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Abstract

We consider spectral optimization problems with internal inclusion constraints, of the form

min
{
λk(Ω): D ⊂ Ω ⊂R

d , |Ω| = m
}
,

where the set D is fixed, possibly unbounded, and λk is the k-th eigenvalue of the Dirichlet Laplacian on Ω . We analyze the
existence of a solution and its qualitative properties, and rise some open questions.
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1. Introduction

A spectral optimization problem is a minimization problem of the form

min
{
J (Ω): Ω ∈ A

}
(1.1)

where J is a cost functional depending on the spectrum of an elliptic operator defined on the (quasi) open set Ω and
A is a class of admissible domains. A wide literature on the subject is available, dealing with existence, regularity,
necessary conditions of optimality, relaxation, explicit solutions and numerical computations of the optimal shapes.
We quote for instance the books [7,18,19] and the articles [2,9,17], where the reader may find a complete list of
references on the field.

The simplest situation for the existence of a solution of problem (1.1) occurs when the class of admissible domains
A satisfies an external inclusion constraint, i.e. consists on quasi-open sets which are supposed a priori contained in
a given bounded open set D of the Euclidean space R

d ,

A= {Ω: Ω ⊂ D, Ω quasi-open}.
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In this case a general existence result, due to Buttazzo and Dal Maso (see [11]), states that problem (1.1), with the
additional constraint |Ω| � m on the Lebesgue measure of the competing domains, admits a solution provided the
cost functional J satisfies the following conditions:

(i) J is lower semicontinuous for the γ -convergence, suitably defined;
(ii) J is monotone decreasing for the set inclusion.

When the surrounding box D is unbounded the existence result above is no longer true, as some simple examples
show. In the case D = R

d a quite different approach to the proof of the existence of optimal domains has been
considered by Bucur in [5,6], using a refined argument related to the Lions concentration-compactness principle
(see [22]), and by Mazzoleni and Pratelli in [21] using a more direct approach. However, the latter approach only
works in the case D =R

d , while the concentration-compactness approach seems more flexible for our purposes.
In this paper we consider problem (1.1) where the admissible class A is defined through an internal constraint:

A= {
Ω: D ⊂ Ω ⊂R

d, Ω quasi-open, |Ω| � m
}
, (1.2)

where D is a fixed quasi-open set of finite measure, possibly unbounded. We consider mainly the cases J (Ω) =
λk(Ω); the case of general monotone decreasing functionals is at present still open (see Section 6).

In spite of its simplicity, even for cost functionals like J (Ω) = λ1(Ω), the existence proof is rather involved, and
several interesting questions arise. For this functional, together with the existence of a solution, we prove some global
properties for the optimal set: it has to lie at a finite distance from D (in particular the optimal set is bounded, provided
D is bounded), it has finite perimeter outside D, it is an open set as soon as its measure is strictly greater than the
measure of (the quasi-connected) D. Local regularity properties, outside D are not discussed here, being similar to
the bounding box situation, and we refer the reader for instance to [4]. We discuss as well the existence question
for J (Ω) = λk(Ω). We refer the reader to [6] and to [21] for the analysis of these functionals in the absence of any
inclusion constraint in R

d .
It is convenient for our purposes to consider also the problem

min
{
λk(Ω) + Λ|Ω|: D ⊂ Ω ⊂R

d, Ω quasi-open
}
, (1.3)

where the measure constraint |Ω| � m is replaced by the Lagrange multiplier penalization Λ|Ω|. The relations be-
tween the constrained problem

min
{
λk(Ω): D ⊂ Ω ⊂R

d , Ω quasi-open, |Ω| � m
}
, (1.4)

and the penalized version (1.3) have been analyzed for k = 1 in [4], while for general k only a partial result is available
(see Lemma 5.10), which is enough for our purposes.

The existence of an optimal domain for problem (1.4), as well as for its penalized version (1.3), is proved in
Theorem 4.7.

2. Notations and preliminaries

We introduce here the main tools we use; further details can be found for instance in [7,9].
In the sequel, we will work in the Euclidean space R

d with d � 2. Given a subset E ⊂ R
d we define the capacity

of E by

cap(E) = inf

{∫
|∇u|2 dx +

∫
u2 dx: u ∈ UE

}
,

where UE is the set of all functions u of the Sobolev space H 1(Rd) such that u� 1 almost everywhere in a neighbor-
hood of E. If a property P(x) holds for all x ∈ E except for the elements of a set Z ⊂ E with cap(Z) = 0, we say
that P(x) holds quasi-everywhere (shortly q.e.) on E, whereas the expression almost everywhere (shortly a.e.) refers,
as usual, to the Lebesgue measure, that we often denote by | · |.

A subset Ω of Rd is said to be quasi-open if for every ε > 0 there exists an open subset Ωε of Rd , with Ω ⊂ Ωε ,
such that cap(Ωε \ Ω) < ε. Similarly, a function f : Rd → R is said to be quasi-continuous (resp. quasi-lower
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semicontinuous) if there exists a decreasing sequence of open sets (ωn)n>0 such that limn→∞ cap(ωn) = 0 and the
restriction fn of f to the set ωc

n is continuous (resp. lower semicontinuous). It is well known (see for instance [23])
that every function u ∈ H 1(Rd) has a quasi-continuous representative ũ, which is uniquely defined up to a set of
capacity zero, and given by

ũ(x) = lim
ε→0

1

|Bε(x)|
∫

Bε(x)

u(y) dy,

where Bε(x) denotes the ball of radius ε centered at x. We often identify the function u with its quasi-continuous
representative ũ; in this way, we have that quasi-open sets can be characterized as the sets of strict positivity of
functions in H 1(Rd) and that the capacity can be equivalently defined by

cap(E) = min

{∫
|∇u|2 dx +

∫
u2 dx: u ∈ H 1(

R
d
)
, u � 1 q.e. on E

}
.

The closure D of a quasi-open set D depends on the representative set of D which is only defined up to a set of
capacity zero. A canonical minimal representative of D can be defined as

D =
⋂

cap(N)=0

{C closed: C ⊇ D \ N},

which contains D q.e. since it can be reduced to a countable intersection.
For every quasi-open set Ω ⊂R

d we denote by H 1
0 (Ω) the space of all functions u ∈ H 1(Rd) such that u = 0 q.e.

on R
d \ Ω , with the Hilbert space structure inherited from H 1(Rd),

〈u,v〉H 1
0 (Ω) = 〈u,v〉H 1(Rd ) =

∫
∇u∇v dx +

∫
uv dx.

The usual properties of Sobolev functions on open sets extend to quasi-open sets.
Let Ω be a quasi-open set of finite measure. By RΩ we denote the resolvent operator of the Laplace equation with

Dirichlet boundary condition,

RΩ : L2(
R

d
) → L2(

R
d
)
,

where RΩ(f ) is the weak solution of the equation
{−�u = f ∈ L2(Rd),

u ∈ H 1
0 (Ω).

