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Abstract

Through the application of layer potential techniques and Gohberg–Sigal theory we derive an original formula for the Minnaert 
resonance frequencies of arbitrarily shaped bubbles. We also provide a mathematical justification for the monopole approximation 
of scattering of acoustic waves by bubbles at their Minnaert resonant frequency. Our results are complemented by several numerical 
examples which serve to validate our formula in two dimensions.
© 2018 

MSC: 35R30; 35C20

Keywords: Minnaert resonance; Bubble; Monopole approximation; Layer potentials; Acoustic waves

1. Introduction

The purpose of this work is to understand acoustic wave propagation through a liquid containing bubbles. Bubbly 
media have fascinating acoustic properties. For example, a very small volume fraction of air bubbles in water is 
enough to modify the effective velocity of sound in the medium [11,18,24,28]. Our motivation is the use of bubbles 
in superresolution medical ultrasonic imaging [20]. At particular low frequencies known as Minnaert resonances 
[34,31], bubbles behave as strong sound scatterers. The enhancement of their acoustic signature allows ultrasonic 
techniques to detect, localize, and characterize them inside a visco-elastic opaque medium [28]. Bubbles are present 
in many other important applications. The extraordinary acoustic properties of bubbly media are being used to design 
new acoustic materials. The Minnaert resonance of the bubbles persists when they are no longer in a liquid, but in 
a soft elastic medium [16,32]. Spherical bubbles have the remarkable property to oscillate harmonically, pulsating 
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with a breathing mode characterized by their Minnaert frequencies, provided that the contrast in density between the 
gas inside the bubbles and the surrounding liquid is high [23]. Many interesting physical works have been devoted 
to the acoustic bubble problem such as superabsorption of acoustic waves [32,33], subwavelength focusing using 
ultrasound time-reversal mirrors [28], and appearance of band gaps in structured bubbly media [30]. Nevertheless, 
the characterization of the Minnaert resonances for arbitrary shaped bubbles and the analysis of the propagation of 
acoustic waves inside bubbly media at the Minnaert frequencies have been longstanding problems.

In this paper we derive original formulas for the Minnaert resonances of bubbles of arbitrary shapes in both two and 
three dimensions using layer potential techniques and Gohberg–Sigal theory [8]. Our formulas can be generalized to 
multiple interacting bubbles. They are expressed in terms of the capacity and the volume of the bubble. We also provide 
a mathematical justification for the monopole approximation and demonstrate the enhancement of the scattering in the 
far field at the Minnaert resonances. We show that there is a correspondence between bubbles in water and plasmonic 
nanoparticles in that both raise similar fundamental questions [4,5,13]. However, the mathematical formulation of 
Minnaert resonances is much more involved than the formulation of plasmonic resonances, which are characterized 
in terms of the spectrum of the Neumann–Poincaré integral operator [1,2,12,25].

The Minnaert resonance is a low frequency resonance in which the wavelength is much larger than the size of 
the bubble [19]. Our aim in this paper is to provide for the first time a mathematical framework for investigating 
bubbles as subwavelength acoustic resonators and rationalizing their extraordinary acoustic properties. Our results 
have important applications. They can be used to show that at the Minnaert resonance it is possible to achieve su-
perfocusing of acoustic waves or imaging of passive sources with a resolution beyond the Rayleigh diffraction limit 
[9,10]. Foldy’s approximation applies and yields to the conclusion that the medium surrounding the source behaves 
like a high contrast dispersive medium [22]. As the dispersion is small, it has little effect on the superfocusing and 
superresolution phenomena. Effective equations for wave propagation in bubbly liquids have been derived in the low 
frequency regime where the frequency is much smaller than the Minneart resonance frequency [14,15,26]. In this 
paper, however, we are more concerned with acoustic wave propagation in the resonant regime and in the behavior of 
bubbles as subwavelength resonators.

The paper is organized as follows. In Section 2 we consider the scattering of acoustic waves in three dimensions 
by a single bubble and derive its Minnaert resonances in terms of its capacity, volume, and material parameters. In 
Section 3 we derive the point scatterer approximation of the bubble in the far-field. In Section 4 we perform numerical 
simulations in two dimensions to illustrate the main findings of this paper. The paper ends with some concluding 
remarks. In Appendix A, we collect some useful asymptotic formulas for layer potentials in two and three dimensions. 
Derivations of the two-dimensional Minnaert resonances are given in Appendix B.

2. The Minnaert resonance

We consider the scattering of acoustic waves in a homogeneous media by a bubble embedded inside. Assume that 
the bubble occupies a bounded and simply connected domain D with ∂D ∈ C1,s for some 0 < s < 1. We denote by 
ρb and κb the density and the bulk modulus of the air inside the bubble, respectively. ρ and κ are the corresponding 
parameters for the background media R3\D. The scattering problem can be modeled by the following equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · 1

ρ
∇u + ω2

κ
u = 0 in R

3\D,

∇ · 1

ρb

∇u + ω2

κb

u = 0 in D,

u+ − u− = 0 on ∂D,

1

ρ

∂u

∂ν

∣∣∣∣+ − 1

ρb

∂u

∂ν

∣∣∣∣− = 0 on ∂D,

us := u − ui satisfies the Sommerfeld radiation condition.

(2.1)

Here, ∂/∂ν denotes the outward normal derivative and |± denote the limits from outside and inside D.
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We introduce four auxiliary parameters to facilitate our analysis:

v =
√

ρ

κ
, vb =

√
ρb

κb

, k = ωv, kb = ωvb. (2.2)

We also introduce two dimensionless contrast parameters:

δ = ρb

ρ
, τ = kb

k
= vb

v
=
√

ρbκ

ρκb

. (2.3)

By choosing appropriate physical units, we may assume that the size of the bubble is of order 1 and that the 
wave speeds outside and inside the bubble are both of order 1. Thus the contrast between the wave speeds is not 
significant. We assume, however, that there is a large contrast in the bulk moduli. In summary, we assume that δ � 1
and τ = O(1).

We use layer potentials to represent the solution to the scattering problem (2.1). Let the single layer potential Sk
D

associated with D and wavenumber k be defined by

Sk
D[ψ](x) =

∫
∂D

G(x, y, k)ψ(y)dσ (y), x ∈ ∂D,

where

G(x,y, k) = − eik|x−y|

4π |x − y|
is the Green’s function of the Helmholtz equation in R3, subject to the Sommerfeld radiation condition. We also define 
the boundary integral operator Kk,∗

D by

Kk,∗
D [ψ](x) =

∫
∂D

∂G(x, y, k)

∂ν(x)
ψ(y)dσ (y), x ∈ ∂D.

Then the solution u can be written as [7]

u(x) =
{

uin + Sk
D[ψ], x ∈ R

3\D̄,

Skb

D [ψb], x ∈ D,
(2.4)

for some surface potentials ψ, ψb ∈ L2(∂D). Using the jump relations for the single layer potentials, it is easy to 
derive that ψ and ψb satisfy the following system of boundary integral equations:

A(ω, δ)[�] = F, (2.5)

where

A(ω, δ) =
(

Skb

D −Sk
D

− 1
2Id +Kkb,∗

D −δ( 1
2Id +Kk,∗

D )

)
, � =

(
ψb

ψ

)
, F =

(
uin

δ ∂uin

∂ν

)
.

