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Abstract

In this paper we study the homogenization of monotone diffusion equations posed in an N-dimensional cylinder which converges
to a (one-dimensional) segment line. In other terms, we pass to the limit in diffusion monotone equations posed in a cylinder whose
diameter tends to zero, when simultaneously the coefficients of the equations (which are not necessarily periodic) are also varying.
We obtain a limit system in both the macroscopic (one-dimensional) variable and the microscopic variable. This system is nonlocal.
From this system we obtain by elimination an equation in the macroscopic variable which is local, but in contrast with usual results,
the operator depends on the right-hand side of the equations. We also obtain a corrector result, i.e. an approximation of the gradients
of the solutions in the strong topology of the space L” in which the monotone operators are defined.
© 2012 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

Résumé

Dans cet article nous étudions I’homogénéisation d’équations de diffusion monotones posées dans un cylindre de dimension N
qui converge vers un segment (qui est donc unidimensionnel). En d’autres termes, nous passons a la limite dans des équations de
diffusion monotones posées dans un cylindre dont le diametre tend vers zéro, quand en méme temps les coefficients des équations
(qui ne sont pas nécessairement périodiques) varient eux aussi. Nous obtenons un systeme limite en la variable macroscopique
(unidimensionnelle) et en la variable microscopique. Ce systeme est non local. A partir de ce systeéme nous obtenons par élimination
une équation en la variable macroscopique qui est locale, mais dans laquelle, a la difference des résultats usuels, 1’opérateur dépend
du second membre des équations. Nous obtenons aussi un résultat de correcteur, c’est a dire une approximation des gradients des
solutions dans la topologie forte de I’espace L” dans lequel sont définis les opérateurs monotones.
© 2012 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

We consider in this paper the homogenization, when the coefficients vary, of monotone problems posed in a cylinder
of RY with fixed length and small diameter. Specifically, we consider a bounded open interval / C R and a bounded
domain @ C RV~!. Defining the cylinder £2, by £2, = I x (¢w), we are interested in the solutions of the monotone
problem

—divA, (X, Viig) = fo —div f, in £2,,
(Ae(X, Vilg) — f)Te =0 inl x (edw), (1.1
u, =0 indl x (ew),

where A, : 2 x RN — RY are Carathéodory functions which are monotone, uniformly p-coercive and with uniform
(p — 1)-growth, and where, for £2 = I x w, there exist f € L? (£2) and F € L” (£2)", such that

~/ =/

Fe(@,¥) = f(il, x;) Fel@, &) = F()El, x;) ae. (i1, ¥) € 2. (1.2)

In this problem, the Neumann boundary condition in the lateral boundary / X (edw) is crucial, while changing the
Dirichlet boundary condition on the bases 9/ x (ew) (as far as an H La priori estimate is conserved) does not affect
the limit equation.

A problem similar to (1.1), but where the operators are linear, F, =0, N = 3, and £2; is a cylinder of fixed basis
» C R? and small height (which therefore converges to the two-dimensional set w) has been considered in [4] and [10]
(see also [9] for the elasticity problem). In this case, the limit problem, which is posed in the two-dimensional limit
domain w, has a structure which is similar to the structure of the problem posed in £2,. This will also be the case
for problem (1.1), whose limit is posed on the one-dimensional domain 7, but, in contrast with usual results, the
corresponding operator will depend on F'.

In order to study the homogenization of (1.1), we perform the change of variables (x1, x") = (X1, ¥’/¢), which
transforms §2; in §2 as it is usual in the study of the behavior of solutions of partial differential problems posed in
thin domains (see e.g. [2,4,5,9-14,17-19,22,23,25]). Defining u. by u.(x1,x’) = ii.(x1, ex’), problem (1.1) is then
transformed into a new problem which can be written in the variational form:

us € WhP(2), uz=0 ondl x w,

/Ag(x,D,sug)ngdx=/fvdx+/FD8vdx, (1.3)
Q2 Q Q

voe WhP(2), v=0 ondl x w,

where D, is the differential operator D, = (%, %Vx/) and where A, : 2 x RY — RY are Carathéodory functions

which, similarly to A, are uniformly p-coercive and with uniform (p — 1)-growth. These conditions on A, imply
that D,u, is bounded in L?(£2)". Thus (see e.g. [17]) there exist uq € Wol’p(l) and u; € L?(I, WP (w)/R) such
that u, converges weakly to u( in WP (£2) and D,u, converges weakly to Do(up, u1) = (%’ Vyup) in LP ()N,

When A, = A is fixed, it has been proved in [17] (see also [18,19] for the elasticity problem) that (u¢, u1) is the
solution of the following problem

(ug, u1) € Wy'P (I) x LP(I, W' (0)/R),

/A(x,Do(uo,ul))Do(vo,vl)dx=/fvodx+/FDo(vo,v1)dx, (14)
2 2 2

V(vo, v1) € Wy’ (1) x LP (I, WP (@) /R),
where Dg(vg, v1) = (Z%?, V,v1); in this problem both the macroscopic and microscopic variables x; and x appear.

One can then wonder whether, when A, depends on ¢, there exist a subsequence of ¢, still denoted by ¢, and a
Carathéodory function A : 2 x R¥ — RY satisfying the same conditions as A, such that for every f € L? (£2) and
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every F € LI’/(SZ)N , the limit (ug, u1) of the solutions u. of (1.1) is the solution of (1.4). We show in the present
paper that this is not the case. In contrast we prove (Theorem 3.1 below) that the limit of (1.1) is the nonlocal problem

(o, u1) € Wy'P (I) x LP(I, W' (w)/R),

/A(X1,Do(uo,ul)(m,-))Do(vo,vl)dx=/fvodX+/FDo(vo,v1)dx, (1.5)
2 2

2
V(vo, v1) € Wy P (1) x LP (I, WP (@) /R),

where A is no more a Carathéodory function A : 2 x RN — R¥ but a nonlocal Carathéodory operator A : I x
R x V'WLP(w) — LP (w)N, which is measurable in the first variable and continuous in the two other ones (where
V'WLP(w) denotes the space of the derivatives V,/v of functions v € WP (w)), but such that for a.e. x; € I, the
function

dug

A(Xl,Do(uo,ul)(xl,.))=A(X1,dxl

(ML%MNMVOGLVwW

at the point x” € @ depends not only on V,su1(x1, x") but on all the points of V,/u1(x1, z") for z’ € . A similar effect

has been obtained in [6] for the homogenization of elliptic periodic equations of the type —div A(x, 7)Vu,.
Eliminating © in function of u( in the system (1.5), we obtain a local equation for u#(, namely

uo € Wy (1),

/ dug\ dvg dvg

F _ / 1y et /
/a <x1,d—XI)d—XIdx1_/</fdx)vodx1+/</F1dx>dx1dx, (1.6)
1 1 w 1 w

Vug € Wy (D),

where now a¥ : I x R— Ris a Carathéodory function, but which depends on the (N — 1)-last entries F’ of the
right-side F' of (1.3). Thus, problem (1.6) is not sufficient for studying the effect of the right-hand side F' on the
solutions of (1.3), and we must remain with (1.5) for this study.

In addition to searching for the limit problem of (1.1), we are also interested in the present paper in obtaining
a corrector result for (1.1). Our main result in this direction essentially establishes (see Theorem 3.8 below for the
precise formulation) the existence of a (sub-)sequence of nonlocal operators P : I x R x V’ WhP(w) = LP(w)N
such that Dgu, — Pe(x1, Do(ug, u1)) converges strongly to zero in L? (2)V. Let us emphasize that here again the
corrector P, is nonlocal.

In Section 4 below we prove that when A, does not depend on xp, the operator .4 and the corrector P, are actually
local (other assumptions which also provide a local operator .4 can be found in [8,13,14]). In contrast, we show in
Section 5 by means of two (periodic in x) examples that even if A, does not depend on x’, the operator A is nonlocal.

Let us conclude this introduction by pointing now that we consider in the present paper the case of cylinders with
fixed length and small diameter with Neumann boundary condition on the lateral boundary. Analogous results can
be obtained by the same proofs in the case of cylinders with fixed bases and small height with Neumann boundary
conditions on the two bases.

2. Notation and preliminaries

We consider an integer number N > 2.

The vectors x of RN will be decomposed as x = (x7, x"), with x; e R, x’ e RV 1,

The vectors of RV ! will be considered as elements of RV by identifying x’ € R¥~! with (0, x") e RV.

We define M as the space of matrices of order N.

