logw| dw

w − ζ
= − log(2r)(−1 + log(− log(2r)) + log | log(2r)|

∞∑
k=1

(
ζ

2|ζ |
)k 1

k
+

+
∞∑

k=1

ζ k

{
γE + logk

k
+ (2r)−k

k2 log(2r)

(
1 +O

(
1

−k log(2r)

))}
, |ζ | → 0,

we obtain:
1∫

2r

log |logw| dw

w − ζ
= − log(2r)(−1 + log(− log(2r)) − log | log(2r)|Log

(
1 − ζ

2|ζ |
)

−

− γELog(1 − ζ ) +
∞∑

k=1

ζ k

{
logk

k
+ (2r)−k

k2 log(2r)

(
1 +O

(
1

k log(2r)

))}
, |ζ | → 0,

(6.24)

which implies

I1,3(ζ ) =
1∫

2r

log |logw| dw

w − ζ
= − log(2r)(−1 + log(− log(2r))

− log | log(2r)|Log

(
1 − ζ

2|ζ |
)

+O
(

1

| log(r)|
)

.

(6.25)

Study of the second integral I1,2(ζ ) = ∫ 2r

r/2 log |logw| dw
w−ζ

The argument for the second integral is slightly different. We first make the change of coordinates w = rx, r = |ζ |, 
and obtain

2r∫
r/2

log |logw| dw

w − ζ
=

2∫
1/2

log |log rx| dx

x − ζ
|ζ |

=
2∫

1/2

log |log r + logx| dx

x − ζ
|ζ |

=
2∫

1/2

log

∣∣∣∣log r

(
1 + logx

log r

)∣∣∣∣ dx

x − ζ
|ζ |

=
2∫

1/2

log |log r| dx

x − ζ
|ζ |

+
2∫

1/2

log

∣∣∣∣(1 + logx

log r

)∣∣∣∣ dx

x − ζ
|ζ |

= log |log r|
(

Log

(
2 − ζ

|ζ |
)

− Log

(
1

2
− ζ

|ζ |
))

+

+
2∫

1/2

log

∣∣∣∣(1 + logx

log r

)∣∣∣∣ dx

x − ζ
|ζ |

. (6.26)

Since we want to consider values of the argument of θ in the interval (0, 2π), the denominator x − ζ
|ζ | may then be 

close to zero for x = 1. Suppose then that arg(ζ ) = θ . We will consider separately the case where cosθ is close to 
one and the case where cosθ is bounded away from one. Let us consider first the case where cosθ ≥ 2/3. We use the 
change of variables y = x − eiθ and obtain the expression

2∫
log

∣∣∣∣(1 + logx

log r

)∣∣∣∣ dx

x − eiθ
=
∫

log

∣∣∣∣(1 + log(y + eiθ )

log r

)∣∣∣∣ dy

y
(6.27)
1/2 θ
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where

θ =
{
y ∈C;e(y) ∈

(
1

2
− cos θ,2 − cos θ

)
, �m(y) = − sin θ

}
.

This integral may be written as follows∫
θ

log

∣∣∣∣(1 + log(y + eiθ )

log r

)∣∣∣∣ dy

y
= lim

δ→0

∫
�θ (δ)

log

∣∣∣∣(1 + log(y + eiθ )

log r

)∣∣∣∣ dy

y
(6.28)

where

�θ(δ) = θ \ {y ∈ θ ; e(y) ∈ (−δ, δ)} .

Define finally the sets

�θ(δ) = {y ∈ �θ(δ); e(y) ∈ (1/2 − cos θ,−1/2 + cos θ)}
Q= {y ∈ C;e(y) ∈ (1/2 − cos θ,−1/2 + cos θ), �m(y) ∈ (−1,1)} .

Notice that �θ(δ) ⊂ Q. Due to the symmetry of �θ(δ) with respect to the line e(y) = 0 we have:∫
�θ (δ)

dy

y
= Log

(
1

2
− cos θ − i sin θ

)
− Log

(
−1

2
+ cos θ − i sin θ

)
+

+ Log (−δ − i sin θ) − Log (δ − i sin θ) (6.29)

= i

(
2Arg

(
1

2
− eiθ

)
− 2Arg(δ − i sin θ)

)
, δ > 0.