One can show that the scattering problem (2.1) is equivalent to the boundary integral equations (2.5).
Throughout the paper, we denote by H = L2(∂D) × L2(∂D) and by H1 = H 1(∂D) × L2(∂D), and use (·, ·) for 

the inner product in L2 spaces and || || for the norm in H. Here, H 1 is the standard Sobolev space. It is clear that 
A(ω, δ) is a bounded linear operator from H to H1, i.e., A(ω, δ) ∈ L(H, H1).

The resonance of the bubble in the scattering problem (2.1) can be defined as all the complex numbers ω with 
negative imaginary part such that there exists a nontrivial solution to the following equation:

A(ω, δ)[�] = 0. (2.6)

These can be viewed as the characteristic values of the operator-valued analytic function (with respect to ω) A(ω, δ). 
We are interested in the quasi-static resonance of the bubble, or the resonance frequency at which the size of the 
bubble is much smaller than the wavelength of the incident wave outside the bubble. In some physics literature, this 
resonance is called the Minnaert resonance. Due to our assumptions on the bubble being of size of order one, and the 
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wave speed outside of the bubble also being of order one, this resonance should lie in a small neighborhood of the 
origin in the complex plane. In what follows, we apply the Gohberg–Sigal theory to find this resonance.

We first look at the limiting case when δ = ω = 0. It is clear that

A0 := A(0,0) =
(

SD −SD

− 1
2Id +K∗

D 0

)
, (2.7)

where, for ψ ∈ L2(∂D) and x ∈ ∂D,

SD[ψ](x) = − 1

4π

∫
∂D

ψ(y)

|x − y|dσ(y),

K∗
D[ψ](x) = − 1

4π

∫
∂D

(x − y) · νx

|x − y|3 ψ(y)dσ(y).

Let A∗
0 be the adjoint of A.

Lemma 2.1. We have

(i) Ker(A0) = span {�0} where

�0 = α0

(
ψ0
ψ0

)

with ψ0 = S−1
D [1] and the constant α0 being chosen such that ‖�0‖ = 1;

(ii) Ker(A∗
0) = span {�0} where

�0 = β0

(
0
φ0

)
with φ0 = 1 on ∂D and the constant β0 being chosen such that ‖�0‖ = 1.

The above lemma shows that ω = 0 is a characteristic value for the operator-valued analytic function A(ω, δ). By 
the Gohberg–Sigal theory [8], we can conclude the following result about the existence of the quasi-static resonance.

Lemma 2.2. For any δ, sufficiently small, there exists a characteristic value ω0 = ω0(δ) to the operator-valued an-
alytic function A(ω, δ) such that ω0(0) = 0 and ω0 depends on δ continuously. This characteristic value is also the 
quasi-static resonance (or Minnaert resonance).

We next perform asymptotic analysis on the operator A(ω, δ). Using the results in Appendix A, we can derive the 
following result.

Lemma 2.3. In the space L(H, H1), we have

A(ω, δ) := A0 +B(ω, δ) =A0 + ωA1,0 + ω2A2,0 + ω3A3,0 + δA0,1 + δω2A2,1 + O(ω4) + O(δω3),

where

A1,0 =
(

τvSD,1 −vSD,1
0 0

)
, A2,0 =

(
τ 2v2SD,2 −v2SD,2

τ 2v2KD,2 0

)
, A3,0 =

(
τ 3v3SD,3 −v3SD,3

τ 3v3KD,3 0

)
,

A0,1 =
(

0 0
0 −( 1

2Id +K∗
D)

)
, A2,1 =

(
0 0
0 −v2KD,2

)
.

We define a projection P0 from H to H1 by

P0[�] := (�,�0)�0,
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and denote by

Ã0 =A0 +P0.

The following results hold.

Lemma 2.4. We have

(i) The operator Ã0 is a bijective operator in L(H, H1). Moreover, Ã0[�0] = �0;
(ii) The adjoint of Ã0, Ã0

∗
, is a bijective operator in L(H1, H). Moreover, Ã0

∗[�0] = �0.

Proof. By construction, and the fact that SD is bijective from L2(∂D) to H 1(∂D) [6], we can show that Ã0 is a 
bijective. So too is Ã0

∗
. We only need to show that Ã0

∗[�0] = �0. Indeed, we can check that P∗
0 [θ ] = (θ, �0)�0. 

Thus, it follows that

Ã0
∗[�0] =P∗

0 [�0] = (�0,�0)�0 = �0,

which completes the proof. �
Our main result in this section is stated in the following theorem. It characterizes the Minnaert frequencies in terms 

of the shape of the bubbles.

Theorem 2.1. In the quasi-static regime, there exists two resonances for a single bubble:

ω0,0(δ) =
√

Cap(D)

τ 2v2V ol(D)
δ

1
2 − i

Cap(D)2

8πτ 2vV ol(D)
δ + O(δ

3
2 ),

ω0,1(δ) = −
√

Cap(D)

τ 2v2V ol(D)
δ

1
2 − i

Cap(D)2

8πτ 2vV ol(D)
δ + O(δ

3
2 ),

where V ol(D) is the volume of D and Cap(D) := −(ψ0, 1) = −(S−1
D [1], 1) is the capacity of D. The first resonance 

ω0,0 is called the Minnaert resonance.

Proof. Step 1. We find the resonance by solving the following equation

A(ω, δ)[�δ] = 0. (2.8)

Since A(0, 0)[�0] = 0, we may view �δ as a perturbation of �0 and write it as �δ = �0 + �1. In order to uniquely 
determine �1, we assume that

(�1,�0) = 0. (2.9)

Note that we let the coefficient of �0 to be one for the purpose of normalization. Since �δ is defined up to multiplica-
tive constant, (2.9) holds without loss of generality by changing �0 +�1 to �0 + (

�1 − (�0, �1)�0
)
/(1 + (�0, �1)).

Step 2. Since Ã0 =A0 +P0, (2.8) is equivalent to the following

(Ã0 −P0 +B)[�0 + �1] = 0.

