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Abstract

We give examples of analytic circle maps with singularities of break type with the same rotation number and the same size of the
break for which no conjugacy is Lipschitz continuous. In the second part of the paper, we discuss a class of rotation numbers for
which a conjugacy is C1-smooth, although the numbers can be strongly non-Diophantine (Liouville). For the rotation numbers in
this class, we construct examples of analytic circle maps with breaks, for which the conjugacy is not C1+α smooth, for any α > 0.

Résumé

Nous donnons des exemples d’applications du cercle analytiques avec des singularités de type rupture avec le même nombre de
rotation et la même taille de rupture pour lesquelles aucune conjugaison n’est lipschitzienne. Dans la deuxième partie de l’article,
nous étudions une classe de nombres de rotation pour lesquels il y a une conjugaison de classe C1, alors même que les nombres de
rotation peuvent être fortement non-diophantiens (Liouville). Pour les nombres de rotation de cette classe, nous construisons des
exemples d’applications du cercle analytiques avec des singularités de type rupture, pour lesquelles la conjugaison n’est de classe
C1+α pour aucun α > 0.

1. Introduction

This paper concerns the rigidity of circle maps with break singularities. These are orientation-preserving homeo-
morphisms of the circle T1 = R\Z, which are Cr -smooth outside a single point where the derivative has a jump dis-
continuity. Circle maps with breaks were introduced about 20 years ago as an interesting example of a one-dimensional
dynamical system with rich and non-trivial renormalization behavior. Usually, non-trivial renormalizations are related
to the presence of critical points, like in the case of critical circle maps. It turns out that points of break can cause
behavior very similar to that of critical points. Such a “criticality” manifests itself through non-trivial scalings, compli-
cated structure of the renormalization horseshoe and prevalence of rational rotation numbers. At the same time, some
aspects of the renormalization analysis of maps with breaks are simpler than in the critical case. The full renormaliza-
tion theory can be constructed in this case, which is still an open problem for critical circle maps with non-analytic
critical points. This simplification is related to the fact that the renormalized maps converge to a two-parameter family
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of linear fractional (Möbius) maps. In a sense, maps with breaks form a class of maps which is situated in between
circle diffeomorphisms on one side, and critical circle maps on the other. On the other hand, maps with breaks are
characterized by strongly unbounded geometry that makes some other aspects of the renormalization analysis of these
maps significantly harder than in the case of critical circle maps. This is the reason that the main rigidity results for
maps with breaks have been obtained only recently (see below).

Rigidity theory for smooth diffeomorphisms is the subject of classical Herman’s theory [1–5]. Rigidity, in this case,
refers to a statement about the smoothness of the conjugacies between circle diffeomorphisms with a Diophantine
rotation number and the corresponding rigid rotation. Precise statements will be formulated below. Here, we simply
point out that rigidity results for circle diffeomorphisms depend strongly on the Diophantine properties of the rotation
numbers. On the other side, Arnol’d [6] has shown that such a conjugacy can be singular for Liouville numbers, even
in the analytic case. Interestingly, the presence of critical points makes the rigidity stronger. It was shown in [7] that
C1-rigidity of analytic critical circle maps holds for all irrational rotation numbers. Namely, any two analytic critical
circle maps with the same order of the critical point and the same irrational rotation number can be conjugated C1-
smoothly to each other. Since maps with breaks exhibit behavior similar to the critical ones in many respects, it seemed
plausible that a similar “robust” rigidity result holds in this case as well [8]. This conjecture found partial confirmation
in [7], which suggested that for a certain class of strongly non-Diophantine rotation numbers, the conjugacy is C1-
smooth, provided that the sizes of the breaks are the same. However, as we show in this paper, robust rigidity does
not hold for maps with breaks. Moreover, we show that for certain irrational rotation numbers, the conjugacy is not
even Lipschitz continuous. We also show that the conjugacy that maps one break point into another can be as “bad”
as possible. A similar result holds in the diffeomorphism case (see Theorem 3.6 below).

Another motivation for studying circle maps with breaks is related to generalized interval exchange transforma-
tions [9]. Such transformations were introduced very recently and analysis of their ergodic and rigidity properties is
currently underway. The idea of this generalization is to replace the affine interval exchange with nonlinear transfor-
mations mapping corresponding subintervals into their images. It is well-known that a rigid rotation can be seen as an
exchange transformation of two intervals. In this sense, a circle homeomorphism can be viewed as a generalized in-
terval exchange transformation of two intervals. Imagine, now, that the maps for both subintervals are smooth. While
matching of endpoints is a natural requirement, matching of the derivatives at the end points is rather artificial. Hence,
a natural generalized interval exchange of two intervals is in fact a circle homeomorphism with two points of break.
Since both break points belong to one trajectory, one can piecewise smoothly conjugate such a homeomorphism to a
map with one break point. This connection indicates that our results are related to the problem of rigidity for gener-
alized interval exchange transformations. It is, however, a very special case. Indeed, the Denjoy theory [10] holds in
the case of circle homeomorphisms with breaks, which is not true in general. Note, finally, that circle maps with many
break points can be considered as generalized interval exchanges of the corresponding number of intervals.

We proceed with precise definitions and formulation of the main results. Any orientation preserving circle homeo-
morphism T : T1 → T1 with a break is defined uniquely by a function T : R→R that satisfies

(i) T is continuous and strictly increasing on R, with T (0) ∈ [0,1),
(ii) T (x + 1) = T (x) + 1, for every x ∈R,

(iii) there exists a point xbr ∈ [0,1) such that T (x) ∈ Cr , r ∈ [1,∞) ∪ {∞,ω}, on [xbr , xbr + 1], and there exists
C > 0 such that T ′(x) > C > 0, for every x ∈ [xbr , xbr + 1],

(iv) the one sided derivatives T ′−(xbr ) and T ′+(xbr ) at xbr are such that for some c ∈R+\{1},√
T ′−(xbr )

T ′+(xbr )
= c.

Such a value c will be called the size of the break.

Remark 1. The analytic Cω case corresponds to functions T whose restrictions to the interval [xbr , xbr + 1], denoted
by T |[xbr ,xbr+1], have analytic extension on a complex disc containing [xbr , xbr + 1].

The space of all such Cr -smooth circle homeomorphisms with a break of size c will be denoted by Br
c , and the

space of corresponding lifts by Ar
c . Size of the break essentially plays the same role as the order of the critical point
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(see below). Namely, it is a smooth invariant, i.e., a smooth conjugacy does not change it. It is easy to see that only
maps with breaks which are of the same size have a chance to be smoothly conjugate to each other.

For any orientation-preserving circle homeomorphism T , there exists a unique rotation number ρ. It has been
known since Poincaré that if any two orientation-preserving circle homeomorphisms T and T̃ have the same irra-
tional rotation number, then they are topologically semi-conjugate to each other, i.e., there is a continuous circle map
ϕ : T1 → T1, such that T ◦ ϕ = ϕ ◦ T̃ . The Denjoy theory [10] asserts that in the case of Cr -smooth circle home-
omorphisms with breaks, for r � 2 (like in the case of diffeomorphisms, this condition can be slightly weakened),
ϕ is actually a homeomorphism. In this case, ϕ is referred to as the (topological) conjugacy. The phenomenon that
a conjugacy between any two circle maps within a given equivalence class, which is just a continuous map a priori,
possesses a certain degree of regularity is referred to as rigidity.