Then, ∫
�θ (δ)

log

∣∣∣∣(1 + log(y + eiθ )

log r

)∣∣∣∣ dy

y
=

∫
�θ (δ)

(
log

∣∣∣∣(1 + log(y + eiθ )

log r

)∣∣∣∣− log

∣∣∣∣(1 + log(eiθ )

log r

)∣∣∣∣ )dy

y
+ iν,

(6.30)

with

ν = log

∣∣∣∣(1 + log(eiθ )

log r

)∣∣∣∣(2Arg

(
1

2
− eiθ

)
− 2Arg(δ − i sin θ)

)
.

Since cos(θ) > 2/3, for y ∈ Q, log(y + eiθ ) is bounded away from zero so that we can define r0 small enough in 
order to have:∣∣∣∣ log(y + eiθ )

log r0

∣∣∣∣< 1/2, ∀y ∈Q.

Then, for all y ∈ Q,∣∣∣∣1 + log(y + eiθ )

log r

∣∣∣∣≥ 1 −
∣∣∣∣ log(y + eiθ )

log r

∣∣∣∣> 1 −
∣∣∣∣ log(y + eiθ )

log r0

∣∣∣∣> 1/2.

We denote by

v(τ) = log

∣∣∣∣(1 + log(τy + eiθ )

log r

)∣∣∣∣ , v′(τ ) = e

(
y

(τy + eiθ ) log r
(

1 + log(τy+eiθ )
log r

)),

so that we use the mean value theorem to write v(1) − v(0) = v′(τ ) for some τ ∈ [0, 1], i.e.,
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log

∣∣∣∣(1 + log(y + eiθ )

log r

)∣∣∣∣− log

∣∣∣∣(1 + log(eiθ )

log r

)∣∣∣∣= e

(
y

(τy + eiθ ) log r
(

1 + log(τy+eiθ )
log r

))

≤ |y|
| log(r)||τy + eiθ |

∣∣∣1 + log(τy + eiθ )

log(r)

∣∣∣ .
For all y ∈ θ(δ),

|τy + eiθ | ≥ τe(y) + cos θ ≥ τ

(
1

2
− cos θ

)
+ cos θ ≥ −τ

2
+ 2

3
≥ 1

6
,

and since τy ∈Q, we obtain for r small enough∣∣∣∣log

∣∣∣∣(1 + log(y + eiθ )

log r

)∣∣∣∣− log

∣∣∣∣(1 + log(eiθ )

log r

)∣∣∣∣∣∣∣∣≤ 12|y|
| log r| ,

from where it follows that, for all δ > 0:∣∣∣∣ ∫
�θ (δ)

log

∣∣∣∣(1 + log(y + eiθ )

log r

)∣∣∣∣ dy

y

∣∣∣∣
≤

∫
�θ (δ)

∣∣∣∣log

∣∣∣∣(1 + log(y + eiθ )

log r

)∣∣∣∣− log

∣∣∣∣(1 + log(eiθ

log r

)∣∣∣∣∣∣∣∣ dy

|y|+|ν|

≤ 12

| log r|
∫

�θ (δ)

dy+4π log

∣∣∣∣(1 + log(eiθ )

log r

)∣∣∣∣
= 12(2 cos θ − 1 − 2δ)

| log r| +4π log

∣∣∣∣(1 + log(eiθ )

log r

)∣∣∣∣.