Observe that as the operator Ã0 + B is invertible for sufficiently small δ and ω, we can apply (Ã0 + B)−1 to both 
sides of the above equation to deduce that

�1 = (Ã0 +B)−1P0[�0] − �0 = (Ã0 +B)−1[�0] − �0. (2.10)

Step 3. Using the orthogonality condition (2.9), we arrive at the following equation:

A(ω, δ) :=
(
(Ã0 +B)−1[�0],�0

)
− 1 = 0 (2.11)
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Step 4. We calculate A(ω, δ). Using the identity

(Ã0 +B)−1 =
(
Id + Ã0

−1B
)−1

Ã0
−1 =

(
Id − Ã0

−1B + Ã0
−1BÃ0

−1B + ...
)
Ã0

−1
,

and the fact that

Ã0
−1[�0] = �0,

we obtain

A(ω, δ) = −ω
(
A1,0[�0],�0

)− ω2 (A2,0[�0],�0
)− ω3 (A3,0[�0],�0

)− δ
(
A0,1[�0],�0

)
+ω2

(
A1,0Ã0

−1A1,0[�0],�0

)
+ ω3

(
A1,0Ã0

−1A2,0[�0],�0

)
+ ω3

(
A2,0Ã0

−1A1,0[�0],�0

)
+ωδ

(
A1,0Ã0

−1A0,1[�0],�0

)
+ ωδ

(
A0,1Ã0

−1A1,0[�0],�0

)
+ω3

(
A1,0Ã0

−1A1,0Ã0
−1A1,0[�0],�0

)
+ O(ω4) + O(δ2).

It is clear that A∗
1,0[�0] = 0. Consequently, we get

A(ω, δ) = −ω2 (A2,0[�0],�0
)− ω3 (A3,0[�0],�0

)− δ
(
A0,1[�0],�0

)
+ω3

(
A2,0Ã0

−1A1,0[�0],�0

)
+ ωδ

(
A0,1Ã0

−1A1,0[�0],�0

)
+ O(ω4) + O(δ2).

In the next four steps, we calculate the terms 
(
A2,0[�0],�0

)
, 

(
A3,0[�0],�0

)
, 

(
A0,1[�0],�0

)
,(

A2,0Ã0
−1A1,0[�0],�0

)
and 

(
A0,1Ã0

−1A1,0[�0],�0

)
.

Step 5. We have(
A2,0[�0],�0

)= α0β0τ
2v2 (KD,2[ψ0], φ0

)= α0β0τ
2v2 (ψ0,K∗

D,2[φ0]
)

= −α0β0τ
2v2

∫
∂D

dσ(x)S−1
D [1](x)

∫
D

dyG(x, y,0)

= −α0β0τ
2v2

∫
D

dy

∫
∂D

dσ(x)G(x, y,0)S−1
D [1](x)

= −α0β0τ
2v2

∫
D

dy

= −α0β0τ
2v2V ol(D).

Step 6. On the other hand, we have

(
A3,0[�0],�0

)= α0β0τ
3v3 (ψ0,K∗

D,3[φ0]
)= α0β0τ

3v3
(

ψ0,
i

4π
V ol(D)

)

= α0β0τ
3v3V ol(D)

i

4π

(
S−1

D [1],1
)

= −α0β0τ
3v3V ol(D)

i

4π
Cap(D).

Step 7. It is easy to see that(
A0,1[�0],�0

)= −(ψ0, φ0) = −α0β0

(
S−1

D [1],1
)

= α0β0Cap(D).

Step 8. We now calculate the term 
(
A0,1Ã0

−1A1,0[�0],�0

)
. We have

A1,0[�0] =
(

(τ − 1)vSD,1[ψ0]
0

)
=
(

(τ − 1)v i
4π

Cap(D)

0

)
,

A∗
0,1[�0] =

(
0

− ( 1Id + K
) [φ ]

)
=
(

0
−φ

)
= −

(
0
1

)
.

2 D 0 0
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We need to calculate

Ã−1
0

(
1
0

)
.

Assume that

(A0 +P0)

(
yb

y

)
=
(

SD[yb − y]
(− 1

2Id +K∗
D)[yb]

)
+ ((yb,ψ0) + (y,ψ0))

(
0
φ0

)
=
(

1
0

)

By solving the above equations directly, we obtain that yb = 1
2ψ0, y = − 1

2ψ0. Therefore,

Ã−1
0

(
1
0

)
=
( 1

2ψ0

− 1
2ψ0

)
.

It follows that(
A0,1Ã0

−1A1,0[�0],�0

)
= (τ − 1)v

i

8π
Cap(D)(ψ0, φ0) = (1 − τ)v

i

8π
Cap(D)2α0β0.

Step 9. We calculate the term 
(
A2,0Ã0

−1A1,0[�0],�0

)
. Using the results in Step 8, we obtain(

A2,0Ã0
−1A1,0[�0],�0

)
=
(
Ã0

−1A1,0[�0],A∗
2,0[�0]

)
= i(τ − 1)τ 2v3

8π
Cap(D)α0β0

(
ψ0,K∗

D,2[φ0]
)

= i(1 − τ)τ 2v3

8π
Cap(D)V ol(D)α0β0.

Step 10. Considering the above results, we can derive

A(ω, δ) = α0β0

(
τ 2v2V ol(D)ω2 + iτ 2(τ + 1)v3V ol(D)Cap(D)

8π
ω3 − Cap(D)δ − i(τ − 1)vCap(D)2

8π
ωδ

)
+O(ω4) + O(δ2).

We now solve A(ω, δ) = 0. It is clear that δ = O(ω2), and thus ω0(δ) = O(
√

δ). Write

ω0(δ) = a1δ
1
2 + a2δ + O(δ

3
2 ).

We get

τ 2v2V ol(D)
(
a1δ

1
2 + a2δ + O(δ

3
2 )
)2 + iτ 2(τ + 1)v3V ol(D)Cap(D)

8π

(
a1δ

1
2 + a2δ + O(δ

3
2 )
)3

−Cap(D)δ − i(τ − 1)vCap(D)2

8π

(
a1δ

1
2 + a2δ + O(δ

3
2 )
)

δ + O(δ2) = 0.

From the coefficients of the δ and δ
3
2 terms, we obtain

τ 2v2V ol(D)a2
1 − Cap(D) = 0,

2τ 2v2V ol(D)a1a2 + iτ 2(τ + 1)v3V ol(D)Cap(D)

8π
a3

1 − i(τ − 1)vCap(D)2

8π
a1 = 0,

which yields

a1 = ±
√

Cap(D)

τ 2v2V ol(D)
,

a2 = − i(τ + 1)vCap(D)

16π
a2

1 + i(τ − 1)Cap(D)2

16πτ 2vV ol(D)
= − i(τ + 1)Cap(D)2

16πτ 2vV ol(D)
+ i(τ − 1)Cap(D)2

16πτ 2vV ol(D)

= −iCap(D)2

8πτ 2vV ol(D)
.

This completes the proof of the theorem. �
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A few remarks are in order.

Remark 2.1. Using the method developed above, we can derive the Minnaert resonance for a single bubble in two 
dimensions. The main differences between the two-dimensional case and the three-dimensional case are explained in 
Appendix B.

Remark 2.2. Using the method developed above, we can also obtain the full asymptotic expansion for the resonance 
with respect to the small parameter δ.

Remark 2.3. In the case of a collection of N identical bubbles, with separation distance much larger than their char-
acteristic sizes, the Minnaert resonance for a single bubble will be split into N resonances. The splitting will be related 
to the eigenvalues of a N-by-N matrix which encodes information on the configuration of the N bubbles. This can be 
proved by a similar argument as in [9].