We present first well-known rigidity results for circle diffeomorphisms. Arnol’d proved that if an analytic circle
diffeomorphism is close enough to the rigid rotation Rρ :x 	→ x + ρ (mod 1) and if its rotation number ρ satisfies
certain Diophantine condition (i.e., there exist C > 0 and β � 0 such that |ρ − p/q| > C/q2+β , for every p ∈ Z

and q ∈ N), then the conjugacy to the rotation is in fact analytic [6]. Arnol’d also conjectured a global result: there
exists a subset of Lebesgue measure 1 in (0,1), such that any C∞-smooth diffeomorphism with rotation number in
this set is C∞-conjugate to a rotation. This was proved by Herman [1]. The result of Herman [1], as well as the
later extensions by Yoccoz [2], Katznelson and Orstein [3], Sinai and Khanin [4], and Khanin and Teplinsky [5], also
applies to the finite differentiability case. In the case of low smoothness, one can prove [4,5] that a C2+α-smooth
circle diffeomorphism is C1+α−β -conjugate to a rotation if the rotation number ρ satisfies the Diophantine condition
with exponent β < α. In [6], Arnol’d also gave examples of analytic circle diffeomorphisms without periodic orbits
but whose rotation numbers are well-approximable by rational numbers (Liouville numbers) for which the invariant
measure is singular with respect to Lebesgue measure.

The main result of this paper is the following.

Theorem 1.1. There exist two analytic circle maps with a break Tρ, T̃ρ ∈ Bω
c , with the same irrational rotation num-

ber ρ, and the same size of the break c 
= 1, such that no topological conjugacy ϕ, that satisfies

ϕ−1 ◦ Tρ ◦ ϕ = T̃ρ, (1.1)

is Lipschitz continuous.

Remark 2. The rotation number ρ of the maps in Theorem 1.1 belongs to a class of irrational numbers ρ ∈ (0,1)

whose odd-numbered entries k2n−1 in the continued fraction expansion of ρ = [k1, k2, . . .], in the case 0 < c < 1, or
even-numbered entries k2n, in the case c > 1, grow sufficiently fast with n ∈N.

Remark 3. In particular, Theorem 1.1 provides examples of analytic circle maps with breaks, with the same rotation
number and the same size of the break, for which a C1-smooth conjugacy does not exist.

This result stands in contrast to the case of critical circle maps, that is circle homeomorphisms which are Cr -
smooth everywhere and have a single point xcr where the first derivative vanishes. Near the critical point xcr the
derivative behaves as |x − xcr |α−1, where α > 1 is the order of the critical point. Yoccoz showed that any two analytic
critical circle maps with the same irrational rotation number and the same order of the critical point are topologically
conjugate to each other [11]. It has been conjectured that in the case of critical circle maps with the same irrational
rotation number and the same order of the critical point, topological conjugacy implies C1-conjugacy. That is, the
rigidity of critical circle maps does not depend on the Diophantine properties of their rotation number. In [7], this
property has been called robust rigidity. So far the conjecture has been proved only in the case of analytic critical
circle maps. It fact, Khanin and Teplinsky [7] showed that the robust rigidity conjecture holds for all orders of the
critical point, assuming that the renormalizations of such maps (see below) approach each other exponentially fast. At
present, convergence of renormalizations is known only in the case when the order of critical circle maps is an odd
integer larger than 1. De Faria and de Melo proved the exponential convergence of renormalizations for analytic critical
circle maps and rotation numbers of bounded type [12,13]. This result has been extended to all rotation numbers by
Yampolsky [14]. De Faria and de Melo also proved that, for a set of zero Lebesgue measure, in the case of analytic
critical circle maps with odd integer order of the critical point, the conjugacy is, in fact, C1+α-smooth, for some
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α > 0. They also showed that C1+α-rigidity of C∞-smooth critical circle maps cannot be extended to all irrational
rotation numbers. Examples of analytic critical circle maps with the same order of the critical point and the same
irrational rotation number which are not C1+α-smoothly conjugate to each other for any α > 0 have been constructed
by Avila [15]. Here, we also extend the parabolic renormalization method developed in [15] and prove a similar result
for the case of analytic circle maps with breaks. More precisely, we prove the following.

Theorem 1.2. There exist Tρ, T̃ρ ∈ Bω
c with the size of the break c and the same irrational rotation number ρ ∈ (0,1),

with bounded odd-numbered entries k2n−1 in the continued fraction expansion of ρ, in the case 0 < c < 1, or even-
numbered entries k2n, in the case c > 1, such that the topological conjugacy ϕ between them is not C1+α , for any
α > 0.

Remark 4. The rotation number ρ in Theorem 1.2 belongs to a set of rotation numbers for which C1-rigidity
holds [16]. Thus, this set is disjoint (both in the case 0 < c < 1 and in the case c > 1) from the set of rotation
numbers considered in Theorem 1.1 (see Remark 2). Clearly, the set of rotation numbers from Theorem 1.2 has zero
Lebesgue measure. However, as we prove in the forthcoming publications [17,18], C1-rigidity can be extended to
Lebesgue almost all rotation numbers.

Remark 5. It will be obvious from the proofs of Theorem 1.1 and Theorem 1.2 that the constructed examples are
“generic”.

Remark 6. A result similar to Theorem 1.2 has been obtained independently by Dzhalilov and Teplinsky [19,20].
Both proofs rely on Avila’s construction [15] which requires only a minor modification in the break case.

The methods of proofs of Theorem 1.1 and Theorem 1.2 are very different. Both of them, however, use renor-
malization ideology. It has been proved in [8] that the renormalizations of circle maps with breaks with the same
size of the break and with the same quadratic irrational rotation number approach each other exponentially fast. This
result has been slightly extended to a larger zero measure set of rotation numbers in [16] and to all rotation num-
bers in [17]. In particular, this implies that renormalizations of circle maps with breaks approach a family of linear
fractional maps, which is invariant under renormalizations. Within this family the renormalization operator maps con-
vex maps into concave and vice versa. The same property is shared by renormalizations of circle maps with breaks
which are not fractional linear, after sufficiently many renormalization steps. It turns out that in the case 0 < c < 1,
the concave renormalization maps correspond to even renormalization steps n, while convex renormalization maps
correspond to odd n. For c > 1, the situation is the opposite. This explains why the behavior is very different, in the
limit when kn+1 → ∞, for even and odd n. The graphs of renormalized maps fn, defined with the marked point x0
(see Section 2) being the break point xbr , for sufficiently large n and kn+1, look like the graphs shown in Fig. 1.
Roughly speaking, a subsequence of renormalizations with concave graphs which in the limit kn+1 → ∞ approach
the diagonal very fast at the end points (Fig. 1a) is characteristic of examples with the absence of C1-rigidity that
we construct in Theorem 1.1. In fact, this type of behavior is the only obstacle to C1-rigidity. On the other hand,
a subsequence of renormalizations with convex graphs which almost touch the diagonal at a point inside the interval
(−1,0) (Fig. 1b) characterizes examples of C1-rigid maps for which rigidity cannot be extended to C1+α-smoothness
as in Theorem 1.2.

The paper is organized as follows. In Section 2, we introduce the general renormalization setting for circle homeo-
morphisms and, in particular, discuss renormalizations of circle maps with breaks. In Section 3, we prove Theorem 1.1.
Section 4 contains a discussion of parabolic renormalization method of circle maps with breaks and the proof of The-
orem 1.2.

