Available online at www.sciencedirect.com

ANNALES

° ° DE L'INSTITUT
ScienceDirect HENRI

CrossMark POINCARE

» S, ANALYSE
NON LINFAIRE

ELSEVIER Ann. L. H. Poincaré — AN 34 (2017) 293-334

www.elsevier.com/locate/anihpc

The obstacle problem with singular coefficients near Dirichlet data

Henrik Shahgholian ', Karen Yeressian **

Department of Mathematics, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
Received 8 May 2015; received in revised form 18 November 2015; accepted 4 December 2015
Auvailable online 11 December 2015

Abstract
In this paper we study the behaviour of the free boundary close to its contact points with the fixed boundary B N {x; = 0} in the
obstacle type problem
diV(fou) = X{u>0} In BT,
u=0 on BN{x; =0}
wherea < 1, BT =BnN {x; > 0}, B is the unit ball in R” and n > 2 is an integer. _
Let I' = BT N 3{u > 0} be the free boundary and assume that the origin is a contact point, i.e. 0 € . We prove that the free
boundary touches the fixed boundary uniformly tangentially at the origin, near to the origin it is the graph of a C ! function and

there is a uniform modulus of continuity for the derivatives of this function.
© 2015 Elsevier Masson SAS. All rights reserved.
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1. Introduction

This paper concerns the study of the obstacle problem, where singularity or degeneracy in the operator gives rise
to interesting behaviour of the solutions close to such singular or degenerate points.

The classical setting of the obstacle problem asks for the smallest supersolution # over a given obstacle ¥, in a
domain D, with prescribed boundary values.

The solution to this problem then (formally) satisfies
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Au =AY =y in D
which amounts to that v = u — i satisfies
Av= fxp>0y in D

where f = —AY.

An important ingredient in the study of such problems is the behaviour of the solution close to a free boundary
point x* € I' = D N 3{v > 0}. Indeed, any local analysis of this problem involves the standard scaling and blowup
technique, i.e., the consideration of

v(rx + xO)

v (x) = o

where « is the (unknown) growth rate for the function v, or the rate by which the original solution u detaches from
the obstacle .

Classical theory has been concerned with the case when o = 2, which is a consequence of the assumption A9 <
f < Ay, for fixed 0 < A9 < Ay, close to the free boundary point xY. See [1] or [6].

For those points x° with f(x?) = 0, until very recently, no theory had been developed. For example if f is a
first order homogenous function and x° = 0 € T, then one expects v to have a cubic growth at the origin in the
noncoincidence set {v > 0}, i.e. « =3 (see [11]).

One expects a similar phenomena in the problem

div(c(x)Vu) = X{u>0} in D.

The classical rate « = 2 is a consequence of the assumption c¢g < c(x) < Cy, for fixed 0 < co < Cop, close to the
free boundary point x°. When the coefficient ¢(x) is degenerate or singular at the free boundary point x° then the
corresponding rate o might be different from 2.

In this paper we consider coefficients of the form c¢(x) = x{ for a < 1. As the singularity (a < 0) or degeneracy
(0 < a < 1) of the coefficient is on the set {x; = 0} we are interested to study the free boundary near to a point in this
set.

One may notice that when a < —1, if the corresponding energy of the solution is finite then u is constant on the set
D N {x; = 0}. But if this is a positive constant then the free boundary does not come close to the set {x; = 0}. Thus in
the case a < —1, to study the free boundary close to the set {x; = 0} we should assume that # =0 on D N {x; = 0}.
Because of this reason we consider a problem where u =0 on D N {x; =0} forall a < 1.

Let us now present in more details the problem we are studying in this paper. For n > 2 let D C R? = {x €
R" | x; > 0} be a bounded domain, a < 1, the function g > 0 satisfy

/xf(|Vg|2 + gz)dx <00
D

and g =0on dD N {x; =0}. Let u be the unique minimiser of the energy

/(xf|Vu|2+2u+)dx (1.1)
D
satisfying u = g on dD.
Then we have u € C;{;S‘(D) N Wz’p(D) forall 0 <o < 1 and 1 < p < 0o. The equation

loc
div(x{ Vu) = =0y in D (1.2)

is satisfied in the sense of distributions and pointwise almost everywhere.
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We define the noncoincidence set 2 and the free boundary I' as follows
Q={u>0} and ' =D NI.
Let us also define the contact set
I"={x=0}NT.

Then we are interested in the free boundary I' near to a contact point which has a positive distance from dD N R’} .
In [8] the authors have studied the case a = 0, but for a more general no-sign obstacle problem, i.e. Au = x{u-0).
In the case D = B;f = B, N R%, B, ={x e R" | |x| < r} for some r > 0, by considering v = xf_lu we obtain that

v solves the problem

div(x?Vu) = x07 gm0y (1.3)

in B}, where b =2 — a and there is no Dirichlet boundary condition on B, N {x; = 0}.

In the case of a general domain D, close to a contact point x° € I'" which is away from 8D N R’ we investigate
the free boundary by considering the problem for v.

In [3] the regularity of the solution to the obstacle problem with an elliptic Heston operator has been investigated.
This problem corresponds to the case 0 < a when no boundary condition is assumed on {x; = 0}.

For the range of values —1 < a < 1 the operator in (1.2) is rather well understood. In [4] many properties of elliptic
equations for operators with coefficients in Muckenhoupt classes have been established. In the case —1 <a < 1 the
coefficient x{ belongs to the Muckenhoupt class A>. Specially to deal with the case a < —1 we consider the function
v instead of u. In the appendix we establish relevant properties of solutions of the homogenous equation with b > 1
by first deriving a Poisson formula for the solution in the half ball BT = Bfr.

Also for the range —1 < a < 1 there is a connection between the operators considered here and an extension
problem associated with fractional Laplacian. In [2] it has been established that if u solves the equation

div(x{Vu) =0 in R/,
u=f on {x; =0}

then

C(—AY f= lm x{dyu
x1—>+0

where C > 0 depends only on a and n, and s = %(l —a) (0 < s < 1). Although we do not use this result, we use ideas
developed in [2] to derive the Poisson formula for the half ball which we have computed in the appendix.

For a generalisation of this extension technique one may refer to [10].

This paper is structured as follows. In Section 2, the main notations used in this paper have been enlisted. In
Section 3, the main results of this paper are presented. In Section 4, the spaces in which the existence of the solutions
is established are defined, the existence and uniqueness of the solutions to the main obstacle problem is established,
similarly the existence and uniqueness of the solutions to the auxiliary obstacle problem (1.3) is established and
the local reduction of the main problem to the auxiliary problem is proved. In Section 5, the optimal regularity
of the solution to the auxiliary problem is proved. In Section 6, the optimal nondegeneracy of the solution to the
auxiliary problem is proved. In Section 7, we consider a variation of Weiss balanced energy formula and establish
its main properties. In Section 8, we classify all possible global solutions. In Section 9, by a compactness argument
we prove that close to a contact point away from D N R’ the free boundary touches the fixed boundary uniformly
tangentially. In Section 10, using a compactness argument together with directional monotonicity and known results
about regularity of the free boundary for the classical obstacle problem at regular points we establish that the free
boundary close the a contact point away from 9D N R’| might be given by a C ! graph with a uniform modulus of
continuity for the derivatives. In the appendix we have gathered some technical results including key properties of
the solutions of the homogenous equations div(x{Vu) =0 in D with parameter a > 1 and no boundary condition on
oD N{x; =0}.
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2. Notation

¢, c1,c2,C,Cr, Cy generic constants;

XD characteristic function of the set D (D C R");
D the closure of D;

oD boundary of D;

D° interior of D;

|- absolute value, length of a vector, norm of a matrix, Lebesgue measure or surface measure;
-1l norm of functions;

[] seminorm of functions;

x,x x=(x1,---,xn),x’z(xz,-~~,xn);

R% {xeR"|x1>0};

B (x) {yeR" [y —x|<rk

By(x), B(x), B BI(x), B} (x), B} (0);

B (x) B, (x) NRR";

{x1 > a}, {x1 =a} {xeR"|x12a},{x€R”|x1=a};

el, -, e, standard basis of R”;

e, v arbitrary unit vectors, outward normals are denoted by v;
el e e is orthogonal to eq;

Oe f directional derivative of f (in the direction e);
fr max(0, f);

Cp(D) functions in C (D) with finite || - ||c(p) norm;
Cé (D) functions in C' (D) with finite | - lc1(py norm;
CcC compactly contained.

3. Main results

In the rest of this paper (except in the appendix) we have a < 1 and b =2 — a > 1. Let us introduce an auxiliary
obstacle problem. Let the function g > 0 satisfy

/x{’(|Vg|2 + gz)dx < 00.
D

Let us note that here we do not demand that g =0 on 0D N {x; = 0}.
Let v be the unique minimiser of the energy

/(x{’|vU|2 +2x0 ) dx (3.1)
D

satisfying v = g on D NR’} . Let us note that here we do not demand that v = g on 3D N {x; = 0}.

Then we have v € Clla’g (D)yN leu’f (D) forall 0 < <1 and 1 < p < oco. The equation (1.3) is satisfied in the
sense of distributions and pointwise almost everywhere in D.

For the solution v to the auxiliary obstacle problem we define the noncoincidence set €2, the free boundary I" and
the contact set '/ similarly as we defined them for the main obstacle problem.

In the following lemma, for domains D = BrJr , we reduce the main obstacle problem (1.2) to the auxiliary obstacle
problem (1.3).

Lemma 1. Let r > 0. If u is a solution of the obstacle problem (1.2) in B} then defining v = xf_lu we have that v is
a solution of the obstacle problem (1.3) in B;.
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By Lemma 1 to study the structure of the free boundary away from 9D N R, we might study the free boundary
arising in the obstacle problem (1.3) where there is no fixed boundary condition on 9D N {x; = 0}.

In the following theorem we prove the optimal growth of solutions. This optimal growth is the basis of optimal
regularity estimates for the solution which results in uniform estimates for different blowup sequences.

Theorem 1 (Optimal growth). There exists C > 0 such that if v is a solution of the obstacle problem (1.3) in D and
B (x%) C D then we have

2

v(x) < c( inf v+ r—o) for x € BY (x°). 3.2)
B (x0) r+x; 8
8

In the following theorem we prove the optimal nondegeneracy of the solutions. Using the optimal nondegeneracy
we are able to rule out trivial blowup limits.

Theorem 2 (Optimal nondegeneracy). There exists a ¢ > 0 such that if v is a solution of the obstacle problem (1.3) in
D then for x° € Q and B (x°) CC D we have

cr2

sup v > v(xo) + iR 3.3)

QN3B, (x0) r+4x;

Definition 1. We call v a global solution if it is a function defined on R’} such that it solves the obstacle problem (1.3)
in each B} for R>0,ve C'(R%)N Cl’l(R’i) and there exists C > 0 such that

loc

Iollegps) < CA+R), Wleigy <C for R>0 (3.4)

and

C
Vet Brnixn >s)) = 3 for R>0 and § > 0. (3.5)

We denote by P, the set of all global solutions.
For 19 > 0 and ¢ > 0 let us define

()= Dy % !
ol = T A T b= 1

In the following theorem by a novel method based on shrinkdowns we are able to classify all the global solutions.

