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Abstract

In this article, we study the long time behavior of solutions of a variant of the Boussinesq system in which the equation for the 
velocity is parabolic while the equation for the temperature is hyperbolic. We prove that the system has a global attractor which 
retains some of the properties of the global attractors for the 2D and 3D Navier–Stokes equations. Moreover, this attractor contains 
infinitely many invariant manifolds in which several universal properties of the Batchelor, Kraichnan, Leith theory of turbulence 
are potentially present.
© 2015 Published by Elsevier Masson SAS.

Résumé

Dans cet article nous étudions le comportment en temps long infini des solutions d’un système du Boussinesq partiellement 
dissipatif, dont une est parabolique et l’autre est hyperbolique. Dans ce but, nous introduisons un attracteur universel qui retient 
plusieurs proprietés des attracteurs universels des équations de Navier–Stokes en dimension deux ou trois, et qui contient une 
infinité de varietés invariantes dans lesquelles plusieurs proprietés universelles de la théorie de la turbulence bidimensionnelle de 
Batchelor, Kraichnan et Leith, sont potentiellement présentes.
© 2015 Published by Elsevier Masson SAS.
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1. Introduction

A critical part of understanding turbulence in geophysical flows lies in understanding the large-time dynamics 
of the system. A tool that provides deep insight in studying large-time dynamics of certain systems is the study of 
global attractors, which typically requires the underlying dynamical system to be dissipative; see for instance [6,7,
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41,44] and the references therein. For instance, in case of the fully dissipative Boussinesq system, which arises in 
the study of atmospheric, oceanic and astrophysical turbulence, particularly where rotation and stratification pay a 
dominant role [26,36,40,42,46], the study of the long term dynamics via global attractors has been accomplished 
in [19]. However, in certain physical regimes, the dynamical system governing geophysical flows is modeled to be 
only semi-dissipative. That is, the system is dissipative in some variables, but not in others. This means that the usual 
notion of global attractors no longer applies. In this work, we propose a new type of global attractor—which we call a 
weak sigma-attractor—that captures the large-time dynamics of a well-known semi-dissipative model for ocean flows 
known as the semi-dissipative 2D Boussinesq system [35]. The notion of the weak sigma-attractor, which in some 
respects is a hybrid of the attractors of the 2D and 3D Navier–Stokes equations [22,24], exploits the fact that while 
only part of the system is dissipative, the other part has a hyperbolic structure that gives rise to certain conserved 
quantities which in turn correspond to invariant sets in the phase space. We expect that this approach, which is new 
to the best of our knowledge, will be useful in studying the long-term dynamics of many other semi-dissipative 
systems.

The global attractor for a dissipative dynamical system is usually defined as either the maximal compact invariant 
set, the minimal set which uniformly attracts all bounded sets, or the set of points on complete bounded trajectories. 
For many dissipative systems (e.g., the heat equation, the 2D Navier–Stokes equations, the 1D Kuramoto–Sivashinsky 
equations, and many others), these definitions are equivalent. For the semi-dissipative Boussinesq system, this equiv-
alence fails, and therefore the definition must be modified. In particular, compactness must be sacrificed. However, as 
we will show, it can be recovered in a certain local sense, as the attractor we propose will be shown to be a count-
able union of weakly compact invariant sets that retain several properties of the attractor for the 2D Navier–Stokes 
equations. Moreover, the attraction properties we describe will be in the sense of the weak topology rather than the 
strong topology. This aspect is similar to the situation for the 3D Navier–Stokes equations [22,24], where, due to the 
lack of knowledge about the global well-posedness of the system, one studies a weak attractor rather than a strong 
global attractor. However, the system we study is known to be globally well-posed, and thus, the use of the weak 
topology is intrinsic to the semi-dissipative nature of the system under consideration. In contrast to this, if the global 
well-posedness for the 3D Navier–Stokes equations were to be established, the corresponding weak attractor would 
immediately become an attractor in the usual (strong) sense.

A curious feature of the 2D semi-dissipative Boussinesq system (1.1) pertaining to the study of 2D turbulence 
deserves mention here. In particular, the equations potentially combine a wealth of turbulent dynamics in a single 
system. This is due to the fact that the right-hand side of the momentum equation is a time-dependent dynamical 
variable, but that its Lp norms are time-independent (1 ≤ p ≤ ∞). Thus, the velocity component of (1.1) will indeed 
contain turbulent dynamics corresponding to all Grashof numbers, so long as one can establish that arbitrarily large 
effective Grashof number – defined as the magnitude of the divergence-free part of the force that drives the velocity 
equation – can be achieved for large time. We discuss this issue in greater detail in Section 7. On the invariant sub-
sets mentioned above, the system is expected to have time statistics consistent with the Batchelor–Kraichnan–Leith 
[4,33] empirical theory of 2D turbulence, albeit with different Grashof numbers varying from subset to subset. We 
can therefore think of the 2D semi-dissipative Boussinesq system as a platform which hosts an enormous variety of 
2D turbulent dynamics. It appears to be a model system for the study of attractors, in the same way that C. Ele-
gans and Drosophilia are model species for study in biology. (Similar statements may be made in the 3D case.) We 
emphasize that system (1.1) was not created in an ad-hoc fashion to have the particular properties stated above, but 
instead arises naturally as a relevant system in geophysics (see, e.g., [26,42,46]). Moreover, understanding the dy-
namics of system (1.1) in the setting of weak (e.g., zero) thermal diffusion is listed as Moffatt’s Third 21st Century 
Problem [39].

We will show that for system (1.1), the weak sigma-attractor is not only non-trivial, but it is an extremely rich 
proper subset of the phase space. We hope that the study of the long-term dynamics of this system will inspire further 
research leading to greater insights into 2D turbulence, and perhaps suggest new approaches to this area.

The paper is organized as follows. In Section 1.1, we describe the semi-dissipative Boussinesq system, which is 
the main subject of our study. In Section 2, we lay out notation and preliminary material. In Section 2.1, we recall 
well-known well-posedness results which will be useful in the sequel. In Section 3, we prove that smooth solutions to 
system (1.1) have the backward-uniqueness property. In Section 4, we propose the notion of a weak sigma-attractor 
for system (1.1), describe several new classes of steady states (as well as time variant solutions) of the system, and 
state the main theorem on the properties of the weak sigma-attractor. In Section 5, we prove the properties discussed 
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in Section 4. In Section 7, we discuss connections to turbulence as evidenced in the 2D Navier–Stokes equations with 
forcing in all Fourier modes, while in Section 6, we discuss the projection of the attractor onto the energy–enstrophy 
plane. We find certain points in this setting which correspond to steady columnar flows which are in hydrostatic 
balance. In Section 7.1, we discuss some open questions related to this study.

1.1. Semi-dissipative Boussinesq system

The semi-dissipative 2D Boussinesq system (without rotation) in the periodic domain � := [0, L]2 for time t ≥ 0
is given by

∂tu + (u · ∇)u + ∇p = ν�u + θg, in � ×R+, (1.1a)

∂t θ + (u · ∇)θ = 0, in � ×R+, (1.1b)

∇ · u = 0, in � ×R+, (1.1c)

u(x,0) = u0(x), θ(x,0) = θ0(x), in �, (1.1d)

equipped with periodic boundary conditions in space [35]. Here ν > 0 is the fluid viscosity. The spatial variable is 
denoted x = (x1, x2) ∈ �, and the unknowns are the fluid velocity field u ≡ u(x, t) ≡ (u1(x, t), u2(x, t)), the fluid 
pressure p(x, t), and the function θ ≡ θ(x, t), which may be interpreted physically, e.g., as the temperature variable. 
We write g = (0, g)T for the constant, upward-pointing gravity vector, where g is the (scalar) acceleration due to 
gravity. It is straight-forward to show the Galilean invariance and mean-preserving property of (1.1). In view of this, 
we henceforth assume that 

∫
�

u dx = 0 and 
∫
�

θ dx = 0, and similarly for the initial data. Furthermore, all function 
spaces used in this work will be assumed to contain only mean-free elements, unless otherwise indicated. We remark 
that, with minimal adjustments, the results here are also valid in the presence of a Coriolis rotational term.

2. Notation and some specific preliminaries

Let F be the set of all vector-valued trigonometric polynomials with periodic domain � = T2 := R2/(LZ2) ≡
[0, L]2. We define a space of test functions

V :=

⎧⎪⎨⎪⎩ϕ ∈F : ∇ · ϕ = 0 and
∫
T2

ϕ(x)dx = 0

⎫⎪⎬⎪⎭ .

We denote by L2 and Hm the usual Lebesgue and Sobolev spaces over T2, and define H and V to be the closures of 
V in L2 and H1 respectively. We will often use the notation (·, ·) to denote pairs, so to avoid confusion, we denote the 
inner products on H and V respectively by

〈u,v〉 :=
2∑

i=1

∫
T2

uivi dx and 〈〈u,v〉〉 :=
2∑

i,j=1

∫
T2

∂ui

∂xj

∂vi

∂xj

dx,

and the associated norms, respectively by

‖u‖L2 := 〈u,u〉1/2 , ‖u‖H1 := 〈〈u,u〉〉1/2 .

This notation will also be extended to apply to tensors, such as ∇u, in the natural way, which should not be a source 
of confusion. Note that ‖ · ‖H1 is a norm due to the Poincaré inequality, (2.1), below. We denote by V ′ the dual space 
of V . The action of V ′ on V is denoted by 〈·, ·〉V ′,V . Note that we have the continuous embeddings V ↪→ H ↪→ V ′. 
Moreover, by the Rellich–Kondrachov compactness theorem (see, e.g., [1,14]), these embeddings are compact due to 
the boundedness of the domain T2.