2. General settings

2.1. Renormalization of orientation-preserving circle homeomorphisms

For every orientation-preserving homeomorphism T of the circle T1 = R\Z there is a unique rotation number ρ,
given by the x-independent limit ρ = limn→∞ T n(x)/n mod 1, for any lift T of T to R. The particular renormalization
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Fig. 1. The graph of a renormalized map fn for sufficiently large n and large kn+1: a) Case 0 < c < 1 and n even, or c > 1 and n odd; b) Case
0 < c < 1 and n odd, or c > 1 and n even.

that we use in this paper is closely related to the continued fraction expansion of the rotation number ρ ∈ (0,1),
i.e.,

ρ = 1

k1 + 1

k2 + 1

k3 + · · ·

, (2.1)

that we write as ρ = [k1, k2, k3, . . .]. The sequence of positive integers kn, called partial quotients, is infinite if and
only if ρ is irrational. Every irrational ρ ∈ (0,1) defines uniquely the sequence of partial quotients. Conversely, every
infinite sequence of partial quotients defines uniquely an irrational number ρ as the limit of the sequence of rational
convergents pn/qn = [k1, k2, . . . , kn]. It is well-known that this sequence forms the sequence of best rational approx-
imates of ρ, i.e., there are no rational numbers with denominators smaller or equal to qn, that are closer to ρ than
pn/qn. The rational convergents can also be defined recursively by pn = knpn−1 + pn−2 and qn = knqn−1 + qn−2,
starting with p0 = 0, q0 = 1, p−1 = 1, q−1 = 0.

To define the renormalizations of T , we start with a marked point x0 ∈ T1, and consider the marked trajectory
xi = T ix0, with i � 0. The subsequence xqn , n � 0, indexed by the denominators of the sequence of rational con-
vergents of the rotation number ρ, will be called the sequence of dynamical convergents. We define xq−1 = x0 − 1.
The combinatorial equivalence of all circle homeomorphisms with the same irrational rotation number implies that
the order of the dynamical convergents of T is the same as the order of the dynamical convergents for the rigid ro-
tation Tρ : x 	→ x + ρ. The well-known arithmetic properties of the rational convergents now imply that dynamical
convergents alternate their order in the following way:

xq−1 < xq1 < xq3 < · · · < x0 < · · · < xq2 < xq0 . (2.2)

The interval [xqn, x0], for n odd, and [x0, xqn ], for n even, will be denoted by �
(n)
0 (or �

(n)
0 (x0) if we want

to specify which marked point we consider), and called the n-th renormalization segments. We will also define
�̄

(n)
0 = �

(n)
0 ∪ �

(n+1)
0 . In addition to the property (2.2), we also have the following important property: the only

points of the trajectory {xi : 0 < i � qn+2} that belong to �
(n)
0 are {xqn+iqn+1 : 0 � i � kn+2}.

We will use the notation �
(n)
i , to denote the n-th renormalization segment associated to the marked point xi .

The consecutive images of �
(n−1)
0 and �

(n)
0 cover the whole circle without overlapping beyond the end points, thus

forming the n-th dynamical partition of T1,

Pn = {
T i�

(n−1): 0 � i < qn

} ∪ {
T i�

(n): 0 � i < qn−1
}
. (2.3)
0 0
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The n-th renormalization of an orientation-preserving homeomorphism T of the circle T1, with rotation number
ρ = [k1, k2, k3, . . .], with respect to the marked point x0 ∈ T1, is a function fn : [−1,0] → R obtained from the
restriction of T qn to �

(n−1)
0 , by rescaling the coordinates. More precisely, if τn is the affine change of coordinates that

maps xqn−1 to −1 and x0 to 0, then

fn = τn ◦ T qn ◦ τ−1
n . (2.4)

If we identify x0 with zero, then τn is exactly a multiplication by (−1)n/|�(n−1)
0 |. Here and in what follows, we use

|I | to denote the length of an interval I . Definition (2.4) is valid for all n � 0 if and only if ρ is irrational; otherwise,
n must be less than the length of the continued fraction expansion of ρ or can be equal to it if xqn−1 
= x0.

We remark that a different notion of renormalizations is sometimes used, consisting of pairs of commuting maps
(fn, gn), where gn is obtained by rescaling the restriction of T qn−1 to the interval �

(n)
0 , as gn = τn ◦ T qn−1 ◦ τ−1

n . The

iterates of T qn and T qn−1 , restricted to the intervals �
(n−1)
0 and �

(n)
0 , respectively, are nothing else but the continuous

components of the first return map for T to the interval �̄
(n−1)
0 . For our purposes it suffices to consider only the

sequence fn, since gn is obtained from fn−1 by an affine coordinate transformation.
In the case of circle maps with a break, we often use renormalizations defined with the marked point x0 = xbr . In

this case, we will reserve the notation fn for these renormalizations while we will use the notation fn,x0 when con-
sidering renormalizations defined with an arbitrary marked point x0 ∈ T1. It is well-known [21] that renormalizations
fn of circle maps with a break of size c ∈ R+\{1} approach (exponentially fast in C2-norm) a particular sequence of
linear functional transformations

Fan,vn,cn : z 	→ an + cnz

1 − vnz
, (2.5)

where cn = c if n is even, cn = c−1 if n is odd, and

an = |�(n)
0 |

|�(n−1)
0 |

, vn = cn − an − bn

bn

, bn = |�(n−1)
0 | − |�(n)

qn−1 |
|�(n−1)

0 |
. (2.6)

If c > 1, the maps Fan,vn,cn (and thus fn if n is large) are concave for odd n and kn+1 sufficiently large. On the
contrary, for n even and kn+1 sufficiently large, the maps Fan,vn,cn (and thus fn if n is large) are convex (see Fig. 1).
If 0 < c < 1, the situation is the opposite.

2.2. Modulus of continuity

A continuous real function ω : [0,∞) → [0,∞) is called a modulus of continuity if it is decreasing and it vanishes
at 0, i.e., if it satisfies

lim
x→0+ ω(x) = ω(0) = 0. (2.7)

We say that a function ϕ : T1 → T1, is uniformly continuous with the modulus of continuity ω, if∣∣ϕ(x) − ϕ(y)
∣∣ � ω

(|x − y|), (2.8)

for all x, y ∈ T1. For points on the circle the distance |x − y| will be given by the minimal distance between their
lifts to R. We say that a circle homeomorphism ϕ : T1 → T1 which is a topological conjugacy between two circle
maps admits ω as the modulus of continuity if both ϕ and the inverse ϕ−1 are uniformly continuous with modulus of
continuity Cω, for some C > 0.

If the homeomorphism admits ω(t) = t as the modulus of continuity, it is said to be Lipschitz continuous; if
ω(t) = tα , for some α ∈ (0,1), the homeomorphism is said to be Hölder continuous with exponent α.

Note that for real-valued functions f and g, defined on a domain D ⊂ R, we say that f is of the order of g (or f

is comparable with g), and write f (z) = Θ(g(z)), if there exist constants K1,K2 > 0, such that

K1g(z) � f (z) � K2g(z), (2.9)
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for all z ∈ D. Similarly, we write f (z) � Θ(g(z)) (f (z) � Θ(g(z))) if f (z) � Kg(z) (f (z) � Kg(z)) for some
K > 0.