It is well known that RΩ is a compact, self adjoint and positive operator, so its spectrum consists on a discrete
decreasing sequence of eigenvalues, which we denote (counting the multiplicities) by 1/λk(Ω). From now on, we call
λk(Ω) the eigenvalues of the Dirichlet Laplacian.

3. The γ -convergence

We endow the admissible class of domains with the following notion of convergence.

Definition 3.1. Let (Ωn)n be a sequence of quasi-open sets of uniformly bounded measure. We say that Ωn

γ -converges to Ω if the resolvent operators RΩn converge to the resolvent operator RΩ in the operator norm of
L(L2(Rd)).

The γ -convergence is metrizable but not compact (see for instance [7, Chapter 4] and [12]). This convergence is
very strong and the eigenvalues λk(Ω) turn out to be γ -continuous. Its (local) compactification has been characterized
in [13] as a space of measures.

We denote by M0 the set of capacitary measures on R
d , that is the set of all Borel measures, possibly taking the

value +∞, vanishing on all sets of zero capacity. Observe that for each Borel set S the measure
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∞S(B) =
{

0 if cap(B ∩ S) = 0,

+∞ otherwise

is a capacitary measure.
For each capacitary measure μ, we define the linear vector space

H 1
μ = H 1(

R
d
) ∩ L2(

R
d,μ

) =
{
u ∈ H 1(

R
d
)
:

∫

Rd

|u|2 dμ < ∞
}
.

Taking Ω a quasi-open set, S = Ωc and μ = ∞S give H 1
μ = H 1

0 (Ω). In [10] it was shown that the space H 1
μ, endowed

with the scalar product

〈u,v〉 =
∫

Rd

∇u∇v dx +
∫

Rd

uv dx +
∫

Rd

uv dμ,

is a Hilbert space. Moreover, the space H 1
μ is separable when seen as a subset of the separable metric space H 1(Rd).

If {un}n�0 ⊂ H 1
μ is a dense countable subset, then we define the regular set of the capacitary measure μ ∈ M0 as

Ωμ =
⋃
n�0

{un �= 0}.

Notice that if μ = ∞S , we have Ωμ = Sc . If the set Ωμ has finite Lebesgue measure, then

‖u‖2 =
∫

Rd

|∇u|2 dx +
∫

Rd

|u|2 dμ,

is an equivalent norm on H 1
μ. We define the resolvent Rμ as the map

Rμ : L2(
R

d
) → L2(

R
d
)
,

which associates to each function f ∈ L2(Rd) the solution u of the relaxed problem formally written as

−�u + μu = f, u ∈ H 1
μ,

which has to be rigorously defined in the weak form⎧⎪⎪⎨
⎪⎪⎩

∫

Rd

∇u∇ϕ dx +
∫

Rd

uϕ dμ =
∫

Rd

f ϕ dx ∀ϕ ∈ H 1
μ,

u ∈ H 1
μ.

If μ is a capacitary measure with regular set of finite Lebesgue measure then Rμ is a compact, self adjoint, positive
operator and we denote by λk(μ) the eigenvalues of R−1

μ . In this case the constant function 1 is in the dual space (H 1
μ)′

and Rμ can be extended to an operator from (H 1
μ)′ to H 1

μ, so we can define wμ := Rμ(1) and we have Ωμ = {wμ > 0}
up to zero capacity sets.

We consider the following relation of equivalence on M0:

μ1 ∼ μ2 ⇐⇒ μ1(Ω) = μ2(Ω), ∀Ω quasi-open.

From now on, we work with the quotient set M0/ ∼ which we still denote by M0 and we call its elements capacitary
measures. We introduce the following convergence on M0:

Definition 3.2. We say that μn γ -converges to μ, if the sequence of regular sets Ωμn is of uniformly bounded Lebesgue
measure and

Rμn

L(L2(Rd ))−→ Rμ.
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Remark 3.3. With the definition above, we have the equivalence

μn
γ−→ μ ⇐⇒ (wμn)n�0 converges in L2(

R
d
)

to wμ.

Indeed, for the “⇐” implication, we refer to [5, Proposition 3.3]. For the direct implication, the proof is immediate.
On the one hand, we have

Rμn(1Ωμn
) − Rμ(1Ωμn

) → 0 in L2(
R

d
)
,

and on the other hand

Rμn(1Ωμ) − Rμ(1Ωμ) → 0 in L2(
R

d
)
.

Making the difference we get that
∥∥Rμn(1Ωμn

) − Rμn(1Ωμ) + Rμ(1Ωμ) − Rμ(1Ωμn
)
∥∥

L2(Rd )
→ 0

and using the maximum principle we conclude with
∥∥Rμn(1) − Rμ(1)

∥∥
L2(Rd )

→ 0.

Definition 3.4. We say that the sequence of capacitary measures μn γloc-converges to the capacitary measure μ, if
for each bounded open set ω ⊂ R

d , we have that the sequence of capacitary measures μn ∨ ∞ωc γ -converges to the
capacitary measure μ ∨ ∞ωc .

Remark 3.5. In [3, Definition 2.7] the γloc-convergence introduced above was called γ -convergence (see also [13])
and was related to the Γ -convergence in L2(Rd) of the integral functionals

Fμ(u,ω) =
∫

Rd

|∇u|2 dx +
∫

Rd

u2 dμ + χH 1
0 (ω)(u),

for each bounded open set ω ⊂R
d , where

χH 1
0 (ω)(u) =

{
0 if u ∈ H 1

0 (ω),

+∞ otherwise.

In [13], it was also proven that with this convergence the space M0 is metrizable [13, Theorem 4.9] and compact [13,
Theorem 4.14].

For each t > 0, we will denote with Mt
0 the following set of capacitary measures

Mt
0 = {

μ ∈ M0: |Ωμ|� t
}
.

Proposition 3.6. The set Mt
0 endowed with the metric

dγ (μ1,μ2) = ‖wμ1 − wμ2‖L2(Rd ),

is a complete metric space.

Proof. Let (μn)n�0 be a sequence such that |Ωμn | � t and (wμn)n�0 converges strongly in L2(Rd) to some function
w ∈ H 1(Rd). By the compactness of the γloc-convergence, each subsequence of (μn)n�0 has a γloc-convergent sub-
sequence, which we still denote by μn and whose limit is μ. By Remark 5.6 in [5], we have that w = wμ, |Ωμ| � t

and μn γ -converges to μ. Since μ is uniquely determined by the relation w = wμ (see [14, Theorem 5.1]), we have
the thesis. �

The proposition below deals with the continuity of λk with respect to the γ -convergence.
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Proposition 3.7. Consider a sequence (Ωn)n�0 of quasi-open sets of uniformly bounded measure such that Ωn

γ -converges to the capacitary measure μ with regular set Ωμ. Then, for every k � 1

λk(Ωμ)� λk(μ) = lim
n→∞λk(Ωn).