We denote by e; € RY the vector (1, 0).

The N-dimensional measure of a set B C RY will be denoted by | B|, while the (N — 1)-dimensional measure of a
set D ¢ RV~ will be denoted by |D|y—1.

If X is a normed space and X' its dual, we denote by (x’, x) the duality pairing between x’ € X" and x € X.
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For an open set ® C R” and a number ¢ € [1, +00], we denote by W14(©) the usual Sobolev space. If T is
a subset of the boundary d® of @, we denote by W;,’p (©) the space of those functions of W7 (©) which vanish
on T. When m = N — 1, the space of the gradients of the functions of W7 (@) will be denoted by V'W!-7(®).
When p =2, we write H' (©) = W''2(©), H-(0) = Wy-*(©), VH'(©) = VW !2(0).

We use the index f to denote periodicity, for example C é’o ([0, 17) is the space of the functions of C*°(R) which are
periodic of period 1.

For a bounded smooth connected open set w C RY~1 and a bounded interval 7 =1b,d[ C R, we set 2 = I X w,
I'={p}U{d}) xw, 2. =1 X (¢w), I' = ({b} U{d}) x (ew).

In what follows, we consider a sequence of Carathéodory functions A, : 2 x RY — R". We define Es: 2 %
RY x RN - Rand E, : 2 x R¥ — R (where E refers to energy) by

Ec(x,6,0) = (Ae(x, ) — A0, O)E =), Ee(x,8) = Ap(x, £)E,

for every &, ¢ € RV, a.e. x € £2. We will assume that there exist pel,400),ax>0,8>0,0 € (0,min{l, p — 1})
and hy, hy € Ll(.Q), hi, hy > 0, such that for every &, ¢ € RY and a.e. x € 2, we have

Ae(x,0) =0, 2.1)
alf =P < Eo(x,£,0), if pe[2,+00), 2.2)
QI — 217 < Bor 6,08 (h + Eo(r, 6) + B, 0) T, ifpe (1,2, (2.3)
|Aex.§) — Acx. O < B(ha+ Ee(x.§) + Ee(x, )" 7 Ee(x.6.0)°. 2.4)

Remark 2.1. Using the fact that (2.1), and (2.2) or (2.3) imply that
alsl? < Ec(x,£), ifpel2,+00), and «lE|’ <hi+Eq(x,), ifpe(l,2],

and the fact that (2.1) and (2.4) imply that there exist 8* > 0 and h* € L' (£2), h* > 0, such that
Ee(x,§) < BYIEIP + 1",

one can prove the following equivalences: . . B
In the case p € [2, +00), if A, satisfies (2.1), (2.2), and (2.4), then there exist 8 > 0 and > € L' (£2), hy > 0, such
that for every £, ¢ € RY and a.e. x € 2

|Ae(r. €)= Ao(r, O] < Blla + 1E17 +1217) 7 |6 — |77 2.5)

Reciprocally, if A, satisfies (2.1), (2.2), and if there exist 8 > 0, o € (0, 1) and hy € L' (£2), ho > 0, such that for
every £, e RV andae. x e 2

p—l—o

|Ac(x, &) — Ac(x, O)| < B(ha + |EIP +121P) 7 [E =217, (2.6)

then there exist 8 > 0 and iy € L1(§2), hy > 0, such that A, satisfies (2.4). . o
B Ir_1 the case p € (1, 2], if A, satisfies (2.1), (2.3), and (2.4), then there exist ¥ > 0, 8 > 0 and hy, h; € LY(£2),
h1, hy 2 0, such that A, satisfies (2.5) and is such that for every &, ¢ € RY andae.x € 2

~ — 2-p
Qle — ¢1* < Ee(x, £, 0) (i +1EI17 +1¢I7) 7 . 2.7)

Reciprocally, if A, satisfies (2.1), (2.6), and (2.7) for some & > 0, B >0, o € (0, p — 1), and hy, hy € L'(£2),
hy,hy > 0, then there exist & > 0, 8 > 0 and h/, k), € LY(2), 1, ), > 0, such that for every £,¢ € RY and ae.
x e

. P v v p
alf —¢|P < Ee(x,§,0)7 (B + Ec(x,§) + Ec(x,0)) 2, ifpe(l,2], (2.8)

2(p—1)—po

|Ae(x,8) = Ac(x, O < B(hy+ Ee(r, 6) + Ee(x,0)) 2 Ee(x,6,0)7. (2.9)
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Remark 2.2. As a consequence of Remark 2.1 we get that the class of Carathéodory functions satisfying (2.1), (2.2)
or (2.3), and (2.4) is not empty. Indeed the function defined by A.(x,&) = ag(x)|“§|1”2“§, with p € (1, +00) and
a, € L®(£2) such that 0 < & < a.(x) < B < 400, satisfies (2.1), (2.2) or (2.3), and (2.4) for some « > 0, g > 0,
h=0ando=1forp>2,0=p(p—1)/2forl <p <?2.

Classes of Carathéodory functions satisfying assumptions slightly more general than (2.1), (2.2) or (2.3), and (2.4)
have been introduced in Section 7 of [7], where observations similar to the ones made in the above Remarks 2.2 and
2.1 can also be found.

As it was done in [7], we prefer here to impose (2.1), (2.2) or (2.3), and (2.4) in place of the more classical assump-
tions (2.1), (2.2) or (2.7), and (2.6), because the assumptions written in the first form are stable by homogenization
(see Theorem 3.1 below).

We denote by D, : W-P(£2) — LP(£2)N and Do : WhP(I) x LP (I, WP (w)) — LP($2)N, the differential oper-
ators defined by

1
Deu = duey + —Vou, Yue WhP(2), (2.10)
€
d
Do(uo,ur) = TCer + Vaour, luo,ur) € W (D) x LP (LW (@)). @.11)
x|
We denote by C a generic positive constant, which only depends on p, N, «, B, o, hi, ha, |®| and |/| and can

change from a line to another one.
Our aim is to study the asymptotic behavior of the solutions u, of

ue € WRP(92),
/Ag(x,Dgug)ngdx=/fvdx+/Fngdx, (2.12)
Q Q Q

Yve WRP(9),
where f € Lp/(.Q), Fe Lp/(SZ)N (we will see later that the boundary condition u, € W;’p(.Q) is not very important).

As we already said in the Introduction, problem (2.12) is equivalent to (1.1) with f, and f, given by (1.2).
Taking u, as test function in (2.12) and using Poincaré’s inequality, we deduce that the solutions u, of (2.12) satisfy

p P r'
[ 1Dt dx <A1 g +IFIT ).
Q
In what follows, we will use the following lemma (see [17]).

Theorem 2.3. If u; is a sequence in WP (§2) such that

/IDsuslpdx <C,
2

then there exist ug € WP (I), u; € LP(I, WhP(w)) and a subsequence of u. (still denoted by u.) such that

U —uy in WP (), (2.13)
D — Do(uo,u1) in LP ()", (2.14)

3. Homogenization

In this section we perform the homogenization of (2.12). The main result of the present paper is contained in the
following theorem which describes the asymptotic behavior of the solutions of (2.12).
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Theorem 3.1. There exist an operator A: I x R x VWP (w) — L? ()N and a subsequence of ¢, still denoted by ¢,
such that for every us € WP (82), ug € WhP(I), uy € LP(I, W'P(w)), fs € LY (2), F, € LP ()N, f € LP(R2)
and F € LP (§2) which satisfy

ug —ug in WhP(£2), (3.1)
1
“Vyug — Vyuy in LP(2)N 1, (3.2)
&
fe—f inLP(), (3.3)
F.— F inL? ()", (3.4)
/Ae(x, D.u)D.vdx = / fevdx + / F.D.vdx, Vve WIIJP(Q), 3.5)
2 2 2

we have
Ac(x, Deute) = A(x1, Do(uo,u1)) in L7 ()N (3.6)

Moreover, the functions ug, uy, f and F are related by

/A(xl, Dy(uy, ul))Do(vo, v))dx = / fvodx + / F Dy(vg, v1) dx,
2 2 2

V(vo, v1) € Wy (I) x LP (I, WP (). 3.7)

The operator A also satisfies the following properties:
The application x; — A(x1,s, V) € LY ()N is measurable ¥(s, ¥) € R x WP (w). (3.8)
A(,0,00=0 aeinl. (3.9)

Denoting by € : 1 x R x VWP (w) x R x VW!'P(w) > LY (w)¥, £:1 x R x VWP (w) > L' (w)V, the
opemtors