We say that f is bounded above by g up to a constant factor asymptotically, and write f (z) =O(g(z)), if

lim sup
z→∞

|f (z)|
|g(z)| < ∞. (2.10)

We say that f is dominated by g asymptotically, and write f (z) = o(g(z)), if

lim
z→∞

|f (z)|
|g(z)| = 0. (2.11)

3. A non-rigidity result

3.1. A lemma on the derivatives for rational rotation numbers

Let T ∈ Bω
c , with the break point located at xbr , satisfy T (xbr ) = xbr . The assumption that T has a fixed point at xbr

is restricted to this subsection only. Consider the one parameter family Ta = T + a of circle maps with a break in Bω
c .

The rotation number ρ of the maps in this family depends continuously on the parameter a. For every rational rotation
number p/q ∈ Q, there is a (mode-locking) interval [a(1)

p/q, a
(2)
p/q ] of parameter values corresponding to p/q . If p/q

has a sufficiently long continued fraction expansion, then the following properties hold. When the parameter value a is
equal to a

(1)
p/q , in the case c > 1, or a

(2)
p/q , in the case 0 < c < 1, the map Ta has a single periodic orbit of the type (p, q)

and the break point xbr belongs to the periodic orbit, i.e., a lift Ta : R → R of Ta satisfies T q
a (xbr ) = xbr + p. Let us

denote that unique value of the parameter a by ap/q . When the parameter value a equals the other end point (a(2)
p/q , in

the case c > 1; a
(1)
p/q , in the case 0 < c < 1), the map Ta has a single periodic orbit of the type (p, q), which is neutral.

Obviously, the break point xbr does not belong to it. For all other values of the parameter inside the mode-locking
interval, the map has two periodic orbits of type (p, q), one stable and one unstable [21].

Lemma 3.1. There exist two analytic circle maps T , T̃ ∈ Bω
c , with break points at xbr and x̃br , respectively, such

that the following is true for the corresponding families Ta = T + a and T̃ã = T̃ + ã, with parameters a, ã ∈ R. For
every p ∈ Z+ and q ∈ N relatively prime, such that 0 � p

q
< 1, if ap/q, ãp/q are values of parameters such that the

corresponding break point is a periodic point of type (p, q), then

q−1∏
i=0

(Tap/q )
′+(xap/q ,i ) 
=

q−1∏
i=0

(T̃ãp/q
)′+(x̃ãp/q ,i ). (3.1)

Here xa,i = T i
a (xbr ), x̃ã,i = T̃ i

ã
(x̃br ), and the subscript “+” stands for the right derivative.

Proof. Let us order all rational numbers in [0,1), starting with zero, and denote the corresponding sequence by
pn/qn, n ∈ N. We will first choose two analytic circle maps T and T̃ , with the same size of the break c, such that
the corresponding lifts T : R → R and T̃ : R → R have fixed points at the integer points (and only at these points)
and have breaks at these points. We will now fix the latter map and modify the former, if necessary, in a sequence of
steps, in order to produce a sequence of maps T (n) (with corresponding lifts T (n)), n ∈ N, satisfying the condition
(3.1) with p/q = pk/qk , for 1 � k � n. We will construct this sequence inductively. The map T (1) = T satisfies the
condition (3.1) for p1/q1 = 0/1, by our choice of T and T̃ . Assume that the map T (n) satisfies the condition (3.1)
with p/q = pk/qk , for 1 � k � n, i.e., that the claim is valid for all pk/qk with 1 � k � n, by taking T = T (n). We
will show that the claim is valid for all pk/qk , with 1 � k � n + 1, for some map T = T (n+1), that we will construct
now.

In the following, the parameter values apk/qk
associated to the map T = T (n), will be denoted by apk/qk

(n). To

simplify the notation, denote T (n)
apk/qk

(n)
= T (n)

k and the corresponding orbit (T (n)
k )i(0) = xi(n, k), 0 � i < qk . If the

condition (3.1) is satisfied for T = T (n) and p/q = pn+1/qn+1, then T (n+1) = T (n). Now, let Pn : [0,1] → R be
defined by
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Pn(x) = x(x − 1)(Ax + B)Qn(x), Qn(x) =
qn+1−1∏

i=1

(x − xi)
2, (3.2)

for x ∈ [0,1], where xi = {(T (n)
n+1)

i(0)}, A = c2δn/Q(1)−B and B = −δn/Q(0), for some δn > 0. Here, {x} = x −[x]
is the fractional part of a number x ∈ R. Since 0 < xi < 1 for 1 � i � qn+1 − 1, we have Q(0),Q(1) > 0, and A and
B are well-defined. The function Pn satisfies the conditions Pn(0) = Pn(1) = 0, (Pn)

′+(0) = δn, (Pn)
′−(1) = c2δn,

Pn(xi) = 0, and P ′
n(xi) = 0, for all 1 � i � qn+1 − 1. Notice, that if δn > 0 is chosen sufficiently small, then Pn and

all its derivatives are bounded uniformly by some constant C1 > 0, independent of n.
Let us now extend Pn periodically to obtain a function vn : R → R, defined by vn(x) = Pn(x), for x ∈ [0,1], and

vn(x +1) = vn(x), otherwise. If the condition (3.1) is not satisfied for T = T (n) and p/q = pn+1/qn+1, then T (n+1) =
T (n) +εnvn. For sufficiently small εn > 0, due to the continuity of the maps εn 	→ apk/qk

(n+1) and εn 	→ xi(n+1, k),
the conditions (3.1) corresponding to T = T (n+1) and p/q = pk/qk are satisfied for 1 � k � n. By construction, the
map T

(n+1)
n+1 has the same periodic orbit of type (pn+1, qn+1) as T

(n)
n+1, and the one-sided derivatives at the break point

have changed. Thus, the condition (3.1) corresponding to T = T (n+1) is now satisfied for p/q = pn+1/qn+1.
Let∣∣((T (k)

k

)qk
)′
+(xbr ) − (

(T̃ãpk/qk
)qk

)′
+(x̃br )

∣∣ = γk > 0, (3.3)

for all k ∈N. If εn > 0 is chosen sufficiently small, then∣∣((T (n+1)
k

)qk
)′
+(xbr ) − ((

T
(n)
k

)qk
)′
+(xbr )

∣∣ <
γk

2n+1
, (3.4)

for all integer n� k.
For a sufficiently fast decreasing sequence εn, the sequence of restrictions T (n)|[0,1] of functions T (n) to [0,1]

converges uniformly to T (∞)|[0,1], which can be analytically extended to a disc containing [0,1]. This limit defines
an analytic circle map T (∞) with a break. Due to estimate (3.4), we obtain

∣∣((T (∞)
k

)qk
)′
+(xbr ) − ((

T
(k)
k

)qk
)′
+(xbr )

∣∣ <

∞∑
n=k

γk

2n+1
= γk

2k
. (3.5)

Together with (3.3), this implies∣∣((T (∞)
k

)qk
)′
+(xbr ) − (

(T̃ãpk/qk
)qk

)′
+(x̃br )

∣∣ >
γk

2
, (3.6)

for all k ∈N. �
Remark 7. One would expect that (3.1) holds for any two generic circle maps with breaks. This is the only property
we use in the proof of Theorem 1.1.

3.2. Distribution of iterates of the renormalized maps

Let T ∈ Br
c , for r � 2, and let x0 ∈ T1. To prove Theorem 1.1 we will need an estimate of the distribution of iterates

of the renormalized maps. The following proposition is an immediate consequence of the Denjoy lemma [10]. It is
also valid in the diffeomorphism case.