Proof. By Remark 3.3, RΩn → Rμ in the operator norm of L(L2(Rd)), and so we have

λk(Ωn) → λk(μ).

The inequality

λk(Ωμ)� λk(μ),

now follows as a consequence of the inequality of the measures ∞Ωc
μ
(B) � μ(B), for each quasi-open set B , in the

min – max definition of the eigenvalues. �
4. Existence of an optimal set

A fundamental tool allowing to understand the behavior of a minimizing sequence in R
d is the concentration-

compactness result (see [5, Theorem 2.2]) for the resolvent operators. We adapt it below in order to manage the
internal constraint. The main changes deal with the compactness situation, where translations disappear.

Theorem 4.1. Let (Ωn)n�0 be a sequence of quasi-open sets of uniformly bounded measure, all containing a given
quasi-open set D. Then, there exists a subsequence, still denoted by (Ωn)n�0, such that one of the following situations
occurs.

(i) Compactness. The sequence (Ωn)n�0 γ -converges to a capacitary measure μ and RΩn converges in the uniform
operator topology of L2(Rd) to Rμ. Moreover, we have that D ⊂ Ωμ.

(ii) Dichotomy. There exists a sequence of subsets Ω̃n ⊆ Ωn, such that:
• ‖RΩn − RΩ̃n

‖L(L2(Rd ),L2(Rd )) → 0;

• Ω̃n is a union of two disjoint quasi-open sets Ω̃n = Ω+
n ∪ Ω−

n ;
• d(Ω+

n ,Ω−
n ) → ∞;

• lim infn→∞ |Ω±
n | > 0;

• lim supn→∞ |Ω+
n ∩ D| = 0 or lim supn→∞ |Ω−

n ∩ D| = 0.

Proof. Since (Ωn)n�1 is a sequence of quasi-open sets of uniformly bounded measure we can apply [5, Theorem 2.2].
If the compactness situation holds in [5, Theorem 2.2], then one can take the sequence yn introduced there to be
convergent. In fact, suppose that yn is divergent and notice that the solution wD+yn is just wD translated to the left
by yn. By the maximum principle, we have that wΩn+yn �wD+yn and so∫

wD+ynwΩn+yn dx �
∫

w2
D dx > 0.

Since yn → ∞, we have that wD+yn ⇀ 0 weakly in L2. By the strong convergence of wΩn+yn we have∫
wD+ynwΩn+yn dx → 0,

which is a contradiction and so we have that yn is bounded and thus, we can extract a convergent subsequence. It
remains to prove that we can take yn = 0, for every n ∈ N. Let yn → y and set w = L2-limn→∞ wΩn+yn . We have∥∥wΩn − w(· − y)

∥∥
L2(Rd )

�
∥∥wΩn − w(· − yn)

∥∥
L2(Rd )

+ ∥∥w(· − yn) − w(· − y)
∥∥

L2(Rd )

�
∥∥wΩn+yn − w

∥∥
L2(Rd )

+ ∥∥w(· − yn) − w(· − y)
∥∥

L2(Rd )
,

and both last terms converge to zero as n → ∞. Thus, by Proposition 3.6, we have that wΩn γ -converges to a capaci-
tary measure μ and w(· − y) = wμ. Moreover, since wΩn � wD for every n ∈ N, we have that also wμ � wD and so
D ⊂ Ωμ a.e.
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If the dichotomy occurs in [5, Theorem 2.2], we have only to show that we can choose a subsequence such that
lim supn→∞ |Ω+

n ∩ D| = 0 or lim supn→∞ |Ω−
n ∩ D| = 0. In fact, since d(Ω+

n ,Ω−
n ) → ∞, we have that one of the

sequences of characteristic functions 1Ω+
n

or 1Ω−
n

has a subsequence, which converges weakly in L2(Rd) to zero.

Taking into account that 1D ∈ L2(Rd), we have the thesis. �
We study the existence of a solution for problem (1.4). We notice that if a solution Ω of problem (1.4) exists, then

necessarily the measure of Ω is precisely equal to m. Indeed, assume by contradiction that Ω is an optimal set with
measure strictly less than m. Since the map t �→ |tΩ ∪ D| is continuous, we can choose some t > 1 such that the set
Ωt = tΩ ∪ D is still of measure less than m. But λk(Ωt ) � λk(tΩ) = 1

t2 λk(Ω) and so, the k-th eigenvalue strictly
diminishes, which contradicts the optimality of Ω .

In the sequel we study problem (1.4) for any k; we will see that the most complete result is for k = 1, while the
case k � 2 requires some additional assumptions on the internal constraint D (see Theorem 4.7).

Theorem 4.2. Let D be a quasi-open set and let m� |D|. Then, the problem

min
{
λ1(Ω): Ω quasi-open, D ⊂ Ω, |Ω| � m

}
, (4.1)

has at least one solution.

Proof. We consider a minimizing sequence (Ωn)n�1 with the property that lim infn→∞ |Ωn| is minimal. Clearly, this
value cannot be equal to zero. According to Theorem 4.1, if we are in the compactness situation, for a subsequence
(still denoted with the same indices) there exists a measure μ such that Ωn γ -converges to μ. Moreover, the regular
set Ωμ is admissible since |Ωμ|� m and D ⊂ Ωμ. By Proposition 3.7 we obtain that Ωμ is a solution of (4.1).

If we are in the dichotomy situation, we get a contradiction. Since Ω+
n and Ω−

n are at positive distance, we may
assume that λ1(Ω

+
n ∪Ω−

n ) = λ1(Ω
+
n ). Then, the sequence Ω+

n ∪D is also minimizing since |λ1(Ω
+
n )−λ1(Ωn)| → 0

(see [5, Proposition 3.7]), but either

lim inf
n→∞

∣∣Ω+
n ∪ D

∣∣ < lim inf
n→∞ |Ωn|,

or |Ω−
n \D| → 0. The first assertion is in contradiction with our assumption on the choice of a least measure minimiz-

ing sequence. The second assertion is also impossible, since it implies that d(Ω+
n , {0}) → +∞, otherwise the measure

of D would be infinite. Consequently, since the measure of D is finite, we get that |Ω+
n ∩ D| → 0 and consider the

ball B of measure equal to lim sup |Ω+
n |. Therefore, B ∪ D is a solution for every position of the ball B . In particular,

this leads to a contradiction if the ball intersects, but not cover, a quasi-connected component of D. �
Remark 4.3. Let us notice that from every minimizing sequence we can extract a γ -convergent subsequence. The
basic observation is that any minimizing sequence for which lim infn→∞ |Ωn| is minimal leads to an optimal set, which
necessarily has the measure equal to m. Since the Lebesgue measure is lower semicontinuous for the γ -convergence,
this means that any minimizing sequence should satisfy limn→∞ |Ωn| = m excluding the dichotomy in the proof
above.