(3.6)

Theorem 3 (Classification of global solutions). We have
xi

Pooz{o}u{b

+c | czo}into(xl)X{xl>z0} | t0>0}-

In the following theorem we prove the uniform C! regularity of the free boundary near contact points away from
9D NR'}. The proof of this result is based on the theorems mentioned above, compactness arguments, directional
monotonicity and known regularity of the free boundary in the classical obstacle problem near regular points.

Theorem 4 (C! regularity of the free boundary). There exists 0 < r < % and a modulus of continuity o such that for v
solution of the obstacle problem (1.3) in B such that 0 € T/ there exists g € ok (B;'_l) suchthat) <g<r, g(0)=0,
0eafg >0},

QN (0,r)x Bffl) = {(xl,x/) | gy <x1<r,x'€ Bffl}

and o is a modulus of continuity for Vg in Bffl.
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4. Preliminary analysis
4.1. Spaces

Let n > 2 be an integer and D C Ri be a bounded domain.
Let us define fora €e R and u € H, (D)

loc

310y = [ 34 (VP + 0
D

We define H& (D; x{,{x1 = 0}) and HO1 (D; x{) respectively as the completion of CZ°(R}) and CZ°(D) with
respect to the norm || - ||H1(D;lel).

Fora > —1 we also define H!(D; x{) and HO1 (D; x{,dDNR’}) as the completion of C*°(R") and C° ((5U {x; <
0})°) with respect to the norm || - I (pexe)-

One may check that for a € R, HO1 (D; x{, {x1 =0}) and Hol(D; x{') are separable Hilbert spaces and Hol(D; x{)
is a closed linear subspace of HO1 (D; x{, {x1=0}).

Similarly fora > —1, H'(D; x{) and HO1 (D; x{,dD NRY) are separable Hilbert spaces and H& (D; x{; {x1 =0})
and HO1 (D; x{, 9D NR'}) are closed linear subspaces of HY(D; x{).

By the boundedness of D there exists a C > 0 such thatifa e R and u € C2° ((5 U{x < O})O) then the following
Poincaré type inequality holds

/xfuzdx 5Cfx?|Vu|2dx. “4.1)
D D

Let us note that for @ < —1 the integral on the right hand side might diverge. By the definition of H(} (D; x{), C°(D)
is dense in H& (D; x{') with respect to the norm || - || H(D:x$)» thus from (4.1) by a density argument we obtain that
(4.1) holds for u € H} (D; x¢). Similarly (4.1) holds fora > —1 and u € H} (D; x¢, 3D NR%).

By Lemma 12 for a > 1, C2°(R")) is dense in H'(D; x{') with respect to the norm || - ||H1(D;x?) and it follows that
H}(D; x¢, {x; =0}) = H'(D; x{). Also similarly we have the for a > 1, C2°(D) is dense in H}(D; x%; 9D NR%)
with respect to the norm || - ||H1(D;x?) and it follows that H(} (D; x{) = H(} (D; x{,0DNRY).

Let a € R and r > 0 then one may see there exists C > 0 such that for u € CZ°(R") we have

/ xfuzs(dx) <C / x{ (u2 + |Vu|2)dx. 4.2)
dB,NRY B

Let us note that for a < —1 the integral on the right hand side might diverge. By a density argument for a € R from
(4.2) we obtain that there exists a bounded trace operator from HO1 (B, x{, {x1 =0} to L2(3B, NR"; x{). Similarly
for a > —1 there exists a bounded trace operator from Hl(Br*; x{) to L*(3B, NR" ;x{).

Leta<1and b =2 —a. Let r > 0 then for u € H()I(B;“;xf; {x1 = 0}) defining v = x?_ u we have that v €
H! (BT, x{’ ), the map from u to v is bijective and bounded (together with its inverse). Also this map from u to v,
maps H& (Bf; x{) to HO1 (BS; xi’ ; 9B, NIRY) and this restricted map is again bijective and bounded (together with its
inverse).

1

4.2. The main obstacle problem
Leta < 1. For u € C2°(R’}) we have

|/udx| = |/x;%x1%udx| < (/xl_adxf(/xfuzdx)%
D D

D D
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and by the boundedness of D and a < 1 we have [, x[ “dx < oo. It follows that the integral [}, udx foru € Hy (D; x%)
is a bounded linear functional on HO1 (D; x{).

Using the boundedness of the linear functional mentioned above and the Poincaré inequality (4.1) for each g €
H(} (D; x{, {x; =0}) such that g > 0 a.e. in D there exists a unique minimiser of (1.1) among the admissible set of
functions

{u € HA (D x%, {x; =0}) | u=gon aD}.

By a similar reasoning as in [6] and using the L7 (cf. [5]) estimates for elliptic equations with variable coefficients
we obtain that u € Wli’cp (D) for all 1 < p < 0o and (1.2) holds in the sense of distributions and pointwise a.e. in D.
Also from Sobolev imbeddings it follows that u € C llo’f(D) forall 0 <o < 1.

Conversely if u € HOl (D; xf, {x; =0}) and (1.2) holds in the sense of distributions then we have

f (x{Vu - Vo + xu=0y¢)dx =0 for ¢ € C(D). 4.3)
D

Now let v € HOI(D; x{,{x1 =0}) such that u =v on 0D, i.e. v —u € Hé (D; x{),and v >0 a.e. in D. Then by a
density argument from (4.3) we obtain

/(fou V(@ —u)+ xu=0(v — u))dx =0. 4.4)
D

From (4.4) because v > 0 a.e. in D we obtain that

f(x‘l’Vu -V —u)+ (v— u))dx >0. (4.5)
D

Because (4.5) holds for all v in the admissible set, we obtain that u satisfies the variational inequality formulation
of the obstacle problem (1.2) and thus is the unique solution with its values on d D as boundary condition.

4.3. The auxiliary obstacle problem

Let b > 1 then reasoning similarly as for the main obstacle problem discussed above for g € H'(D; x{’ ) such that
g > 0a.e.in D there exists a unique minimiser of (3.1) among the admissible set of functions

{veH‘(D;x{’) | v:gonaDﬁR:’L}.

Also we have v € Wz’p(D) forall 1 < p < oo and (1.3) holds in the sense of distributions and pointwise a.e. in D.

loc
From Sobolev imbeddings it follows that v € C llma (D) forall0 <o < 1.
Ifve HY(D; xi’ ) and (1.3) holds in the sense of distributions then v is the unique minimiser of (3.1) with its values

on 9D NR’ as boundary condition.
4.4. Locally reducing the main problem to the auxiliary problem

When we say that u is a solution of the obstacle problem (1.2) we mean that u € HO1 (D; xf, {x1=0}),u>0a.e.in
D and (1.2) holds in the sense of distributions. Similarly when we say that v is solution of the obstacle problem (1.3)
we mean that v € H!(D; xi’), v>0a.e.in D and (1.3) holds in the sense of distributions.

Proof of Lemma 1. As mentioned in the subsection 4.1, because u € HOI(B;r ;xf, {x; = 0}) we have that v €
HI(B;"; x{’). For ¢ € C2°(D) we compute
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fx{’Vv -Vodx = /fo(xf_lu) -Vodx
D

D
= /xb((a — Dx%%ue +xa_1Vu) -Vdx
1 1 1 1 @

D
= /(1 — b)udy, pdx + /x1Vu -Vodx
D D
= /(b — 1)0y, updx + /)un -Vodx
D D
= /x‘l’Vu . V(xf_l<p)dx = —/X{Do}xf_lgodx
D D

:_/X{v>0}xf_l¢dx
D

which proves that (1.3) holds in the sense of distributions and this completes the proof of the lemma.

In the rest of this paper we will study the obstacle problem (1.3).
5. Optimal regularity and proof of Theorem 1
The function wy, (t) was defined in (3.6).

Lemma 2. Let b > 1 and ty > O then
wyy (f0) = wy, (10) =0,
Wy, (t) > 0 for t € (0, 1) U (19, 00)
and there exists C > 0 (depending only on b) such that for t > %to we have

4

C
Wy (1) < —(t — to)2 and w;,
0 0

=<
<o

Proof. We have
t
Wy, (1) = tow1(—).
Io

Let A = % then we have
0 = A 1 n 1 1
O = T =1 T b — 1) a1
and computing we obtain
wi (1) =wj(1)=0

and
1
Ab+1T
By (5.4) and (5.5) we obtain (5.1). By (5.4), (5.5) and (5.6) we obtain (5.2).
Now assume ¢ > %to. We have A > % thus

wi () =

" _ b+1
U)l()»)——)JHrl <477

By (5.4) and (5.7) the second inequality in (5.3) follows.

d

5.1)
(5.2)

(5.3)

54)

(5.5)

(5.6)

(5.7)
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By Taylor remainder formula, (5.5) and (5.7) we obtain

1
wi(A) < E4”“@ — 12

By (5.4) and (5.8) the first inequality in (5.3) is also proved and this finishes the proof of the lemma.

Proof of Theorem 1. We consider two cases, x? < 7and x? > 7.

Case x < . Let us define x! = x% — x%, then we have
1=1 1

BT xY cBY
%r( )C %r+|xl—x0|

% = B;rﬂ?(xo) C B;% %) =B (x°).

Let us define

_1 3
o(x) = E(Xl - Z’”)

then we have
div(x{’Vd)) =x{’7l for x; >0
and
¢ <0 in B;(xl).
Let us decompose

v=uv;+ vy in B;r(xl)
7

where
div(x{’Vvl):xlf_lx{wo} in Bé:'r(xl),
v =0 on 383, (x') NRY
and
div(x?Vv) =0 in B;(xl),
v, =v on aB%r(x‘)mRi.
Because of
—div(x{ V) = —xP7! < —xP 7 ym0) = —div(xP V) <0 in B;r(xl)
and

¢ <0=v; on 9B; (x")NRY
7
by maximum principle we obtain

¢ <v1 <0 in B;r(xl).
7

301

(5.8)

(5.9)

(5.10)

Because v > 0 by maximum principle and (5.9) we obtain that v, > 0. Also this follows from v > 0 and the second

inequality in (5.10).
We compute

+,.0 + 1\ _ p+ 1 + 1\ _ p+ 1
B% (x )CB%+‘x07x]‘(x )_B%er?(x )CB§+%(x )—B%r(x ).
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Now by Harnack inequality Lemma 19 in B;rr (x') we have
g

sup v= sup (vi+v2) < sup vu< sup v1p<C inf v

BI(:%)  Bf (") BYGO)  BY () B (1)
3 3 8 3" 8
<C inf vy=C inf (v—v1)<C 1nf (v—¢)
BT (x9) B*(x))
8
1 3 3r
=C inf (v—— - = <C inf ——
Bt(xo)( b(Xl 4r)) < Bt(xo)(v +3 b)
8 g
=C( inf v+§—) Ci( inf v+r).
Bfa0)  4b Bf (x%)
g (]
Thus we have proved that there exists C > 0 (independent of v, r and x9) such that in the case x? < er we have
v(x)gC( 1nf v+r) for xeB+(xO) 5.11)
Bf ( 0)

Case xl 7+ We define
$) = w,o(x1) 0(—r)2

here C > 0 is as in (5.3). Then we have
div(x?Ve) = x?~! for x| > 0.