Proposition 3.2. For any T ∈ Br
c , with r � 2, we have∣∣�(n)

qn−1

∣∣ = Θ
(∣∣�(n)

qn+1−qn

∣∣) = Θ
(∣∣�(n)

0

∣∣). (3.7)

Proof. The fact that |�(n)
qn−1 | = Θ(|�(n)

0 |) follows from the fact that the former interval is the image of the latter under

T qn−1 . We further have |�(n)
qn+1−qn

| = Θ(|�(n)
qn+1 |) since the former interval is the preimage of the latter under T qn . For

the same reason, |�(n+1)
0 | = Θ(|�(n+1)

qn
|). Taking into account that |�(n)

qn+1 | = |�(n+1)
0 | + |�(n)

0 | − |�(n+1)
qn

|, we have

|�(n)
qn+1 | = Θ(|�(n)|). Here, we have also used that �

(n+1)
qn

⊂ �
(n). The second equality now follows directly. �
0 0
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In the following propositions, fn is the n-th renormalization of T ∈ Br
c , defined by the marked point x0 = xbr .

Proposition 3.3. (fn)
′−(0)/(fn)

′+(−1) = c2
n + o(1), when kn+1 → ∞, where cn = c for n even and cn = c−1 for

n odd.

Proof. Since (fn)
′+(−1) = (T qn)′+(xqn−1) and (fn)

′−(0) = (T qn)′−(x0), in the limit kn+1 → ∞, x0 and xqn−1 belong
to the same periodic orbit of T , and we have

(fn)
′−(0)

(fn)
′+(−1)

= (T qn)′−(x0)

(T qn)′+(xqn−1)
→ (T qn)′−(x0)

(T qn)′+(x0)
= c2

n (3.8)

Since the orientation for n even is the same as the original one, we have c2
n = c2. In the case of odd n the orientation

changes, which implies c2
n = 1/c2. �

The next proposition concerns the number of iterates near (in the ε-neighborhoods of) the end points of the domain
of concave renormalizations fn (see Fig. 1a).

Proposition 3.4. Let 0 < ε < 1/2 and let n1 and n2 be the numbers of elements of the set {f j
n (−1): j = 1, . . . , kn+1}

that belong to the intervals I1 = [−1,−1 + ε] and I2 = [−ε,0], respectively. If b1 = (fn)
′+(−1) and b2 = (fn)

′−(0),
then, for sufficiently large even n, if 0 < c < 1, and odd n if c > 1, we have, for large kn+1,

n1 = σkn+1 +O(ln kn+1),

n2 = (1 − σ)kn+1 +O(ln kn+1),
(3.9)

where σ = lnb2

lnb−1
1 +lnb2

. Also, for any � > 0 and sufficiently large kn+1 (depending on �),

Θ
(
b

−(σ+�)kn+1
1

)
�

∣∣fn(−1) + 1
∣∣� Θ

(
b

−(σ−�)kn+1
1

)
. (3.10)

Proof. Let us consider two subintervals of [−1,0]: I1(kn+1) = [−1,−1 + 1/kn+1] and I2(kn+1) = [f kn+1
n (−1) −

1/kn+1, f
kn+1
n (−1)]. Let the number of points in {f j

n (−1): j = 1, . . . , kn+1}, that belong to these two intervals be
denoted by m1 and m2, respectively. Then, m1 + m2 = kn+1 + O(ln kn+1), since the number of points outside of
the union of these two intervals is at most of the order of lnkn+1. If b1 = (fn)

′+(−1), b2 = (fn)
′−(0), and M =

supz∈(−1,0) |f ′′
n (z)|, then, for large kn+1, we have

1

kn+1
Θ

(
b

−m1
1

)
�

∣∣fn(−1) + 1
∣∣� 1

kn+1
Θ

(
b

−m1
1

(
1 − M

b1kn+1

)−m1
)

,

1

kn+1
Θ

(
b

m2
2

)
�

∣∣f kn+1
n (−1) − f

kn+1−1
n (−1)

∣∣� 1

kn+1
Θ

(
b

m2
2

(
1 + 2M

b2kn+1

)m2
)

,

(3.11)

where the last inequality is obtained under the assumption |f kn+1
n (−1)| < 1/kn+1. Here, we have also used the fact

that for sufficiently large even n, if 0 < c < 1, and odd n, if c > 1, the renormalizations are concave. It follows
from Proposition 3.2 that |fn(−1) + 1| = Θ(|f kn+1

n (−1) − f
kn+1−1
n (−1)|). Since both m1,m2 < kn+1, this implies

that b
−m1
1 = Θ(b

m2
2 ). Therefore,

m1 = lnb2

lnb−1
1 + lnb2

kn+1 +O(ln kn+1),

m2 = lnb−1
1

lnb−1
1 + lnb2

kn+1 +O(ln kn+1).

(3.12)

The first inequality in (3.11) also shows that |f kn+1
n (−1)| < Θ(b

−m1
1 )/kn+1 < 1/kn+1, for sufficiently large kn+1. The

claim now follows from the fact that the number of points of {f j
n (−1): j = 1, . . . , kn+1}, in the intervals I1\I1(kn+1)

and I2\I2(kn+1) is at most of the order of ln kn+1.
The estimate (3.10) follows from the first inequalities in (3.11) and (3.12). �
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3.3. The proof of Theorem 1.1

We begin by considering the conjugacy that maps the break point of one of the maps into the break point of the
other. Let ω : [0,∞) → [0,∞) be a modulus of continuity.

Lemma 3.5. Let sm be any sequence of positive numbers diverging to infinity. Then, there exist a sequence of natural
numbers �m diverging to infinity, an N ∈ N, and two analytic circle maps Tρ and T̃ρ in Bω

c , with the same irrational
rotation number

ρ = [
1̄(N), �1,1, �2,1, �3 . . .

]
,

and with a break of size c 
= 1, located at xbr and x̃br , respectively, such that the following holds. For all m� 0, there
exists j ∈ N, 1 � j � �m+1, such that for n = N + 2m,

min

{ |�(n)
qn−1+jqn

|
ω(|�̃(n)

qn−1+jqn
|)

,
|�̃(n)

qn−1+jqn
|

ω(|�(n)
qn−1+jqn

|)

}
� sm. (3.13)

Here, 1̄(N) stands for an N digit string 1, . . . ,1. If 0 < c < 1, then N is even. If c > 1, then N is odd.

Proof. Let T and T̃ be two maps whose existence is guaranteed in Lemma 3.1. Consider the families of maps Ta

and T̃ã . It is well known [21] that one can choose N large enough such that for all m ∈ N ∪ {0}, the graphs of the
n-th renormalizations f

(m)
n and f̃

(m)
n (defined with marked points x0 and x̃0 being the corresponding break points xbr

and x̃br ), n = N + 2m, of the maps Tm and T̃m, in these families, with parameter values corresponding to rational
rotation numbers ρN,m = [1̄(N), �1,1, �2,1, . . . , �m,1], and the break point belonging to the periodic orbit, are con-
cave. It follows from Lemma 3.1 that |(f (m)

n )′+(−1) − (f̃
(m)
n )′+(−1)| = γ (n) > 0. Here, we have also used the fact

that (f
(m)
n )′+(−1) = (T

qn
m )′+(xbr ) and (f̃

(m)
n )′+(−1) = (T̃

qn
m )′+(x̃br ).