In the sequel we show a result which gives a rather explicit behavior of a minimizing sequence for problem (1.4).
For every m > 0 we introduce the value

λ∗
k(m) = inf

{
λk(Ω): Ω quasi-open, |Ω| � m

}
.

Following [6], there exists a bounded quasi-open set Ωm, with measure equal to m such that λk(Ω
m) = λ∗

k(m).

Theorem 4.4. Let D be a quasi-open set and let m� |D|. For k ∈ N, k � 2, we define

αk = inf
{
λk(Ω): Ω quasi-open, D ⊂ Ω, |Ω| � m

}
.

One of the following assertions holds:
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(i) problem (1.4) has a solution;
(ii) there exist l ∈ {1, . . . , k − 1} and an admissible quasi-open set Ω such that αk = λk−l(Ω) = λ∗

l (m − |Ω|);
(iii) there exists l ∈ {1, . . . , k − 1} such that αk = λ∗

l (m − |D|) > λk−l (D).

Proof. Let us consider a minimizing sequence (Ωn)n�1 with the property that lim infn→∞ |Ωn| is minimal. If com-
pactness occurs in Theorem 4.1, then the existence of a solution follows as in Theorem 4.2.

If dichotomy occurs, as in Theorem 4.2 we may assume that∣∣Ω+
n

∣∣ → α+,
∣∣Ω−

n

∣∣ → α−,
∣∣Ω+

n ∩ D
∣∣ → 0.

Then, up to a subsequence there exists l ∈ {1, . . . , k − 1} such that one of the two possibilities below holds:

(A) |λk(Ωn) − λk−l (Ω
−
n )| → 0 and λl(Ω

+
n ) � λk−l(Ω

−
n ) � λl+1(Ω

+
n );

(B) |λk(Ωn) − λl(Ω
+
n )| → 0 and λk−l(Ω

−
n )� λl(Ω

+
n ) � λk−l+1(Ω

−
n ).

We may take the maximal l with such a property. We use now an induction argument as follows. For k = 1 as proved
in Theorem 4.2, dichotomy does not occur, so the compactness gives (i). Assume that for 1, . . . , k − 1 Theorem 4.4 is
true. We prove it for k. If compactness occurs, then (i) holds. If dichotomy occurs and we are in situation (A) we get
that (Ω−

n ∪ D)n is minimizing for the k − l eigenvalue with the inclusion constraint and the corresponding measure
m − α+ � lim infn→∞ |Ω−

n ∪ D|. Since l is maximal with this property, for the sequence (Ω−
n ∪ D)n dichotomy

cannot occur again, so finally (ii) holds.
If (B) occurs, then |Ω−

n \ D| → 0 and we are in situation (iii). �
Remark 4.5. Theorem 4.4 gives a complete description of the behavior of a minimizing sequence for λk , k � 2.
Assertion (i) implies the existence of a solution. As well if D has some suitable geometric properties (for instance if
D is bounded), both alternatives (ii) and (iii) lead to the existence of a solution. In fact, if for instance (ii) occurs, the
set Ω ∪Ωm−|Ω| is a minimizer provided that Ω ∩Ωm−|Ω| = ∅. Similarly, for (iii) the set D ∪Ωm−|D| is a minimizer,
provided that D ∩ Ωm−|D| = ∅.

The result below is analogous to Theorem 4.2 and Theorem 4.4, corresponding to the problem (1.3). We omit the
proof, since it is the same as that of Theorem 4.2 and Theorem 4.4.

Theorem 4.6. Let D be a quasi-open set of finite measure and let Λ > 0. For k ∈ N, we define

βk = inf
{
λk(Ω) + Λ|Ω|: Ω quasi-open, D ⊂ Ω

}
.

Suppose that Ωn is a minimizing sequence for βk such that there exists the limit m := limn→∞ |Ωn|. If k = 1, then the
problem (1.3) has solution. If k � 2, then one of the following assertions holds:

(i) problem (1.3) has a solution;
(ii) there exist l ∈ {1, . . . , k − 1} and an admissible quasi-open set Ω such that βk = λk−l(Ω) = λ∗

l (m − |Ω|);
(iii) there exists l ∈ {1, . . . , k − 1} such that βk = λ∗

l (m − |D|) > λk−l (D).

We conclude summarizing the assertions above into the following existence result, whose proof will be given in
Section 5.

Theorem 4.7. Let D ⊂R
d be a quasi-open set of finite measure such that

for any R > 0, there exists x ∈R
d such that BR(x) ∩ D = ∅. (4.2)

Then, for any k > 0 and Λ > 0, there exists a solution of (1.3). Moreover, if D satisfies in addition also the assumption

lim sup
t→1+

|D \ tD|
t − 1

< ∞,

then problem (1.4) admits a solution, for any k > 0 and m� |D|.



D. Bucur et al. / Ann. I. H. Poincaré – AN 30 (2013) 477–495 485
Remark 4.8. The assumption (4.2) is crucial for the proof of Theorem 4.7. We do not know whether the existence of
an optimal domain occurs without it.

5. Qualitative properties of the optimal sets

A natural question that arises in the shape optimization problems with constraints like (4.1) is to understand the
influence of the inclusion domain D on the optimal sets: does boundedness and/or convexity of D imply the same
properties on the optimal set? As we shall see, the answer is positive for the boundedness constraint, but negative for
the convexity constraint.

5.1. Regularity of the optimal set for k = 1

In this section we deal with the penalized version of problem (4.1)

min
{
λ1(Ω) + Λ|Ω|: Ω ⊂R

d, Ω quasi-open, D ⊂ Ω
}
, (5.1)

for some Λ > 0. For the local equivalence of the two problems we refer the reader to [4]. As well, we refer the reader
to [4] for a complete analysis of a similar problem, in which the internal constraint D ⊂ Ω is replaced by an external
constraint Ω ⊂ D, with a bounded open set D.

In the case of internal constraint, new behaviors can be noticed with respect to [4]; we prove that the optimal set
of (5.1) is open even if D is only quasi-open, provided that D is quasi-connected and the optimal set has a measure
strictly greater than |D|.

Definition 5.1. We say that the quasi-open set D is quasi-connected if for every pair of non-empty quasi-open sets A1
and A2 having intersection of positive capacity with D and such that D ⊂ A1 ∪ A2, we get cap(A1 ∩ A2) > 0.

The quasi-connectedness has a topological counterpart. Indeed, a quasi-open, quasi-connected set A has a fine
interior (which differs from A by a set of zero capacity) which is finely connected (the fine topology being the coarsest
topology making all superharmonic functions continuous). A non-negative superharmonic function in H 1

0 (A) with A

finely connected, is either equal to 0 or is strictly positive (see [8,16,20]).

Example 5.2. The assumption D quasi-connected is essential to obtain that the optimal set Ω is open even when D

is only quasi-open. Indeed, consider D = B0 ∪ D0, where B0 is a large ball and D0 is a quasi-open and not open set,
whose distance from B0 is large enough and whose measure is less than |B0|. It is easy to see that in this case the
optimal set is of the form B ∪ D0, where B is a ball containing B0.