Remark 2.4. Taking into consideration the above theorem, we can deduce that if the bubble is represented by D = tB

for some small positive number t and a normalized domain B with size of order one, then the Minnaert resonance for 
D is given by the following formula

ω0,0(δ) = 1

t

[√
Cap(B)

τ 2v2V ol(B)
δ

1
2 − i

Cap(B)2

8πτ 2vV ol(B)
δ + O(δ

3
2 )

]
.

Remark 2.5. In the special case when D is the unit sphere, we have Cap(D) = 4π , V ol(D) = 4π
3 . Consequently,√

Cap(D)

τ 2v2V ol(D)
= √

3
1

vb

,

Cap(D)2

8πτ 2vV ol(D)
= 3

2τ 2v
.

Therefore, the Minnaert resonance is given by

ω0,0(δ) = √
3

1

vb

δ
1
2 − i

3

2τ 2v
δ + O(δ

3
2 ),

=
√

3κb

ρ
− i

3

2
κb

√
1

ρκ
+ O((

ρb

ρ
)

3
2 ).

3. The point scatterer approximation

We now solve the scattering problem (2.1) with uin = eikd·x . This models the case when the bubble is excited by 
sources in the far field (throughout the paper, a point x is said to be in the far field of the bubble D if the distance 
between x and D is much larger than the size of D).

We need the following lemma.

Lemma 3.1. The following estimates hold in H:

(Ã0 +B)−1[F ] = uin(y0)

( 1
2ψ0

− 1
2ψ0

)
+ O(ω) + O(δ).

Proof. Let F = F1 + F2, where

F1 =
(

uin(y0)

0

)
, F2 = F − F1 =

(
O(ω)

δ ∂uin

∂ν

)
.

It is clear that F2 = O(ω) in H1. Using the fact that
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(Ã0 +B)−1 = Ã0
−1 + O(ω) + O(δ),

we obtain

(Ã0 +B)−1[F ] = (Ã0 +B)−1[F1] + (Ã0 +B)−1[F2],
= Ã0

−1[F1] + O(ω) + O(δ),

= uin(y0)

( 1
2ψ0

− 1
2ψ0

)
+ O(ω) + O(δ),

which is the desired result. �
The following monopole approximation holds.

Theorem 3.1. In the far field, the solution to the scattering problem (2.1) has the following point-wise behavior

us(x) = g(ω, δ,D) (1 + O(ω) + O(δ) + o(1)) uin(y0)G(x, y0, k),

where y0 is the center of the bubble and the scattering coefficient g is given below:

(i) Regime I: ω � √
δ,

g(ω, δ,D) = O(
ω2

δ
) + O(ω); (3.1)

(ii) Regime II: ω√
δ

= O(1),

g(ω, δ,D) = Cap(D)

1 − (ωM

ω
)2 + iγ

, (3.2)

where

ωM =
√

Cap(D)δ

τ 2v2V ol(D)
, γ = (τ + 1)vCap(D)ω

8π
− (τ − 1)Cap(D)2δ

8πτ 2vV ol(D)ω

are the real part of the Minnaert resonance frequency and the damping constant respectively. In particular, the 
Minnaert resonance occurs in this regime.

(iii) Regime III: 
√

δ � ω � 1,

g(ω, δ,D) = Cap(D) + O(
δ

ω
). (3.3)

Proof. Step 1. We write � = αuin(y0)�0 + �1 with (�1, �0) = 0. Then,

(Ã0 −P0 +B)[αuin(y0)�0 + �1] = F

implies that(
Id − (Ã0 +B)−1P0

)
[αuin(y0)�0 + �1] = (Ã0 +B)−1[F ],

which yields

αuin(y0)�0 + �1 − αuin(y0)(Ã0 +B)−1�0 = (Ã0 +B)−1[F ].
As a result, we get

αuin(y0) = ((Ã0 +B)−1[F ],�0)

1 −
(
(Ã0 +B)−1[�0],�0

) = − ((Ã0 +B)−1[F ],�0)

A(ω, δ)
,

�1 = (Ã0 +B)−1[F ] + αuin(y0)(Ã0 +B)−1[�0] − αuin(y0)�0.
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By Lemma 3.1, we have

�1 = uin(y0)

( 1
2ψ0

− 1
2ψ0

)
+ O(ω) + O(δ).

Step 2. We calculate the scattered far field. Note that

Sk
D[ψ0](x) =

∫
∂D

G(x, y, k)ψ0(y)dσ (y) =
∫

∂D

G(x, y0, k)(1 + O(ω) + o(1))ψ0(y)dσ (y)

= G(x,y0, k)(1,S−1
D [1])(1 + O(ω) + o(1))

= −Cap(D)G(x, y0, k)(1 + O(ω) + o(1)).

Therefore,

us(x) = (α0αuin(y0) − 1

2
uin(y0) + O(ω) + O(δ))Sk

D(ψ0)(x)

= −(α0αuin(y0) − 1

2
uin(y0) + O(ω) + O(δ))Cap(D)G(x, y0, k)(1 + O(ω) + o(1)),

= g(ω, δ,D)uin(y0)G(x, y0, k)(1 + O(ω) + O(δ) + o(1)),

where we have introduced

g(ω, δ,D) = −(α0α − 1

2
)Cap(D). (3.4)

g is called the scattering coefficient of the bubble.
Step 3. We prove that

α =
[
ω2τ 2v2V ol(D) + δCap(D)

]
β0 + O(δω) + O(ω3)

−2A(ω, δ)
. (3.5)

Let F = F1 + F2, where

F1 =
(

uin

0

)
, F2 = F − F1 =

(
0

δ ∂uin

∂ν

)
.

Then

αuin(y0) = −
(
(Ã0 +B)−1[F1],�0

)+ (
(Ã0 +B)−1[F2],�0

)
A(ω, δ)

:= − I1 + I2

A(ω, δ)
.

It is clear that F2 = O(δω) in H1, and thus

I2 = ((Ã0 +B)−1[F2],�0) = O(δω).

We now investigate I1 = ((Ã0 +B)−1[F1], �0). We have

I1 =
(
(Id − Ã0

−1B + Ã0
−1BÃ0

−1B + ...)Ã0
−1[F1],�0

)
= (Ã0

−1[F1],�0) − (BÃ0
−1[F1],�0) + (BÃ0

−1BÃ0
−1[F1],�0) + ...

= (F1,�0) − (Ã0
−1[F1],B∗�0) + (Ã0

−1BÃ0
−1[F1],B∗[�0]) + ...