Now, let Tρ and T̃ρ be the corresponding maps in the families Ta and T̃ã , with an irrational rotation number ρ =
[1̄(N), �1,1, �2,1, . . . , �m,1, . . .]. For any given m, and sufficiently large �m+1, the n = N + 2m-th renormalizations
fn and f̃n of Tρ and T̃ρ are also concave and satisfy the estimate |b1 − b̃1| > γ (n)/2 > 0, where b1 = (fn)

′+(−1) and
b̃1 = (f̃n)

′+(−1). Note that the last estimate holds uniformly in the future �j , j > m + 1, provided that �m+1 is large
enough.

To be specific, assume, without loss of generality, that b1 − b̃1 > γ (n)/2 > 0. Let ε(n) > 0 be given and let the
corresponding numbers of points from Proposition 3.4 for fn and f̃n in the interval [−1,−1 + ε(n)] be denoted by n1
and ñ1, respectively.

From Proposition 3.4 and Proposition 3.3, we obtain

ñ1 − n1 =
(

ln b̃2

ln(c2
n + o(1))

− lnb2

ln(c2
n + o(1))

)
�m+1 +O(ln�m+1), (3.14)

and, therefore,

ñ1 − n1 = ln(b̃2/b2)

ln c2
n

�m+1 + o(�m+1) = ln(b̃1/b1)

ln c2
n

�m+1 + o(�m+1). (3.15)

We further obtain

ñ1 − n1 >
ln(1 + γ (n)

2b̃1
)

| ln c2| �m+1 + o(�m+1) >
γ (n)

4b̃1| ln c2|�m+1 + o(�m+1), (3.16)

for γ (n) < 2b̃1. This inequality gives us that, for sufficiently small ε(n) > 0, and sufficiently large �m+1, we have
n1 < ñ1, and that the difference ñ1 − n1 is of the order of �m+1.

Recall now that∣∣�(n)
∣∣ = ∣∣f j

n (−1) − f
j−1
n (−1)

∣∣∣∣�(n−1)
∣∣. (3.17)
qn−1+jqn 0
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For sufficiently small ε(n) > 0, there exists b > 1 such that f̃ ′
n(x) > b, for x ∈ (−1,−1 + ε(n)]. Therefore, using

the monotonicity of ω, we have

|�(n)
qn−1+n1qn

|
ω(|�̃(n)

qn−1+n1qn
|)
�

|f n1
n (−1) − f

n1−1
n (−1)||�(n−1)

0 |
ω(|f̃ ñ1

n (−1) − f̃
ñ1−1
n (−1)||�̃(n−1)

0 |b−(ñ1−n1))
. (3.18)

Now, by the definition of n1 and ñ1, and properties of geometric progressions, the lengths |f n1
n (−1) − f

n1−1
n (−1)|

and |f̃ ñ1
n (−1) − f̃

ñ1−1
n (−1)| are of the order of ε(n).

The estimates above, together with the fact that for fixed N,m and �i , i = 1, . . . ,m, |�(n−1)
0 | and |�̃(n−1)

0 | can be
bounded by positive constants uniformly in �m+1, imply that for every sm > 0 and for sufficiently large �m+1, we have

|�(n)
qn−1+n1qn

|
ω(|�̃(n)

qn−1+n1qn
|)
� sm. (3.19)

Here, we have also used that ω(|x|) → 0, as |x| → 0. Similarly, we can show that, for sufficiently large �m+1, we have

|�̃(n)

qn−1+(kn+1−ñ2)qn
|

ω(|�(n)

qn−1+(kn+1−ñ2)qn
|)
� sm, (3.20)

where ñ2 is the number of iterates for f̃n in the interval [−ε(n),0] (see Proposition 3.4).
The claim follows, since the sequence �m can be constructed inductively in m. �

Remark 8. Lemma 3.5 shows that for the constructed maps Tρ and T̃ρ in Bω
c , the conjugacy that maps the break point

of one of the maps into the break point of the other does not admit ω as the modulus of continuity. In particular, this
implies that for these two maps there is no conjugacy which is C1-smooth.

To prove Theorem 1.1, we also need to consider conjugacies that map the break point of one of the maps into
an arbitrary point of the circle. In the following, we will consider renormalizations and renormalization segments in
the situations when the marked point x0 ∈ T1 can be different from the break point of the considered map T . We
emphasize this by explicitly including x0 in the notation.

Proof of Theorem 1.1. As in the proof of Lemma 3.5, we start with two maps T and T̃ whose existence is guaranteed
by Lemma 3.1, and consider the corresponding families of maps Ta and T̃ã . One can choose N large enough such that
for all m ∈ N∪ {0}, the graphs of the n-th renormalizations f

(m)
n and f̃

(m)
n are concave (we use the notation from the

proof of Lemma 3.5). The same is true for renormalizations f
(m)

n,T i
m(xbr )

, 0 � i < qn, of the map Tm in the family Ta with

rational rotation number ρN,m, defined with the marked point T i
m(xbr ) on the orbit of the break point. Moreover, if N

is large enough, then for any point x0 ∈ T1 and all m ∈ N∪{0}, there exists a point z
(m)
n such that the graph of the n-th

renormalization f
(m)
n,x0 , of the map Tm, defined with the marked point x0, is concave in [−1, z

(m)
n ] and [z(m)

n ,0]. If x0 is

a point on the orbit of xbr under Tm, then z
(m)
n = −1; otherwise, z

(m)
n is a point in the interior of the interval [−1,0]. In

fact, z
(m)
n is just the renormalized point of the trajectory T i

m, 0 � i < qn, which belongs to the corresponding interval.

The concavity of f
(m)
n,x0 on the above adjacent intervals follows from the concavity of f

(m)

n,T i
m(xbr )

for 0 � i < qn. To

see this, notice the equality of the derivatives [f (m)

n,T i
m(xbr )

]′(z) = (T
qn
m )′(τ−1

n (z)), and that the lengths of all intervals

�
(n−1)
0 (T i

m(xbr )) are of the same order. Furthermore, the length of �
(n−1)
0 (x0), is of the same order as well: it can

neither be incomparably long, since it is contained in the union of the two consecutive intervals; nor it can be incom-
parably small since the derivatives of T

qn−1
m are bounded. This explains why the second derivative of f

(m)
n,x0 on the two

adjacent intervals is negative and uniformly bounded.
Since (f

(m)
n,x0)

′+(z
(m)
n ) = (T

qn
m )′+(xbr ) and (f̃

(m)
n )′+(−1) = (T̃

qn
m )′+(x̃br ), Lemma 3.1 implies, |(f (m)

n,x0)
′+(z

(m)
n ) −

(f̃
(m)
n )′+(−1)| = γ (n) > 0.
We choose now the maps Tρ and T̃ρ in the families Ta and T̃ã , with the irrational rotation number ρ =

[1̄(N), �1,1, �2,1, . . . , �m,1, . . .]. For any fixed m, and sufficiently large �m+1, the n = N + 2m-th renormalizations
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fn and f̃n of Tρ and T̃ρ are also concave. Moreover, for any x0 ∈ T1, there exists zn ∈ [−1,0) such that the graph of
the n-th renormalization fn,x0 of Tρ , defined with the marked point x0, is concave in the intervals [−1, zn] and [zn,0].
Here, zn is the unique point in (−1,0) where the derivative of fn,x0 has a break, if such a point exists; otherwise,
zn = −1.