Remark 5.3. In spite of the example above, if D is an arbitrary open set, then every optimal set Ω for problem
(5.1) is open. Indeed, a careful inspection of the proof of Proposition 5.6 below gives that {u > 0} is open; since
Ω = {u > 0} ∪ D we have that Ω is open.

In the following, without loss of generality we assume that Λ = 1.

Remark 5.4. The existence of a solution to (5.1) follows by the same argument we used in the proof of Theorem 4.2
and so we omit the proof.

Let D be a quasi-open, quasi-connected set of finite measure. Let Ω be a solution of problem (5.1), let λ := λ1(Ω),
and let u := uΩ be the first normalized eigenfunction:{−�u = λu,

u ∈ H 1
0 (Ω), ‖u‖L2 = 1.

As D is quasi-connected, if Ω is optimal, then u is a solution of the minimization problem

min

{∫ |∇v|2 dx∫
v2 dx

+ ∣∣{v > 0}∣∣: v ∈ H 1(
R

d
)
, v � 0, D ⊂ {v > 0}

}
. (5.2)
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The following lemma has a proof similar to [1, Lemma 3.2] and [4, Lemma 3.1], so we omit it.

Lemma 5.5. Let u be a supersolution of problem (5.2), in the sense that for any v ∈ H 1(Rd) such that v � u, we have
∫ |∇v|2 dx∫

v2 dx
+ ∣∣{v > 0}∣∣�

∫ |∇u|2 dx∫
u2 dx

+ ∣∣{u > 0}∣∣.
Then there is a constant C depending only on the dimension d such that for each r > 0, the following implication
holds:

Cr � 1

|∂Br |
∫

∂Br

udHd−1 �⇒ Br ⊂ {u > 0}. (5.3)

The next proposition follows the approach first introduced in [1]; nevertheless, we give the proof below to stress
the fact that the quasi-open internal constraint does not change the argument too much.

Proposition 5.6. Let D be a quasi-open, quasi-connected set of finite measure. Every solution Ω of problem (5.1) is
an open set up to a set of capacity 0.

Proof. Since D is quasi-connected, the optimal domain Ω is quasi-connected too. Indeed, otherwise Ω would have
at least two quasi-connected components, one of which contains D. Then:

(i) either λ1(Ω) is realized on a component not containing D, in which case D ∪ B , for a suitable ball B , is a better
competitor;

(ii) or λ1(Ω) is realized on the component Ω1 containing D, in which case replacing Ω by a suitable enlargement of
Ω1 gives again a better competitor.

Let u be a solution of (5.2). We prove that if u(x) > 0, then u is positive in a small ball centered at x. Without loss of
generality, we can suppose that x = 0 and that 0 is a regular point in the sense that

u(0) = lim
r→0

1

|Br(0)|
∫

Br (0)

u(y) dy.

Denote by ϕr the solution of
{−�ϕr = 1,

ϕr ∈ H 1
0 (Br),

(5.4)

where Br denotes the ball centered in 0 of radius r . An explicit computation gives

ϕr(y) = r2 − |y|2
2d

.

Since u� 0 and �u+λu = 0 on {u > 0}, we have that �u+λu� 0 in distributional sense on R
d . Indeed, arguing as

in [19, Lemma 7.2.5], we consider, for any non-negative ϕ ∈ H 1(Rd), the test function pn(u)ϕ ∈ H 1
0 ({u > 0}), where

pn(t) is 0, for t � 0, 1, for t � 1/n and equals nt , for t ∈ [0,1/n]. An explicit calculation gives

0 = lim sup
n→∞

〈
�u + λu,pn(u)ϕ

〉
� 〈�u + λu,ϕ〉.

As a consequence, using the boundedness of u (see [15]), we obtain

�
(
u − ‖u‖∞λϕr

)
�−λu + λ‖u‖∞ � 0

on each ball Br , so the function u − ‖u‖∞λϕr is subharmonic on Br . By Poisson’s formula, we have
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u(0) − ‖u‖∞λϕr(0) � C(d)
1

|∂Br |
∫

∂Br

u(y) dHd−1(y),

u(0) − ‖u‖∞λC1r
2 � C(d)

1

|∂Br |
∫

∂Br

u(y) dHd−1(y).

Suppose that u(0) > 0. Then, choosing r small enough, we have

u(0) � 2C(d)

|∂Br |
∫

∂Br

u(y) dHd−1(y).

Now choose C as in Lemma 5.5 and r such that 2rCC(d) � u(0). Then

Cr � 1

|∂Br |
∫

∂Br

u(y) dHd−1(y),

and so u > 0 on Br . �
Remark 5.7. Alternatively, one can formulate the proposition above, requiring that the inclusion D ⊂ Ω holds quasi-
everywhere, and in this case the optimal sets {u > 0} in (5.2) are open and u is continuous. In fact, in [1] it is proven a
stronger result on the Lipschitz continuity of u, even if this does not provide a higher regularity of the optimal set Ω .

Remark 5.8. The regularity of the free parts of the boundary is the same as in [4, Theorem 1.2], being independent of
the fact that the inclusion constraint is internal or external.

Remark 5.9. If D is a quasi-open set such that there does not exist an open set containing D and having the same
Lebesgue measure, then Proposition 5.6 asserts that the measure of any optimal set is strictly greater than the measure
of D.

In general, this is not the case if D is an open set. Indeed, following a simple computation one can consider D to
be a ball B and take a constant Λ large enough, so that the optimal set is B itself. More generally, if the partial metric
derivative of the first eigenvalue on D is finite, i.e.

λ′
1(D) := lim sup

|E\D|→0, E⊃D

λ1(D) − λ1(E)

|E \ D| < +∞,

then for every Λ > λ′
1(D) there exists Λ′ > Λ such that the optimal solution of (5.1) with Λ′ is D. Indeed, by

contradiction for every Λ > λ′
1(D) there exists ε > 0 such that for every Ω ⊃ D such that |Ω| � |D| + ε we have

λ1(D) + Λ|D|� λ1(Ω) + Λ|Ω|.
Then, replacing Λ with Λ′ > Λ such that Λ′ � λ1(D)

ε
, we get that D is a global minimizer.

5.2. Bounded constraint implies bounded minimizers

In this paragraph we consider the penalized version (1.3). In fact the following lemma gives a relation between the
solutions of the constrained problem (1.4) and the subsolutions of the Lagrange multiplier penalized version (1.3).
Adapting a notion introduced in [6], we say that Ω∗ is a shape subsolution for λk if there exists c > 0 such that

λk

(
Ω∗) + c

∣∣Ω∗∣∣� λk(Ω) + c|Ω| ∀D ⊂ Ω ⊂ Ω∗. (5.5)

For simplicity, we consider the internal constraint D regular enough such that

lim sup
t→1+

|D \ tD|
t − 1

< ∞. (5.6)

This condition is for instance satisfied if D is bounded and Lipschitz, or if D is star shaped.
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Lemma 5.10. Suppose that the internal constraint D satisfies (5.6) and assume that Ωm is a solution of

min
{
λk(Ω): D ⊂ Ω ⊂R

d , Ω-quasi-open, |Ω|� m
}
. (5.7)

Then Ωm is a shape subsolution for λk .

