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Abstract

We study the asymptotic behavior of the principal eigenvalue of a weakly coupled, cooperative linear elliptic system in a sta-
tionary ergodic heterogeneous medium. The system arises as the so-called multigroup diffusion model for neutron flux in nuclear
reactor cores, the principal eigenvalue determining the criticality of the reactor in a stationary state. Such systems have been well
studied in recent years in the periodic setting, and the purpose of this work is to obtain results in random media. Our approach
connects the linear eigenvalue problem to a system of quasilinear viscous Hamilton–Jacobi equations. By homogenizing the latter,
we characterize the asymptotic behavior of the eigenvalue of the linear problem and exhibit some concentration behavior of the
eigenfunctions.

MSC: 82D75; 35B27
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1. Introduction

We study the behavior, as ε → 0, of the principal eigenvalue and eigenfunction of the weakly coupled, cooperative
elliptic system
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subject to the conditions
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α > 0 in U and ϕε

α = 0 on ∂U (α = 1, . . . ,m). (1.2)
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Here m � 1 is a positive integer and U ⊆ Rd is a bounded domain. The unknowns are the eigenvalue λε = λε(ω,U)

and the eigenfunctions (ϕε
α(·,ω))1�α�m. The underlying random environment is described by a probability space

(Ω,F,P), and the coefficients Aα , bα , cαβ and σαβ are functions on Rd × Ω which are required to be stationary and
ergodic. (Precise hypotheses are found in Section 2 below.)

The expectation is that large amplitude, high-frequency oscillations persist as ε → 0, and the goal is to describe
these oscillations.

Problem (1.1) has been proposed and extensively studied in periodic media by physicists as a simplified model for
the neutron flux in nuclear reactor cores, see [18,26–28,37]. The modeling assumption is that neutrons are moving in
the reactor core (the domain U ) in m distinct energy groups, each group consisting of neutrons with a similar amount
of kinetic energy. The function ϕε

α is the steady-state distribution of neutrons in the αth energy group inside the core.
The matrix Aα describes the diffusion of the neutrons in the αth group, the vector bα is the drift, cαβ is the total
cross section, which represents the interaction of neutrons in various energy groups, and σαβ models the creation of
neutrons by nuclear fission. The factors ε2 and ε appear in front of the diffusion and drift terms, respectively, due to
a physical assumption that the order of the diffusion and drift should be the same as that of the microscopic lattice.
The principal eigenvalue λε , in particular whether λε is greater or less than 1, determines the criticality of the reactor.
Hence characterizing the asymptotic behavior of λε is of particular importance. We remark that while the model is
typically written in divergence form, if the matrices Aα are sufficiently regular, it can be recast in the form of (1.1).

A very complete mathematical analysis of (1.1)–(1.2) in the case of periodic coefficients was performed by Capde-
boscq [16] (see also [34,15,4,6,2,3,7,33,9]). It was shown in [16] that the eigenvalue λε admits the expansion

λε = λ + ε2μ + o
(
ε2) as ε → 0, (1.3)

and the eigenfunctions can be factored as

ϕε
α = ψα

(
x

ε

)
exp

(
−θ · x

ε

)(
u(x) + o(1)

)
as ε → 0. (1.4)

Here λ ∈ R, θ ∈ Rd , and the periodic function ψα = ψα(y) are identified via an optimization of a periodic (cell)
eigenvalue problem, while (μ,u) is the solution of an effective “recentered” principal eigenvalue problem in the
macroscopic domain U . Observe that the oscillations of the coefficients on the microscopic scale ε not only induce
oscillations in the solution on a scale of ε, but also produce a large macroscopic effect, namely an exponential drift.

The random setting is different. As we will see later, we cannot expect (1.3) and (1.4) to hold in full. Moreover, the
approach of [16] does not seem to yield itself to the analysis of (1.1) in random environments. Instead, we present an
alternative approach. The classical Hopf–Cole transformation converts (1.1) into a quasilinear (viscous) Hamilton–
Jacobi system, and we observe that this nonlinear system may be analyzed by the methods recently introduced by
Lions and Souganidis [31] and developed further by the authors [12]. Our main result is the assertion that there exists
a deterministic constant λ such that, as ε → 0, λε → λ almost surely in ω, together with a characterization of λ. In
fact, λ is identified in terms of a convex effective Hamiltonian H . Furthermore, we exhibit concentration behavior
for the eigenfunctions ϕε

α , showing that, under some additional hypotheses on the random environment, we have, as
ε → 0,

−ε logϕε
α → θ · x locally uniformly in U and a.s. in ω,

where θ := arg minRd H . We thereby justify, in random environments, the leading term in (1.3) and, under stronger
assumptions, in (1.4).

We also mention that the locally periodic case, in which the coefficients depend on both the macroscopic and
microscopic variables and are periodic in the latter, has been studied in several papers [5,8,10,35].

The article is organized as follows. In Section 2 we state the assumptions and some preliminary results needed in
the sequel. The main results are presented in Section 3. In Section 4 we prepare the homogenization of the transformed
nonlinear system by studying an auxiliary “cell” problem. In Section 5, we define H and do most of the work for the
proof of Theorem 1, which is given in Section 6. This analysis is applied to the linear system in Section 7, where we
prove Theorem 2. In Section 8, we show that H is strictly convex in p (and therefore the eigenfunctions concentrate)
in uniquely ergodic environments.
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2. Preliminaries

2.1. Notation

The symbols C and c denote positive constants, which may vary from line to line and, unless otherwise indicated,
do not depend on ω. We work in the d-dimensional Euclidean space Rd with d � 1, and we write R+ := (0,∞). The
set of rational numbers is denoted by Q. The set of n-by-d matrices is denoted by Mn×d , and Sd ⊆ Md×d is the set
of d-by-d symmetric matrices. If v,w ∈ Rd , then v ⊗ w ∈ Sd is the symmetric tensor product which is the matrix
with entries 1

2 (viwj + vjwi). For y ∈ Rd , we denote the Euclidean norm of y by |y|, while if M ∈ Mn×d , Mt is the
transpose of M . If M ∈ Md×d , then tr(M) is the trace of M , and we write |M| := tr(MtM)1/2. The identity matrix
is Id . If U ⊆Rd , then |U | is the Lebesgue measure of U . Open balls are written B(y, r) := {x ∈ Rd : |x −y| < r}, and
we set Br := B(0, r). The distance between two subsets U,V ⊆ Rd is denoted by dist(U,V ) = inf{|x − y|: x ∈ U,

y ∈ V }. If U ⊆ Rd is open, then USC(U), LSC(U) and BUC(U) are respectively the sets of upper semicontinuous,
lower semicontinuous and bounded and uniformly continuous functions U → R. If f : U → R is integrable, then we
use the notation

−
∫
U

f dy = 1

|U |
∫
U

f dy.

If f :U → R is measurable, then we set oscU f := ess supU f − ess infU f . The Borel σ -field on Rd is denoted by
B(Rd). If s, t ∈R, we write s ∧ t := min{s, t}.

We emphasize that, throughout the paper, all differential inequalities involving functions not known to be smooth
are assumed to be satisfied in the viscosity sense. Finally, we abbreviate the phrase almost surely in ω by “a.s. in ω.”

2.2. The random medium

The random environment is described by a probability space (Ω,F,P), and a particular “medium” is an element
ω ∈ Ω . We endow the probability space with an ergodic group (τy)y∈Rd of F -measurable, measure-preserving trans-
formations τy :Ω → Ω . Here ergodic means that, if D ⊆ Ω is such that τz(D) = D for every z ∈ Rd , then either
P[D] = 0 or P[D] = 1. An F -measurable function f on Rd × Ω is said to be stationary if the law of f (y, ·) is
independent of y. This is quantified in terms of τ by the requirement that

f (y, τzω) = f (y + z,ω) for every y, z ∈ Rd .

Notice that if φ :Ω → S is a random process, then φ̃(y,ω) := φ(τyω) is stationary. Conversely, if f is a stationary
function on Rd × Ω , then f (y,ω) = f (0, τyω).

The expectation of a random variable f with respect to P is written Ef , and we denote the variance of f by
Var(f ) := E(f 2) − (Ef )2. If E ∈ F , then 1E is the indicator random variable for E; i.e., 1E(ω) = 1 if ω ∈ E, and
1E(ω) = 0 otherwise.

We rely on the following multiparameter ergodic theorem, a proof of which can be found in Becker [13].