For x € Bir(xo) we have
16

x1>x?——

thus by (5.3) we have
= Pelm-x2-S <0
¢(x)_wx(l)(x1) 0(—r ?xl X ?]6r =<

ie.
¢ <0in B3 (x°).
16
Similarly as in the previous case we decompose v = v; + vz, but in the current case we consider the domain
B (x0).
16
Let us define
w(y) = va(x)y + (x%)) for ye B . (en).
Xl

We have

r 3 r 3 r 3
d1v(x1Vw)_O in Bax,l (e1) and — 8 0 16E<E§=Z'

Our operator is uniformly elliptic with varlable coefficients in the domain B 3 (e1). By Harnack inequality we obtain

sup w < C1 inf  w.
By y (e1) 1 (er)
§W 8

—o\

By the definition of w it follows that

sup v» <Cp inf vp.
Br (x0) Bg(xo)
8
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Now we can compute

sup v= sup (vi+v2) < sup v, <C; inf vy

v (x0 v (x0 v (x0 Br (x9)
Bg(x ) Bg(x ) Bg(x ) 8
=C; inf (v—v;)<C; inf (v—¢)
Bg(xo) Bg(xo)

. C 3 o
=C Bglgo)(v - (th,)(m) - E(Er) ))

. c 3
<C, inf (v+x—0(ﬁr)2)
1

By (x9)

r2 ’,2
< (C, inf (v+ —O) < Cz( inf v+ —0).
B[(XO) xl BL(XO) .xl
8 g
Thus we have proved that there exists C > 0 (independent of v, r and x°) such that in the case x? > 7 we have
r2
. 0
v(x)gC( inf v—}——o) for x € Br(x"). (5.12)
Br (0 Xy §

One may see that there exists C3 > 0 such that

r? Csr?
"Xidin 004 = T (5.13)

From (5.11), (5.12) and (5.13) we obtain (3.2). O

Remark 1. Let us note that from Theorem 1 it follows that the solution has a linear bound on its growth away from
a contact point (which are by definition in {x; = 0}) and that it has a usual quadratic bound on its growth away from
free boundary points (which are by definition in R, because I' C D C R’} ).

Corollary 1. There exists a C > 0 such that if R > 16 and v is a solution of the obstacle problem (1.3) in B; with
rn B;r =% () then we have

v(x) <C(1 + |x|) for x € BY.
8

Proof. By the previous theorem choosing 16 <r < R we have

v(x)fC(ianv—l—r)§C(in+fv+r)=Cr for x € B . (5.14)
B B; 8
5

Taking » = 16 in (5.14) we obtain
v(x) < 16C for x € BS. (5.15)
For x € B}'\B;‘ taking r = 8|x| in (5.14) we obtain
B
v(x) <8C|x| for x € BY\B; . (5.16)
B

Combining (5.15) and (5.16) the corollary is proved. O

Lemma 3. There exists a C > 0 such that if v is a solution of the obstacle problem (1.3) in D, x° € D, d =
dist(x, D\Q), Bg,(x) C D then

Cd
IVo(x%)| < (5.17)
d—+

X
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Proof. If x¥ D\ 2 then we have Vu(x% =0 and clearly (5.17) holds.
Now assume x° € Q then we have d = dist(x?, D\Q) = dist(x°, ).
Because B;:i x% c D and infB;r @) V= 0 by Theorem 1 we have

Ccd?
sup v <

. (5.18)
B;(XO) d +X?

Let us define ¢ 0(x) = b~ (xy — x?). Now using B;(xo) C 2, (5.18) and Lemma 20 we compute

Vo) = V(v — $,0)(x°) + Vo (x0)]
< IV —¢,0)xN)]+ Ve (x|

Ci 1
<— sup |[v—¢pl+—
BJ (x0) b
Ci C 1
<— sup v+ — sup |Po|+
B (x%) B (x0) b
C, cd* Cid 1 Cod
< =2 T =2 LG 5.19
Sddrd A b a0 O G

Ifd < %x? then for x € B;(x%) we have %x? < x1 thus by Lemma 2 we have

C
0 <wo() < —gd”. (5.20)
1 _xl

In the case d < %x? using By (x% c Q, (5.18), (5.20) and Lemma 20 we compute

C
IVo(x%)| = V(0 — w,0)(x%)] < = sup |v— w0l
! Ba(x0) !

el sup v+g sup w,o
d B, (x%) d B, (x9) *
Cc1 cd*> cCicC Cod d
5_1—0 —l—gd2=#0+C5—0.
d d+ x; d x| d +x; X
By (5.19) and (5.21) we have

=

(5.21)

+C3) (2 el Cod
3) Xja=3x9 d+x0 SX? Xid<3x9

Cad
<—7F
i) d—i—x?

IVo(x9)| < (d+

0
X
and this proves the lemma. O

Corollary 2. There exists a C > 0 such that if R > 32, v is a solution of the obstacle problem (1.3) in B; and
B;‘\Q = () then we have

|Vo(x)| < C for x € B.
18

Proof. Let x* € BT, . Because B;F\Q # () we have
T8

d = dist(x’, B{\Q) < dist(x?, B \Q) < x°] + 2. (5.22)
We compute
+ .0 + + _pt + — Bt +
Bsa &™) C Byy o) © Byoia) 00, = Broropo) © Broyor = Bigyx © Br:
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Thus by Lemma 3 we have

<C

Vo) <
[Vu( )I_d -

which proves the corollary. O
Corollary 3. There exists a C > 0 such that if 0 <r < 1, v is a solution of the obstacle problem (1.3) in B,(e1) and

v(e1) =0 then we have

[Vv(x)| <Clx —eq]| for x e Bs(el).

Proof. Let x € Bg (e1) and d = dist(x°, B, (e1)\ Q). We compute
+ _ pt +
Bl0—e1 410 —er] (D) = Bojo g, (1) € B (e1)-

B (%) C By, o, (e C B
Thus by Lemma 3 we have
d Cd
<

Vo) < ———5 < 5 < 1
d+x;  x; l=g5 1-3

Cd Cd
=C1d < Cix° — e

and this proves the corollary. O
Lemma 4. There exists a C > 0 such that if v is a solution of the obstacle problem (1.3) in D, y € D, d =

dist(y, D\Q), 4r <d + yi and Bg;,o,(y) C D then

C
leviaron = gy
Proof. For z € D we denote d(z) = dist(z, D\2). Because 4r < d(y) + y; we have
1 2
< .
d(y)+y1—=2r d(y)+y

For x € B;F (y) we have

dx)+x1 >dy)+y —2r.
(5.23)

Thus we obtain that for x € B;"(y)

1 1
< < .
dx)+x1  dy)+y—=2r dy)+n
(5.24)

2

Also for x € B;f (y) we have
+ + + +
Bga(o) () C By 41x—y1 V) C By () 191y ) € Bgagyy 9, () C D

We should show that there exists C > 0 such that
2 —x1| for x',x? € B;"(y).
X1+x2) C Q and Bltz_xll(xl;xz) N Q€ # () separately.

+
|x2_x1|( 2

2y 1
[Vu(x?) — Vou(x )|§d(y)+y1|

Fix x!,x% e B;}(y). We consider the two cases B
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Case B‘J;z

q)x? @) =b"tx — xl) and using (5.24), Theorem 1 and Lemma 20 we estimate

1‘(x a2 ) C Q. Let us denote x* = 232 We have d(x") = dist(x°, D\Q) > |x> — x!|. Let us define

|Vu(x2) — Vo b
|x2 — x|

= [Vv]co 1(B+ (XO))
2

< [Vv]co. 1BE 6O = [Vv—¢ 0)]c0 L(BY o, &)
2 2

1
< ——55 Sup [v—9]

0Y})2 X
(d(x )) B;—(XO)(XO) 1

Cy
<—— su v+ -——— su
@a? 0, U @ M, 1]
d(x0) d(x0)
Ci  Cd(x%)? C  dix9
T d@)?d0) +x) 0 @0 b
Cy C3
=0 ot ooy
d(x%) +x]  d(x)

In the case d(xo) < %x? for x € Bd(xo)(xo) we have x| > %x? and using (5.24), Theorem 1, Lemmas 2 and 20 we

estimate

|Vu(x2) — Vo b
_xll

|x2 =< [VU]CO,I(BE B (XO)) =< [VU]CU 1(B+ (xo))
T 2

<[Vw—w Do, 1B o 60 +[Vw,oleo LB o, (60
5 2

su vV—w Vw
(d(xo)) B+ F()x0)| 0|+[ O]COI(B+ (XO))
2

Cy
= sup sup w0+ [Vw, 0] 0.1 + 0
(d(xo))2 B;(XO)(XO) (d(.x )) BJr ( 0) | c (B (x )

€ CUC? € C oo
T (d(x9)? d(x0) + ¥ (617(960))2 x0 xl
CcCy Cy Cs
S (CCI 40— Rl R

T A0 +x xf d(x% +x)

Thus we have in the case B;Lxl | (%) C 2 the estimate

|[Vu(x2) — Vo b C» C3 Cy4 Cs
< -
|x2 _x1| - (d(xo) +x d(xo))X{d(x0)> IX 0y 0y + (d(xo) +x? + x] )X{d(x0)< xO}
Cs 2Cs

= =
d(x0 +x) ~dy) +n

where we used (5.23) for the last inequality.

Case B|—;2 ||(XI;X2) N Q€ # (. We compute
le2 —x! I(x )C sz —xl+[x0- )l(y) cB |x e x'|+%|x]7y|+%|x27y|(y)
C BY, () C B5,(¥) € Bgg 0,00 €D

3 3
5l =yl+51x2—y
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thus B|J;2—x1| x9N (D\R2) # @ and by (5.24), (5.17) and (5.23) we compute

IVo(x?) — Vo h| < Vo) + Vo)

—|X =X

d(x!) +)cll 2

Cd(x?) Cd(xh
Tdx) +x? dxh) +x)
C 3 C 3

< y
d()cz)-i-)cl2 2

3 1 1 ;o
L T T o LAt 4l
2 N +x; dx) +x

C
578|x2_x
d(y)+n

and this completes the proof of the lemma. O

1
|
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Corollary 4. There exists a C > 0 such that if R > 32, v is a solution of the obstacle problem (1.3) in B;zL and

B;\Q # () then
C
[U]CI’I(BEQ{X1>8}) < g fOl" 6> 0.
20

Proof. Let0 <4,y € B% N{y > 48}, r= %1 and d = dist(y, D\2). We compute

4r=%<y1§d+y1.