= −(Ã0
−1[F1],B∗[�0]) + (Ã0

−1BÃ0
−1[F1],B∗[�0]) + ...,

where we have used the fact that (F1, �0) = 0 and (Ã0
−1

)∗[�0] = �0.
Note that

B∗[�0] = ωA∗
1,0[�0] + ω2A∗

2,0[�0] + ω3A∗
3,0[�0] + δA∗

0,1[�0] + O(ω4) + O(δω2).
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Using the facts that

Ã0
−1[F1] = uin(y0)

( 1
2ψ0

− 1
2ψ0

)
+ O(ω),

and

A∗
1,0[�0] = 0, A∗

2,0[�0] = β0

(
τ 2v2K∗

D,2[φ0]
0

)
,

A∗
3,0[�0] = β0

(
τ 3v3K∗

D,3[φ0]
0

)
, A∗

0,1[�0] = −β0

(
0
1

)
,

we can conclude that

I1 = −
(
Ã0

−1[F1],ω2A∗
2,0[�0] + δA∗

0,1[�0] + O(δω) + O(ω3)
)

,

= −1

2
uin(y0)β0

[
ω2(ψ0, τ

2v2K∗
D,2[φ0]) + δ(ψ0,1)

]
+ O(δω) + O(ω3),

= 1

2

(
ω2τ 2v2V ol(D) + δCap(D)

)
β0u

in(y0) + O(δω) + O(ω3),

which completes the proof of (3.5).
Step 4. Recall the formula for A(ω, δ) in the previous section and (3.5), we have

−2g(ω, δ,D)

Cap(D)
= −ω2τ 2v2V ol(D) − δCap(D) + O(δω) + O(ω3)

τ 2v2V ol(D)ω2 + iτ 2(τ+1)v3V ol(D)Cap(D)
8π

ω3 − Cap(D)δ − i(τ−1)vCap(D)2

8π
ωδ + O(ω4) + O(δ2)

− 1.

The asymptotic behavior of g in different regimes follows immediately from the above formula. This completes the 
proof of the theorem. �
Remark 3.1. Using the method developed above together with the results of Appendix B, we can derive a similar 
monopole approximation in the far field for a single bubble in two dimensions.

4. Numerical illustrations

In this section we perform numerical simulations in two dimensions to analyze the resonant frequencies for two 
scenarios. We first analyze the single bubble case for which a formula was derived in Theorem B.1. We then calculate 
the resonant frequencies for two bubbles and compare our results with the single bubble case.

4.1. Resonant frequency of a single bubble in two dimensions

To validate the Minnaert resonance formula (B.6) in two dimensions we first determine the characteristic value 
ωc of A(ω, δ) in (2.6) numerically. We then calculate the complex root ωf of (B.6) that has a positive real part. 
Comparing ωc and ωr over a range of appropriate values of δ allows us to judge the accuracy of the formula.

In order to perform the analysis in the correct regime, which was described in Section 2, we take ρ = κ = 1000
and ρb = κb = c, where c is chosen such that the wave speed in both air and water is of order 1 and δ ∈ {10−i}, i ∈
{1, . . . , 5}. We use 29 points to discretize the unit circle used in the calculation of the layer potentials that form A. 
Calculating ωc is equivalent to determining the smallest ω such that A(ω, δ) has a zero eigenvalue. We have

ωc = min
ω∈C{ω| λ(ω) = 0} λ ∈ σ(A(ω, δ)),

and we approach λ(ω) = 0 as a complex root finding problem which can be calculated using Muller’s method [8,17]. 
Muller’s method is applied again in order to find the root ωf satisfying (B.6). The resonant frequencies ωc and ωf , 
along with the relative errors, for specific values of δ are given in Table 1. In Fig. 2 it can be seen that the relative error 
becomes very small when δ � 1, confirming the excellent accuracy of the formula. In particular, we note that when 
δ = 10−3, which is close to the usual contrast between water and air, the difference between ωc and ωf is negligible 
with a relative error of only 0.0652%.
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Fig. 1. When the bubbles are close together the resonance may be much more pronounced. Here we have |λ| as the distance varies from d = 0.1
(blue dots) to d = 0.5 (orange dots) and �(ω) = −0.0008i. We have resonance at the symmetric mode ωs ≈ 0.0041 − 0.0008i when d = 0.1. The 
resonant frequency of a single bubble is ωc = 0.01856427 − 0.00387243i. (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

4.2. Resonant frequencies of two bubbles in two dimensions

In this subsection we numerically solve the two bubble case and analyze it with respect to our results for the 
Minnaert resonance of a single bubble. In the case of two bubbles we have two resonant frequencies, ωs and ωa , that 
correspond to the normal modes of the system [21,29]. These frequencies are not in general equal to the one bubble 
resonant frequency ωc. The interaction between the bubbles gives rise to a shift in the resonance frequencies. The 
symmetric mode ωs typically shows a downward frequency shift and occurs when the bubbles oscillate (collapse and 
expand) in phase, essentially opposing each other’s motion. The antisymmetric mode ωa shows an upward frequency 
shift and occurs when the bubbles oscillate in antiphase, facilitating each other’s motion.

To account for the interaction between the two bubbles the matrix A in (2.5) is replaced with

A2(ω, δ) =

⎛
⎜⎜⎜⎝

Skb

D1
−Sk

D1
0 −Sk

D1,D2

− 1
2Id +Kkb,∗

D1
−δ( 1

2Id +Kk,∗
D1

) 0 −Kk,∗
D1,D2

0 −Sk
D2,D1

Skb

D2
−Sk

D2

0 −Kk,∗
D2,D1

− 1
2Id +Kkb,∗

D2
−δ( 1

2Id +Kk,∗
D2

)

⎞
⎟⎟⎟⎠ ,

where the operators Sk
Dij

and Kkb,∗
Dij

are given by

Sk
Di,Dj

=
∫

∂Dj

G(x, y, k)ψ(y)dσ (y), x ∈ ∂Di,

and

Kk,∗
Di,Dj

[ψ](x) =
∫

∂Dj

∂G(x, y, k)

∂ν(x)
ψ(y)dσ (y), x ∈ ∂Di.

The variation in the eigenvalues of A2 with respect to the input frequency, and hence the shifting of the resonant 
frequencies, is highly sensitive to the ratio of δ = ρb/ρ to κb/κ , with it being at a minimum when these quantities 
are equal. In order to make the results more clearly visible, while keeping the simulation in the correct regime, let us 
take ρb = 1.1 and κb = 0.1. For reference, we note that the resonant frequency for a single bubble in this regime is 
ωc = 0.01856427 − 0.00387243i.
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Table 1
A comparison between the characteristic value ωc of A(ω, δ) and the root of the two 
dimensional resonance formula (B.6) with positive real part ωf , over several values of δ.

δ ωc ωf Relative error

10−1 0.261145 − 0.150949i 0.250455 − 0.134061i 5.8203%
10−2 0.075146 − 0.023976i 0.074681 − 0.023687i 0.6727%
10−3 0.021001 − 0.004513i 0.020987 − 0.004508i 0.0652%
10−4 0.005950 − 0.000959i 0.005949 − 0.000959i 0.0062%
10−5 0.001714 − 0.000221i 0.001714 − 0.000221i 0.0030%

Fig. 2. The relative error of the Minnaert resonance ωc obtained by the two dimensional formula (B.6) becomes negligible when we are in the 
appropriate high contrast regime.