(6.31)

On the other hand, for all y ∈ �θ(δ) \ �θ(δ),

|y| ≥ |e(y)| ≥ cos θ − 1/2 ≥ 1/6.∣∣∣∣∣
∫

�θ (δ)\�θ (δ)

log

∣∣∣∣(1 + log(y + eiθ )

log r

)∣∣∣∣ dy

y

∣∣∣∣∣≤ 6

∣∣∣∣log

(
1 − log(2)

log r

)∣∣∣∣ ∫
θ

|dy| = 9

∣∣∣∣log

(
1 − log(2)

log r

)∣∣∣∣ . (6.32)

Since by definition of �θ(δ) and �θ(δ):∫
�θ (δ)

log

∣∣∣∣(1 + log(y + eiθ )

log r

)∣∣∣∣ dy

y
=

∫
�θ (δ)

log

∣∣∣∣(1 + log(y + eiθ )

log r

)∣∣∣∣ dy

y
+

+
∫

�θ (δ)\�θ (δ)

log

∣∣∣∣(1 + log(y + eiθ )

log r

)∣∣∣∣ dy

y

we deduce from (6.31) and (6.32) that for all δ > 0∣∣∣∣∣∣∣
∫

�θ (δ)

log

∣∣∣∣(1 + log(y + eiθ )

log r

)∣∣∣∣ dy

y

∣∣∣∣∣∣∣≤
12(2 cos θ − 1)

| log r| + 9

∣∣∣∣log

(
1 − log(2)

log r

)∣∣∣∣+ 4π log

∣∣∣∣(1 + log(eiθ )

log r

)∣∣∣∣ ,
(6.33)

and then, by (6.28) and (6.27):
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2∫
1/2

log

∣∣∣∣(1 + logx

log r

)∣∣∣∣ dx

x − eiθ
=O

(
1

| log r|
)

, as r → 0. (6.34)

Suppose now that cosθ < 2/3. In that case∣∣∣x − eiθ
∣∣∣=√

(e(x))2 − 2e(x) cos θ + 1 ≥
√

(e(x) − 2/3)2 + 5/9 ≥ √
5/3,

and the denominator of the integral is bounded away from zero. Let r1 be small enough in order to have:∣∣∣∣ logx

log r1

∣∣∣∣< 1/2, ∀x ∈ (1/2,2).

Then, for all r < r1:∣∣∣∣1 + logx

log r

∣∣∣∣≥ 1 −
∣∣∣∣ logx

log r

∣∣∣∣≥ 1 −
∣∣∣∣ logx

log r1

∣∣∣∣> 1/2, ∀x ∈ (1/2,2)

By the mean value theorem applied to

f (τ) = log

(
1 + τ

logx

log r

)
, f ′(τ ) = logx

log r

1

1 + τ
log x
log r

,

we have for some τ ∈ [0, 1]∣∣∣∣log

∣∣∣∣1 + logx

log r

∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣ logx

log r

1

1 + τ
log x
log r

∣∣∣∣∣∣≤ 2 log(2)

| log(r)| ,

and we deduce that for all θ such that cos θ < 2/3:∣∣∣∣∣∣∣
2∫

1/2

log

∣∣∣∣(1 + logx

log r

)∣∣∣∣ dx

x − eiθ

∣∣∣∣∣∣∣≤
9 log 2√
5| log r| =O

(
1

| log r|
)

, as r → 0. (6.35)

As a consequence, by (6.26):

I1,2(ζ ) =
2r∫

r/2

log |logw| dw

w − ζ

= log |log r|
(

Log

(
2 − ζ

|ζ |
)

− Log

(
1

2
− ζ

|ζ |
))

+O
(

1

log |ζ |
)

, |ζ | → 0.

(6.36)

Summing the contributions I (ζ ) = I2(ζ ) + I3(ζ ) + I1,1(ζ ) + I1,2(ζ ) + I1,3(ζ )

Using (6.20) and adding (6.21), (6.23), (6.25) and (6.36) we obtain:

I (ζ ) = (log 2)2

2
+

∞∫
1

log |logw|
w(w + 1)

dw + log |log(r/2)|Log

(
1 − |ζ |

2ζ

)

− log(2r)(−1 + log | log(2r)|) − log | log(2r)|Log

(
1 − ζ

2|ζ |
)

+ log |log r|
(

Log

(
2 − ζ

|ζ |
)

− Log

(
1

2
− ζ

|ζ |
))

+O
(

1

log |ζ |
)

, |ζ | → 0. (6.37)