Ex1, 51, Vo, 82, V) = (A(xy, s1, Vardry) — A(xr, 52, Vo)) ((s1 = s2)er + Vo (Y1 — 12)),
Y(s1, 1), (52, ¥2) € R x WP (w), ae x1 €1, (3.10)
Ev(xl,s,Vx/lﬂ)=.A(x1,s,Vx/1//)(se1 + Vo), Vs, ¥)eRx WHP(w), ae x1 €1, (3.1D)

we have for every s1,s2 € R, Y1, Y € W]’p(a)) and a.e. x1 €1

o / (lS] — S2|p + |Vx’(w1 - Iﬁz)’p) dx/

{xi1}xow

< / E(x1. 51, Vil 52, Vary) dx's if p € [2, +00), (3.12)
{x1}xw

o f (Is1 — 5217 + [V (1 — Y)|”) d’

{x1}xw

N 2
<< / S(xl,ﬂ,folﬁl,S2,Vx/W2)dx’>

{x1}xw

2—p

2

/ (hl+5V(X1,S1,Vx”/f1)+5V(X1,S2,Vx/1/f2))dX’> , fpe(l,2], (3.13)

{x1}xw
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/|«4(x1,81,Vx’1ﬁ1)—A(x1,52,fo1ﬂ2)|p/dx/

{xi}xw
p—1l—0o
v % P—
< ,3< f (h2 + &1, 51, V) + E(x1, 52, Vx’l/fz))dX’>
{xi}xw
. =
/ E(x1, 81, Vi, 52, Vi) dx/> . (3.14)
{x1}xw

Remark 3.2. The properties (3.9), (3.12), (3.13) and (3.14) imply the existence of kg € L'(I) and C > 0, such that
for every 51,52 € R, ¥, Y € WLP(w) and a.e. x1 € I, the operator A satisfies

/|A(x1,s1,vx/w1>|”’dx/<ho+C<|s1|f’+ / |vx/w1|f’dx’>, (3.15)
{x1}xw {x1}xw
/ |AGx1, 51, V) — Ax1, 52, Vo v) |7 dx’
{x1}xw
p(p—1-0)
p p , (p—D(p—o0)
< ho+C( (Is1] +1s21)” + (IVe ¥l + Ve ial)” dx
{x1}xw
(p*lf‘(pfa)
~(|s1—sz|p+ / !vx/wl—vfz)v’dx/) : (3.16)
{x1}xw

Remark 3.3. Thanks to (3.8), (3.9) and (3.14), we deduce that for every ¢1 € LP(I) and every ¢’ € LP(I; WP (w)),
the function x| € I = A(xy, ¢1(x1), Vyd' (x1,.))(x)) is 111 LY (I;LP (w))N Thus, the term A(x1, Do(uo, u1)) which
appears in (3.6), (3.7) has a meaning as a function of L? "(2)N.

Remark 3.4. Observe that in Theorem 3.1 the sequence u, is not supposed to vanish on I". Thus, the boundary con-
dition in I" is not important in the homogenization result, for example, it can be substituted by a Neumann condition.

Eliminating u from (3.7), Theorem 3.1 gives in particular the problem satisfied by the limit u of the sequence u,
of solutions of (2.12). This is given by

Corollary 3.5. We consider the subsequence of ¢ and the operator A = (A1, A) given by Theorem 3.1. We define the
operator R : LP (w)N =1 — (WP (w)/R)’ by

<RG’,v1)=/G’Vx/v1dx’, VG e L? ()N, Yu; € WP (w)/R.

w

We also introduce U : I x R x (WP (w)/R) — WhP(w)/Rand a: 1 x R x (W'?(w)/R) — R by

/A/(xl,s,vx/u(xl,s,n))Vx/vl dx' = (n,v1), Vv e WP (w), ae xi €1,

a(xy,s,n) = A (x1,s, Vel (x1,5,m), V(s,n) €eRx (WP (w)/R), a.e xi el

Then, if ug, uo, u1, fe, Fe, f and F are as in the statement of Theorem 3.1, the function u satisfies the equation

_i duo / _f A / / .
dx1a<x1,dx1,RF(x1,.)>— (f(xl,x) 31F1(x1,x))dx inl.
w
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Remark 3.6. Corollary 3.5 shows that for n € L” (I, (WP (w)/R)’) fixed, and F’ € L” (2)¥~! such that RF' = n

in lep(a))/R, for a.e. x1 € I, the limit problem of (2.12) is local in x1. In particular, defining ap : I x R— R by
ap(xy,s) =a(x1,s5,0), VseR, ae x; €R,

Corollary 3.5 shows that for every f, F € LP,(.Q), the solution u, of

ue € WRP (),

/Ag(Dgug)ngdx=/fvdx+/F181vdx,
2 2 2

Vv e WHP (),

converges weakly in W17 (£2) to the unique solution uq of

d dug . L,
—d—XIao(xl, d_xl> :/(f(xl,x/) — 01 Fi(x1,x"))dx" in 1, ug € Wy’ (I).
w

This is similar to the homogenization result given in [10] for the case of a plate.

In addition to Theorem 3.1, we also have a corrector result for the sequence of solutions u, of (2.12). This is given
by Theorem 3.8 below, first we need to give the following definition.

Definition 3.7. We consider the subsequence of ¢ and the operator A given by Theorem 3.1. For every (s, ¥) €
R x Wl?(w) and a.e. x| € I, we define W, (x1, s, V,7) as the solution of

We(x1,s, Vo) € WHP(2)/R,

/Ag(xhDeWs(xhs,Vx/I/f))Devdx=/A(x1,s,Vx/1/f)stdx, (3.17)
2 2

Yve W'P(2)/R.
We then define P : I x R x VW7 (w) — LP(w)N by
’Ps(xl, Sa V)C/I//) = DEWS(-xla S, VX/I//)'
Theorem 3.8. We consider the subsequence of € and the operator A given by Theorem 3.1. Then, there exist a constant
C > 0 and a function hg € LI(I), such that for ug, ug, ui, fe, Fe, f and F as in the statement of Theorem 3.1 and

for every step function ¥ = Z;":I(Sjel + VUi Xij_1,ij)xe Withsj €R, Y € Whr(w), 1<j<m,b<ig<-- <
im <d, we have

lim sup / | Deue — Pe(x1, ‘p)ipdx

e—>0
(i0,im) xw
im q
dug r INP 51
< ho+C EH%' +C | (IVeur]| +|¥'|)" dx" ) dx,
io ! w
I—q
< / |D0(uo,141)—‘1/|pdx> , (3.18)
({0,im)Xw

with g = (p—1—0)/(p—0) if p € [2,4+00), g = (p = 20)/2(p — @) if p € (1, 2]
Moreover, if ug =0 on I or if (3.5) holds for every v € W}Jp(.Q), then we can take ig = b, i, =d.
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Remark 3.9. The meaning of Theorem 3.8 is that taking ¥ close enough to Do (ug, u1), P:(x1, ¥) is a good approx-
imation of D,u, in the strong topology of LP(2)N (corrector result). In fact, if we formally take ¥ = Dg(ug, u1)
in (3.18), we will deduce

Dette — Pe(x1, Do(ug, u1)) — 0 in L ($2)".

However, we do not know if P, is a Carathéodory function and thus P (x1, Do(ug, u1)) is not well defined.
Proof of the results of Section 3
The proof of our results is an adaptation of L. Tartar’s method (see [20,24]). We start with the following result.

Lemma 3.10. We consider uz, w, € W-P(82), fs, ge € LY (2), Fy, G, € LP ()N, which satisfy

/Ag(x,Dgus)ngdx=/fgvdx+/F8ngdx, Vv e WIIJP(.Q), 3.19)
2 2 2
/Ag(x,Dgwg)ngdx=/ggvdx+/G5ngdx, VveW}’p(Q). (3.20)
Q Q Q

We assume that there exist ug, wo € WHP(I), uy, wy € LP(I, WP (w)), T, S € LP ()N, f.g € LP(2), F,G ¢
LP ()N, such that

Ug — U, we — wo in WHP(£2), (3.21)
1 1 . /o N—1

— Vyx'lhg = VyU, =Vywe = Vywy in L7 (£2) s (3.22)
& I

Ae(x, Deug) =T,  Ac(x, Dew;) =S in L7 (2)V, (3.23)
fe—f g —g inLF (), (3.24)
F.—F, G.—G inL")". (3.25)

Then, T, S satisfy the following properties

fTDo(vo,vl)dx:/fvodx—}—/FDo(vo,vl)dx,
2

2 2
/SDo(vo,vl)dx=/gvodx+/GDo(vo,v1)dx, (3.26)
2 2 2

V(vo, v1) € Wy (1) x LP (I, WP ().