By an estimate like (5.22) we have d < |y| + 2 and we compute

+ + +
B3 10- () C Bgyior 11y € By(iyj+2)49r+1y|

=B CcB

+ — Bt +
OIYIHOr+16 7= oy 4 gy1+16 T lyl+3lyl+16

+ + +
C BIOMJr16 - B§+16 C By.
Thus by (5.25), (5.26) and Lemma 4 we have
Cy C, C
[U]CI'I(B%()J)) =[lcigry)y = m < ; < 5 for y e B% N{y > 8}.

Also by Corollary 2 we have

|Vo(x)| < C, for x € BY,.
18

Using (5.27) and (5.28) we compute

[Vu(x?) — Vox ]
Ix2 — x|

[U]C“(Bﬁ Nfx1>8)) = sup
20 xl,xzeBﬁﬂ{x1>6}

20
|[Vu(x?) — Voxh)]

= max sup
11 |x2 —xll
x!.x2eB g N{x;>68}, [x>—x!|<gx]
20

k)

|Vu(x2) —Vv(x1)|>

sup |x2—x1|

x!,x2eB g N{x;>6}, \xz—xl\zéxf
20

[Vu(x2) — Vo b
|x2 — x|

< max( sup sup

xleB g N{x1>8} x2eBy | (x))
20 841

s

(5.25)

(5.26)

(5.27)

(5.28)
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swp (V)] + Ve
x!.x2eB R N{x;>38} )C]
C 8 C
< max( 5 2C2) 83

and this proves the corollary. O

Corollary 5. There exists a C > 0 such that if 0 <r < 1, v is a solution of the obstacle problem (1.3) in B, (e1) and
v(e1) = 0 then we have

[Wlctis, e = €

Proof. Because v(e;) =0 we have dist(el, B, (el)\Q) = 0. We compute

r .
4§ < (e = d1st(el, Br(el)\Q) + (e
and
+ _ pt
BS dist(eq, B (e1)\2)+95 (e1) = B,  (e1).

Thus by Lemma 4 we have

C
[vlcuigp, < — =
CHBL D) = Gist(er, B (eN\Q) + (e1)1

and this proves the corollary. O

6. Optimal nondegeneracy and proof of Theorem 2

Let us define

20— Tpry12M b2—1yf—1+2(b—1)

1 1 1 1 1
pi(y) = y'1? i
and
x — (XO)/
po(x) = (x?)zpl(T)'

1

Lemma 5. There exist ¢ > 0 and 0 < €y < 1 such that for 0 < € < €g and x, x0e R% we have

€ ¢ 012 €0
woo(xp) + —Opxo(x) > —Oe|x —x"|° for x1 < —xj.
1 X €
1 1
Proof. We compute
_ (x())/

w0 (x1) + 5P () = x7wi(—5) + 6x1p1(70)
xj Xj xj
O)b—l

:x?(b’;ll bil+b(b1—1)();lf—1 )
r_ -0y 0
* 0(2(n1—1)|x xéx)| bllé(xé) _%(%)IHJFZ(I)]—I))
0yb—1
:42(’1_el)x?|x’—(x0)’|2+x?{%)— bil +b(b1_ : (a;lf)_l
o )j—pz—bl—lé)w t o)) 6.1)
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Let us define

t 1 1 1 1
fO) =7+ (

o |
b—1  bo_npT € = 1 ) 6.2)

1
Tbhr12 o1t oo
then we have
fy=f'1=o. (6.3)

We claim that there exists €9 > 0 such that for 0 < € < ¢y we have

1 1
f@t) > il D2 for 0<t< e (6.4)

By direct computations one may see that there exists ¢y > 0 such that for 0 < € < 1 we have
1
'@ = Ee for 0 <t < cle_h]ﬁ. (6.5)

_ 1
we have 1 < ¢1€ 1. Thus for

For0<e < cl]H'1

0 <e <min(l, bt (6.6)

by (6.3) and (6.5) we have

1
f@) = 7€t =1)? for 0<t<cre P, 6.7)
We estimate
€ 5 € 1 1 € 1 1
=————t )t () —
F@ b 20b+1) +(2 )b—1+(b b+1)b—1t”*1
t € 5 1 1 €
>t o= (5 - = (6.8)
b 20b+1) b—1 b 20b+1) b—1
In addition to (6.6) assume
1\ 145
€< (cl b — 1)5) : 6.9)
Now for ¢ such that
_ﬁ <tr< !
cie — 7 3be
using (6.8) we estimate
1 € 1
2 2
t)—¢€t”>(—— )t — — €t
fO=e = (G- 35 1€
_(1 ( 1 n ) )t
“\b 200+ 1) b—1
1 1 1 1
>(-—(—--+1)— )t — ——
= (5~ Gorn V%) 5
t 1 1 ¢y 1
> — - > -
26 b—1"2b, 5 b—1
((b ot 1) L oo (6.10)
=(ci(b—1)— —1)— > .
2b6ﬁ b—1

for the last inequality we used (6.9).
Also from (6.9) we have
2b c1

l<——<—
b—1 €TH5

L

thus for c;e™ ™ <t we have 1 < ¢ and it follows (¢t — 1)2 <2,
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By (6.7) and (6.10) for 0 < ¢ < ﬁ we have

1 2 2 1 2
f@)z get—1) X, +et z2€t—=D

_ 1 _ 1
O<t<cie b+T} {cre DF+I <Z§ﬁe*1}

and this proves (6.4).
Ifx; < ;—be_lx? then by (6.4) we have

€ € X1
w0 (x1) + = pro(x) = ——— ' — O P+ £ (5)
SR 2(n—1)x?| | lfx?
1 X1
> GO PO )2
_2(n—1)x?| (x*)] 14(x? )
€ ’ 0N/ (2 11 02
= ———X - @)+ 5 7ebr —xyp)
2(n—1)x?| | x?4 : !
€ . 1 1 on . € 1 0
> — min(——, -)|x —x"]* = 5 —|x — x|
%0 2n—1)"4 0

1

and by taking ¢ = min(ﬁ, %h) the lemma is proved. O

Proof of Theorem 2. Assume v is a solution of the obstacle problem (1.3) in D, x% e Qand Bt (x% cc D. Let
¢>0and 0 <€y < 1beasinLemma 5.
We claim thatif 0 <€ < €pand r < (5 — l)x? then

sup  v> v(xo) + %erz. (6.11)

QNI B, (x0) X1

To prove this claim let us define
€
h(x) =v(x) — v(xo) _ (wx?(xl) + x—opxo(x)).
1
Then we have
div(x?Vh) =0 in @, h(x%) =0
and
h(x) < —v(x% <0 for x €. (6.12)
‘We have the inclusion
(3B, N))NRL C (B, xY)NRL)NT) U (2N 3B, (x0)). (6.13)

Applying the maximum principle Lemma 17 in the domain B, (x®) N © and using (6.13) we have

0= h(xo) < sup h< max( sup h, sup h) (6.14)
(3(B, (xO)NQ)NR™ (B, (:ONRHNC  QNIB, (x0)

From (6.12) and (6.14) we obtain
€
0< sup h< sup v-— v(x%) —  inf (wxo(xl) + —Opxo(x)). (6.15)
QNIB, (x0) QNIB, (x0) QNaB,(x0) " I X

If x € 3B, (x%) because r < (z— l)x? we have

c c
xlfx?—i—r <x?+(g—l)x?=2x?



H. Shahgholian, K. Yeressian / Ann. I. H. Poincaré — AN 34 (2017) 293-334
thus by Lemma 5 we have

€ c
wx?(xl) + x—opxo(x) > x—oerz for x € 9B, (x%) NRYL.
1 1

By (6.15) and (6.16) we prove the claim and obtain (6.11).
Now let us choose
%0

€ = —L— min(c, &)
2r +x;

then we have 0 < € < ¢y and
c c
(6 ) 1 (l)

- 1)x(1)
min(c, €p)

2}’—&—)6%J

2r c
= ((E 1) max(l, =) - 1))

2r c c
> max(l, —)x? =2r max(l, —) >2r>r
X €0 €0
We compute
o, 11X 5 , , 1. r?
<€ =7 5 min(c, €9)r° = o min(c, €g)r“ > = min(c, €g) o
X x] 2r 4+ xj 2r +x, 2 X
and this proves the theorem. O

Corollary 6. There exists a ¢ > 0 such that if v is a solution of the obstacle problem (1.3) in D, x° € 3Q and
B (x%) cC D then we have

cr?
sup v >

-
B0y T tX

(6.17)
Proof. Because x? € 92 there exists x! € € such that |x! — x| < 5. We have

B;(_xl) C B;+‘x17xo‘(x0) C B;;+%(x0) = Bj_(xo)

and applying the previous lemma to the point x! we estimate

sup v= Ssup v=>

r\2
e

sup vzv(xl)—i— @)
B (x0)

r 1
Bf (<)  QNdBr () 3tx
2
c())? cir? cir? cor?
i T 7= =
7T x r+x; r+x

T ]
and this proves the corollary. O

7. Weiss monotonicity formula

Weiss balanced energy was introduced in [9] to study obstacle problems. Let us define for b > 1 and v €
H! (B, x{’) the Weiss balanced energy

1 _ 1
W(r,v) = o /()c{’WUI2 +2x'1’ 1U)d)c b / x{’vZS(dx).
B

(7.1)
9B,NR,

311

(6.16)
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By the trace inequality (4.2), W (r, v) is well defined for v € H! (B,‘"; x{’).
Let v be a function defined in B and 0 < r < 1. We define the linear blowup

v(rx)

vr(x)—T for x € BT.

Lemma 6. Forr >0 and v € Hl(B;“; xi’) we have W (r,v) = W(1, v,).
ForveH' (B,O, {’), W (r, v) as a function of 0 < r < rg is locally bounded and absolutely continuous.
Let v be a solution of the obstacle problem (1.3) in B;g such that v € Cg (B;g) and there exists a C > 0 such that

C
[U]Cl'l(Broﬂ{X1>3}) < E fOl" 5> 0. (72)
Then for O <r < ro we have
d b 2
o W(r,v) =2r x7(0pv,)"s(dx) (7.3)
-

dBNR™

and if W(r, v) is independent of r € (0, ro) then v is first order homogenous in B;g~

Proof. Letr >0andve H! (BT; xl) We compute

1 b 2 b—1 1
W(r,v) = e /()c1 [Vv|~ +2x) v)dx sy / xl v2s(dx)
B 3B, MR’}

:/(x'lb|Vv(rx)|2—i—Zx{’*l%v(rx))dx—ri2 / xlvz(rx)s(dx)

B+ dBNR™
= /(x{’|w,(x)|2+2x{’*1v,(x))dx ~ / xPv2(x)s(dx) = W(1, v,)
B+ 3BNR".

and this proves the first claim.