We denote by Pσ : L2 → H the Leray–Helmholtz projection operator (i.e., the orthogonal projection onto 
divergence-free vector spaces), and the Stokes operator A := −Pσ � with domain D(A) := H2 ∩ V . In our case 
of periodic boundary conditions, it is well-known that A = −� (see, e.g., [7,43]). A−1 : H → H is a positive-definite, 
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self-adjoint, compact operator, and therefore has an orthonormal basis of eigenfunctions ϕk corresponding to a non-
increasing sequence of eigenvalues (see, e.g., [7,43]). We label the eigenvalues λk of A so that 0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · . 
Furthermore, for all w ∈ V , we have the Poincaré inequality,

κ0‖w‖L2 ≤ ‖w‖H1, κ0 := 2π/L. (2.1)

Due to (2.1), for w ∈ D(A), we have the norm equivalences

‖Aw‖L2 ∼= ‖w‖H2 and ‖∇w‖L2 ∼= ‖w‖H1 . (2.2)

In fact, for any s ∈ R, one can show that

‖w‖Hs ∼= ‖As/2w‖L2 (2.3)

for w ∈ D(As/2), where D(As/2) and As/2 are defined in a natural way by the eigenvalues and eigenfunctions of A

(see, e.g., [7,43]).
We also note the Ladyzhenskaya inequality, which in 2D reads

‖B(u,u)‖L2 ≤ C‖u‖1/2
L2 ‖Au‖1/2

L2 ‖u‖H1, (2.4)

and the Agmon inequlaity, which in 2D reads

‖u‖L∞ ≤ C‖u‖1/2
L2 ‖Au‖1/2

L2 . (2.5)

We use the standard notation

B(w1,w2) := Pσ ((w1 · ∇)w2) (2.6)

for w1, w2 ∈ V . We note several important properties of B which are proven, e.g., in [7,18,43,45]. The operator B
defined in (2.6) is a bilinear form which can be extended as a continuous map B : V × V → V ′. Furthermore, for w1, 
w2, w3 ∈ V ,

〈B(w1,w2),w3〉V ′,V = −〈B(w1,w3),w2〉V ′,V , (2.7a)

〈B(w1,w2),w2〉V ′,V = 0. (2.7b)

The following inequalities hold for smooth functions:

| 〈B(w1,w2),w3〉 | ≤ C‖w1‖1/2
L2 ‖w1‖1/2

H1 ‖w2‖1/2
L2 ‖w2‖1/2

H1 ‖w3‖H1, (2.8a)

| 〈B(w1,w2),w3〉 | ≤ C‖w1‖1/2
L2 ‖w1‖1/2

H1 ‖w2‖H1‖w3‖1/2
L2 ‖w3‖1/2

H1 , (2.8b)

| 〈B(w1,w2),w3〉 | ≤ C‖w1‖1/2
L2 ‖Aw1‖1/2

L2 ‖w2‖H1‖w3‖L2, (2.8c)

| 〈B(w1,w2),w3〉 | ≤ C‖w1‖L2‖w2‖1/2
H1 ‖A3/2w2‖1/2

L2 ‖w3‖L2 . (2.8d)

These results also hold if B is extended to allow w2 and w3 to be scalar-valued functions in the indicated spaces (we 
still require ∇ · w1 = 0), and A is replaced by −�.

2.1. Known well-posedness results

The global well-posedness of system (1.1) in the case (u0, θ0) ∈ (H3 ∩ V ) ×H3 was proven in [5], and in the case 
(u0, θ0) ∈ (H2 ∩ V ) × H3 in [27]. The requirements on the initial data were weakened in [8], where the following 
theorem was proven (see also [25,35] for related results and additional discussion).

Definition 2.1. We say that a pair (u, θ) solves (1.1) if (u(t), θ(t)) ∈ H ×L2 for each t > 0, u and θ are both periodic 
and mean-free, and they satisfy
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−
T∫

0

〈
u(s),�′(s)

〉
ds +

T∫
0

〈u(s) ⊗ u(s),∇�〉 ds

= 〈u0,�(·,0)〉 − ν

T∫
0

〈〈u(s),�(s)〉〉 ds +
T∫

0

〈θ(s)g,�(s)〉 ds, (2.9a)

−
T∫

0

〈
θ(s),φ′(s)

〉
ds +

T∫
0

〈u(s)θ(s),∇φ(s)〉 ds = 〈θ0, φ(·,0)〉 (2.9b)

for all mean-free, space-periodic scalar test functions φ(x, t) ∈ C∞(� × [0, T ]), such that φ(x, T ) = 0; and for 
all mean-free, space-periodic vector-valued test functions �(x, t) ∈ [C∞(� × [0, T ])]2 such that ∇ · �(·, t) = 0, 
�(·, T ) = 0.

A pair (u(t), θ(t)) ∈ H × L2, t ∈R is a global solution if

−
∞∫

−∞

〈
u(s),�′(s)

〉
ds +

∞∫
−∞

〈u(s) ⊗ u(s),∇�〉 ds

= −ν

∞∫
−∞

〈〈u(s),�(s)〉〉 ds

∞∫
−∞

〈θ(s)g,�(s)〉 ds, (2.10a)

−
∞∫

−∞

〈
θ(s),φ′(s)

〉
ds +

∞∫
−∞

〈u(s)θ(s),∇φ(s)〉 ds = 0, (2.10b)

where φ ∈ C∞(� × (−∞, ∞)) and � ∈ [C∞(� × (−∞, ∞))]2 are exactly as before, except that they are assumed 
to be compactly supported in time. As mentioned before, the pressure p is recovered via (2.19).

Theorem 2.2. (See [8].) Suppose (u0, θ0) ∈ H × L2. Then, for any T > 0, the system1 (1.1) has a unique solution 
(u, θ) such that

u ∈ C([0, T ],H) ∩ L2([0, T ],V ), θ ∈ C([0, T ],L2),

∂u
∂t

∈ L2([0, T ],V ′), ∂θ

∂t
∈ L4([0, T ],H−3/2).

If additionally, u0 ∈ V , then

u ∈ C([0, T ],V ) ∩ L2([0, T ],D(A)),

∂u
∂t

∈ L2([0, T ],H),
∂θ

∂t
∈ L4([0, T ],H−1).

Recently, results on well-posedness and persistence of regularity were improved including the treatment of the 
bounded domain setting [34,28,29]. The following two theorems collects some of the results of the aforementioned 
works.

Theorem 2.3. (Combined results from [5,8,27–29]) Let s ≥ 0. Suppose u0 ∈ H1+s ∩ V , and θ0 ∈ Hs . Then u ∈
C([0, ∞), H1+s) ∩ L2

loc([0, ∞), H2+s) and θ ∈ C([0, ∞), Hs).

Theorem 2.4. (Combined results from [5,8,27–29]) Let s > 1. Suppose u0 ∈ Hs ∩ V , and θ0 ∈ Hs . Then u ∈
C([0, ∞), Hs) ∩ L2

loc([0, ∞), H2+s) and θ ∈ C([0, ∞), Hs).

1 In the appropriate weak formulation given in (2.9).
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Next, we recall the well-known result (see, e.g., [13]) from which it follows that the transport equation has unique 
solution which preserves all Lp norms as well as distribution functions. Recall that for a function ϕ ∈ L2(�), the 
corresponding distribution function Fϕ : R → [0, 1] defined by

Fϕ(ρ) := 1

|�|
∫
�

χ(−∞,ρ](ϕ(x)) dx = 1

|�| |{x ∈ � : ϕ(x) ≤ ρ}| . (2.11)

Proposition 2.5. Let v ∈ L2(0, T ; V ) and θ0 ∈ L2(�), the Cauchy problem{
∂t θ + ∇ · (vθ) = 0,

θ(x,0) = θ0(x),

(2.12a)

(2.12b)

has a unique solution θ = θ(x, t) such that for a.e. t ≥ 0 and all ρ ∈R,

Fθ(·,t)(ρ) = Fθ0(ρ). (2.13)

In particular, for all p ∈ [1, ∞], and a.e. t ≥ 0,

‖θ(t)‖Lp = ‖θ0‖Lp . (2.14)

2.2. A functional form of the equation

As is customary for the Navier–Stokes equations, applying Pσ to (1.1a) (see Section 2 for notation) yields the 
functional equation

du
dt

+ νAu + B(u,u) = Pσ (θg). (2.15)

It is straightforward to check that

Pσ (θg) = θg − g∇(∂x2�−1θ) =
(−∂x1∂x2�−1

I − ∂2
x2

�−1

)
θg. (2.16)

As this is an orthogonal decomposition,

‖θg‖2
L2 = ‖Pσ (θg)‖2

L2 + g2‖∇(∂x2�−1θ)‖2
L2 . (2.17)

Thus,

g−2‖Pσ (gθ)‖2
L2 = ‖θ‖2

L2 −
(
∇�−1∂x2θ,∇�−1∂x2θ

)
= ‖θ‖2

L2 +
(
��−1∂x2θ,�−1∂x2θ

)
= ‖θ‖2

L2 − ‖(−�)−1/2∂x2θ‖2
L2

= ‖θ‖2
L2 − ‖R2θ‖2

L2 = ‖R1θ‖2
L2 , (2.18)

where Ri := (−�)−1/2∂xi
, i = 1, 2 are the Riesz-transforms, which can also be defined by their Fourier symbols 

R̂i(k) := iki/|k|, i = 1, 2 at wave number k ≡ (k1, k2).
Due to the mean-free assumption, if one obtains a pair (u, θ) which solves (2.15) and (1.1b)–(1.1d), then one can 

obtain the pressure p by taking divergence in (1.1a) and noting that

p = −
∑
i,j

Rij (uiuj ) + g�−1(∂x2θ), Rij = �−1(∂xi
∂xj

), (2.19)

where �−1 is taken with respect to the periodic boundary conditions and the mean-free condition. Thus, we will also 
refer to a pair (u(t), θ(t)) solving (2.15) and (1.1b)–(1.1d) as a solution to the system (1.1).
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3. Backward uniqueness

Our main result in this section is that the system (1.1) has the property of backward uniqueness for sufficiently 
smooth solutions; namely, if two (sufficiently smooth) solutions agree at some point in time, then they agree for all 
previous times. While this is known for the 2D Navier–Stokes equations and for the transport equation, the result 
for the coupled system (1.1) does not seem to follow in a straightforward manner from the corresponding results 
for the uncoupled system. Our technique is inspired by that of [3]. The backward uniqueness result will be useful 
in studying the asymptotic dynamics of (1.1). For instance, together with well-posedness, it implies that if any two 
global trajectories intersect, then they must be identical.

Let us recall that the method in [3] (which applies to a wide class of fully dissipative equations, including the 2D 
Navier–Stokes equations) is to consider two solutions u1 and u2 which are not identical at some time, and then to show 
that the log of the norm of their difference, ̃u := u1 −u2, remains bounded for all future times, so that the solutions can 
never coincide in the future (this is what is meant by backward uniqueness). The estimates in [3] typically require one 
to show that the Dirichlet quotient λ(t) := ‖̃u‖2

H1/‖̃u‖2
L2 grows at most exponentially in time. The lack of diffusion in 

(1.1b) poses a hurdle in showing such a bound in our case. However, we show below that by considering instead the 

hybrid quantity I (t) := ‖̃u‖2
H1

‖̃u‖2
L2 +g2‖θ̃‖2

L2
, the diffusion in (1.1a) alone is enough to gain the necessary control over both 

variables u and θ . Note that I (t) is not a Dirichlet quotient.

Theorem 3.1. For i = 1, 2, let (ui , θi) be solutions to (1.1), such that ui ∈ L∞((T1, T2); H ∩ H3) and θi ∈
L∞((T1, T2); H3). If there exists a time T ∗ ∈ (T1, T2) such that u1(T

∗) = u2(T
∗) and θ1(T

∗) = θ2(T
∗), then for 

a.e. t ∈ (T1, T2), we have (u1(t), θ1(t)) = (u2(t), θ2(t)).