Proposition 2.1. Suppose that f :Rd × Ω → R is stationary and E|f (0, ·)| < ∞. Then there is a subset Ω̃ ⊆ Ω of
full probability such that, for each bounded domain V ⊆Rd and ω ∈ Ω̃ ,

lim
t→∞ −

∫
tV

f (y,ω)dy = Ef. (2.1)

2.3. Assumptions

The following hypotheses are in force throughout this article. The coefficients

Aα :Rd × Ω → Sd, bα :Rd × Ω →Rd and cαβ, σαβ :Rd × Ω → R

are measurable and we require that

Aα,bα, cαβ, and σαβ are stationary for each 1 � α,β �m. (2.2)
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We assume that, for each ω ∈ Ω and 1 � α � m,

Aα(·,ω) ∈ C
1,1
loc

(
Rd;Sd

)
(2.3)

and that Aα has the form A = ΣαΣt
α , where, for some C > 0,

Σα(y,ω) ∈ Md×m satisfies
∥∥Σα(·,ω)

∥∥
C0,1(Rd )

� C. (2.4)

We assume that there exists C > 0 such that, for all ω ∈ Ω and 1 � α,β � m,∥∥Aα(·,ω)
∥∥

C0,1(Rd )
+ ∥∥bα(·,ω)

∥∥
C0,1(Rd )

+ ∥∥σαβ(·,ω)
∥∥

C0,1(Rd )
+ ∥∥cαβ(·,ω)

∥∥
C0,1(Rd )

� C. (2.5)

The matrices Aα are uniformly positive definite in the sense that there exist positive constants 0 < λ � Λ such that,
for every y, ξ ∈ Rd , ω ∈ Ω and index α,

λ|ξ |2 � Aα(y,ω)ξ · ξ � Λ|ξ |2. (2.6)

The matrix cαβ is diagonally dominant, i.e.,

cαβ � 0 for α 	= β, and
m∑

β=1

cαβ � 0, (2.7)

as well as fully coupled in the sense that there exists c > 0 such that{
if {I,J } is a nontrivial partition of {1, . . . ,m}, then for every y ∈ Rd and ω ∈ Ω,

there exist α ∈ I and β ∈ J such that cαβ(y,ω) �−c.
(2.8)

The hypothesis (2.8) is satisfied, for example, if cα,α+1 � −c < 0 for each α ∈ {1, . . . ,m − 1}. Finally, we suppose
that, for every y ∈Rd , ω ∈ Ω , and α,β = 1, . . . ,m,

σαβ � 0 and
k∑

γ=1

σαγ � c > 0. (2.9)

We emphasize that (2.2)–(2.9) are assumed to hold throughout this article.

2.4. Further notation

It is convenient to write the system (1.1) in a more compact form. For each α ∈ {1, . . . ,m}, let Lα denote the linear
elliptic operator which acts on a test function ϕ by

Lαϕ := − tr
(
Aα(y,ω)D2ϕ

) + bα(y,ω) · Dϕ,

and L = (L1, . . . ,Lm) acts on Φ = (ϕ1, . . . , ϕm) by

LΦ := (L1ϕ1, . . . ,Lmϕm).

The operator corresponding to the microscopic scale of order ε is denoted by(
LεΦ

)
(x) := (LΨ )

(
x

ε

)
, (2.10)

where Ψ (x) := Φ(εx). Hence we may write Lε = (Lε
1, . . . ,Lε

m) where

Lε
αϕ = −ε2 tr

(
Aα

(
x

ε
,ω

)
D2ϕ

)
+ εbα

(
x

ε
,ω

)
· Dϕ.

In view of the above, the eigenvalue problem (1.1) is written concisely as{
LεΦ

ε + QεΦε = λεΣ
εΦε in U,

Φε = 0 on ∂U,
(2.11)

where Qε = Qε(x,ω) denotes the matrix with entries cαβ( x
ε
,ω) and Σε the matrix with entries σαβ(x

ε
,ω). For future

reference, we also write Q = Q1 and Σ = Σ1.
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2.5. Preliminary facts concerning principle eigenvalues

The full coupling assumption (2.8) endows the linear operators L and Lε with certain positivity properties related to
the maximum principle (cf. Sweers [36]). The Krein–Rutman theorem may therefore be invoked to yield the existence
of a principal eigenvalue of λε > 0 of (2.11), which is simple (has a one-dimensional eigenspace) and corresponds
to an eigenfunction Φε with entries ϕε

α which can be chosen to be positive in U . We summarize these facts in the
following proposition, a proof of which can be found for example in [32].

Proposition 2.2. Under assumptions (2.3), (2.5)–(2.9), the system{
LΦ + QΦ = λ1ΣΦ in U,

Φ = 0 on ∂U,
(2.12)

has a unique eigenvalue λ1 = λ1(U,ω) > 0 corresponding to an eigenfunction Φ = Φ(x,ω) with positive entries.
The eigenvalue λ1 is simple, i.e., the eigenfunction Φ is unique up to multiplication by a nonzero constant.

It is well known (see [32]) that the principal eigenvalue λ1 is characterized by the variational formula

λ1(U,ω) = sup
{
λ ∈ R: there exists Ψ ∈ C2(U)k with positive entries

such that LΨ + QΨ � λΣΨ in U
}
, (2.13)

where the differential inequality is meant to hold entry-by-entry in the classical sense. It then follows that the eigen-
value λ1 is monotone with respect to the domain, i.e., for each ω ∈ Ω ,

λ1(U,ω) � λ1(V ,ω) provided that V ⊆ U. (2.14)

Recalling the scaling relation (2.10) between L and Lε , we see that the existence and properties of the principal
eigenvalue λε for the problem (2.11) follow from Proposition 2.2 and, in fact,

ε2λε(U,ω) = λ1
(
ε−1U,ω

)
. (2.15)

Notice from (2.14) and (2.15) that, if V is any domain which is star-shaped with respect to the origin (a property
which implies that sV ⊆ tV if 0 < s � t ), then

the map ε 
→ λε(V,ω) := ε2λε(V,ω) is increasing. (2.16)

This monotonicity property, combined with the ergodic theorem, implies (see Proposition 7.1 below) that λε con-
verges, almost surely, to a deterministic constant λ0 which is independent of the domain U .

3. Main results

In this section we formulate our main results, Theorems 1–3 below. To properly motivate them, we recall what
is known in the periodic setting. To obtain the asymptotics (1.3) and (1.4), Capdeboscq [15,16] introduced the θ -
exponential periodic cell problem⎧⎪⎪⎨

⎪⎪⎩
− tr

(
Aα(y)D2ψθ

α

) + bα(y) · Dψθ
α +

m∑
β=1

cαβ(y)ψθ
β = λ(θ)

m∑
β=1

σαβ(y)ψθ
β in Rd,

ψθ
α > 0 in Rd, y 
→ exp(θ · y)ψθ

α(y) is periodic,

(3.1)

for a parameter θ ∈ Rd . He proved that, as a function of θ , the map θ 
→ λ(θ) is strictly concave and λ(θ) → −∞ as
|θ | → ∞. This implies that λ attains its maximum λ at a unique θ ∈Rd . Writing

uε
α(x) := ϕε

α(x)

ψθ
α( x

ε
)

and με := λε − λ

ε2
, (3.2)

it was then observed that (1.1) can be rewritten in the form

−div

(
Aα

(
x

)
Duε

α

)
+ 1

2
Qε

(
uε

1, . . . , u
ε
m

) = μεσαβ

(
x

)
uε

β in U, α = 1, . . . ,m,

ε ε ε
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where the coefficients Aα and σαβ are periodic and depend on the solution of the θ -exponential cell problem (and that
of its adjoint). The term Qε is called the collision kernel and it penalizes largest difference among the components
of uε , which forces them to have the same limit. The homogenization of the latter system is classical and leads to the
expansion (1.3) and factorization (1.4) above.

In the general stationary ergodic setting, we cannot expect a factorization of the form (3.2) to hold in any suitable
sense. This is related to the fact that, in random environments, correctors do not in general exist (see Lions and
Souganidis [29]), and so there is no suitable analogue of the functions ψθ

α . This is not merely a technical problem, and
goes to the heart of difficult issues in the random setting typically referred to as “a lack of compactness.”