Using

log |log(r/2)| = log |log r| +O (1) , log |log(2r)| = log |log r| +O (1) , |ζ | → 0 (6.38)
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the expression in (6.37) may be simplified to:

I (ζ ) = (log 2)2

2
+

∞∫
1

log |logw|
w(w + 1)

dw + log |log(r)|Log

(
1 − |ζ |

2ζ

)

− log(r)(−1 + log | log(r)|) − log | log(r)|Log

(
1 − ζ

2|ζ |
)

+ log |log r|
(

Log

(
2 − ζ

|ζ |
)

− Log

(
1

2
− ζ

|ζ |
))

+O (1) , |ζ | → 0,

and

I (ζ ) = (log 2)2

2
+

∞∫
1

log |logw|
w(w + 1)

dw − log(r)(−1 + log | log(r)|) +

+ log | log(r)|
(

Log

(
1 − |ζ |

2ζ

)
− Log

(
1 − ζ

2|ζ |
)

+

+ Log

(
2 − ζ

|ζ |
)

− Log

(
1

2
− ζ

|ζ |
))

+O (1) , |ζ | → 0.

Since:

Log

(
2 − ζ

|ζ |
)

= Log(2) + Log

(
1 − ζ

2|ζ |
)

we first obtain:

Log

(
1 − |ζ |

2ζ

)
− Log

(
1 − ζ

2|ζ |
)

+ Log

(
2 − ζ

|ζ |
)

− Log

(
1

2
− ζ

|ζ |
)

=

= Log

(
1 − |ζ |

2ζ

)
+ Log(2) − Log

(
1

2
− ζ

|ζ |
)

.

We use now:

p(θ) = Log

(
1 − |ζ |

2ζ

)
− Log

(
1

2
− ζ

|ζ |
)

= Log

∣∣∣∣∣ 1 − |ζ |
2ζ

1
2 − ζ

|ζ |

∣∣∣∣∣+ i

(
Arg

(
1 − |ζ |

2ζ

)
− Arg

(
1

2
− ζ

|ζ |
))

p(θ) = i

(
Arg

(
1 − |ζ |

2ζ

)
− Arg

(
1

2
− ζ

|ζ |
))

= i(π − θ).

Indeed, we have by definition ζ = |ζ |eiθ with θ ∈ (0, 2π). Let us denote

β = 1 − |ζ |
2ζ

= 1 − 1

2
e−iθ = 1 − 1

2
cos(θ) + i

2
sin(θ) = |β|eiα, α ∈ (−π

6
,
π

6
).

We have

p(θ) = i
(

Arg(β) − Arg
(
−βeiθ

))
= i

(
α − Arg(ei(θ−π+α))

)
.

For θ ∈ (0, π) we have α ∈ (0, π6 ), so that θ − π + α ∈ (−π, π6 ). For θ ∈ (π, 2π) we have α ∈ (−π
6 , 0) so that 

θ − π + α ∈ (−π
6 , π). In both cases, we thus have θ − π + α ∈ (−π, π), so that

p(θ) = i
(
α − Arg(ei(θ−π+α))

)
= i(α − (θ − π + α)) = i(π − θ).
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We deduce

I (ζ ) = (log 2)2

2
+

∞∫
1

log |logw|
w(w + 1)

dw − log(r)(−1 + log | log(r)|) + log |log(r)| log 2 +

+ i log |log(r)| (π − θ) +O (1) , |ζ | → 0

�m(I (ζ )) = log |log(r)| (π − θ) +O (1) , |ζ | → 0

and this proves (6.14) of Lemma 10 for |ζ | → 0.