Letve H! (B,O, f ) then for 0 < r < rq by direct computation using polar coordinates we have

1
/ xlv 25(dx) = —2r0t1 / R |n+bxlv(x)Vv(x) xdx
9B, MR Bi\B'
+ (- )”*" ! / xPv? (x)s (dx). (7.4)
3By, "R

The equation (7.4) together with the fact that for f € L} e (R, / BF fdx as a function of r is locally bounded and
absolutely continuous function proves the second claim.

Let v be a solution of the obstacle problem (1.3) in B such that v € Cb (B ) and there exists C > 0 such that (7.2)
holds.

Then by the Theorem of Rademacher we have that the distributional second derivatives 9y, XV satisfy

C
[0y, x; v(x)] < 3 fora.e. x € B,y N{x| > §}.
Let 6, = ;—2 for k € {0} UN. We may decompose

B = Uren(Bry N {8k < x1 <81}).
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Then for k € N there exists E; C B;g such that |Ex| = 0 (here | - | denotes the n-dimensional Lebesgue measure)
and for x € By, N {8k < x1 < 8—1}\Ex we have

C 2C 2C
|8x,-xjv(x)|§_:—§_- (7.5)
S k-1 X

Now defining E = Uen Ex we have that [E| =0 and for x € B;g\E the inequality (7.5) holds.
Thus

X1|0xx;v(x)] <2C forae. x € B;g.

Now we have enough regularity and for 0 < r < rp we compute

1d W o) 1d Wl v)
——W(@r,v)==-— )
2dr 2dr '
1
= 3 /(xleVv, - Vo, v, +2x'lb_18,v,)dx
B+

1

-5 f xP20,9,v,5(dx)

IBNR.
= / (div(x?8, v, Vv,) — div(x? V) d,v, + 207 19,0,)dx
B+
— / x{’v,&,v,s(dx)
3BNR"
= /(—div(xi?Vv,)arv, +x{’_18,vr)dx
Bt
+ / xi’&rervr~vs(dx)— / vararv,s(dx)

IB+ 9BNR™

:/xfarervr‘vs(dx)— / xi’vré)rvrs(dx)
aB+ 3BNR"

= / xfarv,er'vs(dx)— / x{’vrarvrs(dx)

dBNR" 3BNR".
= / x{’(auvr — vr)arvrs(dx). (7.6)
dBNR"

It is easy to see that on 9 B N R’} we have
OpVy — Uy =F0pUy. 7.7

By (7.6) and (7.7) we obtain (7.3).
The last claim follows from (7.3) and (7.7). O

8. Global solutions and proof of Theorem 3

A global solution was defined in Definition 1 and the set P, was defined as the set of all global solutions. We
denote by Poo hom. the set of first oder homogenous global solutions.
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Lemma 7 (Classification of homogenous global solutions). We have

Poo,ham. = {Os );)_1}

Proof. Let us consider the two cases when 2 =R’ and Q # R" separately.

Case Q@ =R’.. We write v = %‘ + h where h € Hl(Br+; xi’) for each r > 0, diV(foh) =01in R and A is first
order homogenous. We have that V4 is 0-th order homogenous. Thus for 7 > 0 by the Poisson kernel formula proved
in Lemma 16 we have

Vh(x) =Vh(rx) = / VK(rx,y;b)h(y)s(dy).

IBNRY,

Sending r — 0 we obtain

Vh(r) = / VKO, y: bh(y)s(dy).
dBNR"
Therefore Vh is a constant vector. So we have
h(x)=c+p-x

for some ¢ € R and p € R", and by first order homogeneity of # we obtain that ¢ = 0.
We compute

0=divx?Vh) = div(x{ V(p - x)) = bp1x? ™!
from which it follows that p; = 0. So we have
h(x)=p' -x

for some p’ e R*~1.

Because v = % + h should be nonnegative we obtain that p’ =0 and thus 7 =0 and v = %].

Case Q #R'|. Lete L ej and w = d,v. Similarly as in the proof of Lemma 6 we have x1|Vw]| < x; |V2y| < C ae.
in R’} . It follows that w € H Y(BF; x{’) for all » > 0. Also the following equation holds

div(xtVuw) =0 in Q (8.1)
and w is 0-th order homogenous.

We claim that w > 0 in 2. Otherwise we denote m = inf} BOR! W < 0. Then there exists x° € 9B N M such that

m = w(x%). Let us define Q,, to be the interior of & in the relative topology of M If v(xY) = 0 then because
m = w(x% = 9,v(x?) < 0 we would have v(x° +te) < 0 for small enough 7 > 0 which is in contradiction with v > 0,
thus v(xo) > 0. So in particular x0 € Q1. Let Q?el. be the open component of €2, in the relative topology of R’}
such that x° e Q(r)el.. By 0-th order homogeneity we have that

w(xo) = inf w= inf w.
PBORL gl

Now because w solves (8.1) in the (usual) interior of Q(r)el. and attains its infimum in Q(r)el.’ by strong maximum
principle Lemma 18 it is a constant function in Q(r)el.‘ Because 8Q(r)el. Nol' ¥ and w =0 on I" we obtain that w =0
on Q?el" a contradiction with w(x%) < 0.

Hence for arbitrary e L e; we have proved that d,v > 0 in .

Therefore d,v =0 in 2 for all e L e;. It follows that v does not depend on x’ and depends only on x;.

If © £ ¢ then because also we consider the case Q2 # R” , there exists n > 0 such that v(x) =0 for x € {x; = n}.
Now by first order homogeneity of v we obtain that v = 0 in R’} which contradicts with €2 # (.

So we should have Q =@ and v=0inR%. O
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Definition 2. For 0 < § < 1 let us define the open cone

Cs={x eR" | x1 > 8|x|}. (8.2)

Proof of Theorem 3. Assume v € Py, and v # 0.
Step 1. In this step we show that vg = %U(Rx) — %‘ in Cp(B1) as R — oo.
By the assumptions (3.4) and (3.5) we have

C
||UR||C1(B+) = C and [UR]CI I(Bﬂ{x1>8}) 8 for R>1 and 6§ > 0. (83)

Thus vp is uniformly bounded in Cg(B“') and in CHY(B N {x; > 8}) for any 0 < § < 1. By compact embeddings
and diagonal selection argument there exists a sequence R; — o0 and v € CY1(B1) such that v, € CH1 (BN {x1 >
6}) for0<d <1, VR; = Voo in C%%(B*) for any 0 < < 1, VR; = Voo in Ch*(BN{x; > 6 forany O < < 1
and 0 < § < 1 and Vg, = Vi weakly in L*(B™h).

By the second bound in (8.3) and the pointwise convergence Vv R, = Vus in BN {x; > §} we have

C
[UOO]CI’I(BQ{X|>8}) < E for § > 0. (84)
We have that vg; is a minimiser in Bt ie.
/(x1|VvR 1?4+ 2xb7 1o f k,)dx < /(xflvw|2+2xf_11/f+)dx (8.5)
B+ B+

forall v € H'(BT; xf) such that { = vg; on dBTNRY.
Letp € H' (BT; x{’) and ¢ = voo on IBT NRY. Let = ¢ 4 vg; — v in (8.5), then we obtain

/(x1|VvR |2+2xb vt )dx
B+
< /(xﬂwp + VR, — Voo) [* + 277 (¢ + v, — Vo) T)dx. (8.6)
Bt

Using the convergence v R; = Voo in Cp (ﬂ) we have

fzx’f l( — (@ +vr, — Vo)t dx—>/2x{’ "ok — ¢™)dx. (8.7)
Bt Bt

Using the convergence Vug; — Vv weakly in L*(B™) we compute

[ 30908, = 196 + v, = v P
B+

= / X} (—IVel* =2V - V(vg; — voo) + 2V Vg, - Viss — [Voo|)dux

BT

— fx{’(|woo|2 — |Vg|?)dx. (8.8)
B+
From (8.6), (8.7) and (8.8) we obtain

/(x1|Vvoo|2+2xb ! +)dx</(x IVo|? +2x77 9T dx
Bt Bt

which proves that v, is a minimiser in B*.
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Let us consider ¢ € C2°(B). By the equation satisfied by vg; we have

—/foVij oV(ijga)dx=/Xf71X{ij>0}URj(ﬂdx-
B+ B+

Also we have

fx{’Vij - V(vg;p)dx = /x%’|Vij|2cpdx +/x1vaRj - Voug,dx
B+

B+ B+

thus
/x{’|Vij|2g0dx :—/xf_lx{ij>o}ij¢dx — /foij ~V<pijdx. (8.9)
B+ B+ B+

Similarly we have

/xlb|Vvoo|2<pdx = —/xi’_l)({voo>o}voo<pdx — fx{’Vvoo - Vovsodx. (8.10)
B+ B+ B+

Now because we might pass to the limit on the right hand side of (8.9) and obtain the terms on the right hand side
of (8.10) we have

/xf|woo|2¢dx= lim /xi’|Vij|290dx. (8.11)
— 00
Bt / Bt

FixO<r<1l.Letr <rj <land ¢ € C°(B) suchthat 0 <¢ < 1in B, ¢ =1 in B, and ¢ =0 in B\B,,. Then
from (8.11) it follows that

/x{’|woo|2dx zjli)rrolo/xfIVij|2dx.
By B

Sending r| — r we obtain

/x{’|woo|2dx > lim /x{’|Vij|2dx.
Jj—>00
B B
Therefore for all 0 < r < 1 we have UR; = Voo strongly in H! (B;"; xf).
Also we have the convergence v R; = Voo in Cp (F).

Now for 0 < r < 1 by the convergence VR, = Voo strongly in Hl(Br+; xi’) and VR, = Voo in Cb(ﬁ) we may pass

to the limit in the balanced energy W (r, v R; ) and obtain that W (r, v RJ.) — W(r, Vo).
For any R > 1 by (8.3) we have

W(R,v)=W(,vg) < /(x{’|vUR|2+2xf—1vR)dx
B+
gf(x{’C2+2xf_lC)dx:C1
B+

thus as a function of R > 1, W(R, v) is uniformly bounded.
By (3.4), v has enough regularity and thus the equation (7.3) holds and W (R, v) is monotonically nondecreasing
for R > 1.
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Therefore a finite limit limg_, .o W(R, v) = W(+00, v) exists.
We compute for 0 <r < 1

W(r,voo) = lim W(r,vg;) = lim W(rR;j,v) =W (400, v)
j—>o0 j—00

thus W (r, v) is independent of 0 < r < 1. Now by Lemma 6 we obtain that vy is first order homogenous.
We have Q # @ thus there exists x € Q. Let R > 2|x?| then

CBY =B}

+,0 +
B3 (x)CB R4y RLE

and by Theorem 2 we have

> >1 (0)+C(§)2 S ¢ R S E R c
SUpVR = — sup v_—(vx )__ > = > <
B+ R 0naB g (x0) R §+x? 4§+x? 4§+|xo| 4
2
Passing to the limit R = R; — oo we obtain
C
SWPloo =4 (8.12)

Bt

thus v, # 0in B™.