Our analysis in the random case follows a different approach. We begin by introducing the classical Hopf–Cole
change of variables

ψε
α(x,ω) := −ε logϕε

α(x,ω), (3.3)

which transforms (1.1) into the nonlinear system

−ε tr

(
Aα

(
x

ε
,ω

)
D2ψε

α

)
+ Aα

(
x

ε
,ω

)
Dψε

α · Dψε
α + bα

(
x

ε
,ω

)
· Dψε

α

−
m∑

β=1

(
cαβ

(
x

ε
,ω

)
− λε(ω)σαβ

(
x

ε
,ω

))
exp

(
ε−1(ψε

α − ψε
β

))
= 0 in U. (3.4)

The study of the behavior of (3.4) as ε → 0 falls within the general framework of random homogenization of viscous
Hamilton–Jacobi equations. The latter has been studied in the scalar case by Lions and Souganidis [30,31], Kosygina,
Rezakhanlou and Varadhan [23], and recently by the authors [12]. By adapting the methods of [31] and [12], we prove
a homogenization result for (3.4). This allows us to understand some aspects of the behavior as ε → 0 of (1.1) and to
prove the main result on the asymptotics for λε and ϕα

ε , which is Theorem 2 below.
To explain how the effective Hamiltonian arises, we temporarily “forget” that the eigenvalue λε(ω) is an unknown

in (3.4). This will be accounted for later with the help of Proposition 7.1, below. Therefore we consider the system

−ε tr

(
Aα

(
x

ε
,ω

)
D2uε

α

)
+ Hα

(
Duε

α,
x

ε
,ω

)
+ fα

(
uε

1

ε
, . . . ,

uε
m

ε
,με,

x

ε
,ω

)
= g in U, (3.5)

where με = με(ω) � 0 is a (possibly random) parameter, g ∈ C(U) is given, and we define⎧⎪⎨
⎪⎩

Hα(p,y,ω) := Aα(y,ω)p · p + bα(y,ω) · p,

fα(z1, . . . , zm,μ,y,ω) :=
m∑

β=1

(
μσαβ(y,ω) − cαβ(y,ω)

)
exp(zα − zβ).

(3.6)

In writing (3.5) we have essentially put (3.4) into a more convenient form, replaced λε with με , and introduced a
function g on the right side.

Observe that Hα = Hα(p,y,ω) is convex as well as coercive (it grows quadratically) in p, while for all ξ ∈ R,

fα(z1, . . . , zm,μ,y,ω) = fα(z1 + ξ, . . . , zm + ξ,μ,y,ω). (3.7)

In addition, there exists C > 0 depending only on the constant in (2.5) such that, for each α = 1, . . . ,m,
z1, . . . , zm ∈ R, y ∈ Rd , ω ∈ Ω and for all μ1,μ2 � 0 and p1,p2 ∈Rd ,∣∣fα(z1, . . . , zm,μ1, y,ω) − fα(z1, . . . , zm,μ2, y,ω)

∣∣� C
(

max
β∈{1,...,m}

exp(zα − zβ)
)
|μ1 − μ2| (3.8)

and ∣∣Hα(p1, y,ω) − Hα(p2, y,ω)
∣∣� C

(
1 + |p1| + |p2|

)|p1 − p2|. (3.9)

Our first result is a homogenization assertion for the system (3.5). We stress that each of the assumptions stated in
Section 2 is in force in Theorems 1, 2 and 3.
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Theorem 1. Let U ⊆ Rd be any domain, με = με(ω) a bounded nonnegative random variable, and assume that for
each ε > 0, ω ∈ Ω and α = 1, . . . ,m, uε

α = uε
α(·,ω) is a solution of (3.5). Assume also that there exist u ∈ C(U) and

μ� 0 such that, for every α = 1, . . . ,m, as ε → 0 and a.s. in ω, με → μ and uε
α → u locally uniformly in U . Then u

is a solution of the scalar equation

H(Du,μ) = g in U, (3.10)

with the effective Hamiltonian H :Rd ×R+ → R characterized in Proposition 5.1 below.

We will see in Proposition 5.2 that p 
→ H(p,μ) is convex and coercive for each μ � 0, while μ 
→ H(p,μ) is
strictly increasing and H(0,0) � 0. Therefore, we may define λ to be the largest value of μ for which the graph of
p 
→ H(·,μ) touches zero, i.e.,

λ := sup
{
μ� 0: min

p∈Rd
H(p,μ)� 0

}
. (3.11)

Since H is continuous,

0 = min
p∈Rd

H(p,λ). (3.12)

We know that, in the random environment, H may have a “flat spot” at its minimum. That is, the set

Θ := arg minH(·, λ) = {
p ∈Rd : H(p,λ) = 0

}
(3.13)

may have a nonempty interior. However, in certain cases, for example, if p 
→ H(p,μ) is strictly convex, then p 
→
H(p,λ) necessarily has a unique minimum, that is, Θ = {θ}. In the latter situation, we obtain that the eigenfunctions
exhibit concentration behavior in the sense of (3.16) below.

We emphasize that λ and θ are deterministic quantities which are independent of the domain U .
We now state the result regarding the asymptotics of the linear system (1.1). In what follows, U is taken to be a

smooth, bounded domain and λε and ϕε
α together solve the system (1.1)–(1.2), subject to the normalization

ϕε
1(x0) = 1 for some distinguished x0 ∈ U and a.s. in ω. (3.14)

The following result characterizes the limit of the eigenvalues λε , and uncovers the concentration behavior of the
eigenfunctions ϕε

α in the case that H(·, λ) achieves its minimum at a unique point θ .

Theorem 2. The principle eigenvalue λε(ω,U) of (1.1)–(1.2) satisfies

ε2λε(ω,U) → λ as ε → 0 and a.s. in ω, (3.15)

where λ is given by (3.11). Suppose in addition that H(·, λ) attains its minimum at a unique point θ ∈ Rd . Then, for
each α = 1, . . . ,m and as ε → 0,

−ε logϕε
α(x,ω) → θ · (x − x0) locally uniformly in U and a.s. in ω. (3.16)

We present a sufficient condition for the strict convexity of H . The following theorem states that the effective
Hamiltonian is strictly convex in p under the additional assumption that the random environment is uniquely ergodic.
Roughly speaking, this means that the limit (2.1) in the ergodic theorem is uniform with respect to the translations.
The precise definition follows.

Definition 3.1. The action of the group (τy)y∈Rd on the environment (Ω,F,P) is uniquely ergodic if, for every F -
measurable f :Ω → R such that E|f | < ∞, there exists a subset Ω̃ ⊆ Ω of full probability such that, for every
ω ∈ Ω̃ ,

lim
R→∞ sup

z∈Rd

∣∣∣∣ −
∫

B(z,R)

f (τyω)dy −Ef

∣∣∣∣ = 0. (3.17)
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Equivalently, the action of (τy)y∈Rd on the environment is uniquely ergodic if and only if P is the unique F -
measurable probability measure which is invariant under the action.

The space of almost periodic functions may be embedded into the stationary ergodic setting (cf. [11]), and it is
easy to see that the resulting random environment must be uniquely ergodic. Therefore (3.16) holds in particular in
the almost periodic setting. The inclusions are proper: it is well known that there exist stationary ergodic environments
which are not uniquely ergodic (for example, any iid environment cannot be uniquely ergodic), and uniquely ergodic
environments which are not equivalent to translations of an almost periodic function [38].

Theorem 3. Assume that the action of (τy)Rd on (Ω,F,P) is uniquely ergodic. Then, for each μ� 0,

p 
→ H(p,μ) is strictly convex. (3.18)

Hence Θ = {θ}, for some θ ∈ Rd , and the concentration phenomenon (3.16) holds.

4. The auxiliary macroscopic problem

For each fixed δ > 0, μ� 0 and p ∈Rd , we introduce the auxiliary macroscopic system

δvδ
α − tr

(
Aα(y,ω)D2vδ

α

) + Hα

(
p + Dvδ

α, y,ω
) + fα

(
vδ

1, . . . , v
δ
m,μ,y,ω

) = 0 in Rd, (4.1)

with Hα and fα defined in (3.6). In the periodic setting, (4.1) is known as the “cell problem,” and it is central to the
homogenization of Hamilton–Jacobi equations. In this section we establish the well-posedness of (4.1), a necessary
precursor to the next section, where we construct H via a limit procedure using vδ .

Following the usual viscosity theoretic approach, we first give a comparison principle for (4.1). The structural
assumptions in Section 2 yield the following proposition, which is essentially due to Ishii and Koike [22]. The result
in [22] was stated only for equations in bounded domains, but we extend it to Rd via a simple argument using the
convexity of Hα .

Proposition 4.1. Fix δ > 0, μ � 0, p ∈ Rd and ω ∈ Ω . Suppose that, for each α = 1, . . . ,m, uα ∈ USC(Rd) is
bounded above, vα ∈ LSC(Rd) is bounded below,

δuα − tr
(
Aα(y,ω)D2uα

) + Hα(p + Duα,y,ω) + fα(u1, . . . , um,μ,y,ω)� 0 in Rd

and

δvα − tr
(
Aα(y,ω)D2vα

) + Hα(p + Dvα,y,ω) + fα(v1, . . . , vm,μ,y,ω) � 0 in Rd .

Then, for every α = 1, . . . ,m, uα � vα in Rd .