Proof. We first notice that |Ωm| = m. Suppose by contradiction, that for each ε > 0, there is some quasi-open set Ωε

such that D ⊂ Ωε ⊂ Ωm and

λk(Ωε) + ε|Ωε| < λk(Ωm) + ε|Ωm|. (5.8)

By the compactness of the inclusion H 1
0 (Ω) ⊂ L2(Ω), we can suppose, up to a subsequence that Ωε γ -converges to

some capacitary measure μ, whose regular set Ωμ is such that

|Ωμ| � lim inf
ε→0

|Ωε|,
λk(Ωμ)� λk(μ) = lim

ε→0
λk(Ωε) � λk(Ωm),

where the last inequality is due to (5.8) and Lemma 3.7. Thus, we obtain that Ωμ is a solution of (5.7) and so |Ωμ| = m

and λk(Ωμ) = λk(Ωm).
Let Ω ′

ε = tεΩε ∪ D, where tε is such that |Ω ′
ε| = m. Then, we have that

λk(Ωε) + ε|Ωε| < λk(Ωm) + ε|Ωm|
� λk

(
Ω ′

ε

) + ε
∣∣Ω ′

ε

∣∣
� λk(tεΩε) + ε|tεΩε ∪ D|
� 1

t2
ε

λk(Ωε) + ε
(|tεΩε| + |D \ tεΩε|

)

� 1

t2
ε

λk(Ωε) + ε
(|tεΩε| + |D \ tεD|), (5.9)

and so

t2
ε − 1

t2
ε

λk(Ωε) � ε
((

tdε − 1
)|Ωε| + |D \ tεD|). (5.10)

By hypothesis (5.6) passing to the limit as tε → 1+, there is some constant C such that

λk(Ωε) � εC, (5.11)

for ε small enough. But, by (5.9), λk(Ωε) → λk(Ωm) and so, we have a contradiction. �
We give the following technical result for which we refer to [1, Lemma 3.4] and to [4, Lemma 3.1] in the case

k = 1 and to [6, Lemma 2.3] for the general case.

Lemma 5.11. Let Ω be a shape subsolution for λk and let w be the solution of the equation{−�w = 1 ∈ Ω,

w ∈ H 1
0 (Ω).

Then there exist two constants C0 and r0 such that for each x ∈ R
d such that d(x,D) > r0 and for each r < r0 the

following implication holds:
(‖w‖L∞(Br ) � C0r

) ⇒ (w = 0 on B r
2
). (5.12)

The proof of this lemma relies on the fact that shape subsolutions for λk are local shape subsolutions for the energy
problem (see [6, Definition 2.1] for more details).
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Proposition 5.12. Suppose that D is a quasi-open set of finite measure and that Ω is a shape subsolution for λk . Then
there exists L > 0 such that Ω ⊂ D + BL(0). In particular if D is bounded, then Ω is bounded.

Proof. With no loss of generality we set c = 1 in (5.5). Assume by contradiction that such L does not exist. Then,
there is a sequence (xn)n�1 ⊂ Ω such that d(xn,D) → +∞ and |xn − xm| � 2r0, when n �= m. Since Ω = {w > 0},
we have w(xn) > 0, for every n and so, by Lemma 5.11, there are constants C0 > 0 and 0 < r0 such that we have the
bound

‖w‖L∞(Br (xn)) � C0r ∀r < r0.

For each n, consider yn ∈ Br(xn) such that

w(yn)�
1

2
C0r.

Consider the function ϕr(· − yn), as defined in (5.4). Then w − ϕr(· − yn) is subharmonic, since

�
(
w − ϕr(· − yn)

)
� 0.

So, we have the inequalities

∫
Br (yn)

(
w(x) − ϕr(x − yn)

)
dx � |Br |

(
w(yn) − ϕr(x − yn)

)
� |Br |

(
C0

2
r − r2ϕ1(0)

)
;

∫
Br (yn)

w(x)dx � r2+d‖ϕ‖L1 + |Br |
(

C0

2
r − r2ϕ1(0)

)
.

Choose now 0 < r < r0 small enough such that C0
2 r − r2ϕ1(0) > 0. Then there is a constant c > 0, such that

∫
Br (yn)

w(x)dx � c ∀n ∈N.

The fact that the balls Br(yn) are all disjoint contradicts the integrability of w. �
Remark 5.13. The constant c, depends on C0, r0 and λk(D). In fact, the proof of the proposition above gives an
estimate on the number of admissible points xn. Therefore the value of L could be estimated more explicitly.

We are now in a position to prove the existence Theorem 4.7.

Proof of Theorem 4.7. We prove the thesis by induction. In the case k = 1, the existence of an optimal domain
follows by Theorem 4.6. Suppose that the thesis is true for l = 1, . . . , k − 1 and let Ωn be a minimizing sequence for
the problem (1.3). Up to extracting a subsequence, we can suppose that |Ωn| is convergent. Applying Theorem 4.6, for
m := lim |Ωn|, we have three possibilities. If case (i) occurs, then we have a solution of (1.3). Suppose that (ii) holds
and let Ω and l < k be as in (ii) of Theorem 4.6. By the inductive step, there is a solution Ωk−l of (1.3) with k = k − l.
By Proposition 5.12, we have that for any R > 0, there exists x ∈ R

d such that BR(x) ∩ Ωk−l = ∅. Let Ω∗
l be the

optimal set for λl + Λ| · | in R
d . By [6, Theorem 3.3], Ω∗

l is bounded and so, we may suppose that Ω∗
l ∩ Ωk−l = ∅.

Thus, the set Ωk := Ω∗
l ∪Ωk−l is a solution of (1.3). If (iii) occurs, we reason as above, obtaining that the set Ω∗

l ∪D

is a solution of (1.3). The proof that the problem (1.4) has a solution follows by the same argument and Theorem 4.4.
Note that, in order to construct an optimal set for λk , in the case when (ii) occurs, we need that the optimal sets for
(1.4) are bounded. This is true since, under the assumption (5.6), any solution of (1.4) is a subsolution for λk (see
Lemma 5.10) and so, is bounded, by Proposition 5.12. �
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Fig. 1. Convex obstacle does not imply convex optimal set.

5.3. Convex constraint does not imply convex optimal set

In this section we will prove that the solution Ω of the optimization problem (4.1) might not be convex even if the
constraint D is convex. Consider the sequence of constraints (Dn)n�1, where Dn = (− 1

n
, 1

n
) × (−1,1) and consider

the sequence of bounded open sets (Ωn)n�1 such that for each n big enough, Ωn is a solution of the shape optimization
problem:

min
{
λ1(Ω): Dn ⊂ Ω, Ω quasi-open, |Ω| = m

}
. (5.13)

Proposition 5.14. For every m < 4/π , there is N > 0 such that Ωn is not convex for all n� N .