Table 2
The normal modes of the two bubble system shown in Fig. 4. They are quite 
close to the resonant frequency of a single bubble in this regime, in contrast 
to the strong frequency shifts observed when d � a and d 
 a.

d = 10 d = 100

ωs 0.01722793 − 0.00407516i 0.01819212 − 0.00316674i

ωa 0.02025476 − 0.00349214i 0.01905723 − 0.00470526i

We now identify two regimes in terms of bubble separation distance d . The first occurs due to strong interaction 
when d is less than the radius of the bubbles. In this regime the resonant frequency shift may be much more pro-
nounced. For example, when d = 0.1 we have ωs ≈ 0.0041 − 0.0008i, while ωa ≈ 0.7435 + 0.0032i. This regime is 
shown in Fig. 1 for �(ω) = −0.008i.

When d is greater than the radius of the bubbles, yet not very large, we have a somewhat stable regime featuring 
small to moderate resonant frequency shifts. It is natural to expect that as the distance between the bubbles increases, 
the eigenvalues of the two bubble system approach those of the single bubble system. And indeed that is the case as 
can be seen in Fig. 3 where ω has been restricted to R.

As with the three dimensional case, however, we require a complex ω with negative imaginary part in order for A
or A2 to become singular. This can be seen in Fig. 4 for d = 10 and d = 100. Table 2 shows that the normal modes 
are quite close to the single bubble resonant frequency in this regime.
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Fig. 3. |λ| when ω ∈ R for λ ∈ σ(A) (black crosses) and λ ∈ σ(A2) (colored dots). The distance increases as the dots change from blue to orange. 
Although the eigenvalues of A2 approach those of A as the distance increases, they don’t go to zero when ω is real. Here, σ(A) and σ(A2) are 
the spectra of A and A2, respectively.

5. Concluding remarks

In this paper we have investigated the acoustic wave propagation problem in bubbly media and for the first time 
rigorously derived the low frequency Minnaert resonances. Furthermore, we have provided a mathematical justifica-
tion for the monopole approximation. Our results are validated by several numerical experiments in two dimensions. 
The techniques developed in this paper can be used in characterizing bubbly media from spectroscopic measurements 
of the velocity and attenuation of ultrasound waves. They can be easily extended to viscous liquids [27]. They defi-
nitely open a door for a mathematical and numerical framework for investigating acoustic wave propagation in bubbly 
media. Based on the framework introduced in this paper, we have very recently investigated the superabsorption effect 
that can be achieved using bubble metascreens [3]. We have also mathematically justified Foldy’s approximation and 
quantified time-reversal and the superfocusing effect in bubbly media probed near and below their Minnaert resonant 
frequency [11]. Finally, based on our results for systems of plasmonic nanospheres [36], we are currently developing 
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Fig. 4. The eigenvalues of A (black crosses) and A2 (blue and green dots) may go to zero in the regime where the bubbles are a moderate distance 
apart, provided ω has some negative imaginary part. The frequency shift is less pronounced when d = 100 as opposed to d = 10 due to the decrease 
in the interaction of the bubbles with each other.

accurate and fast numerical schemes for solving acoustic wave propagation problems in the presence of closely spaced 
bubbles.
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Appendix A. Some asymptotic expansions

We recall some basic asymptotic expansion for the layer potentials in three and two dimensions from [8]; see also 
the appendix in [4].
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A.1. Some asymptotic expansions in three dimensions

We first consider the single layer potential:

Sk
D[ψ](x) =

∫
∂D

G(x, y, k)ψ(y)dσ (y), x ∈ ∂D,

where

G(x,y, k) = − eik|x−y|

4π |x − y| .
We have the following asymptotic expansion:

Sk
D = SD +

∞∑
j=1

kjSD,j , (A.1)

where

SD,j [ψ](x) = − i

4π

∫
∂D

(i|x − y|)j−1

j ! ψ(y)dσ(y).

In particular, we have

SD[ψ](x) = −
∫

∂D

1

4π |x − y|ψ(y)dσ(y), (A.2)

SD,1[ψ](x) = − i

4π

∫
∂D

ψ(y)dσ (y), (A.3)

SD,2[ψ](x) = − 1

8π

∫
∂D

|x − y|ψ(y)dσ(y). (A.4)

Lemma A.1. The norm ‖SD,j‖L(L2(∂D),H 1(∂D)) is uniformly bounded with respect to j . Moreover, the series in (A.1)
is convergent in L(L2(∂D), H 1(∂D)).

We now consider the boundary integral operator Kk,∗
D defined by

Kk,∗
D [ψ](x) =

∫
∂D

∂G(x, y, k)

∂ν(x)
ψ(y)dσ (y), x ∈ ∂D.

We have

Kk,∗
D =K∗

D + kKD,1 + k2KD,2 + . . . , (A.5)

where

KD,j [ψ](x) = − i

4π

∫
∂D

∂(i|x − y|)j−1

j !∂ν(x)
ψ(y)dσ (y) = − ij (j − 1)

4πj !
∫

∂D

|x − y|j−3(x − y) · ν(x)ψ(y)dσ(y).

In particular, we have

KD,1 = 0,

KD,2[ψ](x) = 1

8π

∫
∂D

(x − y) · ν(x)

|x − y| ψ(y)dσ(y),

KD,3[ψ](x) = i

12π

∫
∂D

(x − y) · ν(x)ψ(y)dσ(y).
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Lemma A.2. The norm ‖KD,j‖L(L2(∂D)) is uniformly bounded for j ≥ 1. Moreover, the series in (A.5) is convergent 
in L(L2(∂D)).

Lemma A.3. The following identities hold:

(i)

K∗
D,2[1](x) = 1

8π

∫
∂D

(y − x) · ν(y)

|y − x| dσ(y) = 1

8π

∫
D

∇ · y − x

|y − x|dy = 1

4π

∫
D

1

|y − x|dy.

(ii)
K∗

D,3[1](x) = −i

12π

∫
∂D

(y − x) · ν(y)dσ (y) = −i

12π

∫
D

∇ · (y − x)dy = −i

12π
3V ol(D) = −i

4π
V ol(D).

A.2. Some asymptotic expansions in two dimensions

In two dimensions, the single-layer potential for the Helmholtz equation is defined by

Sk
D[ψ](x) =

∫
∂D

G(x, y, k)ψ(y)dσ (y), x ∈ ∂D,

where G(x, y, k) = − i

4
H

(1)
0 (k|x − y|) and H(1)

0 is the Hankel function of first kind and order 0. We have

− i

4
H

(1)
0 (k|x − y|) = 1

2π
ln |x − y| + ηk +

∞∑
j=1

(bj lnk|x − y| + cj )(k|x − y|)2j ,

where

ηk = 1

2π
(ln k + γ − ln 2) − i

4
, bj = (−1)j

2π

1

22j (j !)2 , cj = bj

⎛
⎝γ − ln 2 − iπ

2
−

j∑
n=1

1

n

⎞
⎠ ,

and γ is the Euler constant. Especially,

b1 = − 1

8π
, c1 = − 1

8π
(γ − ln 2 − 1 − iπ

2
).