Proof. According to the structural assumptions, we may select k > 0 sufficiently large (depending on δ) so that, for
each α = 1, . . . ,m, the function ϕ(y) := k − (1 + |y|2)1/2 is a smooth solution of

δϕ − tr
(
Aα(y,ω)D2ϕ

) + Hα(p + Dϕ,y,ω)� 0 in Rd .

Modify uα by defining, for each η > 0,

uα,η(y) := (1 − η)uα(y) + ηϕ(y).

Formally, using the convexity of Hα and (3.7), for each α = 1, . . . ,m, we have

δuα,η − tr
(
Aα(y,ω)D2uα,η

) + Hα(p + Duα,η, y,ω) + fα(u1,η, . . . , um,η,μ,y,ω) � 0 in Rd .

This can be made rigorous either by using the fact that ϕ is smooth or by applying [12, Lemma A.1]. Since vα is
bounded below and uα,η(y) → −∞ as |y| → ∞, for all R > 0 sufficiently large and for each α = 1, . . . ,m, we have

uα,η � vα in Rd \ BR.

It then follows from [22, Theorem 4.7] that, for each α = 1, . . . ,m,

uα,η � vα in Rd,

and, after sending η → 0, the conclusion. �
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The unique solvability of (4.1) follows easily from Proposition 4.1 and the Perron method.

Proposition 4.2. For each δ > 0, μ � 0, p ∈ Rd , and ω ∈ Ω , there exists a unique bounded viscosity solution
vδ(·,ω;p,μ) = (vδ

1(·,ω;p,μ), . . . , vδ
m(·,ω;p,μ)) ∈ C(Rd)m of (4.1), which is stationary. Moreover, there exist

C,c > 0, depending only on the constants in (2.6), (2.5) and (2.9), such that, for each ω ∈ Ω and α = 1, . . . ,m,

−(
Λ|p|2 + C

(|p| + μ
))

� δvδ
α(·,ω;p,μ)� −(

λ|p|2 − C
(|p| + 1

))
in Rd . (4.2)

Proof. We suppress dependence on ω, since it plays no role in the proof. Denote

ϕα(y) := −1

δ

(
Λ|p|2 + C

(|p| + μ
))

and ϕα(y) := −1

δ

(
λ|p|2 − C

(|p| + 1
))

.

It is easy to check, using (2.6), (2.5), (2.7) and (2.9), that ϕα and ϕα are, respectively, a subsolution and supersolution
of (4.1) in Rd . Define, for each α = 1, . . . ,m,

vδ
α(y) := sup

{
ϕα(y): ϕ1, . . . , ϕm ∈ USC

(
Rd

)
are bounded above and

ϕ = (ϕ1, . . . , ϕm) is a subsolution of (4.1) in Rd
}
.

It is clear from the definition above and Proposition 4.1 that ϕα � vδ
α � ϕα in Rd , which gives (4.2). Standard argu-

ments from the theory of viscosity solutions, utilizing Proposition 4.1 imply that vδ ∈ C(Rd)m and vδ is a solution
of (4.1). We refer to [17] and to Section 3 of [22] for details. According to Proposition 4.1, vδ is the unique bounded
solution of (4.1). The stationarity of vδ is an immediate consequence of the stationarity of the coefficients and the
uniqueness of vδ . �

In the following proposition, we use the Harnack inequality for linear elliptic systems (see Busca and Sirakov [14])
to obtain an estimate, independently of δ, on the difference between vδ

α and vδ
β . The Bernstein method then yields

uniform Lipschitz bounds on vδ .

Proposition 4.3. For each δ > 0, μ � 0, p ∈ Rd and ω ∈ Ω , the unique bounded solution vδ(·,ω;p,μ) of (4.1)
belongs to C2(Rd)m and there exists C > 0, which depends on upper bounds for |p| and μ but is independent of δ

and ω, such that

max
α,β∈{1,...,m}

ess sup
Rd

∣∣vδ
α(·,ω) − vδ

β(·,ω)
∣∣ � C (4.3)

and

max
α∈{1,...,m}

ess sup
Rd

∣∣Dvδ
α(·,ω)

∣∣ � C. (4.4)

Proof. For convenience, we omit the explicit dependence on ω since it has no role in the argument. The smoothness
of vδ is immediate from classical elliptic regularity. The estimate (4.3) is a consequence of a Harnack inequality for a
linear cooperative systems. To see this, we observe that wδ = wδ

α with wδ
α := exp(−vδ

α) is a classical solution of

− tr
(
Aα(y)D2wδ

α

) + (
2Aα(y)p + bα(y)

) · Dwδ
α

− (
Aα(y)p · p + bα(y) · p + δvδ

α

)
wδ

α +
m∑

β=1

(
cαβ(y) − μσαβ

)
wδ

β

= 0 in Rd,

which is a cooperative, fully coupled linear system, and thanks to (4.2), has bounded coefficients. The Harnack in-
equality found in [14, Corollary 8.1] yields that

wδ
α(y) � C0w

δ
β(y) for each y ∈ Rd and α,β = 1, . . . ,m.

Rewriting this inequality in terms of vδ
α and vδ

β yields (4.3).
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According to (4.3), the last term fα(vδ
1, . . . , v

δ
m,μ,y) in (4.1) is bounded independently of δ. We next use the

Bernstein method to obtain the Lipschitz estimate (4.4). Although it proceeds very similarly as the proof of [30,
Proposition 6.11] for the case of a scalar equation, for the convenience of the reader we give complete details here
because the form of the system (4.1) complicates the argument somewhat. For ease of notation we do not display the
explicit dependence of vδ

α on δ. Select a cutoff function ϕ ∈ C∞(Rd) such that

0 � ϕ � 1, ϕ ≡ 1 on B1, ϕ ≡ 0 in Rd \ B2,
∣∣D2ϕ

∣∣� Cϕ
1
2 and |Dϕ|� Cϕ

3
4 . (4.5)

It suffices to choose for example ϕ = ψ4, where ψ is a cutoff function satisfying the first three conditions of (4.5).
Denote ξα := |Dvα|2 and wα := ϕξα = ϕ|Dvα|2. An easy computation yields

Dvα = ξαDϕ + 2ϕD2vαDvα, (4.6)

D2wα = ξαD2ϕ + 2Dϕ ⊗ (
D2vαDvα

) + ϕ
(
D3vαDvα + D2vαD2vα

)
. (4.7)

Differentiating (4.1) with respect to yi , multiplying the result by ϕvα,yi
and using (4.6) and (4.7), we obtain after some

calculation that, on the support of ϕ,

δwα − tr
(
AαD2wα

) + ϕ tr
(
D2vαAαD2vα

) − ϕDvα · tr
(
DyAαD2vα

)
+ ξα tr

(
AαD2ϕ

) + Aαϕ−1Dϕ · (Dwα − ξαDϕ)

+ ϕDvα · ((DyAα(p + Dvα) + Dybα

) · (p + Dvα)
) + Aα(Dwα − ξαDϕ) · (p + Dvα)

+ 1

2
bα · (Dwα − ξαDϕ) + ϕDvα ·

m∑
β=1

evα−vβ Dy(μσαβ − cαβ)

+ ϕ

m∑
β=1

evα−vβ (μσαβ − cαβ)
(|Dvα|2 − Dvα · Dvβ

)
= 0. (4.8)

Now suppose that x̂ ∈ B2 and α′ = 1, . . . ,m are such that

wα′(x̂) = max
α∈{1,...,m}

sup
x∈Rd

wα(x). (4.9)

To simplify the notation we assume that α′ = 1. Then Dw1(x̂) = 0 and D2w1(x̂) � 0. Using these together with (4.3),
(4.5) and the observation that (4.9) implies that, at x = x̂,

m∑
β=1

ev1−vβ (μσ1β − c1β)
(|Dv1|2 − Dv1 · Dvβ

)
� 0,

after some work we obtain, from (4.8),

ϕ tr
(
AM2)� C

(
ϕ|q|(|M| + 1

) + |q|2(∣∣D2ϕ
∣∣ + |Dϕ| + ϕ−1|Dϕ|2) + |q|3(ϕ + |Dϕ|)),

where for convenience we have written M := D2v1(x̂), q := Dv1(x̂) and A = A1(x̂). Applying some elementary
inequalities and using (2.4) we get

ϕ tr
(
AM2)� Cη

(
ϕ + |q|2ϕ 1

2 + |q|3ϕ 3
4
) + ηϕ|M|2,

where η > 0 is selected below. By (2.6) and the Cauchy–Schwarz inequality,

|M|2 � C
(
tr(AM)

)2 � C tr
(
AM2).