Remark 8. Notice that the argument leading to (6.36) also proves the following:

2r∫
r/2

log |logw| dw

w − ζ
= log |log r|

(
Log

(
2 − eiθ

)
− Log

(
1

2
− eiθ

))
+O (1) , |ζ | → ∞. (6.39)

Step II. Limit as |ζ | → +∞. We split as well the integral I (ζ ) in two terms

I1(ζ ) = J1(ζ ) + J2(ζ ) (6.40)

J1(ζ ) =
1∫

0

log |logw|
(

1

w − ζ
− 1

w + 1

)
dw (6.41)

J2(ζ ) =
∞∫

1

log |logw|
(

1

w − ζ
− 1

w + 1

)
dw (6.42)

and notice as well that J1(ζ ) converges toward a finite real limit:

lim|ζ |→∞J1(ζ ) = −
1∫

0

log |logw|
w + 1

dw = log(2)2

2
(6.43)

We write J2(ζ ) as the sum

J2(ζ ) =
r/2∫
1

log |logw| ζ + 1

(w − ζ )(w + 1)
dw +

2r∫
r/2

log |logw| ζ + 1

(w − ζ )(w + 1)
dw+

+
∞∫

2r

log |logw| ζ + 1

(w − ζ )(w + 1)
dw. (6.44)

= J2,1 + J2,2 + J2,3. (6.45)

As previously, we examine the asymptotic behavior of each of the three terms in the right hand side of (6.44). For the 
first term we notice the following:

J2,1 =
r/2∫
1

log |logw| ζ + 1

(w − ζ )(w + 1)
dw =

r/2∫
1

log |logw| ζ + 1

(w − ζ )w
dw −

−
r/2∫
1

log |logw| ζ + 1

(w − ζ )w(w + 1)
dw. (6.46)

= J2,2,1 + J2,2,2
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The Lebesgue’s convergence Theorem guarantees the convergence of J2,2,2 towards a real finite limit:

lim|ζ |→∞

r/2∫
1

log |logw| ζ + 1

(w − ζ )w(w + 1)
dw = −

∞∫
1

log |logw|
w(w + 1)

dw (6.47)

On the other hand, the first term of (6.46) can be written as

J2,2,1 =
r/2∫
1

log |logw| ζ + 1

(w − ζ )w
dw =

r/2∫
1

log |logw| ζ + 1

ζ
(

w
ζ

− 1
)

w
dw

= −
∞∑

k=0

ζ + 1

ζ k+1

r/2∫
1

log |logw|wk−1dw

= −ζ + 1

ζ

r/2∫
1

log |logw|w−1dw −
∞∑

k=1

ζ + 1

ζ k+1

r/2∫
1

log |logw|wk−1dw.

Using (6.18) for k ≥ 1, we find

r/2∫
1

log |logw|wk−1dw = (r/2)k log(log(r/2)))

k
− �(k log(r/2))

k
+ γE + logk

k

=
( r

2

)k log(log(r/2)))

k
−
( r

2

)k 1

k2 log(r/2)

(
1 +O

(
1

k log(r/2)

))
+ γE + logk

k
, as |ζ | → ∞,

and then the first term in the right hand side of (6.46) satisfies:

J2,2,1 =
r/2∫
1

log |logw| ζ + 1

(w − ζ )w
dw = −ζ + 1

ζ
log(r/2)(−1 + log(log(r/2))) −

− ζ + 1

ζ
log(log(r/2))

∞∑
k=1

(
r

2ζ

)k 1

k
+ ζ + 1

ζ log(r/2)

∞∑
k=1

(
r

2ζ

)k 1

k2

(
1 +O

(
1

k log(r/2)

))
−

−
∞∑

k=1

(ζ + 1)

ζ k+1

(γE + logk)

k
, as |ζ | → ∞

= −ζ + 1

ζ
log(r/2)(−1 + log(log(r/2))) + ζ + 1

ζ
log(log(r/2))Log

(
1 − e−iθ

2

)
+

+ ζ + 1

ζ log(r/2)

∞∑
k=1

(
r

2ζ

)k 1

k2

(
1 +O

(
1

k log(r/2)

))
− ζ + 1

ζ

(
γELog

(
ζ − 1

ζ

)
+

+PolyLog(1,0)

[
1,

1

ζ

])
Using again (6.38):

r/2∫
1

log |logw| ζ + 1

(w − ζ )w
dw = − log(r)(−1 + log(log(r))) +

+ log(log(r))Log

(
1 − e−iθ

)
+O (1) , as |ζ | → ∞. (6.48)
2
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We consider now the third term in the right hand side of (6.44). We must split again the integral in two terms as 
follows:

J2,3 =
∞∫

2r

log |logw| ζ + 1

(w − ζ )(w + 1)
dw =

∞∫
2r

log |logw| ζ + 1

(w − ζ )w
dw −

−
∞∫

2r

log |logw| ζ + 1

(w − ζ )w(w + 1)
dw. (6.49)

The second term of (6.49) converges to zero as r → ∞. We write the first term as follows:

∞∫
2r

log |logw| ζ + 1

(w − ζ )w
dw =

∞∫
2r

log |logw| ζ + 1

w2
(

1 − ζ
w

)dw =
∞∑

k=0

(ζ + 1)ζ k

∞∫
2r

log |logw| dw

wk+2 . (6.50)

Using (6.19), we get

∞∫
2r

log |logw| dw

wk+2 = (2r)−(k+1) log log(2r)

k + 1
+ (2r)−k+1

(k + 1)2 log(2r)

(
1 +O

(
1

(k + 1) log(2r)

))
and we obtain for the first term in the right hand side of (6.49):

∞∫
2r

log |logw| ζ + 1

(w − ζ )w
dw = ζ + 1

ζ
log log(2r)

∞∑
k=0

(
ζ

2r

)k+1 1

k + 1
+

+ ζ + 1

ζ log(2r)

∞∑
k=0

(
ζ

2r

)k+1 1

(k + 1)2

(
1 +O

(
1

(k + 1) log(2r)

))

= −ζ + 1

ζ
log log(2r)Log

(
1 − eiθ

2

)
+

+ ζ + 1

ζ log(2r)

∞∑
k=0

(
ζ

2r

)k+1 1

(k + 1)2

(
1 +O

(
1

(k + 1) log(2r)

))
.

After using again (6.38) we deduce:

∞∫
2r

log |logw| ζ + 1

(w − ζ )w
dw = − log log(r)Log

(
1 − eiθ

2

)
+O

(
1

log r

)
, as r → ∞. (6.51)

Using now (6.43), (6.47), (6.48), (6.51) and (6.39) in Remark 8,

I (ζ ) = log(2)2

2
+

∞∫
1

log |logw|
w(w + 1)

dw − log(r)(−1 + log(log(r))) + log(log(r))Log

(
1 − e−iθ

2

)
−

− log log(r)Log

(
1 − eiθ

2

)
+ log |log r|

(
Log

(
2 − eiθ

)
− Log

(
1

2
− eiθ

))
+O (1) , as r → ∞.

The same arguments as in Step I yield first

I (ζ ) = log(2)2

2
+

∞∫
1

log |logw|
w(w + 1)

dw − log(r)(−1 + log | log(r)|) + log |log(r)| (π − θ) +O (1) , |ζ | → ∞,

(6.52)

and then, property (6.14) of Lemma 10 for |ζ | → ∞. �
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Glossary

Arg Principal value of the argument of a complex number: Arg(z) ∈ (−π,π]
arg argument of a complex number: arg(z) ∈ [0,2π ]
α Multiplicative constant of the fragmentation rate
γ Power of the fragmentation rate
B(x) Fragmentation rate
f (t, x) Density of particles
g(x) Stationary profile
G(s) Mellin transform of g

k(y, x) Fragmentation kernel
k0(z) Rescaled fragmentation rate
K0(s) Mellin transform of k0
Log Logarithm of a complex number: Log(z) = log(|z|) + i Arg(z)

log Logarithm of a complex number: log(z) = log(|z|) + i arg(z)

L1(R+,μ) {f :R+ → R,
∫∞

0 |f (x)|dμ(x) < ∞}
L1(R+) L1(R+, dx)

M(�) Set of bounded (or finite) measures over �

Mloc(�) Set of measures over � which are finite over the compact sets
M[μ] Mellin transform of a measure μ defined as M[μ](s) := ∫+∞

0 xs−1dμ(x) for s ∈ C

t ∈ R
+ Time

x ∈ R
+ Size of particles
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