For a.e. x1 € I, we have

a [ Do = wo.ur —wnPdx’ < [ (T =)Dt~ wo.ur ~w)dx' Fpelton. (2D

{x1}xo {x1}xw

o / |D0(u0—w0,u1—w1)|pdx/

{x1}xw

p

2

<( / (T—S)Do(uo—wo,m—wl)dx/)
{x1}xw

2—p

2

/(h1+TD0(u0,u1)+SD0(w0,w1))dx/> ., ifpe(l,2], (3.28)

{xi}xow
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p—l—0o

, —1
/ T —S|” dx,</3< / (hz-l-TDo(uo,m)+SDo(w0,w1))dx/> ’

{x1}xw {x1}xw

( / (T — 8)Do(ug — wo, u; —wl)dx/>pl. (3.29)

{xi}xw

For every ¢ € CCl (I), we have

e—0
2 2

lim Es(x, D.ug, Dowe)pdx = /(T —8)Do(ug — wo, u; — wy)edx. (3.30)

Moreover; if (3.19), (3.20) hold true for every v e W-P(2) then, in (3.26), we can take vy in WP (I) and in (3.30)
we can take ¢ € CY(I). This last assertion also holds if ug — wg belongs to W}Jp(.Q),for every ¢ > 0.

Proof. For vy € Wol’p(l) and v; € W(}’p(l, WP (w)), we use vg 4 €v; as test function in (3.19). This gives

d

/Ag(x, D,;ue)<<ﬂ + 881111)61 + Vx/vl) dx
dx1

Q

dv
:/fg(vo—i—evl)dx—l—/.Fg((d—xo +£81v1)e1+Vx/v1)dx.
1
2 22

Passing to the limit in this equality, we get

/TDo(vo,vl)dx=/fvodx+/FD0(v0,v1)dx.
Q

ko) 2

By density, this equality holds for every (vo, v1) € W(}’p (I) x LP(I, WhP (w)). Reasoning analogously with w, we
conclude (3.26). If (3.19), (3.20) hold for v in W!-7(£2), then we can take vo in W7 (I in the above reasoning; thus
in (3.26) we can take vg in W2 (I).

Now, for ¢ € Cg(]), or ¢ € CY(I) if (3.19) holds for v in WP (1) or if u; — w, belongs to WIIJP(.Q), we take
(ue — we)g as test function in (3.19). This gives

d
/As(xs Deug)De(ue — we)pdx = _/As(xs Deug)ey(ue — ws)d_f] dx
2 2

+/fe(ue_ws)wdx+/F8De((us_we)§0)dx‘
2 2

Passing to the limit in this equality thanks to the Rellich-Kondrachov compactness theorem and taking into ac-
count (3.26), we conclude

d
lim | Ag(x, Deutg)De(ue — we)pdx = — / Tei(up — wo)d—(p dx
X1

e—0
Q Q
+/f(uo—U)o)tpdx+/FD0((uo—wo)<p’ (u1 — w1)g)dx
Q Q
:/TDo(uo—wo,ul —wy)edx. (3.31)
Q

Analogously, we can prove

lirrz) Ag(x, Dowg)Dg (ug —wg)wdxszDo(uo—wo,ul —wy)epdx. (3.32)
£—
Q Q
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From (3.31) and (3.32), we deduce (3.30). Taking in (3.30) w, = 0 and u, = 0 respectively, we also have for every
g eCl)

hm Eg(x Dgug)wdx—/TDo(uo,ul)godx, (3.33)
.Q 2
lim Es(x,Dgwg)wdx=/SD0(wo,w1)g0dx. (3.34)
E—>
2 2

We take ¢ € Cl(I) 0>
If p > 2, the lower semlcontmulty of the norm for the weak convergence, (2.2) and (3.30) prove

a/|D0(u0 — wo, U1 — wl)’p(pdx galimi(r)lf/’Ds(ug — w€)|p(pdx
e—
Q

< lim Eg(x, D.ug, Daws)wdx
e—0

2

= /(T — 8)Do(up — wo, u1 —w)@dx.

Analogously, if 1 < p < 2, using (2.3) in place of (2.2), we get

a/|D0(u0 —wp, U] — wl)Ipfpdx

ahmmf/|D8(ug —w5)| @odx

A v v _p
glimi(r)lf/ Ee(x,Dgue,Dswg)g(h-‘rEe(X, Deug) + Ec(x, Dews))l Zpdx
e—
2

p

2

e—0

2 1
~ 2 v v
< lim (/ E¢(x, Deug, Dew,)g dx) ([(k + E¢(x, Deug) + Ee(x, Dews))(P dx)
2

NI

4 1—
= (/(T = 8)Do(uo — wo, uy — w1)<pd’X> i (/(h + T Do(uo, u1) + SDo(wo, wl))¢dx> .
2 2

Since 2 = I x w, these inequalities prove (3.27) and (3.28) respectively.
To prove (3.29), we take ¢ € CCl (I), ¢ 2 0a.e.in I, then, by (3.33), (3.34) and (3.30), we have

/|T S|p<pdx llmmf/|A (x, Deug) — Ag(x,D8w8)|pl<pdx
2 2

glimi(r)lf,B (h—I-E (x,D u8)~|—E (x, Dg¢ ws)) = E (x, Deute, Dy ws)ﬁ Todx
E—>

2

p—l—0o
p—1

< 111%,3(/(;1 + Ee(x, Deutg) + Ee(x, Dewy))g dx)
£—
2

. o1
: (f E¢(x, Deug, Dsws)q)dx>
2
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= ﬂ(/(h + T Do (ug, u1) + SDo(wo, wl))godx>
2

e
-(/(T — 8)Do(up — wo, u; —w1)§0dx> .
2

This implies (3.29), by £2 = I x w and the arbitrariness of ¢. O
As a consequence of Lemma 3.10 we can now prove Theorem 3.1.

Proof of Theorem 3.1. We use L. Tartar’s method (see [20,24]). We set X = WLP (1) /R x L? (I, W'P (w) /R) and we
consider a countable dense subset A of X’. For every A € A, we take G* € L” (£2)" such that for every (vo, v1) € X,
we have

(k,(Uo,vl)>=/GxD0(vo,v1)dx-
2
We denote by u* € W7 (£2)/R, the solution of
/Ag(x,Dgug)ngdx:/G*Dwdx, Yve WP (2)/R.
2 2

For every A € A, Dsué‘ is bounded in L? (.Q)N . So, since A is countable, we can use Theorem 2.3 to deduce the
existence of a subsequence of ¢ still denoted by ¢, (ué, ui‘) € X ando* € L”,(.Q), such that for every A € A, we have

ul —~ul in WHP(2)/R,
évx,ug —~ Vuh inLP(2)N 7L,
Ag (x, Dsué‘) —~o* i L”/(.Q)N.
From (3.26), for every A € A we have

/U)LDO(Um v dx =1, (vo,v1)), V(vo,v1) € X. (3.35)
2

Moreover, for every A1, Ay € A and a.e. x| € I, inequalities (3.27) and (3.29) prove

a [ 1Dl u it =)

{xi}xw
A A2 Al Ay Al A2 / :
< (a -0 )Do(uo —uy, U —uj )dx, if p €2, 400), (3.36)
{x1}xw
a [ 1D it =)
{x1}xw
P
2
< < / (0}" —O')LZ)D()(MSI —uéz,ui‘l —u)l”z)dx’>
{x1}xw

2—p

.</(h1+oleo(u3‘,u§1)+oAZDo(u32,uﬁ2))dx’) L ifpeq.al (3.37)

w
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p—l—0o
[ oo av<a( [ om0 putigt i) ar)
{x1}xw {x1}xw
. ( / (okl —O‘)LZ)D()(M ! —uéz,u?l — u?z)dx>pl. (3.38)
{x1}xo
From (3.38), (3.35) and Holder’s inequality we get
/ 1—0
/|C’M — o7 dx’ < Bl @y + (M, (uf, 1)) + (s (ug? L))
Q
-()»1 — A2, (uél — uéz, ui' — ui‘z)) -T, (3.39)
By (3.35) and (3.36) or (3.37), we also have
af (ug' —ug® ! —u?)[§ < (1 = 2. (g —ug? it —u?)). (3.40)
if p € [2, 400), or
o (! =t} = 2| < = ! =i}t =)
2—
(o + oo '} )) s ) 77 (3.41)
if p e (1,2].
Since X is reflexive, for A1, A € A, there exists (v, v1) € X such that
lwo, vy =1, (A1 — A2, (o, v1)) = 121 — Azllx".