Hence by making η > 0 small we get

ϕ tr
(
AM2)� C

(
1 + |q|2ϕ 1

2 + |q|3ϕ 3
4
)
. (4.10)

Using the PDE (4.1) and the estimates (4.2), (4.3), we have(
tr(AM)

)2 = (
H1(p + Dv1, y) + f1(v1, . . . , vk,μ, y) + δv1

)2 � λ
(|q|2 − C

)2
. (4.11)



S.N. Armstrong, P.E. Souganidis / Ann. I. H. Poincaré – AN 30 (2013) 419–439 429
Putting (4.10) and (4.11) together, we obtain that

|q|4ϕ � C
(
1 + |q|2ϕ 1

2 + |q|3ϕ 3
4
)
.

This yields an upper bound on |q|4ϕ and hence(
w1(x̂)

)2 = |q|4ϕ2 � |q|4ϕ � C.

Thus

max
α∈{1,...,m}

sup
B1

|Dvα|2 � max
α∈{1,...,m}

sup
Rd

|wα| = w1(x̂)� C.

Since the constant C > 0 in the last inequality is independent of the fact we centered our ball at the origin, the proof
is complete. �
Remark 4.4. The essential boundedness and stationarity of vδ

α and (4.4) imply that

E
[
Dvδ

α(0, ·)] = 0. (4.12)

This follows from an argument of Kozlov [24], see also [12, Lemma A.5].

We conclude this section by studying the dependence of the solution of (4.1) on the parameters p and μ. It is a
necessary ingredient in the proof of Proposition 5.1 and will yield important properties of H .

Proposition 4.5. Let vδ = vδ
α(·,ω;p,μ) be as in Proposition 4.2. Then:

(i) for each k > 0 there exists C > 0, depending on m, k and the constant in (2.5), such that, for all δ > 0, ω ∈ Ω ,
p1,p2 ∈Rd and 0 � μ� k,

max
α∈{1,...,m}

sup
Rd

δ
∣∣vδ

α(·,ω;p1,μ) − vδ
α(·,ω;p2,μ)

∣∣ � C
(
1 + |p1| + |p2|

)|p1 − p2|, (4.13)

(ii) for each k > 0 there exist C,c > 0, depending only on m and the constants in (2.9) and (2.5), such that, for all
δ > 0, ω ∈ Ω , p ∈ B(0, k), 0 � μ1 � μ2 � k and α = 1, . . . ,m,

c(μ2 − μ1)� δvδ
α(·,ω;p,μ1) − δvδ

α(·,ω;p,μ2) � C(μ2 − μ1) in Rd . (4.14)

Proof. The proof of (4.13) closely follows the proof of [12, Lemma 4.6]. We fix p1,p2 ∈ Rd , μ � 0 and ω ∈ Ω and
write vδ

α,i(y) := vδ
α(y,ω;pi,μ) for i ∈ {1,2} and α = 1, . . . ,m. Define λ := (1 + |p1| + |p2|)−1|p1 − p2| and set

wδ
α(y) := (1 − λ)vδ

α,2(y) = (1 − λ)
(
(p2 − p1) · y + vδ

α,2(y)
) + λ

(
λ−1(1 − λ)(p1 − p2) · y)

.

It is easy to check, using the convexity of Hα and (3.7), that wδ
α satisfies

δwδ
α − tr

(
Aα(y,ω)D2wδ

α

) + Hα

(
p + Dwδ

α, y,ω
) + fα

(
wδ

1, . . . ,w
δ
m,μ,y,ω

)
� λHα

(
λ−1(p1 − (1 − λ)p2

)
, y,ω

)
in Rd .

Since

λ−1
∣∣p1 − (1 − λ)p2

∣∣� 1 + |p1| + 2|p2|,
there exists a constant C > 0 depending only on the constant in (2.5), so that

λHα

(
λ−1(p1 − (1 − λ)p2

)
, y,ω

)
� C

(
1 + |p1| + |p2|

)|p1 − p2|.
By subtracting δ−1C(1 + |p1| + |p2|)|p1 − p2| from wδ

α we obtain a subsolution of (4.1), and Proposition 4.1 yields

(1 − λ)vδ
α,2 = wδ

α � vδ
α,1 + δ−1C

(
1 + |p1| + |p2|

)|p1 − p2|.
Using (4.2) and rearranging, we obtain

vδ
α,2 − vδ

α,1 � δ−1C
(
1 + |p1| + |p2|

)|p1 − p2|
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where C depends additionally on an upper bound for μ. Multiplying by δ and repeating the argument with the indices
reversed yields (4.13).

The first inequality in (4.14) easily follows from (4.3), (2.9), and Proposition 4.1. Indeed, the function
vδ(y,ω;p,μ1) − δ−1c(μ2 − μ1) is a supersolution of (4.1) for μ = μ2, for a c > 0 with appropriate dependen-
cies. The second inequality follows similarly, since the function vδ(y,ω;p,μ1) − δ−1C(μ2 − μ1) is a subsolution of
the same equation for sufficiently large C > 0. �
5. Construction of the effective Hamiltonian H(p,μ)

In the next proposition, which is the analogue of [12, Proposition 5.1], we identify H as a limit of δvδ as δ → 0,
and construct a subcorrector. The argument is based on ideas introduced in [31].

Proposition 5.1. There exist a continuous function H :Rd ×R+ → R and a subset Ω1 ⊆ Ω of full probability, such
that, for every p ∈ Rd , μ� 0, R > 0, and α = 1, . . . ,m,

lim
δ→0

sup
y∈BR/δ

∣∣δvδ
α(y, ·;p,μ) + H(p,μ)

∣∣ = 0 in L1(Ω,P), (5.1)

and, for every ω ∈ Ω1,

H(p,μ) = − lim inf
δ→0

δvδ(0,ω;p,μ) a.s. in ω. (5.2)

Moreover, there exists w = wα(y,ω;p,μ) such that, for every (p,μ,α) ∈ Rd × R × {1, . . . ,m} and ω ∈ Ω1,
wα(·,ω;p,μ) ∈ C0,1(Rd) as well as

Dwα(·, ·;p,μ) is stationary and E
[
Dwα(0, ·;p,μ)

] = 0, (5.3)

lim|y|→∞ |y|−1wα(y,ω) = 0 (5.4)

and

− tr
(
Aα(y,ω)D2wα

) + Hα(p + Dwα,y,ω) + fα(w1, . . . ,wm,μ,y,ω)� H(p,μ) in Rd . (5.5)

Proof. Proposition 4.5 allows us to prove the claim for fixed p ∈ Rd and μ� 0, and then to intersect relevant subsets
of Ω for a countable dense subset of (p,μ) in Rd ×R+. We therefore fix p and μ and omit the dependence on these
variables for ease of notation.

For α = 1, . . . ,m, define

v̂δ
α(y,ω) := vδ

α(y,ω) − vδ
1(0,ω). (5.6)

The estimates (4.2), (4.3) and (4.4) together with the stationarity of vδ are sufficient for the extraction of a subsequence
δj → 0 such that, for every R > 0, as j → ∞,⎧⎪⎨

⎪⎩
−δj v

δj
α ⇀ H weakly-∗ in L∞(BR × Ω),

v̂
δj
α ⇀ wα weakly-∗ in L∞(BR × Ω),

Dv̂
δj
α ⇀ Dwα weakly-∗ in L∞(BR × Ω),

for a deterministic constant H = H(p,μ) and functions wα(·,ω) ∈ C0,1(Rd). Standard arguments from the theory of
viscosity solutions (using in particular the convex structure of (4.1) and the equivalence of distributional and viscosity
solutions for linear inequalities, cf. Ishii [20]) yield that, for each α = 1, . . . ,m, w = wα is a solution, a.s. in ω, of
the system (5.5). We emphasize that in deriving (5.5) we rely crucially on the convexity of Hα(p,y,ω) in p and of
fα(z1, . . . , zk,μ, y,ω) in the differences zα − zβ . According to (4.4), the gradients Dwα satisfy

sup
α∈{1,...,m}

ess sup
Rd×Ω

|Dwα| � C, (5.7)

and they inherit the stationarity property from the sequence v
δj
α . From (4.12) we deduce that

E[Dwα] = lim
j→∞E

[
Dv̂

δj
α

] = lim
j→∞E

[
Dv

δj
α

] = 0.

The ergodic theorem (cf. Kozlov [24] or [12, Lemma A.5]) yields (5.4).
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Having identified H , we must show that it characterizes the full limit of −δvδ
α . The key step is to use the comparison

principle to show that

−H � lim inf
δ→0

δvδ
α(0,ω) a.s. in ω. (5.8)

Denote by Ω̃ the subset of Ω of full probability consisting ω for which (5.4) and (5.5) hold, as well as

sup
Rd

∣∣Dwα(·,ω)
∣∣ � C, (5.9)

the latter condition holding on a subset of full probability by Fubini’s theorem and (5.7).
Fix ω ∈ Ω̃ . Choose δ, η > 0, let γ > 0 be a constant to be selected below, and define, for each α = 1, . . . ,m,

ŵδ
α(y,ω) := wα(y,ω) − (H + η)δ−1 − γ

(
1 + |y|2)1/2

.