Because v is a first order homogenous function in BT we have v5(0) = 0 and veo (x) = v(%x‘)(2|x|) forall x €
BT™\{0}. Then we might extend v as a first order homogenous function in R’ as follows, veo(x) = voo(ﬁ)(2|x|)
forall x e R \B™.

Because vy € CO’I(B+) and (8.4) holds we obtain that (3.4) holds for (the extended) veo.

One may see that because v is solution in BT, its extension in Rﬁr as above is a solution in each Bj forr > 0.

Thus v is a homogenous global solution, i.€. Voo € Poo hom.. Because v # 0 in Bt from Lemma 7 we obtain
that veo = % By the uniqueness of the limit vy, we conclude that vg — v = %‘ in Cp(BT1) as R — o0, as desired.

Step 2. In this step we show that v depends only on x;.

Let us denote for R > 0

€(R) =supsup|v, — —|
r>R B+

and

h=v—2L
T

By the definition of € (R) we know that it is a nonnegative and nonincreasing function of R > 0 and by the first
step we have that e(R) — 0 as R — oo.

Next
1y
sup [A(y)] = sup Iv(y)——l— sup |Ev(y)— E?'
yeB{ yeB} yeB:
=R sup |—”(Rx)——|— sup |vg(x) — —| < Re(R)
xX€BTt xXeBTt

which implies
Y1 Y1 Y1
v(y) = +h() = = 1RO = 55 = Iyle(yD)
and consequently
[yery | vi>bivleyd] c e

Let 0 <8 < 1 and Rs > 0 be large enough such that € (Rs) < %8.
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It follows that
Cs N By, < [y eRy | v = blyle(yh] c @

where Cj is defined in (8.2).
Assume § < % and

e Cis N BER&
then one may see that
Ba|x0|(x0) C C(S N B%S C Q.

We have that & solves the linear equation div(xlb Vh)=01in BS|X0| x% c €, therefore by Lemma 20 for e L e; we
have

C C
19:h(x%)] < —~ sup |h| < —— sup |h]|
X +
81x01+1x0

C

E JRE—
81x9)

(1 +8)x%e((1 4 8)1x°))

- %1 L 8)e((148)x)) < %e(lxol).

We have that 9,2 = d,v — 86(%) = d.v =0o0nI" and by (3.4) we have |d.| = |d.v| < |Vv| < C3.
Let R > 2Rs. For x € (2N Bg) NR’} we have

0, x €9QNBY,
19,h(x)] < Cy, x € QNIBr NC5, (8.13)
%E(R), x € QNaBg NCss.
Let us define for x € 9 Bg N R’} the function
Cy, x€dBrNC3; NRY,

gx)y=1 C (8.14)
?le(R), x € 9Bg N Cas.

And let ¢ be solution of diV(foq) =0in B; with boundary data ¢ = g on d Bg N R”,. The shrinkdown g is a

solution in B thus for x € B}, we have
2

q(x>=RqR<%>=R / K(%,y;b)qze(ws(dy)
IBNR’.

_ / K(%, i D)q(Ry)s(dy)
IBNR",

_ / K(%, v b)g(Ry)s(dy)
9BNR"

X
= [ K(E’ y; b)g(Ry)s(dy)
dBN{0<y; <38}

. / K (% yib)g(RY)s(dy)

aBN{y;>35}
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X
<C K(E’ y;b)s(dy)
dBN{0<y; <38}

Cy X
+Sewy / K (. y:b)s(y)

dBN{y; >34}
<G / Cay7s(dy)
9BN{0<y; <35}

C
+ ey / Cayls(dy)

3BN{y;>38)

C
< Cssb 4 ?66(R). (8.15)

By (8.13), (8.14) and the maximum principle we have that

—q(x) <3.h <q(x) for x e QN BY

but then from (8.15) it follows that
b+1, Co ~ +
|00 < Csé —I-?E(R) in QﬂBg.

Forafixedx e Qand 0 <§ < % by sending R — oo we obtain

190k (x)| < Cs8bTL.

Because this holds forall x e Q and 0 < § < % we obtain d,/(x) =0. Thus 3,4 =0in R’ for all e L e and this
proves that 2 depends only on x;. Therefore v = %1 + h depends only on x.
Step 3. In this step we finish the proof of the theorem.
Let Q° be a component of Q. Because 4 depends only on x; and div(x{’ Vh) =0 in Q° we have that there exist C
and C; such that
xi &)

v=—+C1 +
b _xf71

in Q°. (8.16)

If @ = R then Q° = R". By (3.4), v has finite energy in B} for each R > 0. Because x| has infinite energy
we should have Cp = 0. Also because we should have v(0) > 0 it follows that C; > 0.

If @ #R'| then Qisa proper subset of R’} . Thus there exists 7y > 0 such that fpe; € Q0N R% C I'. Therefore
we should have

v(tger) = dy, v(fper) = 0. (8.17)

Now by finding the correct values of the coefficients Cy and C» in (8.16) such that the two equations in (8.17) hold we
obtain that v(x1) = wy, (x1). Now from (5.2) it follows that either QO s equal to (0, fg) x R~ or (19, 00) x R~ But
in the case 0 = (0, 7o) x R"~! we will have infinite energy thus the only possibility is when QY = (19, 00) x R" 1
and v = wy, (X1) X{x;>10) 1D Q0.

Because all connected open sets (#g, co) for #y > 0 intersect. We obtain that 2 has only one component and v =
Wy, (X1) X{x; >10}- This finishes the proof of the theorem. O

9. Tangential touch of the free boundary

Definition 3. For 0 < n we call o a modulus of continuity defined on [0, n) if ¢ : [0, n) — [0,00), 6 (0) =0, o is
nondecreasing and 0 = o (40) =lim;_,¢, ~00 (7).
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Lemma 8. There exists 0 < ny < 1 (depending only on n and b) and a modulus of continuity o1 (defined on [0, n1)
and depending only on n and b) such that if v is a solution of the obstacle problem (1.3) in B* and 0 € T then

suplvr—x—llgal(r) for 0 <r <n. 9.1)
B+ b

Proof. We argue by contradiction. If the claim of the lemma does not hold then there exists € > 0, v/ solutions of the
obstacle problem (1.3)in B*,0 € I‘;_, and 0 < r/ — 0 such that

i 9.2
Sglflv,/ bl_e. 9.2)

We have that vrjj is solution of the obstacle problem (1.3) in B(J;j),l and 0 € F’(vf/) (here F’(v{,) denotes the

contact set associated with vfj) thus by the Corollaries 1, 2 and 4 there exists C > 0 such that for any R > 0 and large
enough j we have the uniform bounds

J j
vy lcssy = CA+R), [vleipry =C

and

] C
[”Zj]clvl(BRrw{xpa}) = 5 for & > 0.

Arguing as in the first step of the proof of Theorem 3 we obtain that there exists a subsequence j; and a global
solution vg such that v{fk — vg in CO’“(BI'QF) forany R >0and 0 <« < 1 and in CM*(BgrN {x1 > é}) for any R > 0,
O<a<land$>0.

We have 0 € F;_/ C 9€2,; thus by Corollary 6 for T > 0 and large enough j we have

j_ 1 j
supvrjz;supv >cT
B J Bjj,

and passing to the limit r;, — 0 we obtain
supvg > ct for T > 0.
BY

So we have 0 € 9{vp > 0}. _

Because v/, is uniformly continuous in Bt and 0 € I (v/,) we have v/, (0) = 0. Because vfj.‘k — v uniformly in

B we have vy(0) =0.
Thus we have vg € P, v9(0) =0 and 0 € 9{vp > 0} and consequently from Theorem 3 we obtain vy = %‘ and this
contradicts (9.2). O

Theorem 5. Let b > 1. There exists 0 < ny < 1 (depending only on n and b) and a modulus of continuity o (defined on
[0, 72) and depending only on n and b) such that if v is a solution of the obstacle problem (1.3) in BT (corresponding
to the parameter b) and 0 € T/ then we have

{x €,m)x BT | x> |x’|az(|x’|)} ce.
Proof. Letx B;‘l, r=|xland y = I;_I then using (9.1) we have

V() = oy () =3 (o () = ) = 50—l () - 2

X1
> — —rsuplv, —
b B+

xl|>x1 (r) a lxfo1(lx])
— — —ro|(r)=— —
A o1 b xlop(|x
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thus
{xe Bl | x> blxlo(xn} c e 9.3)

LetO<n < %m be small enough such that 2bo(2n72) < 1. Let us define 02 (n) = 2bo1(2n) for n € [0, n2).
We claim that

{x €O m) x B | x> |x’|az(|x’|)} - {x eBl | x> b|x|01(|x|)}. (9.4)
Assume x € (0, 177) x B,;’,;l such that |x'|o2(|x']) < x1.
We compute

x| <x1+ x| <2m <

thus x € B,;.

In the case |x| < x; we estimate
blx|o1(lx]) < b(x1 + X' or (x1 + |x']) < 2bx101(2x1) < 2bo1 (2n2)X1 < X1
and in the case x; < |x’| we estimate
blxlo1(x]) < b(x1 + |x"or (x1 4 [x"])
< bxyo1(x1 + [x']) + blx'|oy (x1 + [x7])
< bx101(2m2) + blx'|o1 (2]x"])

—X1 + =|x |o2(]x < =X1+ =x1 =x1.
-2 ! 2 2 2 ! 2 ! !

thus b|x|o1(]x]) < x1 holds in both cases of |x’| < x; and x; < |x’|. Therefore the inclusion (9.4) holds.
By (9.3) and (9.4) the theorem is proved. O

10. C! regularity of the free boundary and proof of Theorem 4

For a function v defined in Bt and x* € B+ we define
1 1
v0(y) = —Ov(x?(y —ey) + xo) for y e Bi (——O(xo)/). (10.1)
Xj 00X
For0<n< % and x° € (0,7) x B"~! we have x° € B* and
2

+ +
BrCBLL 1oy
2n 2n X(l)

1 1
(__O(XO)/) — B+ 0 (__O(XO)/)
3l G a0 A
1

and therefore v,0 is well defined in BT .
2

Lemma 9. There exists 0 < n3 < Zl; (depending only on n and b) and a modulus of continuity o3 (defined on [0, n3)
and depending only on n and b) such that if v is a solution of the obstacle problem (1.3) in BT and x0e ((0, n3) X
B’f_l) N T, then we have

2

v, = wi DX 1lle1(s, @) < 03GT)
2

where the functions v,o and wy are respectively defined in (10.1) and (3.6). Let us note that because x? <n3 < % by
the remark before the lemma we have that v, o is well defined in B;‘ and this contains B 1 (e1).

In short, this lemma says that v, (a scaling of v) is 03 (x(])) close to the class Py.
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Proof. We argue by contradiction. If the claim of the lemma does not hold then there exists € > 0, v/ solutions of the
obstacle problem (1.3) in B, x/ € ((0, %) X B’]‘*]) NT,; with x{ — 0 such that
2

J

I/

i wl()’I)X{y1>1}||cl(3%(gl)) 2 €. (10.2)

For R > 0 because xlj — 0 by the remark before the lemma we have that v){ ; is well defined in B; for large
enough j. One may check that actually it is a solution of the obstacle problem (1.3) in B;.