Taking (vo, v1) as test function in the difference of the equations satisfied by (”o ,ul') and (uo ,ulz), and us-
ing (3.39), we easily get

A1 — Aallxr = f(o“ — 0*2) Dy(vo, v1) dx
2

1—0o

< BT (Il gy + (s () 4 (s (2, u2)) 7
hr =, () — a2, b — b)) (3.42)

From (3.40), (3.41), (3.42), (3.36) and the theory of monotone operators (see [15,16]), we deduce the existence of two
applications L : X' — X, R: X' — L? (£2)" such that

L isbijective, L(A) = (uj,u}), R(M)=o" VreA.

We are now in a position to define A. For s € R, we denote by ¢, : I — R the function ¢s(x1) = sxy, for every
x1 € I. Then, for (s, ¥) € R x WhP(w) a.e. x; € I, we take A(x1, s, Vo) = R(L™ (s, ¥))(x1, .) From (3.36) and
(3.38), the operator A satisfies (3.12), (3.13) and (3.14).

We consider u, € WP (£2), such that there exist ug € W'P(I), u; € LP(I, W'P(w)), fs € LP (), F, €
LP'(2)N, f e LP(2), F € LP ()", which satisfy (3.1), (3.2), (3.3), (3.4) and (3.5). Since A, (x, D¢ (us)) is
bounded in LP,(.Q)N, there exist a subsequence &* of ¢ and T € L”/(.Q)N such that Agx(x, Dgx(ug+)) converges
weakly in LP/(Q)N to T. From (3.29), for every A € A and a.e. x| € I, we have

p—l—0o
f|R(A) — T|”' dx' < ﬂ(f(h + R(A\)Do(L (M) + T Do(uo, u1)) dx/> "
. (/(R(A) —T)Do(L () — (uo, u1)) dx’) " . (3.43)

w
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So, taking for (s, ¥) € R x WP (w) a sequence A, € A which converges to L1 (¢s, ¥) in X', writing (3.43) for A,
and passing to the limit in 7, we get

p—l—0c
p—1

/’A(X],S, Vo) — T‘p, dx' < ﬂ</(h + A(x1, s, Vo) Do(¢s, ¥) + T Do(uo, u1)) dx’)

w w
=
: (f(A(xlas5 Vx/lﬂ)—T)Do(qﬁs—uo,lﬂ—ul)dx’) s
w
for a.e. x; € 1. This implies
d
NMJZAGLJQWLWW@hO,aﬂmm
dxy

Thus, it is not necessary to extract the subsequence ¢* of ¢, and (3.6) holds. Statement (3.7) is deduced from (3.26). To
complete the proof of Theorem 3.1 it only remains to prove (3.9). This holds using that by (2.1), the functions u, =0,
up=0,u; =0, fe = f =0and F, = F =0 satisfy (3.1), (3.2), (3.3), (3.4) and (3.5). Thus, (3.6) gives (3.9). O

Proof of Corollary 3.5. It is enough to observe that (3.7) implies for a.e. x; € [

d
LMmgzuGLiﬂmeFuhﬂ,a@mw. O
X1

Proof of Theorem 3.8. Let us only prove the case p € [2, +00). The case p € (1, 2) is analogous.

We consider s € R, ¢ € WP (w)and, k € (b, d) with [ < k. From Theorem 3.1, we deduce that P, (s, V) con-
verges weakly in L?(22)" to se; + Vo and A (x, Pe(s, Vo)) converges weakly in Lp/(.Q)N to A(xy, s, Vo).
From (2.2), (3.30) and (3.16), we deduce that for every ¢ € D(I) with ¢ > x( k), we have

lim sup « f |Deue — Pe(x1, s, V)| dx

e—0
(Lk)xw
<limSUPfEe(x,Deus,Ps(xl,S,Vx”ﬁ))fpdx=ffi(x1,Do(uo,ul),s,vx’l/f)fpdx
e—0 o
d p—l-0c
dug g P ./ e
< ho+C ol Isl) + | (IVvur] + Vey])" dx' )pdx
b : ®
1
p—o
~ </\Do(uo7u1) — (sey +Vx/1/f)}p<ﬂdx) .
Q
Letting ¢ decrease to x( k), we get
limsup o / |Dgug —Pg(xl,s,erw)|pdx
—0
¢ (Lk)yxw
p—l—0c
p—o

(e

| Do(ug, ur) — (sey + Vwﬂ)”’dx) .

P
+ |s|) +/(|vx/u1| + |vxn/f|)”dx’> dxl)

(l,k)yxw

If now ¥ is as in the statement of Theorem 3.7, we write the above inequality forl =i; 1, k=1i;,s =5, ¥ =V;,
1 < j < m, adding in j and using the Holder inequality, we obtain
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limsup o / |Deute — Pe(x1, )| dx

e—0
(ip,im) X @
m ij » pl—)l;(r
=1\, J

: ( / | Do(uo, ur) — (sjer + Vx/wj)|de) "

(Ij-1,ij) X

im
d
: dx

0]

p—l—0o

14 p—o
+ |t1/1|> +/(|Vx/u1| + |lI//|)pdx/> dxl)
w

1

. ( / | Do(ug, uy) — 11/|pdx> .

({0,im) X @

This proves (3.18).
If u, is zero on I' or if (3.5) holds for every v € W1P(£2), then, we do not need to take ¢ with compact support
above. So, in this case, we can take iop = b, i,, =d in (3.5). O

4. A case where the limit problem is local

Assuming that the sequence of functions A (x, £) does not depend on x|, we prove in this section that the limit
problem of (2.12) is local. This is given by the following result.

Theorem 4.1. We assume that the functions A do not depend on xi1. Then, there exists a Carathéodory function
A:w x RN = R such that the operator A given by Theorem 3.1 is given by

Alxi,s, Vo) (x') = A(x', ser + Ve (x), 4.1)
for every (s, V) € R x WP (w), ae. (x1,x') € 2. In particular, A does not depend on x| and (3.7) can be written as
/A(X’,Do(Uo,Ml))Do(vo,vl)dx=/fvodX+/FDo(vo,v1)dx,

2 2 2
Y (v, v1) € WhP(I) x LP (1, WP (w)).

Moreover, denoting by E:oxRYN >Rand E:w xRN x RN = R the functions defined by

E(x', &)= A(x, £)g, (4.2)
E(x,&¢)=(A(x,€) — A(x. ))& -0, (4.3)
forevery &, ¢ e RN, and a.e. x' € w, the function A is such that for every &, ¢ € RN and a.e. x' € o, we have
A(x',0) =0, (4.4)
als —¢IP S E(x,&.¢), if pel2 +o0), (4.5)
wle — o1 < E(c 6 0)F(E(. )+ E(L )7, ifped.al, (4.6)
A &) — AW 0) |7 <B(h(x) + E(.€) + E(x0) 71 B, &, ¢) 7T @)

The corrector result given in Theorem 3.8 can also be improved in the following way.



534 J. Casado-Diaz et al. / Ann. I. H. Poincaré — AN 30 (2013) 519-545

Definition 4.2. We assume that the functions A, do not depend on x| and we consider the subsequence of ¢ and the
function A given by Lemma 4.5. We define P/ : w x RY — RN~ by

P, &) e VWP (w),

/ ALY &+ P(x, &)V dx' = / A E)Voydy', (4.8)

Vi e WhP(w),

for every £ e RV,

Theorem 4.3. Under the assumptions of Definition 4.2, there exist a constant C > 0 and a function hg € L'(I) such
that for ug, ug, uy, fe, Fe, f and F as in the statement of Theorem 3.1 and for every step function ® = ZT:I (sjer +

Z?:l ﬂleK[)X(ij,l,i_;), with s; € R, nj; € RV-L b<ip<- - <ip<d K Cd compact, |K;, N Ky, |y—1 =0 if
L #b, o=, Ki, we have

p
lim / drue — 017 g — o, 4.9)
e—0 dX1
(i0,im) xw
1 p
lim sup / ‘—Vx/ug—Pg’(x’,(b’) dx
e—0 &
(ip,im) x @
du p q
<< / (hc+C(’—0’+|Vx/u1|+|¢|> )dx)
dx1
(i0sim) X @
d 14 I—gq
( / (ﬂ_qbl +|Vx/u1—q§’|p)dx) , (4.10)
dX1
(i0sim) X @

withqg=(p—1—0)/(p—0)if p€[2,400), g =(p—20)/(2(p—0)) if pe(1,2]
Proof of the results of Section 4
We start with the following lemma which can be proved reasoning similarly to Lemma 3.10.