Due to (5.9) and the fact that |Dŵδ
α| � |Dwα| + Cγ , we see that ŵδ = (ŵδ

1, . . . , ŵ
δ
m) is a solution of the system of

inequalities

δŵδ
α − tr

(
Aα(y,ω)D2ŵδ

α

) + Hα

(
p + Dŵδ

α, y,ω
) + fα

(
ŵδ

1, . . . , ŵ
δ
m,μ,y,ω

)
� δwα − η + Cγ in Rd (α = 1, . . . ,m). (5.10)

Fix a constant r > 0 to be selected below. Choosing γ := η/(2C) and applying (5.4), we may estimate the right side
of (5.10) for |y| � r by

δwα − η + Cγ � δCη + δη3r − 1

2
η. (5.11)

Next we observe that by (4.2), the definition of ŵδ
α and our choice of γ , we have

ŵδ
α − vδ

α � Vα + Cδ−1 − cηr on ∂Br . (5.12)

It follows from (5.11) and (5.12) that by selecting r = C/δη for a sufficiently large constant C > 0, we obtain, for
sufficiently small δ > 0,

δwα(y) − η + Cγ � 0 in Br and ŵδ
α − vδ

α � 0 on ∂Br .

The comparison principle (cf. [22, Theorem 4.7]) yields that, for each α = 1, . . . ,m,

ŵδ
α � vδ

α in Br,

and, in particular, ŵδ
α(0) � vδ

α(0). Multiplying this last inequality by δ and sending δ → 0 gives

−H − Cη � lim inf
δ→0

δvδ
α(0,ω).

Disposing of η > 0 yields (5.8) for each ω ∈ Ω̃ .

Since −H is the L∞(Ω) weak-∗ limit of δj v
δj
α (0,ω), the reverse inequality of (5.8) holds and we obtain

−H = lim inf
δ→0

δvδ
α(0,ω) a.s. in ω. (5.13)

Now an elementary lemma from measure theory (cf. [12, Lemma A.6]) yields that

δvδ
α(0,ω) → −H in probability and in L1(Ω,P). (5.14)

We now deduce (5.1) from a covering argument and the Lipschitz bound (4.4) (see the last step of proof of [12,
Proposition 5.1]). �

We next collect some elementary properties of H .

Proposition 5.2. The effective Hamiltonian H :Rd ×R+ →R has the following properties:

(i) for each p ∈ Rd , the map μ 
→ H(p,μ) is strictly increasing;
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(ii) for each μ� 0, the map p 
→ H(p,μ) is convex;
(iii) there are positive constants c,C > 0, depending only on the assumptions, such that

λ|p|2 − C
(
1 + |p|)� H(p,μ)� Λ|p|2 + C

(|p| + μ
)
. (5.15)

Proof. It is immediate from (4.14) and (5.1) that, for all p ∈Rd and 0 � μ1 � μ2,

c(μ2 − μ1) � H(p,μ2) − H(p,μ1) � C(μ2 − μ1)

for C,c > 0 depending only on upper bounds for |p| and μ2. This yields (i).
To prove (ii), fix p1,p2 ∈ Rd , μ� 0, ω ∈ Ω0, set q := 1

2 (p1 + p2) and, for each δ > 0,

wδ
α(y) := 1

2
vδ
α(y,ω;p1,μ) + 1

2
vδ
α(y,ω;p2,μ). (5.16)

The convexity of fα in the differences zα − zβ and the convexity of Hα in p easily yield that wδ satisfies

δwδ
α − tr

(
Aα(y,ω)D2wδ

α

) + Hα

(
θ + Dwδ

α, y,ω
) + fα

(
wδ

1, . . . ,w
δ
m,μ,y,ω

)
� 0 in Rd . (5.17)

Proposition 4.1 implies that wδ
α � vδ

α(y,ω;q,μ). Multiplying by −δ and passing to limits with (5.1) in mind
yields (ii).

The bounds (5.15) are immediate from (4.2) and (5.1). �
Remark 5.3. Notice that (5.15) implies that H(0,0)� 0. It follows, then, from (i), (ii) and (iii), above, that the number
λ� 0 given in (3.11) is well-defined and

min
Rd

H(·, λ) = 0.

6. The homogenization of the Hamilton–Jacobi system

The L1 convergence in the limit (5.1) can be upgraded to almost sure convergence. That is, we claim that there
exists an event Ω2 ⊆ Ω of full probability such that, for every R > 0 and ω ∈ Ω2,

lim
δ→0

sup
y∈BR/δ

∣∣δvδ
α(y,ω;p,μ) + H(p,μ)

∣∣ = 0. (6.1)

To prove this, the subadditive ergodic theorem must be applied to an appropriately chosen subadditive quantity.
Here we outline a proof of (6.1) which follows closely the ideas of [12]. Due to the similarity to [12], we omit the

details. In fact, the argument is much simpler here since the system is no more complicated than the scalar case and,
unlike [12], we are in the context of a bounded environment.

Sketch of the proof of (6.1). For fixed p ∈ Rd and μ� 0, we consider what we call the metric problem, which is the
system of equations

− tr
(
Aα(y,ω)D2mγ

α

) + Hα

(
p + Dmγ

α, y,ω
) + fα

(
m

γ

1 , . . . ,m
γ
m,μ,y,ω

) = γ in Rd \ B(x,1), (6.2)

coupled with the conditions

mγ
α(·, x,ω;p,μ) = 0 on ∂B(x,1) and lim inf|y|→∞ |y|−1mγ

α(y, x,ω;p,μ)� 0. (6.3)

Here γ ∈ R is a parameter, and it is possible to show that (6.2)–(6.3) is well-posed, i.e., there exists a unique solution
m

γ
α provided that γ > H(p,μ). In fact, for such γ there is a comparison principle for the system (6.2) in exterior

domains under very general growth conditions at infinity (and see Proposition 6.1 in [12], which is easily generalized
to the weakly coupled system).

An argument very similar to the proof of (4.3) gives the estimate

max
α,β∈{1,...,m}

sup
d

∣∣mγ
α(·, x,ω) − m

γ
β(·, x,ω)

∣∣� C. (6.4)

R
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The comparison principle then implies that the m
γ
α ’s are increasing in γ and jointly stationary in the sense that, for

every x, y, z ∈Rd and ω ∈ Ω ,

mγ
α(y, x, τzω) = mγ

α(y + z, x + z,ω), (6.5)

and that, up to a deterministic C > 0, the m
γ
α ’s are almost subadditive, i.e., for all x, y, z ∈ Rd and ω ∈ Ω ,

mγ
α(y, x,ω) � mγ

α(z, x,ω) + mγ
α(y, z,ω) + C. (6.6)

The multiparameter subadditive ergodic theorem (cf. Akcoglu and Krengel [1]) then yields that, almost surely in ω,

mγ (y − x) = lim
t→∞

1

t
mγ

α(ty, tx,ω) (6.7)

for a deterministic function mγ which, due to (6.4), is independent of α. In fact, we can select a single event Ω2 ⊆ Ω

of full probability on which the limit (6.7) holds for every ω ∈ Ω2, p ∈Rd , μ� 0, and γ > H(p,μ).
With the help of what we have obtained already in Proposition 5.1, we can characterize the limit function mγ . We

take a subsequence of δ’s along which the convergence in (5.1) holds almost surely and argue with a reverse perturbed
test function argument (introduced in [12, Proposition 6.9]) that

H
(
p + Dmγ ,μ

) = γ in Rd \ {0}. (6.8)

Having identified an almost sure limit in terms of the effective Hamiltonian H , we may conclude the proof of (6.1) for
every ω ∈ Ω2 by using a perturbed test function argument very similar to the one in the proof of [12, Proposition 7.1]
(or the one below). �

With (6.1) in hand, we present the proof of Theorem 1.

Proof of Theorem 1. We argue only that u is a subsolution of (3.10) in U , the verification that it is a supersolution
following along similar lines. The proof is by the classical perturbed test function method of Evans [19].