Proof. Denote ̃u := u1 − u2, ̃θ := θ1 − θ2, p̃ := p1 − p2. Then, we have

∂t ũ + (u1 · ∇ )̃u + (̃u · ∇)u2 + ∇p̃ = ν�ũ + θ̃g, (3.1a)

∂t θ̃ + (u1 · ∇)θ̃ + (̃u · ∇)θ2 = 0. (3.1b)

Suppose that there exists some T ∗ > 0 for which both ̃u(T ∗) ≡ 0 and θ̃ (T ∗) ≡ 0, but that there also exists some 
t0 ∈ (T1, T ∗) such that ̃u(t0) �≡ 0 or ̃θ(t0) �≡ 0. Due to the continuity in time given by Theorem 2.4, there is an interval 
[t0, t0 + δ) on which ũ �≡ 0 or θ̃ �≡ 0. Let us denote by [t0, t1) the largest such interval, noting that we must have 
ũ(t1) ≡ 0 and ̃θ(t1) ≡ 0. For the remainder of this section, we work on this interval. Taking the inner product of (3.1a)
with ̃u, and with Aũ, and of (3.1b) with ̃θ , integrating by parts, and using (2.7b) yields

1

2

d

dt
‖̃u‖2

L2 = −ν‖̃u‖2
H1 − 〈(̃u · ∇)u2, ũ〉 + 〈̃θg, ũ

〉
, (3.2a)

1

2

d

dt
‖̃u‖2

H1 = −ν‖Aũ‖2
L2 − 〈(̃u · ∇)u2,Aũ〉 + 〈̃θg,Aũ

〉
, (3.2b)

1

2

d

dt
‖θ̃‖2

L2 = − 〈(̃u · ∇)θ2, θ̃
〉
. (3.2c)

Consider the quantity L defined on [t0, t1) by

L(t) := log

⎛⎜⎝ 1√
‖̃u‖2

L2 + g2‖θ̃‖2
L2

⎞⎟⎠= −1

2
log
(
‖̃u‖2

L2 + g2‖θ̃‖2
L2

)
. (3.3)

Using (3.2a) and (3.2c), we compute

dL

dt
= −1

‖̃u‖2
L2 + g2‖θ̃‖2

L2

(
1

2

d

dt
‖̃u‖2

L2 + g2

2

d

dt
‖θ̃‖2

L2

)

= ν‖̃u‖2
H1 + 〈(̃u · ∇)u2, ũ〉 − 〈̃θg, ũ

〉+ g2
〈
(̃u · ∇)θ2, θ̃

〉
‖̃u‖2 + g2‖θ̃‖2
L2 L2
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≤ ν
‖̃u‖2

H1

‖̃u‖2
L2 + g2‖θ̃‖2

L2

+ 〈(̃u · ∇)u2, ũ〉
‖̃u‖2

L2 + g2‖θ̃‖2
L2

+ 1

2
+ g2

〈
(̃u · ∇)θ2, θ̃

〉
‖̃u‖2

L2 + g2‖θ̃‖2
L2

:= νI + II + 1

2
+ III, (3.4)

where we have used Young’s inequality. Thus, in order to find a bound for dL/dt , we search for a bound on the 
quotients I , II, and III in the right-hand side of (3.4). First, note that, due to (2.8b) and (2.8c),

〈(̃u · ∇)u2, ũ〉 ≤ C‖u2‖H1 ‖̃u‖L2 ‖̃u‖H1 ≤ C‖u2‖2
H1 ‖̃u‖2

L2 + ‖̃u‖2
H1, (3.5)

g2 〈(̃u · ∇)θ2, θ̃
〉≤ Cg2‖�θ2‖L2 ‖̃u‖H1‖θ̃‖L2 ≤ Cg4‖�θ2‖2

L2‖θ̃‖2
L2 + ‖̃u‖2

H1 . (3.6)

Thus,

II := 〈(̃u · ∇)u2, ũ〉
‖̃u‖2

L2 + g2‖θ̃‖2
L2

≤ C‖u2‖2
H1 ‖̃u‖2

L2

‖̃u‖2
L2 + g2‖θ̃‖2

L2

+ ‖̃u‖2
H1

‖̃u‖2
L2 + g2‖θ̃‖2

L2

≤ C‖u2‖2
H1 + I, (3.7)

and

III := g2
〈
(̃u · ∇)θ2, θ̃

〉
‖̃u‖2

L2 + g2‖θ̃‖2
L2

≤ Cg4‖�θ2‖2
L2‖θ̃‖2

L2 + ‖̃u‖2
H1

‖̃u‖2
L2 + g2‖θ̃‖2

L2

≤ Cg2‖�θ2‖2
L2 + I. (3.8)

In order to estimate I , we compute dI/dt .

‖Aũ‖2
L2 − I ‖̃u‖2

H1 = ‖Aũ‖2
L2 − ‖̃u‖4

H1

‖̃u‖2
L2 + g2‖θ̃‖2

L2

≥ ‖Aũ‖2
L2 − 2

‖̃u‖4
H1

‖̃u‖2
L2 + g2‖θ̃‖2

L2

+ ‖̃u‖4
H1

‖̃u‖2
L2 + g2‖θ̃‖2

L2

· ‖̃u‖2
L2

‖̃u‖2
L2 + g2‖θ̃‖2

L2

= ‖Aũ‖2
L2 − 2I 〈Aũ, ũ〉 + I 2‖̃u‖2

L2

= ‖Aũ − I ũ‖2
L2 . (3.9)

Using (3.2), we compute

1

2

dI

dt
:= d

dt

1
2 ‖̃u‖2

H1

‖̃u‖2
L2 + g2‖θ̃‖2

L2

=
1
2

d
dt

‖̃u‖2
H1

‖̃u‖2
L2 + g2‖θ̃‖2

L2

− ‖̃u‖2
H1

1
2

d
dt

(‖̃u‖2
L2 + g2‖θ̃‖2

L2)

(‖̃u‖2
L2 + g2‖θ̃‖2

L2)
2

= −ν‖Aũ‖2
L2 − 〈(̃u · ∇)u2,Aũ〉 + 〈̃θg,Aũ

〉
‖̃u‖2

L2 + g2‖θ̃‖2
L2

+
‖̃u‖2

H1

(
ν‖̃u‖2

H1 + 〈(̃u · ∇)u2, ũ〉 − 〈̃θg, ũ
〉+ g2

〈
(̃u · ∇)θ2, θ̃

〉)
(‖̃u‖2

L2 + g2‖θ̃‖2
L2)

2

= −ν‖Aũ‖2
L2 − 〈(̃u · ∇)u2,Aũ〉 + 〈̃θg,Aũ

〉
‖̃u‖2

L2 + g2‖θ̃‖2
L2

+I · ν‖̃u‖2
H1 + 〈(̃u · ∇)u2, ũ〉 − 〈̃θg, ũ

〉+ g2
〈
(̃u · ∇)θ2, θ̃

〉
‖̃u‖2

L2 + g2‖θ̃‖2
L2

= −ν(‖Aũ‖2
L2 − I ‖̃u‖2

H1) − 〈(̃u · ∇)u2,Aũ − I ũ〉 + 〈̃θg,Aũ − I ũ
〉

‖̃u‖2
L2 + g2‖θ̃‖2

L2

+I
g2
〈
(̃u · ∇)θ2, θ̃

〉
‖̃u‖2

L2 + g2‖θ̃‖2
L2

. (3.10)

Using this with (2.8a), (3.9) and (2.8d), we find,
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1

2

dI

dt
≤ −ν‖Aũ − I ũ‖2

L2 + ‖̃u‖H1‖Au2‖L2‖Aũ − I ũ‖L2 + g‖θ̃‖L2‖Aũ − I ũ‖L2

‖̃u‖2
L2 + g2‖θ̃‖2

L2

+I
g2‖̃u‖L2‖θ2‖H3‖θ̃‖L2

‖̃u‖2
L2 + g2‖θ̃‖2

L2

≤ −ν‖Aũ − I ũ‖2
L2/2 + ‖̃u‖2

H1‖Au2‖2
L2/ν + g2‖θ̃‖2

L2/ν

‖̃u‖2
L2 + g2‖θ̃‖2

L2

+ I
g‖θ2‖H3

2

≤ I
‖Au2‖2

L2

ν
+ 1

ν
+ I

g‖θ2‖H3

2
, (3.11)

where we have used Young’s inequality for the last estimate. Applying Gronwall’s inequality on [t0, t), t ∈ [t0, t1)
now yields

I (t) ≤ I (0)e
∫ t

0 K(s) ds + 1

ν

t∫
0

e
∫ t
τ K(s) ds dτ

≤ I (0)e
∫ T ∗

0 K(s) ds + 1

ν

T ∗∫
0

e
∫ T ∗
τ K(s) ds dτ, (3.12)

where K(s) := ‖Au2(s)‖2
L2

ν
+ g‖θ2(s)‖H3

2 Thus, I is bounded on [t0, t). By (3.7) and (3.8), this in turn shows that II and 
III are also bounded, so that (3.4) implies that dL/dt is bounded on [t0, t). Integrating in dL/dt in t over [t0, T ∗), we 
find that L is bounded on [t0, T ∗). In particular,(

‖̃u‖2
L2 + g2‖θ̃‖2

L2

)−1/2
(3.13)

is bounded on [t0, T ∗), contradicting the assumptions that ̃u(T ∗) = 0 and ̃θ(T ∗) = 0. �
The global well-posedness results (Theorems 2.2–2.4) imply that (1.1) has a well-defined semigroup operator S(t)

defined for t ≥ 0 by

S(t)(u0, θ0) = (u(t), θ(t)). (3.14)

The backward uniqueness result implies that the semigroup is injective on at least the smooth portion of the set which 
we will define to be the attractor. This in turn implies that S(t) can be extended to hold for negative times on the 
smooth trajectories in that set.

4. An adequate notion of an attractor

We look for a notion of an attractor which applies to (1.1). While some analogies with the attractor, ANS, of the 
2D Navier–Stokes equations can be made, there are also striking differences. Therefore, for comparison, let us recall 
that for the two-dimensional Navier–Stokes equations,

du
dt

+ νAu + B(u,u) = f (4.1)

(where f ∈ H is time-independent), the global attractor ANS has the following equivalent definitions (see, e.g., [7,
41]):

(I) ANS is the minimal set which uniformly attracts all bounded sets in H as t → ∞.
(II) ANS is the maximal compact set of all u0 ∈ H such that the solution of (4.1) satisfying u(0) = u0 exists for all 

t ∈R (i.e., backward and forwards in time) and satisfies

sup
t∈R

‖u(t)‖L2 < ∞. (4.2)
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(III) ANS is the maximal bounded set X ⊂ H such that SNS(t)X = X for all t ∈ R, where SNS(t) is the semigroup 
operator for (4.1).