Thus,

Sk
D = Ŝk

D +
∞∑

j=1

(
k2j ln k

)
S(1)

D,j +
∞∑

j=1

k2jS(2)
D,j , (A.6)

where

Ŝk
D[ψ](x) = SD[ψ](x) + ηk

∫
∂D

ψ dσ, (A.7)

and

S(1)
D,j [ψ](x) =

∫
∂D

bj |x − y|2jψ(y)dσ (y),

S(2)
D,j [ψ](x) =

∫
∂D

|x − y|2j (bj ln |x − y| + cj )ψ(y)dσ (y).

We next consider the boundary integral operator Kk,∗
D defined by

Kk,∗
D [ψ](x) =

∫
∂G(x, y, k)

∂ν(x)
ψ(y)dσ (y), x ∈ ∂D.
∂D
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We have

Kk,∗
D =K∗

D +
∞∑

j=1

(
k2j ln k

)
K(1)

D,j +
∞∑

j=1

k2jK(2)
D,j , (A.8)

where

K(1)
D,j [ψ](x) =

∫
∂D

bj

∂|x − y|2j

∂ν(x)
ψ(y)dσ (y),

K(2)
D,j [ψ](x) =

∫
∂D

∂
(|x − y|2j (bj ln |x − y| + cj )

)
ν(x)

ψ(y)dσ (y).

Lemma A.4. The following estimates hold in L(L2(∂D), H 1(∂D)) and L(L2(∂D), L2(∂D)), respectively:

Sk
D = Ŝk

D + k2 lnkS(1)
D,1 + k2S(2)

D,1 + O(k4 ln k);
Kk,∗

D =KD + k2 lnkK(1)
D,1 + k2K(2)

D,1 + O(k4 lnk).

Lemma A.5. The following identities hold:

(i)

(K(1)
D,1)

∗[1](x) = 4b̄1V ol(D);
(ii)

(K(2)
D,1)

∗[1](x) = (2b̄1 + 4c̄1)V ol(D) + 4b̄1

∫
D

ln |x − y|dy,

where b̄1 and c̄1 are the complex conjugates of b1 and c1.

Proof. First, we have

(K(1)
D,1)

∗[1](x) = b̄1

∫
∂D

2(y − x, ν(y))dσ (y)

= b̄1

∫
∂D

∂|y − x|2
∂ν(y)

dσ (y)

= b̄1

∫
D

�y |y − x|2dy

= 4b̄1V ol(D).

We now prove the second identity. We have

(K(2)
D,1)

∗[1](x) =
∫

∂D

∂
[|y − x|2(b̄1 ln |x − y| + c̄1)

]
∂ν(y)

dσ (y)

=
∫
D

�y[|y − x|2(b̄1 ln |x − y| + c̄1)]dy

= 4c̄1V ol(D) + b̄1

∫
�y[|y − x|2 ln |x − y|]dy
D
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= 4c̄1V ol(D) + b̄1

∫
D

4 ln |x − y|]dy + b̄1

∫
D

2dy + b̄1

∫
D

|y − x|2� ln |y − x|dy

= (2b̄1 + 4c̄1)V ol(D) + 4b̄1

∫
D

ln |x − y|dy,

where we have used the fact that∫
D

|y − x|2� ln |y − x|dy = 0, for x ∈ ∂D .

This completes the proof of the Lemma. �
Appendix B. The Minnaert resonance in two dimensions

In this section, we derive the Minnaert resonance for a single bubble in two dimensions using the same method 
we developed for the three-dimensional case. The main differences between the two-dimensional case and the three-
dimensional case are as follows: (1) the single layer potential SD may not be invertible from L2(∂D) to H 1(∂D) in 
two dimensions, while this property always holds in three dimensions. We refer to [8,35] for more detail on this issue; 
(2) there is a logarithmic singularity in the asymptotic expansion of the single layer potential Sk

D for small k. These 
create some difficulties which we address here.

Recall that

A(ω, δ) =
(

Skb

D −Sk
D

− 1
2Id +Kkb,∗

D −δ( 1
2Id +Kk,∗

D )

)
,

where the boundary integral operators Sk
D and Kk,∗

D are defined in Section A.2 together with their asymptotic expan-
sions.

We denote by

A0 :=
(

Ŝkb

D −Ŝk
D

− 1
2Id +K∗

D 0

)
, (B.1)

where Ŝk
D (resp. Ŝkb

D ) is defined by (A.7) (resp. with k replaced by kb).
Note that the kernel space of the operator − 1

2Id + K∗
D has dimension one. We choose ψ0 to be the real-valued 

function in this kernel space which has unit norm in L2(∂D). We have K∗
D[ψ0] = 1

2ψ0. One can show that

SD[ψ0] = γ0 on ∂D (B.2)

for some constant γ0 (see [8,35]). Here and after, we also denote φ0 = 1 on ∂D. There are two cases:

(i) Case I: γ0 = 0.
(ii) Case II: γ0 = 0.

In case I, it is clear that SD is not invertible from L2(∂D) to H 1(∂D). In case II, we can show that SD is invertible 
from L2(∂D) to H 1(∂D).

In Case II, we remark that (1, ψ0) = 0. Indeed, assume on the contrary that (1, ψ0) = 0. Then

(SD[ψ0],ψ0) = γ0(1,ψ0) = 0,

which further implies that ψ0 = 0. This contradiction proves our assertion.

Lemma B.1. In both cases, the operator Ŝk
D is invertible in L(L2(∂D), H 1(∂D)).
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Proof. We first show that Ŝk
D is injective. Assume that

Ŝk
D[y] = SD[y] + ηk(y,1) = 0 for some y ∈ L2(∂D).

In Case I, we have SD[y] ⊥ ψ0 in L2(∂D), therefore, ηk(y, 1)(1, ψ0) = 0. Since (1, ψ0) = 0, we obtain (y, 1) = 0. It 
follows that SD[y] = 0. But this implies that y = cψ0 for some constant c. Using the condition (y, 1) = 0 again, we 
derive c = 0, which shows that y = 0.

In Case II, we have SD[ψ0] = 0. Since SD[y] = −ηk(y, 1), we see that y = cψ0 for some constant c. Therefore,

γ0c + ηkc(ψ0,1) = c(γ0 + ηk(ψ0,1)) = 0.

Note that γ0 + ηk(ψ0, 1) = 0, which follows from the fact that both γ0 and (ψ0, 1) are real numbers while ηk is a 
complex number with nonzero imaginary part. Thus we have c = 0, and y = 0 follows immediately.

The surjectivity of Ŝk
D follows from the fact that Ŝk

D is Fredholm with index zero. This completes the proof of the 
lemma. �

We have the following properties for the operator A0.