Lemma 4.4. We assume that the functions A, (and then h) do not depend on x\. We consider ¢, 1. € WP (w),
s1, €R, F',G' € L? (w)N~!, which satisfy

/A;(x’,slel —I—VX/I//E)VX/vdx’:/F'Vx/vdx’, Vo e Wh (o), .11
w w
/A;(x/,szel+Vx/n£)VX/vdx/:/G/Vx/vdx/, Vo e WhP (w). (4.12)
w w

We assume there exist y,n € W'P(w), T = (T, T"), S = (51, 5) € LP/(a))N, such that

Vee = Vo, Vene = Ven in LP @)V, (4.13)

Ac(x' s1e1 + Vo) =T, A(x,s0e1 + Vo) = S in LY (0)V. (4.14)
Then, T, S satisfy

/T/ervdx/:/F/ervdx/, /S’Vx/vdx’:fG/ervdx/, vv e Wh?(w). (4.15)

w w w w

The functions T and S satisfy the following inequalities a.e. in w
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IT — SIP' < B(ha+ T(s1€1 + Vo) + S(s2e1 + vx,n))";l—_l"
(T = $)((s1 = s2)er + Vi (w — )| 7T, “.16)
O{(|Sl _S2|p + |Vx/(1// - 77)|p) g (T - S)((S] —52)81 —+ VX/('W — n))’ (417)

if pel2,00), and

a(lsi —s21? + [ Vo (b = )|7) < [(T = 8)((s1 — s2)e1 + Vi (f — n))ﬁ

2

==p
[h1+ T(s1e1 + Vo) + S(s2e1 + Vo] 2, (4.18)
if pe(l,2].
Moreover, for every © € W (@), we have
lin}) Ig"g(x’, sier + Ve, saer + Vong )0 dx' = /(T —8)((s1 — s2)e1 + V(¥ — )P dx. (4.19)
£—
w w

Using this lemma we can also prove the following result reasoning similarly to the proof of Theorem 3.1.

Lemma 4.5. We assume that the functions A, do not depend on x1. Then, there exist a subsequence of ¢, still denoted
by &, and Carathéodory function A : 0 x RN — RY satisfying (4.4), (4.7) and (4.5) or (4.6) depending if p € [2, +00)
or p € (1, 2], such that for every (s, F') € R x LP (w)N~!, the sequence ¥, € WP (w) /R of solutions of the Neumann
problems
/ AL(x' ser + Vo) Vv dx' = f F'Vyvidx', Vv € W'P(w)/R, (4.20)
w w

converges weakly in WP (w) /R to the solution ¥ of

/A/(x’,sel —I—VX/W)ervldx/=/F/erv1dx/, Vv € WhP(w) /R, (4.21)
w w

and satisfies

Ac(x',ser + Vo) = A(x, se1 + Vor) in LY ()N, (4.22)

Remark 4.6. For every s € R, the function A, : @ x R¥ =1 — RV~! defined by
Al (x, 17) = A’(x/, sei+1n), Vne RV ! ae x' cw,

is the H-limit (see [20]) of the sequence (A’); : @ x R¥~! — RV~! defined as
(4

&

)S(x/, 77) = Aé(x’,sel + 77), vneRV ! ae. x co.

Proof of Theorem 4.1. We consider the subsequence of ¢ given by Lemma 4.5, extracting a subsequence if necessary,
we can assume that Theorem 3.1 holds. For s € R, we take ¢3(x1) = sx1. Then, for i € WP (w), we define u, €
WP (£2) as ug (x) = ¢ (x1) + ¥ (x'), a.e. in w, with ¥, € W?(w)/R the solution of

/A/S (x/, se; + Vx/tﬁg)vx/vl dx' = / A/(x/, se; + Vx/w)Vx/m dx’, Yvje Wl’p(a))/R. 4.23)
w w

By Lemma 4.5, D u, = se; + V. converges weakly in L? ()" to Do (¢s(x1), V) =se; + Ve and
Ac (¥, se1 + Vo) = A(x', Do(¢s, %)) in LP (o). (4.24)

Moreover, we have

/Ag(x',Dgug)ngdxszngdx’, Vo e WP (),
2 2
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with F1 =0 and F' = A'(se; + V). Then, from Theorem 3.1, we also deduce
Ag(x', Doug) — A(x1, Do(¢s, ¥)).

By (4.24), we get
A(x' ser + Vo) = A(xy, s, Vo),

for every (s, ¥) € R x WI-P(£2), a.e. in £2. This proves (4.1). Since this equality defines the operator A, we deduce
that the sequence given in Theorem 3.1 can be taken as the subsequence given in Lemma 4.5, without extracting any
subsequence. O

Proof of Theorem 4.3. Let us only prove the case p € [2, +00), the case p € (1, 2] is analogous.
For s € R and ¢ € WP (w)/R, we define ¥, € W!?(w)/R as the solution of (4.23). By Definition 3.7 of P, it is
then easy to check that

Pe(x1,s,¥:) —se; — Voye > 0 in LP(£2). (4.25)

On the other hand, for & € RV, Kcw compact and ¥ € Wl*P(a)), with ¢ > xg, assertion (4.19) with s; =5, 50 =&,
Ve =Pl(, &), T=A (', se1 + V), S = A'(x', §) and the properties of A, and A give the existence of C > 0
and hg € L' (w) such that

limsup/|Vx’1ﬁa — P[(x".£)|"0 dx'
e—0
w

p=l-o 1
< /(ho +C(Isl+ EL+ Vo)) 77 (Is —E1P + | Vey —&'|") 79 dx.

If ¢ decreases to xx we get
limsup/|Vx/1p‘9 — P[(x,&)|" 0 dx’
e—0
K

p=l=0 1
< C/(ho +C(Isl + &1+ Ve ))’) 7 (Is — €17 + |[Voy —&'|P) 7 dx'. (4.26)
K
We now consider @ = ZT:I (sje1+> ), Mj1XK;) X(i;_1.i;) as in the statement of Theorem 4.3 and ¥ = Z'}':l (sjer+
Vo) Xpj-1.pj)s with 1, ..., ¥ € WP (w). From (4.26) and Holder’s inequality, we easily get

lim sup / |Pe(x1, W) — ®re —Pé(x’,@)‘pdx

e—0
I xw
m n
gZZlimsup / |Pe(xi,sj ) —sjer — P nji)|” dx
j=ti=t 70 (j-1,ij)xK
p-l-o L
g( / (h0+C(|E|+|lI/|)p)dx) ! ( / |E—lI/|pdx)p .
I xw Iexo

From (3.18) we then deduce

limsup” D.u, — Pre; — Pg’(x’, @)

e—0

<limsup| Deue — Po(x1, lI/)HL,)(chw)N + limsup | P (x1, &) — Pre; — P/(x, @)HL,,(lrxw)N
e—0 e—0

—l—0
du P =]
< </<h0+C<‘d—xO +|l1/1|> +C/(|eru1|+ |lI//|)pdx’> dx1>
1
w

c

HLP(ICxw)N
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( / ’Do(uo,ul)—‘ll‘pdx>m

I xw
o= =
prp—0o p(p—o
+( /(ho+C(|cb|+|lI/|)p)dx> (/|q5—q/|1’dx> .
I xw I xw

Taking in this inequality ¥ converging to Do(uo, u1) in L? (I, x w) we deduce

limsup|| Deue — @1e1 — PL(x's @) || o) sy
e—>0

p—l—c 1
p(p—0) P(p—0)
<( / (ho+C(|Do(M0,M1)|+|¢’|))de> (/}Do<uo,u1)—E|”dx> :

Ioxw Ioxw
This proves (4.10). To obtain (4.9), it is enough to use

d
u, — 0

dxq

)

LP (I, xw)

d
duo _ o
dx

lim sup
e—0

<limsup|| Dy, — Pre; — Pl(x', ®) ||Lp(1'xw)N + lim sup
LP(Iexw) e—>0 ¢ e—0

and then to use the previous inequality with E converging to Do(uo, u1). O
5. Some examples with nonlocal limit
In the previous section, we have shown that if the functions A, do not depend on x1, the limit problem of (2.12) is

local. We show here that this assertion is not true when A, depends on x; even, if they do not depend on x’. For this
purpose, we consider a function A € LE’O(O, 1; M), such that there exists o > 0, which satisfies

A(DEE > alsl’, VEeRY ae.yieR. (5.1)
Then, we consider the homogenization problem
us € Hp(2),
fA(?)Dgugstdxszvdx+/FDEvdx, (52)
2 ‘ 2 2
Yve HM($2),

where f belongs to L2(2), F belongs to L2(£2)"N and 8, > 0 satisfies
lim §, = 0. (5.3)
e—>0

Remark 5.1. The homogenization of the nonlinear problem

ue € WHP(92),

/A(;—I,Dsu£>ngdx=/fvdx—I—/Fngdx, (5.4)
Q ¢ Q 2

Vve W),
can be performed using the same arguments which we will use here, but this complicates the exposition and it is not

necessary for our purpose.