Assume that for some ϕ ∈ C∞(U) and x0 ∈ U ,

x 
→ (u − ϕ)(x) has a strict local maximum at x = x1. (6.9)

We must show that

H
(
Dϕ(x1),μ

)
� g(x1). (6.10)

Suppose on the contrary that

η := H
(
Dϕ(x1),μ

) − g(x1) > 0. (6.11)

Fix ω ∈ Ω0 for which με(ω) → μ and uε(·,ω) → u uniformly in a neighborhood of x1. Set p = Dϕ(x1) and define
the perturbed function

ϕε
α(x) := ϕ(x) + εvε

α

(
x

ε
,ω;p,με

)
,

where vε
α is the solution of (4.1) with δ = ε. We claim that, for sufficiently small r, ε > 0,

−ε tr

(
Aα

(
x

ε
,ω

)
D2ϕε

α

)
+ Hα

(
Dϕε

α,
x

ε
,ω

)
+ fα

(
ϕε

1

ε
, . . . ,

ϕε
k

ε
,με,

x

ε
,ω

)
� g(x) + 1

2
η in B(x1, r).

Indeed, this follows from the continuity of Hα , fα and g, and (3.7), (4.1), (6.1) and (6.11). The maximum principle
for the cooperative system then implies that

max
α∈{1,...,m}

max
∂B(x1,r)

(
uε

α − ϕε
α

) = max
α∈{1,...,m}

max
B(x1,r)

(
uε

α − ϕε
α

)
.

Using (4.14) and (6.1), we send ε → 0 to deduce that

max
α∈{1,...,m}

max
∂B(x1,r)

(uα − ϕα) = max
α∈{1,...,m}

max
B(x1,r)

(uα − ϕα).

This contradicts (6.9) for small enough r > 0. We have verified (6.10), which confirms that u is a viscosity subsolution
of (3.10). The proof that u is also a supersolution is argued along similar lines. �
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7. Concentration phenomena

The proof of Theorem 2 is presented in several steps. First, in the next proposition, we use Egoroff’s theorem,
the ergodic theorem, and the monotonicity in (2.16) to show that the eigenvalues λε(U,ω) converge almost surely
in ω to a deterministic limit λ0, which is independent of the domain U . Comparing the eigenfunctions ψε

α and the
approximate correctors vδ

α allows us to conclude that λ0 = λ, from which the concentration of the eigenfunctions
follows easily if θ can be defined unambiguously.

Proposition 7.1. There exist a subset Ω0 ⊆ Ω of full probability and a constant λ0 ∈R such that

lim
ε↓0

λε(U,ω) = λ0 for every bounded domain U ⊆Rd and all ω ∈ Ω0.

Proof. According to (2.16), for each fixed ω ∈ Ω , the eigenvalue λε(B1,ω) is increasing as a function of ε. Therefore,
for every ω ∈ Ω , there exists a number λ0(ω) ∈R such that

λε(B1,ω) ↓ λ0(ω) as ε ↓ 0. (7.1)

We claim that, for each μ ∈R, the event

Λμ := {
ω ∈ Ω: λ0(ω) � μ

}
has probability P[Λμ] ∈ {0,1}. This follows from the ergodicity assumption once we show that τz(Λμ) = Λμ for
every z ∈Rd . Indeed, for |z| � ε−1, we have, by stationarity,

λε(B1, τzω) = λ1
(
B

(
z, ε−1),ω)

� λ1
(
B

(
0,2ε−1),ω) = λε/2(B1,ω),

and similarly, for such ε, we also have λε/2(B1, τzω) � λε(B1,ω). Hence λ0(τzω) = λ0(ω) for every z ∈ Rd . This
implies τz(Λμ) = Λμ for every z ∈Rd .

It is then immediate that (7.1) may be improved to

λε(B1,ω) ↓ λ0 as ε ↓ 0 for every ω ∈ Ω1, (7.2)

for some deterministic constant λ0 and subset Ω1 ⊆ Ω of full probability.
Using Egoroff’s theorem we find a subset E ⊆ Ω with probability P[E]� 1

2 such that

λε(B1,ω) ↓ λ0 as ε ↓ 0 uniformly in ω ∈ E.

For each fixed ω ∈ Ω , define the set

Aω := {
y ∈Rd : τyω ∈ E

}
.

By the ergodic theorem, for each bounded domain V ⊆Rd , there exists ΩV ⊆ Ω of full probability such that, for each
ω ∈ ΩV ,

lim
ε→0

−
∫
V

1Aω

(
x

ε

)
dx = P[E] � 1

2
.

Choose a countable basis B for the Euclidean topology on Rd consisting of balls, let Ω2 := ⋂
V ∈B ΩV and define

Ω0 := Ω1 ∩ Ω2.
Fix now a domain U ⊆ Rd , a small constant η > 0, and select an element V ∈ B with V ⊆ U and set δ :=

dist(V , ∂U). It follows that, for every ω ∈ Ω0, there exists T0 = T0(ω) > 0 sufficiently large so that, for all ω ∈ E and
0 < ε � T0(ω)−1,

λε(B1,ω) − λ0 � η and εAω ∩ V 	= ∅.

Now fix ω ∈ Ω0. Suppose that 0 < ε � δT0(ω)−1 and select y ∈ εAω ∩ V . Then B(y, δ) ⊆ U and from the station-
ary hypothesis as well as (2.14), (2.15) and the above properties, we may deduce that

λε(U,ω) � λε
(
B(y, δ),ω

) = λε/δ(B1, τ y ω)� λ0 + η.

ε
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It follows that

lim sup
ε↓0

λε(U,ω) � λ0.

Owing to the fact that U ⊆ BR for some large R > 0, and that ω ∈ Ω0 ⊆ Ω1, we use (2.14) and (2.16) to conclude
that

λε(U,ω) � λε(BR,ω) = λε/R(B1,ω) � λ0. �
Next we use Theorem 1 to show that λ0 equals λ defined in (3.11). From this we conclude the concentration (3.16)

of the eigenfunctions and complete the proof of our main theorem.

Proof of Theorem 2. Let ψε
α denote the functions defined in (3.3) for α = 1, . . . ,m and normalized according to

ψε
1 (x0,ω) = 0 for some fixed x0 ∈ U . An argument very similar to the one in the proof of Proposition 4.2 yields, for

each V �U , the bound

sup
α,β∈{1,...,m}

sup
V

∣∣ψε
α(·,ω) − ψε

β(·,ω)
∣∣ � Cε,

and then the local Lipschitz estimates

sup
α∈{1,...,m}

sup
V

∣∣Dψε
α(·,ω)

∣∣ � C,

for a C > 0 independent of ε. Taking a subsequence, also denoted by ε, we find ψ ∈ C
0,1
loc (U) such that, as ε → 0 and

for every α = 1, . . . ,m,

ψε
α → ψ locally uniformly in U. (7.3)

Now Theorem 1 and Proposition 7.1 imply that ψ satisfies the equation

H(Dψ,λ0) = 0 in U.

It follows at once that λ0 � λ.
To obtain the reverse inequality, we select (p,μ) such that H(p,μ) < 0. Set δ > 0 sufficiently small so that

the event infU/δ δvδ
α(·,ω;p,μ) > 0 has probability at least 1

2 . For ω belonging to this event, and, if in addition
λε(U,ω) � μ, the map

x 
→ min
α∈{1,...,m}

(
ψδ

α(x,ω) − vδ
α(δx,ω;p,μ)

)
cannot have a local minimum in U according to the comparison principle. This is a contradiction, since ψε

α(x,ω) →
+∞ as x → ∂U and vδ

α(·,ω;p,μ) is bounded. We deduce that P[λδ(U,ω) > μ] � 1
2 for small δ > 0. According to

Proposition 7.1 we have λ0 � μ, and hence λ0 � λ. Therefore λ0 = λ and we obtain the limit (3.15).
Finally, in the case {p: H(p,λ) = 0} = {θ}, we obtain that Dψ = θ almost everywhere in U . It follows that

ψ(x) = θ · (x − x0) for each x ∈ U , and hence the full sequence ψε
α converges to ψ . The concentration behavior

(3.16) then follows. �
8. Strict convexity of p �→ H(p,μ) in uniquely ergodic environments

We prove Theorem 3. Throughout this section, we assume that the action of (τy)y∈Rd on the environment (Ω,F,P)

is uniquely ergodic (see Definition 3.1).
It is worth revisiting the proof of the convexity of p 
→ H(p,μ) (Proposition 5.2(ii)) to see if there is extra informa-

tion we discarded. The argument essentially comes down to the derivation of (5.17). There is no doubt that any strict
convexity on the part of H must be inherited from the Hα’s, which satisfy, for every p1,p2 ∈ Rd with q := 1

2p1 + 1
2p2

and (y,ω) ∈Rd × Ω ,

1

2
Hα(p1, y,ω) + 1

2
Hα(p2, y,ω) − H(q,y,ω) = 1

4
(p1 − p2) · A(y,ω)(p1 − p2)

� 1
λ|p1 − p2|2. (8.1)
4
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Using (8.1), we observe that, with wδ
α defined as in (5.16), we may improve (5.17) to

δwδ
α − tr

(
Aα(y,ω)D2wδ

α

) + Hα

(
q + Dwδ

α, y,ω
) + fα

(
wδ

1, . . . ,w
δ
m,μ,y,ω

)
�−1

4
λ
∣∣p1 − p2 + Dvδ

α(y,ω;p1,μ) − Dvδ
α(y,ω;p2,μ)

∣∣2 =: −hα(y,ω) in Rd . (8.2)

The hope is to use the term −hα on the right side of (8.2) to show that, for some c > 0,

wδ
α − vδ

α(y,ω; θ,μ)� −cδ−1.