Proof. We begin with some observations on the optimal sets.

1. By a Steiner symmetrization argument, all the sets Ωn are Steiner symmetric with respect to the axes x and y (in
consequence, they are also star shaped sets).

2. For n large enough, we consider the set Ω ′
n = Dn ∪ B∗(m − 4

n
), where for any a > 0, B∗(a) denotes the ball

centered in 0 of measure a. By the optimality of Ωn, we have

λ1(Ωn)� λ1
(
Ω ′

n

)
� λ1

(
B∗

(
m − 4

n

))
.

By Theorem 4.1, there is a γ -converging subsequence still denoted by (Ωn)n�1. Let Ω be the γ -limit of this subse-
quence. Then

• λ1(Ω) � lim infn→∞ λ1(Ωn) � lim infn→∞ λ1(B
∗(m − 4

n
)) = λ1(B

∗(m));
• |Ω| � lim infn→∞ |Ωn| = m.

Using the fact that the ball is the unique minimizer of λ1 under a measure constraint, we obtain Ω = B∗(m). Consider

a ball B ′ of center (0,
√

m
π

− ε) and radius ε and a ball B ′′ of center (0,−
√

m
π

+ ε) and radius ε. Then

Ωn ∩ B ′ γ−→
n→∞Ω ∩ B ′ = B ′, Ωn ∩ B ′′ γ−→

n→∞Ω ∩ B ′′ = B ′′.

Then there is some n large enough such that both sets B ′ ∩Ωn and B ′′ ∩Ωn are non-empty, and Ωn cannot be convex
(see Fig. 1).

In fact, if by contradiction Ωn was convex, then we should have that the rhombus R with vertices (−1,0),

(0,−
√

m
π

+ ε), (1,0), (0,
√

m
π

− ε) is contained in Ωn. But

|R| = 2

(√
m

π
− ε

)
> m,

for ε small enough and m � 4/π , and this is a contradiction. �
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5.4. Lack of monotonicity

We show here that in problem (4.1) the optimal solutions are not monotone with respect to m, i.e. m1 < m2 does
not imply in general that Ω1 ⊂ Ω2 where Ωi is optimal with the constraint mi . Similarly, in the penalized problem
(5.1), the same lack of monotonicity occurs with respect to Λ, i.e. Λ1 < Λ2 does not imply in general that Ω1 ⊃ Ω2

where Ωi is optimal with the penalization Λi . Here we consider only the case of penalization, since the first one
follows as a consequence, taking m1 = |Ω2| and m2 = |Ω1|.

Let us consider in R
2 the internal constraint D of the form D = B1/2(0) ∪ Rε,η where Rε,η is the rectangle

(η,0) + (− ε
2 , ε

2 ) × (− 1
2ε

, 1
2ε

). The parameters ε, η will be fixed later.
Note that π

4 = |B1/2(0)| < |Rε,η| = 1 and that λ1(B1/2(0)) < λ1(R
ε,η) for ε small enough. As well, we notice that

the distance between B1/2(0) and Rε,η tends to +∞ as η → +∞. Following Remark 5.13 for every Λ and ε > 0,
there exists η large enough such that every solution Ω of (5.1) satisfies one of the following two possibilities:

(A) Ω = B ∪ Rε,η , where B is a ball containing B1/2(0) and disjoint from Rε,η;
(B) Ω = B1/2(0) ∪ A, where A is a connected open set containing Rε,η and disjoint from B1/2(0).

Lemma 5.15. Let Λ > 0 be fixed, let Ωε be a solution of the problem

min
{
λ1(Ω) + Λ|Ω|: Ω ⊃ Rε,0},

and let B be a ball solving

min
{
λ1(Ω) + Λ|Ω|: Ω ⊂R

2}.
Then we have

λ1(B) = lim
ε→0

λ1(Ωε), |B| + 1 = lim
ε→0

|Ωε|.

Proof. By Steiner symmetrization along both axes, the sets Ωε are Steiner symmetric, and so star shaped. Therefore
the sets Ωε fulfill a uniform exterior segment condition which, together with the compactness result [13, Theo-
rem 4.14], is enough (see [7, Chapter 4]) to give that Ωε γloc-converges to some open set Ω .

We first notice that

λ1(Ωε) + Λ|Ωε|� λ1
(
B1(0)

) + Λ
∣∣B1(0)

∣∣ + Λ := c, (5.14)

which gives that both measures of Ωε and λ1(Ωε) are uniformly bounded. Because of that and of the Steiner sym-
metrization above, all Ωε are contained in the set{

(x, y): |xy| � c
}
. (5.15)

From the properties of the γloc-convergence, for every ball BR(0) we have that∣∣Ω ∩ BR(0)
∣∣� lim inf

ε→0

∣∣Ωε ∩ BR(0)
∣∣.

Since

lim inf
ε→0

∣∣Ωε ∩ BR(0)
∣∣ � lim inf

ε→0
|Ωε| − 1,

we get

|Ω| + 1 � lim inf
ε→0

|Ωε|. (5.16)

We prove now that

λ1(Ω) � lim inf
ε→0

λ1(Ωε). (5.17)

Let uε be the first normalized eigenfunction on Ωε . By the concentration-compactness principle, we may have:
compactness, vanishing or dichotomy. The vanishing is ruled out by the fact that in this case we would have
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λ1(Ωε) → +∞, which contradicts (5.14). The dichotomy is ruled out too, by the following argument. Let ui
ε , i = 1,2

be the two sequences provided by the dichotomy. From the concentration-compactness principle, at least one se-
quence of quasi-open sets {ui

ε > 0} has a distance from the origin going to +∞. In the same time λ1({ui
ε > 0}) are

equibounded. This is in contradiction with the inclusion (5.15). Therefore the compactness occurs, i.e. uε(· + yε)

converges strongly in L2(R2) to some function u ∈ H 1
0 (Ω). Again, by Steiner symmetrization the vectors yε can be

taken equal to 0. Consequently (5.17) is achieved.
Taking test domains of the form B ∪ Rε,0 with B ∩ Rε,0 = ∅ we have that

λ1(B) + Λ|B| + Λ � λ1(Ωε) + Λ|Ωε|,
and passing to the limit

λ1(B) + Λ|B| + Λ � λ1(Ω) + Λ|Ω| + Λ.

Using the optimality of the ball B we get Ω = B and inequalities (5.16)–(5.17) become equalities. �
Let us fix Λ2 such that a global solution of

min
{
λ1(Ω) + Λ2|Ω|: Ω ⊂R

2},
is the ball B1(0). Then for ε small enough given by Lemma 5.15 and for η large enough given by Remark 5.13 the
solution of (5.1) with Λ2 is

Ω2
ε = B1(0) ∪ Rε,η.