To perform the homogenization of (5.2), we will use the two-scale convergence method of G. Nguetseng and
G. Allaire (see [1,21]). The following is the definition of the two-scale convergence adapted to our problem.
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Definition 5.2. Let u, be a bounded sequence in L2(2), we say that u, two-scale converges to i € L2(I x (0, 1) x @),
and we write
2e
Ug =i,

if for every ¢ € L§°(O, 1), and every ¢ € L?(£2), we have

1
81i_r)r%)/us(X)¢<:—l><p(X)dx=/[ﬁ(m,yl,x/)¢(y1)<ﬂ(X)dy1 dx.
2 ’ 20

Remark 5.3. If a bounded sequence u; in L?(£2) two-scale converges to il € L*(I x (0, 1) x ), then u, converges
weakly in L?(£2) to the function u given by
1

M(X)=/ﬁ(xlfy1,X’)dy1, ae. x €.
0

Analogously to the well known two-scale compactness theorem for a sequence which is bounded in H'!(£2) (see
[1,21]), we can prove in our case the following lemma.

Lemma 5.4. We consider a sequence u, € HII- (82) such that for some ug € H(} )

ue —ug in H~(2), (5.5)
/ |Deug)?dx < C (5.6)
2
and we assume
3 lim — = A € [0, +oo]. (5.7)
e—0 8¢

Then, for a subsequence (still denoted by u.), we have:
i) If 2. =0, there exist iig € L*(1, H, (0, 1)/R) and ity € L*(I x (0, 1), H' (@) /R) such that
2¢ (du R N
Detty —~ (—0 i 8y1u0>e1 L V. (5.8)
dxi
ii) If & € (0, 4+00), there exists ity € L*(I, H} ((0, 1) x w)/R) such that
2e du() N ~
Deug = | —— + A0y, i1 Jer + Vyritg. (5.9)
dxi

iii) If A = 400, there exist iig € L*(I, Hﬁl ((0, 1), L*(w)/R)) and uy € L*>(I, H (w)) such that

2¢ (du .
Do, = <d—x? + 8y1u0>e1 + Vou. (5.10)

Remark 5.5. In view of (5.6) and of Theorem 2.3, for a subsequence, there exists a function u; € L2(I ,H! (w)) such
that

Deug — Do(uo,up) in L*(2)".
This function u; appears in (5.10) in the case iii), while in the cases i) and ii), the functions u are given in terms of

the functions | by
1

ul(x)zfﬁl(xl,yl,x/)dyl, ae.xef (5.11)
0
(see Remark 5.3).
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From Lemma 5.4 we can now deduce the following result.
Theorem 5.6. We assume (5.7) and we consider the solution u, of (5.2). Then, we have:

i) If A =0, we ger (5.8), with ug, i, it] the solutions of

(uo. flo, 1) € Hy (1) x L*(I, H} (0, 1)/R) x L*(I x (0, 1), H'(w)/R),
1
dug . . dvg . N
//A(yl)(<d_xl + 0y, u())el + Vx/ul) ((d—x] + 9y, v())el + erm) dy;dx
(5.12)
/fvodx+// <—el + V, /v1>dy1dx,
V(vo, b0, 1) € Hy (1) x L*(1, H} (0, )/R) x L*(I x (0, 1), H' (w)/R).
i) If & € (0, +00), we get (5.9), with ug, u; the solutions of
(uo. i) € Hy (1) x L*(I, H} ((0, 1) x »)/R),
1
dug . . dvy N N
A(yl) —— + A0y, i1 Jer + Vyrilg —— + Xdy, U1 |er + Vyriy | dyrdx
dxi dxi
(5.13)
/fvodx +// (—el + V, /v1>dy1dx,
V(vo, 01) € H() (I) X L2(I, Ht ((0, 1) x a))/R).
iii) If A = +o00, we get (5.10), with u, tig, u; the solutions of
(uo. fio, u1) € Hy (1) x L*(I, H} (0,1, L*(®)/R)) x L*(I, H' (w)/R),
1
dug n dv ~
A(yr) E+3ylu0 el + Vyu E+8y,vo e1+ Vyvr |dyrdx
1
20 ! (5.14)

dvg
:/fvodx—}—/ (d—e1+v /v1>dx,
2 2 *

V(vo, Do, v1) € Hy (1) x L*(1, H}((0, 1), L*(®)/R)) x L*(I, H' (w)/R).

Proof. We only prove the case A = 0, the cases A € (0, +00) and A = 400 are similar.
We consider a subsequence of &, ug € HJ (1), ilg € L*(I, Hﬁl (0, 1)/R), @iy € L*>(I x (0, 1), H'(w)/R) such that

(5.8) holds. For ¢, g9 € CS°(I), U € C:?o([O, 1]), ¢1 € CX U, C*(»)), U e CE’O([O, 1]), we take as test function
in (5.2) the sequence vy € H 11" (£2) defined by

ve(x) = (PO(X1)+58‘P0(X1)U0(8 )+8¢1(X)U1<8 > ae.x €.
& &
Using
ve(x) = @o(x1) + e,

deo
D.ve(x) = (—(x1) +<po(x1)—l<;£>>el +V ’(PI(X)UI((S ) + Re(x),

where r, and R, converge strongly to zero in L2(§2) and L?(£2)V respectively, we get
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X1 doo N dUy (x| . ~ (x]
/A ~— | Dette| | 7— 1) +0ox1)—— | — ) Je1 + Vo@r()Ui| — | ) dx
38 dx1 dy1 55 58
2
X1 ~ ~ [ X1
= [ feodx+ | F —(x1)+<po(x1)7 5 ) )t Vwe U dx + Ok,
e B
2 2

where O, tends to zero. Using (5.8) to pass to the limit in this equality we deduce

du d dU
/fA(yQ(( 1o +3y]uo)e1+vx/u1><<d¢0 + o—dyo)el + V, (p1U1)dxdy1
d dUy
=/f¢0dx+//F ﬂ-l- Go—— |e1 + Vudr1Uy ) dxdyi,
dxiy dyy
2 2 0

for every ¢o, @o, Uo, ¢1 and U, as above. By linearity and density, this implies that ug, ig and & are the solutions
of (5.12), and then, by uniqueness, that it is not necessary to extract any subsequence. 0O

Remark 5.7. When XA € (0, +00), Theorem 5.6 can be deduced from the results obtained in [22] (in [22] F =0, but
to assume F # 0 does not make the problem more difficult). Other homogenization results for thin structures with
periodic coefficients can be found in [2,3,5,11].

Remark 5.8. For A = 0, the above theorem means that the asymptotic behavior of u,. is as if we consider ; =
fixed, and we take the limit first in € and then in §, i.e. as we make first the reduction of dimension and then the
homogenization. It is possible to obtain a general result in this direction assuming that the frequency of the oscillations
in x; is smaller than é Specifically, the following result holds: Assume A, satisfying the assumptions in Section 2
and such that

1 Ag hey, &) — Ag(,, / =0, VI el
8%02‘221” ( +8 €l ‘s;.‘) 8( E)”Lp (Ie xw) c

For f € LY (£2)and F € Lp/(.Q)N, we define ug ¢, u1 ¢ as the solutions of

(o e, 1) € WHP(I) x LP (I, WP (0) /R),

du dv
Ag 0’€€1+Vx’u1,s —0€1+Vx/vl dx
dx1 dX1
Q
dv()
= || fvo+ F|-—e + Vv ) )dx,
d)C1
Q

V(vo, v1) € WhP(I) x LP(I, WP (») /R).