Arguing as in Lemma 8 there exists a subsequence jr — oo and a global solution vy such that v){’_‘,k — g in
CO'“(B;) for_any0<a <land R >0andin CH*(Bgr N{x; >8}) forany0 <a <1, R>0and 0 <8 < I.

We have x/ € I',); thus by Corollary 6 for 0 < 7 < 1 and large enough j we have

1 C(x{t)2 ct?
SUp vz G T

B (x)) Xy X T+ X T+1
le

i _
sup v, ; =

1
B(e) x]

and passing to the limit j; — oo we obtain
cr?

sup vp >

for T >0
Be(er) T+l

thus e € {vg > 0}. '
Because x/ € I',; we have that v)](j (e1) = 0 thus we have vg(e1) = 0. So together with e; € {vg > 0} we obtain that
e] € Fv()'

Hence we have vg € Py and e € I'y,. From Theorem 3 we obtain vo = w1 (y1) x{y,>1}- By the Cl’%(Bz N{y; > 711})

convergence of v)]C ; o vg we come to contradiction with (10.2) and this proves the lemma. O

Remark 2. By considering respectively %T)g and 773'71—21 + % /, Tzf o3(s)ds instead of n3 and o3(7) we might assume that

03(+0) = 0, o3 is strictly increasing, o3 is continuous on (0, 73), T < 03(7) for 0 < v < n3 and lim;_ 5 1 <p; 03(7) =
+00.

Let us note that by Remark 2 for 0 <t < 400 the inverse 0 < 03_1 (t) < n3 is well defined.

Lemma 10. There exists 0 < ¢1 < 1 and €1 > 0 such that if v is a solution of the obstacle problem (1.3) in B(ey),
v(e1) =0, v e dBN{u >0} and

lv— wl()’I)X{yl>1}||cl(lgl (e)) = €1V1
2
then

0yv >0 in By (er).

Proof. Letc > 0and v € 9B N {v; > 0}. Near to y; = 1 we have that d,,w;(y;) is linear and wy(y;) is quadratic thus
one expects to have cd,w;(y;) — wi(y1) > 0 for large enough ¢ > 0. We shall however give an exact estimate for
<y <2

cdywi(y1) —wi(y1) = cviwi(y1) — wi(y1)
1 1 i 1 1 1
=cui(-1——))— (= — +
l(b y{:) (b b—1 b(b—l)yf—l)

1
— (7 = D (evr =y
by

(b— 1yl —by?™! +1)
b-DOY-1

1 b 1 b
> — — 1D(cvy — > — — D(cv; —2). 10.3
Z 07 — D(evr —y1) = by? O] — D(cvy —2) (10.3)
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Thus taking
2
c= — (10.4)
U1
we have
cdpwi(y1) —wi(y1) =0 in B(ep) N{y; > 1}. (10.5)

Letc; >0and 0 <e€p < 1 be as in Lemma 5, C, > 0 be the constant in Corollary 3 and define

€0 C1

> E), r= ——) and c3= —(—)2

9
2’ 2bC, 16 18
We claim that if v € 9B N {v; > 0}, c as in (10.4) and

€ =min(— min( -,

1
n=0tle,, e v =0y w0l <e1>>— :
v —wiODxp =0 « )>+Z||3>, By, w1 (YD) Xy =0} 7631 (10.6)

j=1
then cd,v — v > 0in Br (ey).
18

Let us argue by contradiction. Assume there exists yO eB ul (e1) such that cauv(yo) — v(yo) < 0. Let us define

1
h(y) = v(y) — cdpv(y) — (w ol + 0pyo(y))

We have
B (%) C Bry 1 (e1) = Bry (en). (10.7)
18 18 T 18 9
In particular we have that B n oY CB n (e1) C R, where the last inclusion holds because by the definition of r; we
have % g <L
Because y° € B% (e1) we have 1 — % < y? and because € < %1 we have 2 < ‘?‘ therefore for y € B%(yo) we
have
R R = —ly? (10.8)
18 18 -
and by Lemma 5 we have
1 02 0
wO(y1)+y0Py0(y)ZF€|y—y 720 for y € Bn (y). (10.9)
1
In © we have
b 1 cuy
ARG) + By h() =5+ y—lz(l — b, v().

By Corollary 3 and the definition of r; we have
1 1
Vo) < Caly —eil < =5 for y € Bry (e1). (10.10)

Using (10.7) and (10.10) for y € 2 N B%(yo) we have

cu| 1 cup
AR+ aylh(y) 2—+—2(1—b|Vv(y)|) 2t 20
1 yl
Since
h(y) <0 for y € By )NT (10.11)

and
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3B ()N C (Brn(xHNT)U (8B x")NQ)
18 18 18
after applying the maximum principle in the domain B n (%) N Q we arrive at

0<v(y”) —cav()=hO" < sup h
3(3%@0)09)

=max{ sup h, sup h) (10.12)
Br N 9B (ONQ
T8 18

From (10.11) and (10.12) we obtain

0< sup h< sup (v —cdyv)
dBr (y0)NQ 3B (O)NQ
18 18

! €
inf  (w += . 10.13
2 yeaBg(yO)ﬂsz( o »" Py) (10.13)
18

We have

lcl [ S B}
i (—) > ( + )— (—) —(H—C)—G(—) v
2,0 4¢ )9 Y018 !

> g(1+c)7e(1—8)2u1 = (14 ¢)c3vy. (10.14)

By (10.9), (10.13) and (10.14) we obtain

(14 c)czur < (—)2 sup (v —cdyv). (10.15)
3Br (YONQ
18

Using (10.5) and (10.7) we estimate

sup (v—coyv) < sup (w1 xgy >0y — € (W1 (Y1) x{y,>0)))
3B, (YHNQ yedBr (30)NQ
18 18

+ v = cduv — (W1(YD X(y1>0) — €O (W1 (Y1) X{y,>0))) ”C(B,l o)
18
< sup (wi(yDxqy =0} — € (W1 (¥ x{y>0}))
Y€EB(er)

+ v = cdvv — (Wi D x>0 — B (W1 (VD) Xy =0))) HC(B,l )
9

=a +c)<||v — w0 sy, 01y
9

n
+ 38y 0 = B 01 G0 x50 5, (61))). (10.16)
H 9

By (10.6), (10.15) and (10.16) we come to a Contradiction and this proves our claim.
Because ¢ > 0 from the claim by taking ¢ = 18 the lemma is proved. O

Corollary 7. Let ¢y, €1 and v be as in Lemma 10. Let 0 < § < 1 and
lv— wl()’l)X{vl>]}||cl(Bl (e) < €10

then forall y e I' N B%Cl (e1) we have

B, ()N (y+Cs) C{v>0} and By, (»)N (y—Cs) C{v=0} (10.17)
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Proof. By Lemma 10 and the definition of Cs we have that for all v € Cs N 9B

d,v >0 in By (e1). (10.18)
From (10.18) because v > 0 it follows that

if ye B%In (e1) and v(y) =0 then B%gl )Ny —Cs) c{v=0}. (10.19)

This in particular proves the second inclusion in (10.17).
Letye B%{] (e1) NT. If there exists y! € B%;. (»)N (y+Cs) such that v(y') = 0, then by (10.19) we have that v =0
in By, (yHN(y! =Cs). From y! € y 4 Cs it follows that y € y! — Cj, thus y is in the interior of By, GHhNe!=Cs)
2 2
where we have v = 0 and this contradicts with y € I'. This proves the first inclusion in (10.17). O

Lemma 11. There exists 0 < ¢ < 1, ¢1 > 0 and Cy > 0 such that if v is a solution of the obstacle problem (1.3) in
B(e1) and v(ey) = 0 then v solves the obstacle problem

Av = fxp>0y in Bg(er)

with f > ¢y in By, (e1) and || fllco1p,, ey < Ca-

Proof. Because v solves the obstacle problem (1.3) in B(ej) we have
Av = fxws>0y in Bley)

where
FO) =1 —bdyv)y; " for ye Bley).

By Corollary 3, choosing ¢> small enough there exists ¢; > 0 and C2 > 0 such that ¢; < f < C; in B, (eq).
By Corollary 5 and Theorem of Rademacher we have

IVZu(y)| < C3 forae. y € B, (er).

It follows that |[Vy f| < C4 a.e. in By, (e1). Together with Corollary 3 it follows that |y, f| < Cs a.e. in Bg,(er)
and this completes the proof of the lemma. O

Proof of Theorem 4. Step 1. Let 0 < ¢; < 1 and €] > 0 as in Lemma 10.
By Lemma 9 and Corollary 7 for all 0 < § < 1 if v is a solution of the obstacle problem (1.3) in B+ with 0 € T
and x% € ((0, 051(613)) X B’l’fl) NT, thenforally e T, , N B%Q (e1) we have
i X

B%gl(y)ﬂ(y+C5)C{vxo>0} and B%gl(y)ﬁ(y—ca)c{vx():O}.

Step 2. In this step we show that there exists 0 < r| < % such that if v is a solution of the obstacle problem (1.3) in
BT with 0 e I'/ then

-1
CrsN (0.1l x B ™) CQ (10.20)
Let 17 and o as in Theorem 5. By choosing 0 < r; < 12 small enough such that o3(r1) < 1 from the definition of
C 12 it follows that
¢y 5N (0. n1x B {x € m) x B | x> |x’|az(|x’|)}. (10.21)

Now because 0 € I'” from Theorem 5 and (10.21) we obtain (10.20).
Step 3. In this step we show that there exists 0 < r, < r| such that for v solution of the obstacle problem (1.3) in
BT with 0 e '/ there exists g, : B;’z_l — [0, rp) such that
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2N (0.2 x By ) ={x | gu) <xi <o x’ e B! (10.22)
and
gu(x) < x| for x" e B L. (10.23)
Let us define
1

N2 41
r =mln(7"1, 5,03 1(561)).

Fix x' € B,"z_1 and define k(¢) = v(z, x) for t € (0, r1]. By the second step we know that k(r1) > 0. Then by the
continuity of k£ we know that in a neighbourhood of ry, k is positive.
Let us denote

U={te(,r]|k@) >0}

then U is open in the relative topology of (0, r1].

Let us show that U is connected. We assume that U has a component I not containing ;. Then we have I = (t1, t2)
with 7, < ry. Let us define x° = (2, x") then we have x0e I'y. For x0e 0,r) x sz_l we have x¥ € (O, 0'3_1(%61)) X
B"~!. Thus by the first step we have

2

Bégl(el)ﬁ(el—C%)C{vxo =0}

But this contradicts with k > 0 in (#1, #2). This contradiction proves that U is connected.

Let U = (19, r1] and let us define g, (x') = 1.

By the definition of U the equation (10.22) follows. By the second step the inequality (10.23) follows.