Moreover, it is well-known that the attractor for the two-dimensional Navier–Stokes equations has finite fractal di-
mension (and therefore finite Hausdorff dimension) (see, e.g., [7,6]).

Clearly, any reasonable notion of attractor of a system must include the steady states of the system. While the 
above definitions are equivalent ways to define the global attractors for many dissipative systems, this is not the case 
for system (1.1) due to the lack of dissipation in (1.1b). Indeed, we will describe below (see Remark 4.1) a set of 
steady states which are neither bounded nor finite-dimensional. Next we describe special classes of solutions of (1.1)
which play an important role in our study.

4.1. Special classes of solutions and steady states

Here we will provide three families of explicit solutions of (1.1) corresponding to purely vertical (V), purely 
horizontal (H) and plane wave solutions.

(i) Vertical solutions: Let aV , θV ∈ L2([0, L]) be an arbitrary periodic, mean-zero function depending only on 
the vertical variable: θV = θV (x2). Set uV

2 = 0, and define uV
1 = uV

1 (x2, t) by the following unforced diffusion 
problem:{

∂tu
V
1 − ν∂2

x2
uV

1 = 0,

uV
1 (x2,0) = aV (x2),

(4.3)

along with periodic boundary conditions on [0, L] and the mean-free condition. Let pV be defined up to an 
arbitrary constant by2

∂x2p
V = gθV . (4.4)

It is easy to check that (u1, u2, θ, p) = ((uV
1 , uV

2 ), θV , pV ) is a solution to (1.1a)–(1.1c) with initial data 
u1(x, 0) = aV (x2), u2(x, 0) = 0, and θ(x, 0) = θV .

Steady state: It is easy to see that the vertical solution (uV , θV ) defined above converges to the steady state 
(0, θV ) as t → ∞.

(ii) Horizontal solutions: Let aH , θH ∈ L2([0, L]) be arbitrary periodic, mean-zero functions depending only on 
the horizontal variable: θH = θH (x1). Set uH

1 = 0, pH = 0, and let uH
2 = uH

2 (x1, t) be the unique solution of the 
following forced diffusion problem:{

∂tu
H
2 − ν∂2

x1
uH

2 = gθH ,

uH
2 (x1,0) = aH (x1),

(4.5)

with periodic boundary condition on [0, L] and the mean-free condition. It is easy to check that (uH, θH , pH ) :=
((uH

1 , uH
2 ), θH , pH ) is a solution to (1.1a)–(1.1c) with initial data

u1(x,0) = 0, u2(x,0) = aH (x1) and θ(x,0) = θH . (4.6)

Since these flows are independent of x2, they can be thought of in a geophysical context as columnular flows. 
In Section 6, we show that the steady states corresponding to these flows also arise as solutions lying on the 
boundary of a certain set containing the attractor after projecting into the Energy–Enstrophy plane.
Steady state: Let u2 = u2(x1) be the unique, mean-free periodic solution of the equation

ν
d2

dx2
1

u2(x1) = −gθH (x1). (4.7)

2 Property (4.4) is often referred to as hydrostatic balance in the geophysical literature.
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One can check that the horizontal solution (uH, θH ) defined above converges, as t → ∞, to the steady state

u1 = 0, u2, θ = θH . (4.8)

(iii) Plane wave solutions: We also consider certain plane-wave (PW) solutions, first introduced in the context of 
the Navier–Stokes equations in [23]. Specifically, let f = f (z, t) and h = h(z) be smooth mean-free functions3

which are L-periodic in z, and fix a non-zero vector k = (k1, k2) ∈ Z2 where k1 + k2 = 0. Below, in (4.13), we 
will require f to satisfy a particular heat equation. Define u and θ by

uPW(x, t) := (f (k · x, t), f (k · x, t)), (4.9a)

θPW(x, t) := h(k · x). (4.9b)

Note that

∇uPW =
(

k1 k2
k1 k2

)
fz(k · x, t), ∇θPW = (k1, k2)hz(k · x).

This implies ∇ · uPW ≡ tr(∇uPW) = (k1 + k2)fz = 0, i.e., uPW is divergence free. Furthermore, denoting by [·, ·]
a vector in R2, we see that

(uPW · ∇)uPW = (k1 + k2)ffz[1,1] = [0,0] and

(uPW · ∇)θPW = (k1 + k2)f hz = 0. (4.10)

Assume that uPW and θPW defined as in (4.9) give a solution for some pressure p. Substituting these relations 
into (1.1a) and (1.1b), with z = k · x and f (x1, x2, t) = f (z, t), we obtain

∂tf + px1 = ν|k|2fzz, (4.11a)

∂tf + px2 = ν|k|2fzz + gh. (4.11b)

Applying ∂x2 to (4.11a) and ∂x1 to (4.11b) and subtracting the results, we obtain

(k1 − k2)∂tfz = ν|k|2(k1 − k2)fzzz + k1ghz. (4.12)

Since k1 + k2 = 0, it follows that k1 − k2 = 2k1. Dividing (4.12) by 2k1 and integrating in z implies ∂tf =
ν|k|2fzz + 1

2gh + ψ , for some undetermined ψ = ψ(t). Since f and h are mean-free and periodic, we conclude 
that ψ ≡ 0. Thus, f satisfies the heat equation

∂tf = ν|k|2fzz + 1
2gh. (4.13)

As usual, we can solve for the pressure by applying ∂x1 to (4.11a) and ∂x2 to (4.11b) and adding the results to 
obtain

�p(x, t) = gk2hz(k · x, t). (4.14)

This, along with the mean-free and periodic boundary conditions, defines the pressure uniquely. In fact, we can 
get a more explicit formula for the pressure gradient by subtracting (4.11b) from (4.11a) to obtain px2 −px1 = gh. 
Adding (4.11a) to (4.11b) and comparing with (4.13) yields px1 + px2 = 0. Thus,

px1 = − 1
2gh and px2 = 1

2gh. (4.15)

Conversely, let h = h(z) be any mean free, periodic function and let f satisfy (4.13). Define (u, θ) by (4.9) and 
the pressure by

p ≡ pPW := − 1

2k1
gH(k · x), where H ′(z) = h(z). (4.16)

3 We may let h = h(z, t) a priori, but our ansatz for the form of solutions will force ∂t h ≡ 0, so we assume that h is time-independent from the 
outset.
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It is easy to see that (uPW, θPW) is a solution of (1.1). We note that the solutions of the form (uPW, θPW) thus 
defined are distinct from (uV , θV ) and (uH , θH ), e.g., since both components of uPW are non-zero. Moreover, 
they are steady states if f is time-independent and is given by f = fsteady, where fsteady = fsteady(z) is the 
unique, mean-free periodic solution of the equation

d2

dz2
fsteady(z) = − g

2ν|k|2 h(z). (4.17)

Steady state: Due to (4.16) and (4.13), it is easy to see that (uPW, θPW) approach a steady state which is a 
plane-wave solution corresponding to the same h and f = fsteady where fsteady is as in (4.17).

Remark 4.1. The solution families (uV , θV ), (uH , θH ) and (uPW, θPW) given above have unique steady states which 
they approach exponentially fast in L2. Since these steady states are determined by θV , θH , and h, respectively, 
which are arbitrary smooth, mean-free, periodic functions, this show that the set of steady states of system (1.1) is 
fairly rich, and in particular, it is both infinite-dimensional (in the sense that it contains infinite dimensional subspaces) 
and unbounded.

4.2. Weak sigma-attractor

Definition 4.2. Let S(t) be the semi-group operator associated with (1.1) via (3.14). We define the weak sigma-
attractor A of the semi-dissipative system (1.1) to be the set of all (u0, θ0) ∈ H × L2 with the property that

(i) There exists a global trajectory (u(t), θ(t)) defined for all t ∈ R such that (u(t), θ(t)) belongs to H × L2 and 
solves (1.1) for all t ∈ R and moreover (u(0), θ(0)) = (u0, θ0).

(ii) The trajectory (u(t), θ(t)) is globally bounded, i.e., the set {(u(t), θ(t)) : t ∈ R} is bounded in H × L2.

Clearly, it follows from the definition that every bounded, global trajectory {(u(t), θ(t)) : t ∈ R} lies entirely on the 
attractor. The justification for referring to A as the weak-sigma attractor will be provided towards the end of this 
section. We will show that A is a non-empty, proper subset of the phase space.

We will now justify our terminology, namely that of the weak sigma-attractor, for A. The global attractor for a 
dissipative system is often defined as the ω-limit set of the compact absorbing ball. However, system (1.1) does not 
have a compact absorbing ball. Yet, since ‖θ(t)‖L2 = ‖θ0‖L2 is time-invariant, equation (1.1a), considered alone, has 
a compact absorbing ball in H by the standard theory of the 2D Navier–Stokes equations [7]. By varying the value of 
‖θ0‖L2 , one obtains a family of absorbing balls. This observation is exploited in Section 5 to write A as the union of 
ω-limit sets.

Given initial data (u0, θ0) ∈ H × L2, define the dimensionless, time-independent Grashof-type number for (1.1) to 
be

G := g‖θ0‖L2

ν2κ2
0

. (4.18)

Standard energy estimates (see [7]) yield

‖u(t)‖2
L2 ≤ e−νκ2

0 t‖u0‖2
L2 + ν2G2(1 − e−νκ2

0 t ). (4.19)

Thus, there exists a time t∗ = t∗(‖u0‖L2) such that, for t > t∗, ‖u(t)‖L2 is in the ball of radius 2νG in H . For example, 
t∗ can be taken as

t∗(‖u0‖L2) = 1

νκ2
0

max

{
1, log

‖u0‖2
L2

3ν2G2

}
. (4.20)

Definition 4.3. Let us denote the following Cartesian product of balls:

Br :=
{
(u0, θ0) ∈ H × L2 : ‖θ0‖L2 ≤ r,‖u0‖L2 ≤ R(r)

}
, R(r) := 2

gr

νκ2
0

.
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Due to (2.14) and (4.19), for a fixed r ≥ 0, the set Br is semi-invariant for all positive times, i.e.,

S(t)Br ⊂ Br for all t > 0, (4.21)

where S(t) is the solution semigroup for (1.1) defined in (3.14).