We can now proceed with the proof of the claim. Our basic goal is to, for any point x0 ∈ T1, find two corresponding
intervals for T and T̃ , such that the ratio of their lengths is larger than any given constant, if �m+1 is chosen sufficiently
large. If the point z

(m)
n is not close to either of the end points −1 and 0 (case (iii) below), the first intervals �

(n)
qn−1(x0)

and �̃
(n)
qn−1 will do, since the length of the former is bounded from below by a positive constant uniformly in �m+1,

while the length of the latter approaches zero as �m+1 → ∞. The cases when the point z
(m)
n is very close to one of the

end points (cases (i) and (ii) below) are more subtle. We proceed with the detailed analysis of these three cases.
For a given m and n = N + 2m, we choose a small ε(n) > 0 and consider three cases: (i) −ε(n) < z

(m)
n � 0,

(ii) −1 � z
(m)
n < −1 + ε(n), and (iii) −1 + ε(n) � z

(m)
n � −ε(n).

In case (i), we first assume (f
(m)
n,x0)

′+(z
(m)
n ) − (f̃

(m)
n )′+(−1) = γ (n). Therefore, we have (f

(m)
n,x0)

′+(−1) −
(f̃

(m)
n )′+(−1) > 3γ (n)/4, if ε(n) is small enough. Furthermore, if �m+1 is sufficiently large, we have the estimate

b1 − b̃1 > γ (n)/2, where b1 = (fn,x0)
′+(−1) and b̃1 = (f̃n)

′+(−1), uniformly in �j , for j > m + 1. Moreover, if
ε(n) is sufficiently small, then there exists b > 1 such that f̃ ′

n(x) > b for x ∈ [−1,−1 + ε(n)]. This estimate is
also uniform in �j for j > m + 1, if �m+1 has been chosen sufficiently large. The number of points n1 and ñ1 of

{f j
n,x0(−1): j = 1, . . . , �m+1} and {(f̃n)

j (−1): j = 1, . . . , �m+1} in the interval [−1,−1 + ε(n)] can now be esti-
mated using Propositions 3.2–3.4. Notice that ñ1 is the same as in the proof of Lemma 3.5, while n1 is now smaller or
equal to that of the proof of Lemma 3.5, which will be here denoted by n0

1. Since we still have the same lower bound
on ñ1 − n1, we can apply the same arguments as in Lemma 3.5, to show that for any given sm > 0 and sufficiently
large �m+1,

|�(n)
qn−1+n1qn

(x0)|
|�̃(n)

qn−1+n1qn
|

� sm, (3.21)

uniformly in �j , with j > m + 1.

Consider now the case (f̃
(m)
n )′+(−1) − (f

(m)
n,x0)

′+(z
(m)
n ) = γ (n). If n1 � ñ1, then, for any sm > 0 and for sufficiently

small ε(n), there exists b̃ ∈ (b̃1 − γ (n)/4, b̃1), such that

|�(n)
qn−1(x0)|
|�̃(n)

qn−1 |
�

b
−n1
1 |f n1

n,x0(−1) − f
n1−1
n,x0 (−1)||�(n−1)

0 (x0)|
b̃−ñ1 |f ñ1

n,x0(−1) − f
ñ1−1
n,x0 (−1)||�̃(n−1)

0 |
� sm, (3.22)

for sufficiently large �m+1. Here, we have also used the fact that all of the quantities involved, other than n1 and ñ1,
are bounded uniformly in �m+1. If, on the other hand, n1 > ñ1, then

|�(n)
qn−1(x0)|
|�̃(n)

qn−1 |
�

|�(n)

qn−1+ñ1qn
(x0)|b−ñ1

1

|�̃(n)

qn−1+ñ1qn
|b̃−ñ1

, (3.23)

and, therefore, if

|�̃(n)

qn−1+ñ1qn
|

|�(n)

qn−1+ñ1qn
(x0)|

< sm, (3.24)

then the right hand side of (3.23) is greater than or equal to sm, provided that �m+1 is chosen sufficiently large.
Similar arguments can be applied to case (ii). The only difference is that now one has to iterate backwards fn,x0

and f̃n starting from [f −1
n,x0

(0),0] and [f̃ −1
n (0),0].

Finally, in case (iii), we notice that there exists δ(n) > 0 such that |f (m)
n,x0(−1)− (−1)| > δ(n). Furthermore, if �m+1

is sufficiently large, then |fn,x0(−1) − (−1)| > δ(n)/2, uniformly in �j , for j > m + 1. Since, by Proposition 3.4,∣∣�̃(n)
q

∣∣�Θ
(
b̃

−(σ−�)�m+1
)∣∣�̃(n−1)

∣∣, (3.25)

n−1 1 0
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we immediately obtain for any sm > 0, and �m+1 sufficiently large,

|�(n)
qn−1(x0)|
|�̃(n)

qn−1 |
�

|fn,x0(−1) + 1||�(n−1)
0 (x0)|

Θ(b̃
−(σ−�)�n+1
1 |�̃(n−1)

0 |)
�

δ(n)minx0∈T1 |�(n−1)
0 (x0)|

2Θ(b̃
−(σ−�)�n+1
1 |�̃(n−1)

0 |)
� sm. (3.26)

Now, we can choose �m+1 large enough such that all of the above conditions are satisfied. This inductive procedure
for �m+1 provides the construction of the rotation number ρ. It is easy to see that for the two constructed maps Tρ

and T̃ρ , no topological conjugacy between them is Lipshitz continuous. �
3.4. A non-rigidity result for smooth diffeomorphisms

In this section, we construct examples of smooth (i.e., analytic) circle diffeomorphisms with irrational rotation
numbers for which the conjugacy to the rigid rotation can be as “bad” as possible. Theorem 3.6 below is well-
understood by the experts. We give a simple proof here for completeness of the presentation. Another reason for its
inclusion is that we were not able to find any reference for such a result. We focus on the modulus of continuity of the
conjugacy and do not discuss the singularity of the invariant measure.

Consider a circle diffeomorphism T , and the corresponding family Ta = T + a. As before, denote by [a(1)
p/q, a

(2)
p/q ]

the mode-locking interval associated to an arbitrary rational rotation number 0 � p/q < 1. Let us call a diffeomor-
phism T non-degenerate if for all p/q , the maps T

q

a
(1)
p/q

and T
q

a
(2)
p/q

are not the identity maps. In other words, we require

that not all points of the circle are periodic points for T
a

(i)
p/q

, i = 1,2.

Theorem 3.6. Let T be a non-degenerate circle diffeomorphism. Then, for any modulus of continuity ω, there exists
an irrational rotation number ρ such that the map Taρ has no conjugacy with the rigid rotation Rρ : x 	→ x +ρ which
admits ω as the modulus of continuity.

Proof. Let sn, n ∈ N, be any positive sequence diverging to infinity. As in the previous section, we construct the
sequence of partial quotients kn inductively in n ∈ N. For a given n, consider the rational rotation number pn/qn =
[k1, . . . , kn] and the corresponding map Tn = T

a
(i)
pn/qn

, where i = 1 if n is odd and i = 2 if n is even. Let xn ∈ T1 be any

point on the circle which does not belong to a periodic orbit of Tn. Then, there exists δ(n) > 0, such that the length
of the interval [xn,T

qn
n xn] is bounded below by δ(n). Therefore, if kn+1 is chosen large enough, then the interval

�n = [xn,T
qn
ρ xn] satisfies bound |�n| � δ(n)/2 > 0, uniformly in kj for j > n + 1. Here, Tρ = Taρ , and ρ is an

irrational number whose first n partial quotients agree with those of pn/qn. If ϕ : T1 → T1 is any conjugacy between
the rigid rotation Rρ and Tρ , then the length of the corresponding interval �̃n = ϕ−1(�n), |�̃n| = |qnρ − pn| → 0 as
kn+1 → ∞.