Indeed, from Lemma 5.15, for ε small enough we have

λ1(Ωε) + Λ2|Ωε| + Λ2
∣∣B1/2(0)

∣∣ > λ1
(
B1(0)

) + Λ2
∣∣B1(0)

∣∣ + Λ2
∣∣Rε,η

∣∣,
so situation (A) occurs.

For the ε fixed above, take Λ1 small enough such that a ball B ′ containing Rε,0 is a global minimizer for

min
{
λ1(Ω) + Λ1|Ω|: Ω ⊂R

2}.
Then we are in situation (B) since |B1/2(0)| < |Rε,0|. This concludes our argument since no monotonicity may occur.

5.5. The optimal set for λk has finite perimeter

The proof of the fact that the solution of the problem (1.3) has a finite perimeter of the free boundary (i.e. outside
the closure of the constraint), is based on a shape subsolutions technique involving the energy functional E(Ω), whose
definition we recall here (see [6]).

Definition 5.16. For each quasi-open set Ω of finite Lebesgue measure, we define the energy functional

E(Ω) = inf

{
1

2

∫
Ω

|∇w|2 dx −
∫
Ω

w dx: w ∈ H 1
0 (Ω)

}
. (5.18)

We denote by wΩ the solution of{−�wΩ = 1,

wΩ ∈ H 1
0 (Ω),

(5.19)

which, in particular, is the minimizer in (5.18).

The proof of the following proposition uses the same argument as in Theorem 2.2. of [6]. We adapt this technique
to the case of the internal constraint. Note that, when k = 1, the proposition below can be proved directly, working
with the first eigenfunction u1, instead of wΩ .

Proposition 5.17. Let Ω be an optimal domain for (1.3). Then the perimeter of Ω in R
d \ D is finite.
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Proof. By Lemma 4.1 of [6], we have that there exists some positive constant c depending on Ω such that

λk(Ω̃) − λk(Ω) � c
(
E(Ω̃) − E(Ω)

) ∀D ⊂ Ω̃ ⊂ Ω quasi-open. (5.20)

Using the optimality of Ω , we have

E(Ω) + Λ|Ω| �E(Ω̃) + Λ|Ω| ∀D ⊂ Ω̃ ⊂ Ω quasi-open, (5.21)

where Λ = 1/c, i.e. Ω is an energy subsolution. Let w = wΩ be the solution of (5.19). Consider the set Ωε =
D ∪ {w > ε} instead of Ω̃ in (5.21). By the fact that (w − ε)+ ∈ H 1

0 (Ωε), we have

E(Ω) + Λ|Ω| �E(Ωε) + Λ|Ωε|� 1

2

∫ ∣∣∇(w − ε)+
∣∣2

dx −
∫

(w − ε)+ dx + Λ|Ωε|, (5.22)

and since E(Ω) = 1
2

∫ |∇w|2 dx − ∫
w dx, we obtain

ε|Ω| �
∫

w dx −
∫

(w − ε)+ dx

� 1

2

∫
{0<w�ε}

|∇w|2 dx + Λ|Ω \ Ωε|

� 1

2

∫

{0<w�ε}\D
|∇w|2 dx + Λ

∣∣{0 < w � ε} \ D
∣∣

� 1

2|{0 < w � ε} \ D|
( ∫

{0<w�ε}\D
|∇w|dx

)2

+ Λ
∣∣{0 < w � ε} \ D

∣∣. (5.23)

Thus, we have that∫

{0<w�ε}\D

∣∣∇w(x)
∣∣dx � ε|Ω|√Λ/2. (5.24)

By the co-area formula

1

ε

ε∫
0

P
({w > t};Rd \ D

)
dt � |Ω|√Λ/2, (5.25)

for each ε > 0 small enough. Then, there is a sequence (εn)n�1 converging to 0 such that

P
({w > εn};Rd \ D

)
� |Ω|√Λ/2.

Passing to the limit we have

P
({w > 0};Rd \ D

)
� |Ω|√Λ/2,

as required. �
6. Open problems and complements

We give a list of some open problems that arose during the work on this article. We denote by Ω(D,m) a quasi-
open set of Lebesgue measure m, which solves the shape optimization problem (4.1).

1. Let D be an open convex set such that for every m � |D| there exists a convex solution to the shape optimization
problem (4.1). Is it true that then D is a ball?

2. Is it true that for every quasi-open set D with finite measure, problem (1.4) has a solution?
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3. If D is not a ball, is there some ε > 0, such that for every 0 < m < ε, the set Ω(D, |D| + m) is unique? Note that
this is certainly not true when m is large, since for a bounded D any ball of measure m and containing D is a
solution.

4. If m′ > m, is there an optimal set Ω(D,m′) containing the optimal set Ω(D,m)? Note that the symmetric state-
ment (if m′ < m, then for each optimal set Ω(D,m), there is an optimal set Ω(D,m′) ⊂ Ω(D,m)) is false.
Indeed, take for instance D the unit square in R

2 centered in 0 and m′ = π
2 < m. Then Ω(D,m′) is the ball

centered at 0 with radius 1√
2

and Ω(D,m) is any ball of radius
√

m
π

. Clearly, there are balls Ω(D,m) which do

not contain Ω(D,m′).
5. An interesting problem, similar to (4.1), is given by the minimization of the energy integral functional

E(Ω) = −
∫

wΩ(x)dx.

We can repeat in this case all the arguments above, obtaining similar existence, boundedness and regularity results.
In particular, working with the energy functional simplifies the analysis of Proposition 5.6, obtaining that optimal
sets are open, even without the quasi-connectedness assumption on D.

One can consider more general spectral optimization problems where the cost is

J (Ω) = Φ
(
λ(Ω)

)
,

for a suitable function Φ . If Φ is:

(a) monotone increasing, that is Φ(λ)� Φ(λ′) whenever λk � λ′
k , for every k,

(b) lower semicontinuous, that is Φ(λ) � lim infn→∞ Φ(λn), whenever λn
k → λk for every k,

then the optimization problem with an external bounded constraint has a solution thanks to [11]. The general case for
the internal constraint problem remains, on the contrary, open.

Finally, one can consider shape optimization problems with cost functional of integral form. Given a right-hand
side f we consider the PDE

−�u = f in Ω, u ∈ H 1
0 (Ω),

which provides, for every admissible domain Ω , a unique solution uΩ that we assume extended by zero outside of Ω .
The cost is in this case of the form

J (Ω) =
∫

Rd

j
(
x,uΩ(x)

)
dx.

If j (x, ·) is lower semicontinuous, decreasing and such that j (x, s) � a(x)− c|s|2 for suitable a ∈ L1(Rd) and c > 0,
then the optimization problem with an external bounded constraint has again a solution thanks to [11] but the general
case for the internal constraint problem remains open.
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