Definition 4.4. The local attractor at level r , denoted by Ar , is defined to be the ω-limit set of Br ; that is,

Ar := ω(Br) :=
⋂
τ≥0

wk{S(t)(u0, θ0) : t > τ, (u0, θ0) ∈ Br }, (4.22)

where the closure is taken in the weak topology of H × L2. Note that by the Banach–Alaoglu Theorem, Ar is weakly 
compact in H × L2. Furthermore, by Proposition 5.3 (in the next section), for each fixed t , the map S(t) : Br −→ Br

is weakly continuous (i.e., continuous with respect to the weak topology on Br). Thus,

wk{S(t)(u0, θ0) : t > τ, (u0, θ0) ∈ Br} = S(t)Br . (4.23)

We will show later that the weak sigma-attractor A (defined in Definition 4.2 as the set of trajectories which are 
uniformly bounded in H × L2 for all t ∈ R) is indeed equal to the union of the sets Ar , i.e.,

A=
⋃
r≥0

Ar =
⋃

r≥0,r∈Q
Ar , (4.24)

where the last equality follows from the fact that the sets Ar are increasing in r . Since Ar is weakly compact in H ×L2, 
and A is a countable union of weakly compact sets Ar , this justifies our referring to A as the weak sigma-attractor. 
We will show later that in fact A (weakly) attracts all bounded sets.

Let us recall that the weak topology on a separable Hilbert space is metrizable on bounded sets. In fact, one can 
define a metric d which is independent of the bounded set so that the corresponding metric space topology coincides 
with the weak topology on every bounded set. This metric can be defined as follows. Fix {φj }∞j=1, a countable dense 
subset of the aforementioned Hilbert space, and let X be a bounded set in it. Define the metric d on X by

d(φ,ψ) :=
∞∑

j=1

1

2j‖φj‖ | 〈φ − ψ,φj

〉 |, for all φ,ψ ∈ X. (4.25)

This metric space topology coincides with the weak topology on X. Henceforth, d will represent this metric on any 
bounded set. Due to this fact, namely that on bounded sets, the weak topology coincides with the one given by the 
metric (4.25), we have

Ar = {(ua, θa) : ∃ tn → ∞ and (u0,n, θ0,n) ∈ Br

such that S(tn)(u0,n, θ0,n)
wk−→(ua, θa)}. (4.26)

Remark 4.5. In view of the backward uniqueness of sufficiently smooth trajectories, it is natural to ask whether 
there exists a global attractor in a stronger space, such as in V × L2, or V × H 1, or another space where global 
well-posedness holds (cf. Theorems 2.3 and 2.4). In the case of the 2D Navier–Stokes equations with time independent 
force in H , it is known that the global attractor in the phase spaces V and H coincide and moreover, it is contained in 
D(A) [7,41]. However, unlike in the case of the 2D Navier–Stokes equations, it is not known whether one can bound u
in D(A) uniformly in time. Without such a bound, we are not able to prove the existence of a stronger global attractor 
than the one described here.

5. Structure of the attractor

In this section, we will state and prove the main result describing the properties of the attractor. We will need the 
following definition for the semi-distance between two bounded sets in the weak topology. For two bounded sets A, B , 
we define the semi-distance

dist(A,B) := sup inf
y∈B

d(x, y), (5.1)

x∈A
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where d(x, y) is as defined in (4.25). It is easy to check that for two (weakly) compact sets A and B , dist(A, B) = 0
if and only if A ⊂ B .

We are now ready to state our main theorem summarizing the properties of the weak-sigma attractor defined in 
Subsection 4.2.

Theorem 5.1. The global attractor A defined in Definition 4.2 has the following properties.

(i) The relation A = ⋃
r≥0

Ar = ⋃
r≥0,r∈Q

Ar holds, where Ar is defined by (4.22).

(ii) A contains all the steady states of (1.1).
(iii) A has empty interior in the strong (and therefore weak) topology of H × L2.
(iv) The weak sigma-attractor A of the system (1.1) is a non-empty, proper subset of the phase space X := H ×

L2(�) which moreover contains infinite-dimensional subspaces of the phase space.
(v) The set A is σ -compact. More precisely, A is a countable union of weakly compact sets Ar, r ∈Q.

(vi) The set A attracts all bounded sets. More precisely, if X ⊂ H × L2 is a bounded set, then there exists r > 0
such that dist(S(t)X, Ar ) → 0 as t → ∞.

(vii) For each r ≥ 0, the set Ar , as well as the set A, is weakly connected.
(viii) The global attractor A is invariant (i.e. S(t)A = A) for all t ≥ 0. Moreover, it is the minimal set that attracts 

all bounded sets.
(ix) (Tracking property) Let (u(t), θ(t)), t ≥ 0 be a trajectory in H × L2. There exists a global trajectory 

(u∞(s), θ∞(s)), s ∈ R included in A, with the property that given ε, M > 0, there exists T > 0 satisfying

sup
s∈[−M,M]

{‖u(s + T ) − u∞(s)‖L2 + ‖θ(s + T ) − θ∞(s)‖H−1

}
< ε. (5.2)

Before proceeding to prove the main theorem, we need to establish the following crucial lemma.

5.1. Auxiliary lemma

Lemma 5.2.
Let (u0,n, θ0,n) ∈ Br and tn → ∞ be such that

S(tn)(u0,n, θ0,n)
wk−→(ua, θa) ∈ H × L2. (5.3)

Then (ua, θa) ∈ A. More precisely, there exists a complete bounded trajectory (u∞, θ∞) with (u∞(t), θ∞(t)) ∈ Br for 
all t ∈R, such that

(u∞(0), θ∞(0)) = (ua, θa). (5.4)

Moreover, ua ∈ V and there exists a dimensionless, absolute constant C > 0 such that

‖u∞(t)‖H1 ≤ CR(r)κ0 ∀ t ∈R. (5.5)

Proof. We will start by recalling certain a priori bounds; see [7] and [41]. Let (u(t), θ(t)), t ≥ 0 be any trajectory 
starting in Br and observe that (u(t), θ(t)) ∈ Br due to the semi-invariance of Br . In particular, this means

‖u(t)‖L2 ≤ R(r) and ‖θ(t)‖H1 ≤ r (t ≥ 0). (5.6)

Moreover, the momentum equation (1.1a) readily yields the bound

‖u(t)‖2
L2 + ν

t∫
0

‖u(s)‖2
H1 ds ≤ ‖u0‖2

L2 + g2‖θ0‖2
L2

νκ2
0

T , (0 < t ≤ T ), (5.7)

where the invariance of the L2 norm of θ(·) along a trajectory is also used. Thus, there exists t ∈ (0, T ) such that

‖u(t)‖2
H1 ≤ 2

[‖u0‖2
L2

νT
+ g2‖θ0‖2

L2

ν2κ2
0

]
. (5.8)
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Since the distribution function of θ remains invariant along a trajectory forward in time, by replacing the initial data if 
necessary, we can (and henceforth will) without loss of generality assume that u0 ∈ V and moreover, setting T = 1

νκ2
0

in (5.8), we may also assume

‖u0‖H1 ≤ 2R(r)κ0, (5.9)

where R(r) is as in Definition (4.3). With the assumption (5.9), noting that the periodic boundary condition and (1.1c)
implies (in 2d) that (B(u, u), Au) = 0, and consequently, following techniques in [7] (Chapter XIII, pages 111–113), 
we additionally have the uniform bound

sup
t≥t1

‖u(t)‖H1 ≤ CR(r)κ0, (5.10)

where R(r) is as in Definition 4.3, t1 = 1
νκ2

0
. Additionally, from the first relation in (5.10) and using again 

(B(u, u), Au) = 0, for any τ ≥ 0 and T ≥ 0, we have

‖u(τ + T )‖2
H1 + 2ν

τ+T∫
τ

‖Au‖2
L2 ≤ C2R(r)2κ2

0 + g2‖θ0‖2
L2

ν
T . (5.11)

Let now (u0,n, θ0,n) ∈ Br and the sequence of times tn → ∞ be such that (5.3) holds. Translating in time by 
τn ∈ [0, 1

νκ2
0
], if necessary, we will assume without loss of generality that u0,n ∈ V , and that the bound in (5.9) holds 

for all u0,n. Since u0,n
wk−→ua , it immediately follows that

ua ∈ V and ‖ua‖H1 ≤ 2R(r)κ0. (5.12)

Set

(un(t), θn(t)) := S(t + tn)(u0,n, θ0,n), t ∈ [−tn,∞). (5.13)

Note that the trajectories (un(t), θn(t)) are defined, for n sufficiently large, on the intervals

IM :=
(

− M

κ2
0 ν

,
M

κ2
0ν

)
, M ∈ N. (5.14)

By (5.6) and (5.10), for n sufficiently large, the pair (un, θn) is bounded uniformly in L∞(IM, V ) × L∞(IM, L2), 
and moreover due to (5.11), un is bounded uniformly in L2(IM ; H2). The above mentioned bounds are uniform with 
respect to n, although they may depend on M in general. From the functional equation (2.15), the time independent 
L2 bound (5.6) on θn(t), the (uniform in n) bound on un in L2(IM ; H2), and the Ladyzhenskaya inequality (2.4), we 
readily obtain that d

dt
un is uniformly bounded in L2(IM ; H). Consequently, {un} is an equicontinuous family (in time) 

in C(IM ; H). Moreover, from the Agmon inequality (2.5), and the uniform L2 bound on un and (1.1b), it also follows 
that d

dt
θn is uniformly bounded in L4(IM ; H−1) (in fact, one can show that the bound is uniform in Lp(IM ; H−1) for 

any p < ∞). Thus, {θn} form an equicontinuous family in C(IM; H−1). Now, by the Arzela–Ascoli Theorem and the 
Cantor diagonalization procedure, there exists a pair (u∞(·), θ∞(·)) ∈ C((−∞, ∞); H) × C((−∞, ∞); H−1) and a 
subsequence (which we also denote by (un, θn)) such that for all M ∈ N,

(un(·), θn(·)) n→∞−→ (u∞(·), θ∞(·)) in C(IM ;H) × C(IM ;H−1). (5.15)

Note that since un(0) is equal to the u component of S(tn)(u0,n, θ0,n), by the limits assured in (5.3) and (5.15), we 
have u∞(0) = ua . On the other hand, due to the hypothesis and (5.15),

θ(tn) = θn(0)
wk−→ θa and θ(tn) = θn(0)

inH−1−→ θ∞(0) as n → ∞. (5.16)

Thus, θ∞(0) = θa .
Next, we will show that, by passing through a further subsequence if necessary, we can ensure that for all η ∈ L2, 

the functions 〈θ∞(·), η〉 ∈ C((−∞, ∞); R), and that

〈θn(·), η〉 → 〈θ∞(·), η〉 in C(IM ;R), as n → ∞, (5.17)
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and also that (u∞(t), θ∞(t)) ∈ Br ∀ t ∈ R, i.e.,

‖θ∞(t)‖2
L2 ≤ r2 and ‖u∞(t)‖2

L2 ≤ 4
g2r2

ν2κ4
0

∀ t ∈R. (5.18)