Therefore, if kn+1 is chosen large enough, then

|�n|
ω(|�̃n|) �

δ(n)

2ω(|qnρ − pn|) � sn, (3.27)

uniformly in kj for j > n + 1. The claim follows. �
4. Examples of C1- but not C1+α-rigidity

The proof of Theorem 1.2 can be obtained by extending the parabolic renormalization scheme of Avila from the
case of critical circle maps considered in [15] to the case of circle maps with breaks. Since the proofs are almost the
same, we will just describe the method and direct the reader for further details to [15].

We will consider the set A of irrational rotation numbers ρ ∈ (0,1), with bounded odd-numbered entries k2n−1 in
the continued fraction expansion of ρ, in the case 0 < c < 1, or bounded even-numbered entries k2n, in the case c > 1.
As mentioned in the introduction, these are the rotation numbers for which the distances to the diagonal at the end
points of the concave renormalization graphs (see Fig. 1a), i.e., fn(−1) + 1 and fn(0), are bounded from below by a
positive constant independent of n. It follows from the analysis conducted in [16], that C1-rigidity holds in this case.
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However, as we show below, within set A, C1-rigidity cannot, in general, be extended to C1+α-class of conjugacies,
for some α > 0.

For simplicity, we will consider only the case c > 1 and define the parabolic renormalizations only for maps with
fixed points. We start with all maps f : R → R, satisfying f (x + 1) = f (x) + 1, which are Cr -smooth outside the
integer points at which the derivative has breaks of size c > 1, and with the unique fixed point p ∈ (−1,0), such that
f ′(p) = 1, and f ′′(p) > 0. For x ∈ (p,p + 1), we have f n(x) → p + 1 and f −n(x) → p, when n → ∞. We then
consider the family of translated maps fε = f + ε, ε � 0. The graphs of the restrictions of these maps to the interval
[−1,0] resemble the one in Fig. 1b. To define the parabolic renormalization, let us first define the maps Φf,n,ε,+ and
Φf,n,ε,− from (p,p + 1) into R, by

Φf,n,ε,+(x) = f ′′(p)n2

2

(
f n

ε (x) − f n
ε (0)

)
,

Φf,n,ε,−(x) = f ′′(p)n2

2

(
f −n

ε (x) − f −n
ε (0)

)
.

(4.1)

As n → ∞, the sequences Φf,n,0,+ and Φf,n,0,− converge C1-uniformly on compact sets to C1-smooth homeo-
morphisms Φf,+ : (p,p + 1) → R and Φf,− : (p,p + 1) → R, with break points in {f −j (0): j = 0,1,2, . . .} and
{f j (0): j = 1,2, . . .}, respectively. The sizes of the breaks of the derivatives of Φf,+ and Φf,− at each of these points
are c and c−1, respectively. The homeomorphisms satisfy Φf,+(f (x))−Φf,+(x) = 1 and Φf,−(f (x))−Φf,−(x) = 1.

We define the mapping R0(f ) = Φf,+ ◦Φ−1
f,− : R→R, called the parabolic renormalization of f . R0(f ) is a lift of

a C1-smooth circle homeomorphism with a fixed point at 0 and breaks of size c at points in Z. The latter observation
follows from(

R0(f )
)′
(x) = Φ ′

f,+
(
Φ−1

f,−(x)
)(

Φ−1
f,−

)′
(x) = Φ ′

f,+(Φ−1
f,−(x))

Φ ′
f,−(Φ−1

f,−(x))
. (4.2)

Let us endow the space of entire functions f : R → R, satisfying f (x + 1) = f (x) + 1, with a complete metric d ,
compatible with natural topology. We use the same notation d(f,g), for f,g ∈ Aω

c , to denote the distance between
the entire holomorphic functions obtained by extending the restrictions of f and g to [0,1] (we consider only those
functions in Aω

c for which this extension is possible). Let Aω
c (p/q) be the set of such f ∈ Aω

c with a rational rotation
number p/q ∈Q and a parabolic periodic orbit {f i(x)}qi=1 satisfying (f q)′(x) = 1 and (f q)′′(x) > 0.

Let H be the set of all C1-smooth diffeomorphisms h : R→ R, with h(x + 1) = h(x), h(0) = 0, endowed with the
natural topology. Let K be a compact subset of H.

Lemma 4.1. Let f0, g0 ∈ Aω
c (p/q). There exist sequences of maps fn, gn ∈ Aω

c , such that fn → f0 and gn → g0 as
n → ∞, and for each n, fn and gn have the same irrational rotation number in A and there is no h ∈ K such that
h ◦ fn = gn ◦ h.

The proof of this lemma is similar to the proof of Theorem 2.1 of [15]. It is based on the fact that arbitrarily close
to a map f ∈ Aω

c , with a rational rotation number and a parabolic periodic orbit, one can find a map g ∈ Aω
c , whose

parabolic renormalization differs from that of f .
Recall now that the set of all h ∈ H which are C1+α-smooth for some α > 0 can be written as the union of a nested

sequence of compact sets Kn ⊂Kn+1.

Lemma 4.2. Let f,g ∈ Aω
c , with a rotation number ρ(f ) = ρ(g) ∈ A. For every ε > 0 and k > 0, there exist f̂ , ĝ and

δ > 0, such that ρ(f̂ ) = ρ(ĝ) ∈ A, d(f, f̂ ), d(g, ĝ) < ε, and if d(f̃ , f̂ ), d(g̃, ĝ) < δ then k!ρ(f̃ ) /∈ Z and there is no
h ∈ Kk such that h ◦ f̃ = g̃ ◦ h.

The proof follows easily from Lemma 4.1 and is similar to the proof of Lemma 3.1 in [15]. One first chooses two
maps in Aω

c with the same rational rotation number and a parabolic periodic orbit, ε/2-close to f and g, respectively;
then, one chooses f̂ = fn and ĝ = gn from Lemma 4.1 (after setting K = Kk), for some large n. This implies that
d(f, f̂ ), d(g, ĝ) < ε and for any two maps f̃ , g̃ ∈ Aω

c , δ-close to f̂ and ĝ, respectively, there is no h ∈ Kk which
conjugates f̃ and g̃ (otherwise, it would contradict Lemma 4.1).
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Proof of Theorem 1.2. The proof of Theorem 1.2 follows from the proof of the main theorem of [15]. We first use
Lemma 4.2 to construct inductively a convergent sequence of pairs of maps fn, gn ∈ Aω

c with the same irrational
rotation numbers in A, such that there is no h ∈ Kn such that h ◦ fn = gn ◦ h. The desired maps are constructed as
the limits of these sequences, i.e., f = limn→∞ fn and g = limn→∞ gn. Clearly, they have the same irrational rotation
number in A and the conjugating homeomorphism hf,g /∈ Kn, for n ∈ N∪ {0}, and is therefore not C1+α-smooth, for
any α > 0. �
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