If hα is bounded below by a positive constant, then the desired conclusion is immediate. However, for p1 close to p2,
there is not a definite reason why this should be true. All we can say is that h is stationary, nonnegative, bounded, and
satisfies, by Jensen’s inequality and (4.12),

Ehα(0, ·) � 1

4
λ|p1 − p2|2. (8.3)

However, what we actually need is something weaker than for hα to be bounded below by a positive constant. As we
will see, it is enough to rule out the presence of large “bare spots.” That is, we need to ensure that, for some R > 0,
the set on which hα is greater than some positive constant takes a uniform proportion of each ball of radius R. This is
precisely what the unique ergodicity hypothesis gives us, as we see in the following lemma.

Lemma 8.1. Suppose that g = g(y,ω) is stationary, nonnegative, and does not vanish a.s. in ω. Then there exist
constants η,ρ > 0, depending on the distribution of g(0, ·), and a subset Ω1 ⊆ Ω of full probability, such that, for
every ω ∈ Ω1, there exists R > 0 such that

inf
z∈Rd

∣∣{y ∈ B(z,R): g(y) � η
}∣∣� ρ|BR|. (8.4)

Proof. Let

E := {
ω ∈ Ω:

∣∣{y ∈ B(0,1): g(y,ω)� η
}∣∣� ρ|B1|

}
,

with η,ρ > 0 chosen small enough so that P[E] > 0. According to (3.17), there exists a subset Ω̃ ⊆ Ω of full
probability such that, for every ω ∈ Ω̃ , there exists R > 1 sufficiently large such that

inf
z∈Rd

−
∫

B(z,R)

1E(τyω)dy � 1

2
P[E] > 0.

That is, for each ω ∈ Ω̃ , there exists R > 1, depending on ω, such that∣∣{y ∈ B(z,R): τyω ∈ E
}∣∣� c1|BR|, (8.5)

with c1 := 1
2P[E] > 0. Freeze ω ∈ Ω̃ for the remainder of the argument, let

D(z) := {
y ∈ B(z,R): τyω ∈ E

}
(8.6)

and observe that the stationarity of g yields

D(z) = {
y ∈ B(z,R):

∣∣{x ∈ B(y,1): g(x,ω) � η
}∣∣� ρ

}
.

According to the Vitali covering lemma, there exist y1, . . . , y� ∈ D(z) such that the balls {B(yi,1)}�i=1 are disjoint
and

D(z) ⊆
�⋃

i=1

B(yi,3). (8.7)

Since the balls {B(yi,1)}�i=1 are disjoint and τyi
ω ∈ E, we have, for any z ∈ Rd ,

∣∣{y ∈ B(z,2R): g(y,ω) � η
}∣∣�

∣∣∣∣∣
�⋃

i=1

{
y ∈ B(yi,1): g(y,ω)� η

}∣∣∣∣∣ � ρ�|B1|.

It follows from (8.5) and (8.7) that �|B1| � c|D(r)| � cc1|BR| � c|B2R| and hence (8.4). �
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In a uniquely ergodic environment, we can prove that many limits derived from the ergodic theorem are uniform.
Another example is the following useful lemma, which generalizes the existence of “approximate correctors” used by
Ishii [21] to prove homogenization of Hamilton–Jacobi equations in an almost periodic environment (the proof we
give below also works in the non-viscous setting for first-order Hamilton–Jacobi equations).

Lemma 8.2. Under the uniquely ergodic assumption, the convergence (6.1) can be improved to

δvδ
α(y,ω;p,μ) → H(p,μ) uniformly in Rd and a.s. in ω. (8.8)

Proof. Let ε > 0. The unique ergodicity assumption and (5.1) yield some δ1 > 0 small and R > 1 large such that, for
all 0 < δ < δ0,

sup
α∈{1,...,m}

sup
y∈Rd

inf
B(y,R)

∣∣δvδ
α(y,ω;p,μ) + H(p,μ)

∣∣� ε.

But then the Lipschitz bound (4.4) gives, for every 0 < δ < δ0 min{1, (CR)−1},
sup

α∈{1,...,m}
sup
y∈Rd

∣∣δvδ
α(y,ω;p,μ) + H(p,μ)

∣∣� ε + δCR � 2ε. � (8.9)

Next we discuss the so-called “growth lemma,” an important analytic tool in the proof of Theorem 3. It is a quanti-
tative strong maximum principle which measures how the negative term −hα on the right side of (8.2) forces wδ

α to be
lower in comparison to vδ

α(·,ω; θ,μ). We do not give the proof here, since going into details would take us very far off
course. However, the proof is nearly the same as the proof of the classical growth lemma (cf. Theorem 2 on page 118 of
Krylov [25]), which follows from the ABP inequality. For this purpose we need the following Alexandroff–Bakelman–
Pucci (ABP) inequality for weakly coupled elliptic systems proved by Busca and Sirakov [14].

Lemma 8.3. Fix μ� 0, p ∈ Rd , ω ∈ Ω and suppose that σ, τ ∈R and uα and vα satisfy

− tr
(
AαD2uα

) + Hα(p + Duα,y,ω) + fα(u1, . . . , um,μ,y,ω) � τ + σ − hα(y,ω) in B2R (8.10)

and

− tr
(
AαD2vα

) + Hα(p + Dvα,y,ω) + fα(v1, . . . , vm,μ,y,ω) � τ in B2R, (8.11)

where for some η,ρ > 0,

min
α∈{1,...,m}

∣∣{x ∈ BR: hα(x,ω) � η
}∣∣� ρ. (8.12)

Then there exist constants κ,σ0 > 0, depending on the constants in the assumptions as well as R, η and ρ, such that
σ � σ0 implies that

min
α∈{1,...,m} inf

BR

(vα − uα) � κ + min
α∈{1,...,m} inf

B2R

(vα − uα).

We combine the preceding lemmata into a proof of Theorem 3.

Proof of Theorem 3. We select μ � 0, p1 	= p2 and set q := 1
2 (p1 + p2). We argue by contradiction under the false

assumption that H(p1,μ) + H(p2,μ) = 2H(q,μ), proceeding by way of a comparison between the functions wδ
α

defined in (5.16) and the solutions vδ
α(·, ·;q,μ) of (4.1) with p = q .

Fix ε > 0 very small and R > 0 very large. According to Lemma 8.2, we may choose δ > 0 sufficiently small to
ensure that, for each α = 1, . . . ,m,

δvδ
α(y,ω;q,μ)� −H(q,μ) + ε in Rd (8.13)

as well as

δwδ
α(·,ω)� −H(q,μ) − ε in Rd . (8.14)
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Therefore, we have

− tr
(
AαD2vδ

α

) + Hα

(
q + Dvδ

α, y,ω
) + fα

(
vδ

1, . . . , v
δ
m,μ,y,ω

)
� H(p,μ) − ε (8.15)

and, for hα defined in (8.2),

− tr
(
AαD2vδ

α

) + Hα

(
q + Dvδ

α, y,ω
) + fα

(
vδ

1, . . . , v
δ
m,μ,y,ω

)
� H(p,μ) + ε − hα(y,ω). (8.16)

According to Lemma 8.1 and the growth lemma, if we choose ε > 0 sufficiently small, then

M(y) := min
α∈{1,...,m}

(
vδ
α(y) − wδ

α(y)
)

(8.17)

satisfies, for some κ,R > 0,

M(y) � κ + inf
z∈B(y,R)

M(z). (8.18)

Such a function cannot be bounded. Indeed, if M were bounded, then, for any β > 0, the function z 
→ M(z) + β|z|
would achieve its global minimum at some point y ∈ Rd . But then we would have

M(y) � M(z) + β
(|z| − |y|) for all z ∈Rd ,

which is incompatible with (8.18) if we take β < κ/R. We conclude that M is unbounded. However, in light of its
definition (8.17), the unboundedness of M contradicts the boundedness of vδ

α and wδ
α . This completes the proof. �
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