Then, we have

(5.15)

d
Deu, — < :}?ls e;+ Vx’”l,s) — 0 in LP(£2),

where u, is the solution of (2.12). This reduces the homogenization of (2.12) to the homogenization of (5.15). We
will not prove this result because we will not use it.

When A € (0, +00), Theorem 5.6 means that the reduction of dimension and the homogenization hold simultane-
ously.

When A = oo, Theorem 5.6 means that we can perform first the homogenization and then the reduction of di-
mension. Clearly in this case the problem for ug and u; is local. We will see that the other two cases give nonlocal
problems in general. Namely we give two examples, with A = 0 and A = 1 in which the limit problem of (2.12) is
nonlocal.

In the two examples we assume N =2, w = (0, 1), and we set x’ = x».



J. Casado-Diaz et al. / Ann. 1. H. Poincaré — AN 30 (2013) 519-545 541

Example 1

We define A € Lgo((O, 1), M) by

1 1
A = , ae.yre€(,1), 5.16
) <1y@0> newn (5.16)
with y € LgO(O, 1), such that there exists v > 0, with y > 1 + v a.e. in (0, 1). We consider &, such that
lim — =0
e—0 0

Theorem 5.9. For the above choice of A and 8, the limit problem of (5.2) is (3.7) where A: R x V' H(w) — L?*(w)?
is the nonlocal operator given by

1
d d dyr
A(S, %)=<s+d—i>e1+(s+y d_+ /d_w t)dt), ae.inw, (5.17)
0

1 —1 -1
dyi . / dy
) = — 1. 5.18
Jy@o) y (wao—1> " O19

Proof. For f € L*>(£2) and F € L*(£2)?, we define (u, fig, i11) as the solution of (5.12) and u; by (5.11). We know
that if u, is the solution of (2.12) then (2.13), (2.14) hold.
Taking in (5.12), vg = 0, 99 = 0, we deduce
dug
dx,

Using now vg =0 and 9; = 0 in (5.12) we deduce that there exists a function r € L?(I) such that

with

+3y,t0+y ()it =F, ae.inl x (0,1) x w. (5.19)

1

dug . .

d— +3y,l0+ [ Ond1dxy=r(x;) ae.inl x(0,1).
0

Taking in this expression the value of 9y, given by (5.19), we get

dig + 3y, o + 1<Fz—@—a ﬁo>=r(x1) ae.in I x (0,1)
d 1 y dx, V1 > 1)
with
1
F'z(xl)=/F2(x1,x2)dxz, ae. x; el
0
Thus, we have

F, ae.inl x (0,1). (5.20)

A Y
Oy, g = ——r — — —
V1 %

which substituted in (5.20) proves

A Y 1 — dl/l()
0 ==—-1 Fh—— 5.21
yiHo (V ) —1< 2 dxl) 62D
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Using the expression (5.21) of 3y, ¢ in (5.19) we have

oo L duo L1\ 1 (5 du
U =— - === )— -,
et =y dxi p v )y —1\"? ax

a.e.in I x (0, 1) x w, which integrated in (0, 1) with respect to y; gives

5 1 . dug N 1 1 > dug . (5.22)
ur = — | — 2% B ——), ae.inf. .
LT\ d y )\ dn

Integrating now in (0, 1) with respect to x», we get
1
hR——=y f A, u1(x1,t)dt, ae.inl,
0
which substituted in (5.22) implies
1

d
d—zo +y s + (7 — y*)/ax2u1(x1,z)dt —F, ae.inf. (5.23)
! 0
On the other hand, taking in (5.12) 09 = 0, 9; = 0 we have
dug dvy / dvg
— 49 —dx; = Fi— )dxy, 5.24
/(d)q + x2ul>dx] X fvo+ T X1 (5.24)
2 2

for every vy € HOl (I). From (5.23) and (5.24) we conclude that ug, u satisfy (3.7) with A given by (5.17). O
Example 2

We take §, = ¢, w = (0, 1), and we define A € Lgo((O, 1), M) by

1 0

ADD = (0 o1

> ., ae.in (0, 1), (5.25)

with y € Lg"(O, 1), such that for some @ > 0, we have y > « a.e. in R.

Theorem 5.10. For the above choice of A, the limit problem of (2.12) is (3.7) where A : R x V' HY(w) x L2(0, 1)?
is a nonlocal operator given by

.A(s, ﬂ)()c) =sey +A2<ﬂ)(x2), a.e. x € §2, (5.26)

dx; dx;

with Ay : L*(w) — L*(w) defined by

2 & [V H@) sintkrt) dt
A(H) () == Y Jo (1) AT AL ), ae xs € (. 1). (5.27)
5o Ky k() dy
Here Yy, € Hﬁ1 (0, 1) is the solution of
1 J J 1 1
/ﬂ—”dyl +k2n2/y¢kudy1 =/vdy1, Yu e H) (0, 1). (5.28)
J dyi dy / )

Proof. For f € L%(£2) and F € L?(£2)?, we define u, @i as the solutions of (5.13) with A = 1 and u; by (5.11). We
know that if u, is the solution of (2.12) then (2.13), (2.14) hold.
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Taking in (5.13) vg = 0, we deduce that for a.e. x| € I, the function &t (x1, ., .) € HL((0, 1)?), periodic with respect
to yip, satisfies

1

1 1
//(aylﬁlaylﬁ] +)/3xZ1213x2ﬁ1)dy1 dxz=/
0 0 0

FZaxzﬁl dyidx;,

o _

Vi, e H! ((0, 1)2), periodic with respect to y.

Using that the functions cos(km x), with k € N, are a basis of H'(0, 1) (they are the eigenfunctions corresponding to
2 . - . . N

the operator (%)_1 with Neumann boundary condition), we look for a Fourier expansion for i1,
2

oo
i1 =) m(y) cos(kmxa).
k=1

We get
0 1
duyi1 (x1, y1,x2) =21 ) K / Fa(xy. 1) sin(kre) dt Y (1) sin(kxa).
k=1

a.e.in I x (0, 1)2. Integrating with respect to y;, we conclude that u; satisfies

Ay (3g,u1(x1,))(x2) = F2(x), ae.x €2, (5.29)
with A, defined by (5.27). On the other hand, taking v9 = 0 in (5.13) we deduce
dug dvg / dvg
——dx = Fr,— ) dx. 5.30
d)C] d.X] o <fv0+ de]> . ( )
Q Q

From (5.29) and (5.30) we conclude that ug, u; satisfy (3.7) with 4 given by (5.27). O

Remark 5.11. We observe that if the operator A3 is local, i.e. if there exists ¢ : 2 — Rsuch that Ay (H) = ¢(x1, x2)H,
for every H € L2%(0, 1), then, by (5.27) c is a positive constant and

1
1
/I/fk(YI)dM:W, Vk > 1. (5.31)
0

The following result proves that this only holds if y is constant.
Proposition 5.12. The solution i of (5.28) satisfies (5.31) if and only if y = c a.e. in (0, 1).

Proof. It is clear that if y is constant then (5.31) holds.
For the reciprocate, we assume that (5.31) hold. Taking v as test function in (5.28) and using (5.31) we deduce

1 1
Ay 2 1
k2/ di dy, +k4n2/y|wk|2dy1 - —. (5.32)
1 cT
0 0

Therefore, up to a subsequence, there exists ¥ € LZ(O, 1) such that k21pk converges weakly to ¥ in L2(O, 1). Then,
taking ¢ € Httl (I) as test function in (5.28) we deduce

1

1 1
dyn d
f ﬂ—‘”dyl + 72 / y (K2 ¥ )pdyr = f pdy;. (5.33)
J dy1 dy J )
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Using that by (5.32)

dyy d ldyy [ Y1 (ld :
oo (e e on) (& fte ) o
dyi dy1 dy, k dy
0 0
we can pass to the limit in (5.32) to deduce
1 1
Z/ywdyl = / pdyi, YeeH!0,1).
0 0
This shows ¥ = 1/(r?y), which by (5.31) proves
: 1 : 1
/—dy1 = lim rrz/kzwk(yl)dyl =-. (5.34)
Y k—o00 c
0 0

Taking into account (5.31), (5.32) and (5.34) we deduce

1
Ay |°
_ 1 d - _ Vk > 1.
‘1'/”‘ T TR /‘ dy
0
This equality proves
1 d
=t Wk o ks aein 0.1),
% dyi

and therefore y is a constant function which by (5.34) agrees with c. O
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