To see this, note that for any ζ ∈H3 (which, in 2D, implies that ∇ζ ∈ L∞), we have from (1.1b),

| 〈θn(t2) − θn(t1), ζ 〉 | ≤
t2∫

t1

| 〈θn(s)un(s),∇ζ 〉 |ds

≤ ‖θn(·)‖L∞(IM ;L2)‖un(·)‖L∞(IM ;H)‖∇ζ‖L∞|t2 − t1|. (5.19)

Thus, for all ζ ∈ H3, the functions {(θn(·), ζ )} are equicontinuous on IM . Due to the uniform bound on ‖θn(t)‖L2 , 
we have a pre-compact family. Let {ζj }∞j=1 be a set of functions in H3 which is dense in L2. By the Arzela–Ascoli 
Theorem and the Cantor diagonalization process, we may also assume that〈

θn(·), ζj

〉→ 〈
θ∞(·), ζj

〉
in C(IM ;R) for all M,j ∈N. (5.20)

To complete the proof, we show that 〈θn(·), ζ 〉 → 〈θ∞(·), ζ 〉 uniformly on IM for any ζ ∈ L2. Let ε > 0 and choose j
such that |ζ − ζj | ≤ ε

2‖θ0‖L2
. Then,

| 〈θn(t) − θm(t), ζ 〉 | ≤ | 〈θn(t) − θm(t), ζj

〉 | + ‖θn(t) − θm(t)‖L2‖ζj − ζ‖L2

≤ | 〈θn(t) − θm(t), ζj

〉 | + 2‖θ0‖L2
ε

2‖θ0‖L2
. (5.21)

This shows that {〈θn(·), ζ 〉} is uniformly Cauchy in C(IM). Since θn(·) converges to θ∞(·) in C(IM ; H−1), the uniform 
limit of 〈θn(t), ζ 〉 is 〈θ∞(t), ζ 〉. Due to weak convergence of θn(t) and strong convergence of un(t), the uniform 
bounds (5.18) readily follow. This finishes the proof of the claim.

Next, we will show that (u∞, θ∞) is a global solution of (1.1), i.e., we need to show that (u∞, θ∞) satisfies (2.9) for 
appropriate test functions � and φ (see Definition 2.1). Note that (un, θn) satisfy the weak formulation (2.9). Passing 
to the limits in the linear terms, due to (5.15), we find

T∫
0

〈
un(s),�

′(s)
〉
ds →

T∫
0

〈u∞(s),�(s)〉 ds, (5.22a)

ν

T∫
0

〈〈un(s),�(s)〉〉 ds → ν

T∫
0

〈〈u∞(s),�(s)〉〉 ds, (5.22b)

T∫
0

〈θn(s)g,�(s)〉 ds →
T∫

0

〈θ∞(s)g,�(s)〉 ds, (5.22c)

T∫
0

〈
θn(s),φ

′(s)
〉
ds →

T∫
0

〈
θ∞(s),φ′(s)

〉
ds. (5.22d)

It remains to show the convergence of the remaining non-linear terms. Let

I (n) :=
T∫

0

〈un ⊗ un − u∞ ⊗ u∞,∇�(s)〉 ds, (5.23a)

J (n) :=
T∫

〈un(s)θn(s) − u∞(s)θ∞(s),∇φ(s)〉 ds. (5.23b)
0
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The convergence I (n) → 0 as n → ∞ follows from the convergence of the un component guaranteed in (5.15). To 
show J (n) → 0 as n → ∞, we write J (n) = J1(n) + J2(n), the definitions of which are given below. We have

J1(n) :=
T∫

0

〈(un(s) − u∞(s))θn(s),∇φ(s)〉 ds → 0 (5.24)

as n → ∞, since un → u in C(IM, H) and θn is uniformly bounded in L∞(IM, H). For J2, we have

J2(n) :=
T∫

0

〈u∞(s)(θn(s) − θ∞(s)),∇φ(s)〉 ds → 0, (5.25)

due to the fact that φ is a smooth test function for each fixed M , sups∈IM
‖u∞(s)‖H1 < ∞ and θn(·) → θ∞(·) in 

C(IM ; H−1).
Since (u∞(t), θ∞(t)) is a global trajectory with

(u∞(t), θ∞(t)) ∈ Br for all t ∈ R, (5.26)

it readily follows from (5.10) that ‖u∞(t)‖H1 ≤ CR(r)κ0 for all t ∈ R. �
We will also need the next proposition in order to proceed.

Proposition 5.3. For each fixed t and a sequence (u0,n, θ0,n) 
wk−→(u0, θ0), we have

S(t)(u0,n, θ0,n)
wk−→S(t)(u0, θ0). (5.27)

In particular, for each fixed t , the map S(t) : X −→ H × L2 is weakly continuous, where X is a bounded subset of 
H × L2.

Proof. Fix T > 0 and let (u0,n, θ0,n) be the sequence in the hypothesis of the proposition. Due to the weak con-
vergence, the sequence is uniformly bounded in the phase space. Let (un(t), θn(t)) := S(t)(u0,n, θ0,n), 0 ≤ t ≤ T . By 
arguments similar to the proof of Lemma 5.2, and by the uniform (in n) bounds provided in Theorem 2.2, (un(·), θn(·))
converges (in C[ε, T ]; H ×H−1) for all ε > 0) to a solution (u(·), θ(·)) with initial data (u0, θ0). By uniqueness of so-

lutions, (u(t), θ(t)) = S(t)(u0, θ0), 0 ≤ t ≤ T . Since (un(T ), θn(T )) 
wk−→(u(T ), θ(T )) (see the proof of Lemma 5.2), 

the proof is complete. The weak continuity of S(T ) on bounded subsets now follows from noting that the weak 
topology is metrizable on bounded sets. �
5.2. Proof of Theorem 5.1

For the remainder of this section, we focus on proving Theorem 5.1. In particular, we will examine to what extent 
A shares the properties (I), (II), and (III) with ANS, the attractor for the 2D Navier–Stokes equations.

PROOF OF THEOREM 5.1 (i)

Proof. We first show the inclusion in the “⊃” direction. Let (u∞, θ∞) ∈ Ar for some r ≥ 0. Then, since Ar = ω(Br), 
due to (4.26) and Lemma 5.2, it immediately follows that (u∞, θ∞) ∈ A.

Next, we show the inclusion in the “⊂” direction. Choose any (u0, θ0) ∈ A, and suppose that (u0, θ0) /∈ As for all 
s ≥ 0. By the definition of A, there exists a trajectory (u(t), θ(t)) ∈A such that for some t0, (u(t0), θ(t0)) = (u0, θ0). 
Furthermore, (u(t), θ(t)) is bounded in H ×L2 uniformly for all t ∈R, so there exists an r > 0 such that (u(t), θ(t)) ∈
Br for all t ∈ R. Since (u(t), θ(t)) is defined for t ∈ R, we must have (u0, θ0) = S(τ)(u(t0 − τ), θ(t0 − τ)) ∈ Br for 
every τ ∈ R. But, (u(t0 − τ), θ(t0 − τ)) ∈ Br , so (u0, θ0) ∈ ω(Br) = Ar . �
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PROOF OF THEOREM 5.1 (ii)

Proof. Since any steady state is bounded for all times t ∈ R, the proposition follows immediately from the definition 
of A. �
PROOF OF THEOREM 5.1 (iii)

Proof. If (ua, θa) ∈ A, then by Lemma 5.2, ua ∈ V . Any open ball in H × L2 (in the norm topology) must contain 
points whose first component is not in V . Thus, there does not exist an open ball contained in A. �
PROOF OF THEOREM 5.1 (iv)

Proof. Theorem 5.1 (iii) immediately implies that A �= X. To show it is nonempty, consider a solution of the form 
(uH

1 , uH
2 , θH , pH ), defined in Subsection 4.1. Let us also impose that ∂tu

H
2 ≡ 0, so that uH

2 = u2, where u2 = u2(x1)

is the unique, mean-free and periodic solution of the equation

ν
d2

dx2
1

u2(x1) = −gθH (x1). (5.28)

Then (uH
1 , uH

2 , θH , pH ) is a steady state solution of (1.1), so (uH
1 , uH

2 , θH ) ∈ A. Since θH ∈ L2 can be chosen 
arbitrarily, A contains an infinite dimensional subspace. �
PROOF OF THEOREM 5.1 (v)

Proof. Since Ar1 ⊂Ar2 if r1 < r2, it follows that A = ⋃
r≥0,r∈Q

Ar . To complete the proof, it is enough to show that for 

every r ≥ 0, Ar is weakly compact in H × L2. By the Banach–Alaoglu Theorem, Br is weakly compact in H × L2. 
Since S(t) is weakly continuous, S(t)Br is weakly compact. Thus, Ar := ω(Br) is the intersection of weakly compact 
sets, so it is weakly compact. �
PROOF OF THEOREM 5.1 (vi)

Proof. Suppose X ⊂ H × L2 is bounded. Then there exists r > 0 such that X ⊂ Br , where Br is the absorbing set 
as defined in Definition 4.3. Thus, due to semi-invariance of Br under S(t), we have S(t)X ⊂ Br for all t > 0. The 
proof now proceeds by contradiction. Assume that the conclusion of the theorem is false. Then there exists a sequence 
(un, θn) ∈ X, tn → ∞ and ε > 0 such that

d(S(tn)(un, θn),y) > ε for all y ∈ ω(Br) =Ar ⊂A. (5.29)

However, since S(tn)(un, θn) ∈ Br , by the weak compactness of Br , there exists y0 ∈ Br and a subsequence nj such 

that S(tnj
)(unj

, θnj
) 

wk−→y0, or equivalently, d(S(tnj
)(unj

, θnj
), y0) → 0. By the definition of ω(Br), the point y0 ∈

ω(Br) and this contradicts (5.29). �
PROOF OF THEOREM 5.1 (vii)

Proof. Suppose Ar is not weakly connected. Then there exist open sets O1 and O2 in the weak topology of H × L2

such that Ar ⊂ O1 ∪ O2, O1 ∩ O2 = ∅, Ar ∩ O1 �= ∅, and Ar ∩ O2 �= ∅. Recall that Ar := ω(Br). Since Br is 
weakly connected and S(t) is weakly continuous, S(t)Br is also weakly connected. Thus, for each n ∈N, there exists 
(un, θn) ∈ (S(n)Br) \ (O1 ∪ O2).