Lemma B.2. We have

(i) Ker(A0) = span {�0} where

�0 = α0

(
ψ0
aψ0

)
with

a =

⎧⎪⎪⎨
⎪⎪⎩

ηkb

ηk

, in Case I,

γ0 + (ψ0, φ0)ηkb

γ0 + (ψ0, φ0)ηk

, in Case II,

and the constant α0 being chosen such that ‖�0‖ = 1;
(ii) Ker(A∗

0) = span {�0} where

�0 = β0

(
0
φ0

)
with φ0 = 1 on ∂D and the constant β0 being chosen such that ‖�0‖ = 1.

Proof. We first find the kernel space of A0. Assume that

A0

(
yb

y

)
=
(

Ŝkb

D [yb] − Ŝk
D[y]

(− 1
2Id +K∗

D)[yb]
)

= 0 for some y, yb ∈ L2(∂D).

We have

SD[yb − y] + ηkb
(yb,1) − ηk(y,1) = 0 on ∂D, (B.3)

(−1

2
Id +K∗

D)[yb] = 0 on ∂D. (B.4)

From (B.4), we see that yb is a multiple of ψ0. We let yb = ψ0. We now find the function y.
In Case I, we have SD[yb − y] ⊥ ψ0. Similarly to the proof in Lemma B.1, we can derive that y = cψ0 for some 

constant c which satisfies

ηkb
(ψ0,1) − ηkc(ψ0,1) = 0.

Thus, it follows that c = ηkb
/ηk .

In Case II, SD is invertible. From (B.3), we can derive that ψ0 − y is a multiple of ψ0, which further implies that 
y = cψ0 for some constant c. Plugging this back to (B.3), we obtain
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(1 − c)γ0 + ηkb
(ψ0,1) − ηkc(ψ0,1) = 0.

Therefore,

c = γ0 + (ψ0, φ0)ηkb

γ0 + (ψ0, φ0)ηk

.

Note that γ0 + (ψ0, φ0)ηk = 0 because the ηk has nonzero imaginary part. This completes the proof of the first part of 
the Lemma.

The second part of the Lemma follows easily from the fact that the operator Ŝk
D is injective. This completes the 

proof of the Lemma. �
We next perform an asymptotic analysis in terms of δ and ω on the operator A(ω, δ).

Lemma B.3. In the space L(H, H1), we have

A(ω, δ) := A0 +B(ω, δ) =A0 + ω2 lnωA1,1,0 + ω2A1,2,0 + δA0,1 + O(δω2 lnω) + O(ω4 lnω),

where

A1,1,0 =
(

v2
bS

(1)
D,1 −v2S(1)

D,1

v2
bK

(1)
D,1 0

)
, A1,2,0 =

⎛
⎝ v2

b

(
lnvbS(1)

D,1 + S(2)
D,1

)
−v2

(
lnvS(1)

D,1 + S(2)
D,1

)
v2
b

(
lnvbK(1)

D,1 +K(2)
D,1

)
0

⎞
⎠ ,

and

A0,1 =
(

0 0
0 −( 1

2Id +K∗
D)

)
.

We define a projection P0 by

P0[�] := (�,�0)�0,

and denote by

Ã0 =A0 +P0.

With the help of Lemma B.1, we can establish the following results.

Lemma B.4. We have

(i) The operator Ã0 is a bijective operator in L(H, H1). Moreover, Ã0[�0] = �0;
(ii) Ã0

∗
is a bijective operator in L(H1, H). Moreover, Ã0

∗[�0] = �0.

Our main results in two dimensions are summarized in the following theorem.

Theorem B.1. In the quasi-static regime, there exist resonances (or the Minnaert resonance) for a single bubble. Their 
leading order terms are given by the roots of the following equation:

ω2 lnω +
[
(lnvb + 1 + c1

b1
) − γ0

(ψ0,1)

]
ω2 − 1

4V ol(D)

aδ

b1
= 0, (B.5)

where the constants b1, c1 are defined in Section A.2, γ0 in (B.2) and a in Lemma B.2.

Proof. As in Theorem 2.1, we can show that the resonances are the roots of the following equations

A(ω, δ) :=
(
(Ã0 +B)−1[�0],�0

)
− 1 = 0.

By a direct calculation, we further have
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A(ω, δ) = −ω2 lnω
(
A1,1,0[�0],�0

)− ω2 (A1,2,0[�0],�0
)

−δ
(
A0,1[�0],�0

)+ O(ω4 lnω) + O(δω2 lnω).

It is clear that

(A1,1,0)
∗[�0] =

(
β0v

2
b(K

(1)
D,1)

∗[1]
0

)
,

(A1,2,0)
∗[�0] =

(
β0v

2
b[lnvb(K(1)

D,1)
∗[1] +K(2)

D,1)
∗[1]

0

)
,

A0,1[�0] =
(

0
−α0v

2
b(

1
2Id +K∗

D)[aψ0]
)

=
(

0
−α0av2

bψ0

)
.

It follows that(
A1,1,0[�0],�0

)= α0β0(ψ0, v
2
b(K

(1)
D,1)

∗[1]) = α0β0(ψ0, v
2
b4b̄1V ol(D))

= 4α0β0v
2
bb1V ol(D)(ψ0,1);(

A1,2,0[�0],�0
)= α0β0

(
ψ0, v

2
b[lnvb(K(1)

D,1)
∗[1] + (K(2)

D,1)
∗[1]

)
= 4α0β0v

2
b lnvbb1V ol(D)(ψ0,1) +

α0β0v
2
b

⎛
⎝ψ0, (2b̄1 + 4c̄1)V ol(D) + 4b̄1

∫
D

ln |x − y|dy

⎞
⎠

= α0β0v
2
bV ol(D)(4b1 lnvb + 4b1 + 4c1)(ψ0,1) + 4b1α0β0v

2
b(ψ0,

∫
D

ln |x − y|dy)

= 4α0β0v
2
bV ol(D)(b1 lnvbb1 + b1 + c1)(ψ0,1) − 4b1α0β0v

2
bγ0V ol(D);(

A0,1[�0],�0
)= −α0β0av2

b(ψ0,1),

where we have used the fact

(ψ0,

∫
D

ln |x − y|dy) =
∫

∂D

ψ0(x)dσ (x)

∫
∂D

ln |x − y|dy =
∫
D

dy

∫
∂D

ln |x − y|ψ0(x)dσ (x)

=
∫
D

−γ0dy = −γ0V ol(D)

in the second equality above. Therefore, we derive that

4b1V ol(D)(ψ0,1)ω2 lnω + 4

[
V ol(D)(b1 lnvb + b1 + c1)(ψ0,1) − b1γ0V ol(D)

]
ω2

−aδ(ψ0,1) + O(ω4 lnω) + O(δω2 lnω) = 0.

This completes the proof of the lemma. �
Remark B.1. In the special case when D is the unit disk, we have V ol(D) = π and γ0 = 0. Therefore, the Minnaert 
resonance in two dimensions is given by the roots of the following equation:

ω2 lnω + (lnvb + 1 + c1

b1
)ω2 − 1

4π

aδ

b1
= 0. (B.6)

Remark B.2. We can use the same method as in Section 3 to derive the point scatterer approximation for the scattering 
by a single bubble in two dimensions.
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