Since Br is invariant under S(t), (un, θn) is bounded. Thus, by the Banach–Alaoglu Theorem, there exists a point 
(u, θ) ∈ H × L2 and a subsequence (uni

, θni
) ⇀ (u, θ) in the weak topology of H × L2. Since O1 ∪ O2 is weakly 

open, (u, θ) /∈ O1 ∪ O2. But, by Theorem 5.1 (vi), Ar attracts all bounded sets in the weak topology, so that the weak 
limit of (un, θn) must lie in Ar ⊂ O1 ∪ O2; a contradiction. Therefore, Ar is connected.
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To show that A is weakly connected, note that by Theorem 5.1(i), A = ∪r≥0Ar . Furthermore, each Ar is connected 
and contains the zero element. Therefore, if O1 and O2 are weakly open sets that separate A, all Ar must be contained 
in the one containing the zero element, so A must be contained entirely in either O1 or O2, so that A is connected. �
PROOF OF THEOREM 5.1 (viii)

Proof. Let (u0, θ0) ∈ A. Then there exists a bounded, global trajectory (u(t), θ(t)), t ∈R passing through (u0, θ0). It 
is clear from the definition of A that all points on this trajectory also lie on A. In fact, since this trajectory is bounded, 
it lies entirely in some Br and consequently, in ω(Br) = Ar . We may assume, by translating time if necessary, that 
(u(0), θ(0)) = (u0, θ0). Then, by (forward in time) uniqueness of solutions,

S(t)(u(−t), θ(−t)) = (u(0), θ(0)) = (u0, θ0). (5.30)

As remarked above, (u(−t), θ(−t)) ∈ A. Thus, A ⊂ S(t)A for all t ≥ 0. For the reverse inclusion, simply note 
that the (forward in time) uniqueness of solutions guarantees that (u(t), θ(t)) = S(t)(u0, θ0) for all t ≥ 0, where 
(u(t), θ(t)), t ∈ R is the above mentioned bounded global trajectory. Thus S(t)A =A.

The fact that A attracts all bounded sets was proven in Theorem 5.1 (vi). We will now prove that it is minimal. Let 
A′ be a set which has the property that it attracts all bounded sets and let (u0, θ0) ∈ A. Then there exists a bounded, 
global trajectory passing through it. In view of the previous paragraph, we see that the set in the phase space

G = {(u(t), θ(t)) : t ∈R} ⊂ H × L2, (5.31)

is invariant under the semigroup S(t) for all t ≥ 0, i.e., S(t)G = G for all t ≥ 0. On the other hand, G is a bounded set 
in H × L2. Thus, by the assumption that A′ attracts all bounded sets,

lim sup
t→∞

dist(S(t)G,A′) = 0. (5.32)

Thus, G ⊂A′, and consequently, (u0, θ0) ∈ A′. �
PROOF OF THEOREM 5.1(ix)

Proof. Note first that since (u(t), θ(t)), t ≥ 0 is bounded in H × L2, there exists (ua, θa) and a sequence tn such that 

(u(tn), θ(tn)) 
wk−→(ua, θa). By Lemma 5.2, we immediately infer that (ua, θa) ∈ A. Furthermore, the global trajectory 

(u∞(·), θ∞(·)) constructed in Lemma 5.2 lies in A and

(un(t), θn(t)) := (u(t + tn), θ(t + tn), t ∈ [−tn,∞), (5.33)

converges to (u∞(·), θ∞(·)) in C([−M, M]; H) × C([−M, M]; H−1) for all M > 0. This concludes the proof. �
6. The energy–enstrophy plane

In this section, we investigate the relationship between the energy and the enstrophy in the conservative set. Here, 
we follow many of the ideas of [9–12] which investigated the relationship between energy, enstrophy, and palenstrophy 
in the attractor of the 2D Navier–Stokes equations.

For (u, θ) ∈ A, let us define

χ(t) := ‖u(t)‖2
H1

‖u(t)‖L2
, and λ(t) := ‖u(t)‖2

H1

‖u(t)‖2
L2

. (6.1)

After some computation, which was carried out in the context of the 2D Navier–Stokes equations in [2], it can be 
shown that

dχ

dt
= ν

2‖u‖L2

⎛⎝‖gθ‖2
L2

ν2
− χ2 −

∥∥∥∥∥2Au − ‖u‖2
H1

‖u‖2
L2

u − gθ

ν

∥∥∥∥∥
2

L2

⎞⎠
= ν

2‖u‖L2

(
g2‖θ0‖2

L2

ν2
− χ2 −

∥∥∥∥w − gθ

ν

∥∥∥∥2

2

)
, (6.2)
L
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Fig. 1. The projection of the attractor lies inside the shaded region.

where w :=
(

2A − ‖u‖2
H1

‖u‖2
L2

)
u. Let us consider the quantities ‖u‖L2 and ‖u‖H1 as variables. Level sets of χ correspond 

to curves along which ‖u‖L2 and ‖u‖H1 are parabolically related. Due to (6.2), if χ(t) > g‖θ0‖L2/ν, then χ must 
decrease. Furthermore, due to the Poincaré inequality, we must always have λ(t) ≥ λ1. Therefore, trajectories flow 
towards the set

� :=
{
(u, θ) : ‖u‖2

H1 ≤ g‖θ0‖L2

ν
‖u‖L2, ‖u‖2

H1 ≥ λ1‖u‖2
L2, ‖θ‖L2 = ‖θ0‖L2

}
. (6.3)

It follows that A ⊂ �. See Fig. 1 for a depiction of the projection of � onto the energy–enstrophy plane.

Let us consider the upper boundary of �; that is, the parabola ‖u‖2
H1 = g‖θ0‖L2

ν
‖u‖L2 . Suppose there is a point of 

(u, θ) which lies on the parabola, and moreover that u ≡ u0 is independent of time (a priori, θ may be balanced by a 
time-dependent pressure). Then, since u(t) = u0, we have λ(t) = λ(0). On the parabola, equation (6.2) yields

0 = 2Au − ‖u‖2
H1

‖u‖2
L2

u − gθ

ν
= 2Au − λ(0)u − gθ

ν
(6.4)

so that, in fact, θ(t) = θ0. Taking the inner product with u gives

2‖u‖2
H1 = λ(0)‖u‖2

L2 + 〈gθ,u〉
ν

⇒ νλ(0) = 〈gθ,u〉
‖u‖2

L2

. (6.5)

Owing to (6.5), and the fact the u is on the parabola, it follows that

〈gθ,u〉
ν‖u‖2

L2

= λ(0) = ‖u‖2
H1

‖u‖2
L2

= g‖θ‖L2

ν‖u‖L2
. (6.6)

Thus,

〈gθ,u〉 = ‖gθ‖L2‖u‖L2 . (6.7)

By the Cauchy–Schwarz Theorem, we must have that gθ is a scalar multiple of u, say gθ = cu where c = 〈gθ,u〉
‖u‖2

L2
. 

Applying this to (6.4), we have

2Au = λ(0)u + gθ

ν
=
(
λ(0) + c

ν

)
u =
(‖u‖2

H1

‖u‖2
L2

+ 〈gθ,u〉
‖u‖2

L2

)
u (6.8)

so that u is an eigenfunction of A with eigenvalue 1
2

( ‖u‖2
H1

‖u‖2
L2

+ 〈gθ,u〉
‖u‖2

L2

)
.

Going back to the equation (0, gθ)T = gθ = cu ≡ c(u1, u2)
T , we observe that we must have u1 ≡ 0. The 

divergence-free condition then implies that ∂x2u2 = 0, so that u ·∇u ≡ 0. Moreover, since gθ = cu2, we have ∂x2θ = 0, 



A. Biswas et al. / Ann. I. H. Poincaré – AN 34 (2017) 381–405 401
so that ∂tθ = −u · θ = 0. Thus, θ depends only on x1, and again since gθ = cu2, so does u2. The entire system (1.1)
therefore reduces to the following relation:

∂x2p − ν∂2
x1

u2 = gθ. (6.9)

Applying ∂x2 yields ∂2
x2

p = 0, so that the periodic boundary conditions imply that p is a constant. The relation now 
becomes

−ν∂2
x1

u2 = gθ = cu2. (6.10)

The periodic boundary conditions further constrain c to be of the form

c = cn := ν
n2π2

L2
, for some n ∈ N. (6.11)

Summarizing these observations, we have the following proposition, which essentially appeared in [9] in the context 
of the Navier–Stokes equations.

Proposition 6.1. Suppose (u, θ) is a smooth, steady state solution of (1.1) which lies on the parabola ‖u‖2
H1 =

g‖θ0‖L2

ν
‖u‖L2 Then u2 and θ depend only on x1, and

u1 ≡ 0, u2 = cnθ, cn := gL2

νn2π2
for some n ∈ N (6.12)

and u2 = u2(x1) is an eigenfunction of the operator −∂2
x1

(respecting the periodic boundary conditions and mean-free 
condition).

Remark 6.2. The above proposition implies that steady states on the upper boundary of � are discrete points corre-
sponding to geophysical steady states of stationary columnular flows. Somewhat more generally, it can be shown that 
if (u, θ) is a smooth flow for which θ depends upon x1 alone, and θx1 �= 0 a.e., then (u, θ) is one of the horizontal 
flows described by (4.5) and (4.6).

7. The presence of 2D turbulence

The Batchelor–Kraichnan–Leith theory [4,33] of 2D turbulence (inspired by that of Kolmogorov in 3D [30–32]) 
asserts that, on average, the behavior of eddies in turbulent flows is determined by their length scales. In a relatively 
large range of scales [κ∗, κ∗] (called the inertial range) viscous effects are negligible and enstrophy is transferred at a 
nearly constant rate η from one length scale to the next smaller one (termed the enstrophy cascade). The dissipation 
range consists of the very small length scales where the viscosity annihilates the enstrophy. Heuristic arguments by 

Batchelor and Kraichnan [4,33] place the dissipation range beyond a wave number κη =
(

η

ν3

)1/6
where η is the 

average rate of enstrophy dissipation per unit mass. The main tenets of this empirical theory can thus be summarized 
as follows (see, e.g., [2,18,20,21]): (i) a significant amount of enstrophy is in the inertial range [κ∗, κ∗]; (ii) this range 
is wide, i.e. κ∗ << κ∗ ∼ κη; (iii) the direct cascade of enstrophy (to smaller scales) holds over this range; (iv) the 

power law eκ,2κ ∼ η2/3

κ2 holds for the amount of energy eκ,2κ contained in the length scales κ to 2κ for κ ∈ [κ∗, κ∗].
Rigorous justification for parts of the theory has been obtained in the series of works [15,16,18,20,21] among 

others. In [15,17], it is shown that many of the ubiquitous averages in empirical turbulence theory, upon the application 
of which patterns are observable, can be taken to be finite time averages, albeit on sufficiently long periods of time. 
Furthermore in [2] extension of the above mentioned works has been obtained for forcing in all scales. Thus, in view 
of the results in [2,15,17], the universal features of turbulence already hold for finite time averages of the form

〈�〉 := 1

t2 − t1

t2∫
t1

�(u(s))ds, (7.1)

where �’s are the relevant physical functionals on the phase space H and t2 > t1 > 0 satisfies
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max {t1, t2 − t1} >>
G

νκ2
0

.

Here G is the Grashoff number which is a non-dimensionalized version of the L2 norm of the driving force in the 
Navier–Stokes equations.

In principle, the results in [2] apply in our setting to the velocity equation written in the functional form in (2.15). 
However, for the inertial range to be sufficiently large for turbulent patterns to emerge, it is necessary (though not 
sufficient; see Remark 7.2 below) for the magnitude of the driving force, as measured by the Grashof number, to be 
large. Indeed, it is well-known that the 2D Navier–Stokes equations converge to a steady state if the force is time 
independent and the Grashof number is sufficiently small [44,43,45]. Accordingly, let us define the dimensionless 
(time-dependent) number Gσ by

Gσ ≡ Gσ (t) := ‖Pσ (gθ)(t)‖L2

ν2κ2
0

= g

ν2κ2
0

(√
‖θ0‖2

L2 − ‖R2θ(t)‖2
L2

)
. (7.2)

The σ here is used to denote the fact that the norm of the solenoidal projection of the force is taken, rather than the 
norm of the force itself. Note that, as in (4.18),one may also consider the somewhat simpler (though potentially larger) 
time-invariant, dimensionless number

G := g‖θ0‖L2

ν2κ2
0

, (7.3)

which obviously satisfies 0 ≤ Gσ (t) ≤ G. The effective Grashof number governing the dynamics of (2.15) is defined 
to be

G∗
σ = lim sup

t→∞
Gσ (t). (7.4)

Thus, the complexity of the flow, at least in regard to the statistical features, is expected to be determined by G∗
σ . 

This is borne out by the following result which is analogous to the 2D Navier–Stokes equations. Before stating this 
result, let us observe that since θ ∈ L2, the distributional derivatives ∂xi

θ, i = 1, 2 belong to H−1 and moreover,

‖∂xi
θ(t)‖H−1 � ‖θ(t)‖L2 = ‖θ0‖L2, i = 1,2. (7.5)

Theorem 7.1. Assume that G∗
σ < ε where ε > 0 is sufficiently small and that Pσ gθ(t) converges weakly to f ∈ H

as t → ∞. Then u(t) approaches a steady state of the 2D Navier–Stokes equations with time-independent driving 
force f. Consequently, if ∂x1θ(t) converges to zero in H−1 as t → ∞, or equivalently, if ‖Pσ (gθ)(t)‖L2 converges to 
zero, then u(t) converges to zero in H .

Proof. For notational simplicity, denote F(t) = Pσ gθ(t) and observe that F(t) ∈ H and ‖F(t)‖L2 ≤ g‖θ0‖L2 . More-
over, since F(t) → f weakly, we also have

‖f‖L2 ≤ lim sup
t→∞

‖F(t)‖L2 ≤ εν2κ2
0 . (7.6)

Thus, by shifting time if necessary, we may assume without loss of generality, that

max{‖f‖L2, sup
t≥0

‖F(t)‖L2} ≤ 2εν2κ2
0 . (7.7)

Furthermore, due to (5.10) in the proof of Lemma 5.2, and by shifting time again if necessary, we also have the 
uniform bound

sup
t≥0

‖u(t)‖H1 ≤ Cενκ0, (7.8)

where C is a non-dimensional, absolute constant. Recall also that on bounded subsets of H , the weak topology is 
metrizable and a bounded sequence vn → v weakly if and only if ‖A−1/2(vn − v)‖L2 → 0. Thus,

lim
t→∞‖A−1/2(F(t) − f)‖ = 0. (7.9)



A. Biswas et al. / Ann. I. H. Poincaré – AN 34 (2017) 381–405 403
Let v(t) be the solution of the Navier–Stokes equation with initial data u0 ≡ 0, and the force given by f. Denote 
w = u − v. Then w solves

dw
dt

+ νAw + B(u,w) + B(w,u) = F(t) − f, ∇ · w = 0, w(0) = u0. (7.10)

Taking inner product of the above equation with w and by applying Young’s inequality, we readily obtain

1

2

d

dt
‖w‖2

L2 + ν

2
‖A 1

2 w‖2
L2 ≤ 1

2ν
‖A− 1

2 (F(t) − f)‖2
L2 + | 〈B(w,u),w〉 |. (7.11)

From (2.8b), we get | 〈B(w,u),w〉 | ≤ ‖A 1
2 u‖L2‖w‖L2‖A 1

2 w‖L2 . Thus by Young’s inequality, we have

1

2

d

dt
‖w‖2

L2 + ν

4
‖A 1

2 w‖2
L2 ≤ 1

2ν
‖A− 1

2 (F(t) − f)‖2
L2 + 1

ν
‖A 1

2 u‖2
L2‖w‖2

L2

≤ 1

2ν
‖A− 1

2 (F(t) − f)‖2
L2 + C2ε2νκ2

0 ‖w‖2, (7.12)

where the inequality in the second line is obtained using (7.8). If C2ε2 ≤ 1
8 , by Poincaré inequality, we obtain

d

dt
‖w‖2

L2 + νκ2
0

4
‖w‖2

L2 ≤ 1

ν
‖A− 1

2 (F(t) − f)‖2
L2 . (7.13)

By Gronwall inequality and (7.9), it immediately follows that limt→∞ ‖w(t)‖ = 0. On the other hand, it is well-known 
that if ‖f‖L2 ≤ εν2κ2

0 and ε is sufficiently small, then the solution to the Navier–Stokes equations corresponding to 
the time-independent force f, converges to a fixed point [43–45]. Thus, if ε is sufficiently small, v converges to a fixed 
point v0 ∈ H which satisfies νAv0 + B(v0, v0) = f. Since w(t) converges to zero in H , it follows that u(t) converges 
to v0 in H .

For the second part of the theorem, observe that by (2.18),

‖Pσ gθ(t)‖L2 = ‖R1θ(t)‖L2 = ‖(�)−1/2∂x1θ(t)‖L2 ∼ ‖∂x1θ(t)‖H−1 . (7.14)

It follows that if ∂x1θ(t) converges to zero in H−1 as t → ∞ if and only if ‖Pσ gθ(t)‖L2 converges to zero. Thus one 
can apply the first part of the theorem with ε = 0 to conclude that u(t) → 0 in H as t → ∞. �
Remark 7.2. It is useful to examine Theorem 7.1 in light of the examples presented in Subsection 4.1. In the “vertical 
solutions” presented in (i), due to (2.18), Pσ gθ(t) ≡ 0 and in conformity to Theorem 7.1, u(t) → 0. On the other 
hand, for the “horizontal solutions” presented in Subsection 4.1 (ii), due again to (2.18), ‖Pσ gθ(t)‖L2 ≡ ‖θ0‖L2 . 
Consequently, G∗

σ can be made arbitrarily large, yet the flow is not turbulent as it converges to a (laminar) steady 
state. Incidentally, in addition to the example provided by Marchioro [37,38] with forcing in the first eigenmode of the 
Stokes operator, this provides another example of solution to the 2D Navier–Stokes equations with arbitrarily large 
Grashof number for which the solution converges to a steady state.

Remark 7.3. If one considers equations (1.1a) and (1.1c), this is the usual 2D Navier–Stokes system with forcing gθ , 
and so the framework developed recently in [2] for 2D turbulence with forcing at all scales applies. Moreover, unlike 
the usual 2D Navier–Stokes equations, the forcing here is not ad hoc, but rather intrinsic to the system. Noting 
that ‖gθ‖L2 = ‖gθ0‖L2 for all t ≥ 0, it seemingly allows arbitrarily large Grashof number as well. However, due 
to the divergence free condition on the velocity field, the effective driving force is given by Pσ gθ(t). The quantity 
‖Pσ gθ(t)‖L2 , although bounded above by ‖gθ0‖L2 , can potentially approach zero for large time. Thus, if one can 
show that G∗σ = lim inft→∞ ‖Pσ gθ(t)‖L2 can be made arbitrarily large, then one can assert that (1.1a) and (1.1c), 
or equivalently (2.15) contains the entirety of Grashof numbers involved in 2D turbulent dynamics. Whether or not 
arbitrarily large G∗σ and a truly turbulent flow can be achieved, remains an open question at this point. As observed 
in Remark 7.2, one can indeed achieve arbitrarily large G∗σ ; the corresponding flow however approaches a steady 
state and is therefore not turbulent. The velocity profile is also laminar; thus it does not yield a turbulent Lagrangian 
dynamics either.
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7.1. Open questions

In this paper, we have introduced a notion of an attractor for a semi-dissipative system, i.e., a system which is a 
hybrid of parabolic and hyperbolic equations. While in some respects, it shares certain properties with the attractor of 
a dissipative system, there are several open questions concerning the attractor A.

(i) We showed that the attractor A is in some respects, a thin set, i.e., it has empty interior. This proof uses the fact that 
the velocity component of any point on A is regular (belongs to V ). On the other hand, we saw in subsection 4.1
that A contains infinite dimensional subspaces of steady states. In particular, the projection of the attractor on 
the temperature component contains all functions of the type θ = θ(x1) or θ = θ(x2) or functions of the form 
θ(x) = h(k · x), for an arbitrary function of one variable h. The question of how rich this set can be remains open. 
In particular, if one takes the projection of A onto the temperature component (say Pθ(u, θ) := θ ), the following 
questions remain open. (a) Does PθA have an empty interior in L2? (b) Is PθA a proper subset of L2? (c) Is PθA
dense in L2? It is curious to note that in all the examples of steady states obtained here, the temperature θ is a 
function of only one variable.

(ii) We showed that although A is unbounded and infinite dimensional, it is σ -compact in the weak topology. In 
particular, it can be written as a countable union of weakly compact omega limit sets Ar = ω(Br) where Br are 
absorbing, invariant balls as defined in (4.3). The question is whether the attractor has a pancake-like structure. In 
other words, is it true that A =⋃r≥0 ω(B̃r ), where

B̃r :=
{

(u0, θ0) : ‖θ0‖L2 = r,‖u0‖H1 ≤ R(r) = 2
gr

νκ2
0

}
? (7.15)

If this is the case, the u-component of ω(B̃r ) can be regarded as an attractor at level r for the 2D NSE with 
time varying force θ whose L2-norm remain fixed at r . The temperature component θ on the attractor is then a 
rearranged version of the initial temperature θ0. The problem with this picture is that an element of the omega 
limit set is obtained as a weak limit of points S(t)(u0,n, θ0,n) with (u0,n, θ0,n) ∈ B̃r . In the weak limit, the norms 
might decrease, i.e., it is possible that

lim
n→∞‖S(t)(u0,n, θ0,n)‖L2 > ‖ lim

n→∞S(t)(u0,n, θ0,n)‖L2 . (7.16)

This might destroy the simplistic pancake structure described above. Whether or not this happens, and if it does, 
what its implication is for the asymptotic dynamics, are questions that remain open. Furthermore, although the 
whole attractor is infinite dimensional, is there any kind of finite dimensionality in its constituent pieces Ar?
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