Step 4. In this step we show that there exists 0 < r3 <ry, 0 <rgs <1 and 0 < d; < 1 such thatif 0 < § < &1, v is
solution of the obstacle problem (1.3) in B* with 0 € I'" and

20 €T, N (0,05 (€18)) x B

then we have that (0, 2) x B;’_l is in the domain of v 0 and

Q, N ((0.2) x B! = [y | g 0() <y <2y € B'f*‘]

where
o0 (V) = %gv(ﬁ’y’ +@?)’) for y'e BT,
8y.x0(0) =1 and g, o is Lipschitz continuous in BZ’I with Lipschitz constant not exceeding 24.
Let
X =x?(y —e)) +x° =x?y + (% and y= x—lo(x — (xo)’),
1
r3= %rz and take 0 < §; < % small enough such that 03_1(6181) <r3.

Because 2r3 = r, by the third step we have

QN ((0,2r3) x B;’rgl) = {x ’ go(x) <x1 <2r3,x" € Bgrzl }

From here by translating by —(x?) and scaling by xl—o we obtain
1
Q. N ((0 Loy x Bl (—i(xo)/))
V.0 s x? 3 %2’3 x?
1
’ 1 ’ n—1 1 0y/
=1y | 8o <y < 23y € B (g "} (10.24)
0

1 X
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One may see that because x0€(0,r3) x Bf;l we have

(0,2) x B~ c (0, i02r3) x B’S (—io(xo)/).

X ) 3 Xx

Thus from (10.24) we obtain

Qy N ((0,2) X B?il) = [y | g0V <y1<2,y'€ B;lil}. (10.25)
By the first step we have that for 0 < § < 8 because x° € ((0, 03*1 (€18)) x Bf}_l) NI, foryely, N B%Q (e1)

we have

B%K1 »)N(y+Cs) C{vo >0} and B%Q )Ny —Cs) C{vo=0} (10.26)
Because 0 < § < 81 < % we have that C% C Cs thus taking y = ¢; we have

B%Q (e1) N (ey +C%) C {v,0 >0} and B%Zl(el) N (e; —C%) C {v,0 =0}. (10.27)

From (10.27) it follows that by defining r4 = %;1 for y’ € BZ_I we have y = (g, 0 O, y) e vao N B%Q (e1).
Now from the inclusions in (10.26) it follows that g,, .0 is Lipschitz continuous in Bﬁ;l with Lipschitz constant not
exceeding (1 — 82)~76.

Because 0 < 6§ < % we have that (1 — 82)’% < 2 and this finishes the proof of the claim of this step.

Step 5. Let r3, 74 and 61 as in the forth step. In this step we show that there exists 0 <rs <74,0 < <81 and a
modulus of continuity o4 such that for 0 < § < &, v a solution of the obstacle problem (1.3) in B* with 0 € I"” and

" ey N (0,05 (€18) x B

we have g, .0 € C! (B;“S_l), 04 is a modulus of continuity for Vy/g, 0 in B;’S_l and [Vyg, (0] <25 in st_l.
We have that v o is a solution in B(e1) with v,0(e1) = 0. By Lemma 11 we have that v, is the solution of the
obstacle problem

Avgo = fXjv >0} in Bg,(er)
with f >c| > 0in B;z(el) and ||f||c0,1(B;2(el)) < C2
By the forth step we have that g, o is Lipschitz continuous in Bf;] with Lipschitz constant not exceeding 2§.

Let 75 = min(# &2, r4) and 32 = min(§y, %).
We have

1. 1. _
(1- 57 1+ 57’5) x B, ' C By (en).

Ford <&, < i we have that g, o is Lipschitz continuous in B;ls_l - Bf[l with Lipschitz constant not exceeding %
Thus by Lemma 21 there exists 0 < r5 < 75, d > 0 and a modulus of continuity o4 such that if

1 1= Liig L n-l =
{xi<1—din(( - 575 +§r5)xBF5 ) C {vo =0}

then g, o€ C ! (B;ls’l) and oy is a modulus of continuity for Vg, 0 in Br";l-
Let us define 6, = min(gg, %%). Then for 0 < § < §; we have that

I—d <1-2875 <1—-28]y'| < g, ,0(y') for y' € B!

and this proves the claim of this step.
Step 6. Let r3, rs, 52 and o4 as in the fifth step. In this step we show that there exists 0 < rg < r3 such that for v a
solution of the obstacle problem (1.3)in B with0eI’, z € Bfﬁ_l and g, (z) > 0 we have
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1 n—1
80 € C (B0 @)-

04(g (z)) is a modulus of continuity for V,/g, in B:’Sgl(z) (z) and |V gy| < ?‘73 (gv(2)) in Brsg (z)(Z)

It follows directly from the fifth step and the definition of g, o that for 0 <4 < 8, and
" ey N (0,05 (€18) x B (10.28)
we have
I(pn—1,.0y/
geC (Br5x? (%) )),
04(?) is a modulus of continuity for V,/ g, in B:’;é((xo)/) and |V, gy| <268 in B:’;é ((x9Y).
1 S SH

Let us define rg = min(03_1(6182), r3). Let z € Bf;l such that g,(z) > 0. By the third step we have that
gv(z) <re < 03_1(6182) thus 03(gy(z)) < €162 and defining § = lelag(gv(z)) we have 0 < § < §,. Let us define
= (gy(2), z). Then (10.28) holds, so we have

8v € C' (anl(z) (Z)),

r58v

o4(

8&v (z
Step 7. Let r¢ as in step 6. In this step we show that for v a solution of the obstacle problem (1.3)in BT with 0 € T’

we have g, € C(Bf;]) and for z € Br”;l the gradient Vg, (z) exists and if g,(z) = 0 then Vg, (z) =0.

)) is a modulus of continuity for V, g, in Brsg @ (z) and |V gy| <26 = —0’3 (gv(2)) in Brsg (Z)(z)

For those z € Bf;l such that g, (z) > 0 the continuity and differentiability of g, at z follows from the sixth step.

Now let us consider a z € Bf6_1 such that g, (z) = 0. Either g, = 0 in a neighbourhood of z, in which case clearly
gv is continuous and differentiability at z and V, g, (z) =0, or (0, z) is a contact point. In the case (0, z) € I/, let us
translate the origin of R" to (0, z) and consider v(x) = ZU(%X + (0, 2)). Then ¥ is a solution in BT with 0 € I‘% Now
applying a similar reasoning as in step 3 to ¥ we obtain that

Q5N (0,r2) x B 1) = {x | g5(x) <x1 <rp,x' € sz_l}
and
gs(x) < || for x e B

From which by the definition of v it follows that

Q, N (0, 2) x Bl '(2)) = {x | gu(x) <x1 < 2,x'e B’,?{l(z)} (10.29)
2 T 2 b
and
gu(x) < |x' —z| for x' € BY, ' (2). (10.30)
2

From (10.30) it immediately follows that g, is continuous at z.
Applying Theorem 5 to v and obtain

[xenx B! | x> Wloa(iD | c @
and by the definition of v it follows that
{xe(O LA Bl '@ | x> ¥ = zloa @l —zI)] Q. (10.31)
Because r, < n by (10.29) and (10.31) we have
[¥ | ¥ =zl =2 < x1 < %2 X' e B’,?%_l(z)}

C[x | g(x) <x1 < 22 X eB'f2 1(Z)}
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from which it follows that
go(x) < |x' = z|loa(2lx' —z]) for x' e B',;z_l(z). (10.32)

Finally from (10.32) we obtain that g, is differentiable at z and V,/g,(z) =0.

Step 8. In this step we finish the proof of the theorem.

Let v be a solution of the obstacle problem (1.3) in B* with 0 € I'. From the sixth and seventh steps it follows
thatif z € B/;™" then |V, gy (2)| < L03(g0(2)).

Let € > 0 and take ¢ small enough such that %(73 (te) < € and y, small enough such that y, <rst. and 04(7;—:) <e€.

Letz!,z% € B;’G’l such that |22 — z!| < ye.
In the case gy (zh), o (z3) < t. we have

|Vegu(@®) = Vego(@H| < [Vegu(@)] + |Vegu(@h|

IA

1 2 1 1
—03(gv(27)) + —03(gu(z"))
€1 €]
1 1 2
< —03(te) + —03(te) = —03(te) < €
€1 €] €1

In the case when either g, ZH =1 or gv(zl) > t. we might assume that g, @H > t..
Then we have

2

1 1
|27 — 2| <ye <rste <r58,(2°)

thus by the sixth step we have

2 i |22 — 2! Ve
V8o (2®) = Vg2 S ou(————) <ou() <e.
gv(zh) te

We have shown that for all € > 0 and z', z% € B;’G_l if |z2 — z1| < ¥ then |Vx/gv(zz) — Vx/gv(zl)| < € and this
completes the proof of the theorem. O
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Appendix A. Technical results
In this appendix we shall list technical results. Some are well known but not easy to find a reference to.
A.l. Spaces
Lemma 12. For a > 1, CZ°(R'}) is dense in H'(D; x{).
Proof. It is enough to show that for u € C*°(R") there exists u. € HY(D; xf) such that suppu. C {x1 > %6} and

Ue —> U in Hl(D;xf) as e — 0.
Fix u € C°(R"). Let us define for € > 0

e (x) = max (0, min(1, = — 1))u(x) for x € D.
€

It is easy to see that u. € H'(D; x{) and suppu C {x1 > %e}. Using a > 1 and particularly the regularity u €
C°°(R") one may see that |ju — ue||H1(D;x?) —0ase—0. O
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A.2. Poisson kernel

Lemma 13. Let a > 2 be an integer, u € HY(BT; xi’) and div(fou) =0in B™ (in the sense of distributions), then
we have

u(x)= / K, y;a)u(y)s(dy) for x € BT (A.1)
dBMRY
where
9B° 1 1—1)2~!
B t(l—1))2~
K(x,y;a)=2“_1|;Bn+L| — 1xI%)y§ / - =) adt
0 (lx =P =1) +|x — y[?t) 2
and y = (—=y1, 2, , Yn)-
Proof. Let a and u be as in the statement of the lemma.
For x € R"** we denote X| = (x1, -+, x,_1) and X» = (x,,, - -+, X»q). Let us define the function w defined on

Bn+a by
w(x) =u(X1,|X2]) for x € B"*.

Then we have w € H'(B"*%) and Aw = 0 in B"*“. We might write w using the Poisson kernel for the Laplacian
in unit ball. Then writing w in terms of u, after some computations we obtain the equation (A.1). O

It follows that for @ > 2 an integer, K (x, y; a) satisfies the equations

/ K(x,y;a)s(dy)=1 for x e BT (A.2)
dBNR™
and
divx(xi‘VxK(x, y;a)) =0 for xe BT and y<dB NR}. (A.3)

Writing surface area of unit balls using the I" function, we have |0 B"| = 2x 7 (F(%))’l, thus we may write

na— lr(n+a) _| l ¥ / (l(l—t))%_l

K('x y Cl)_ n+a
3 T (= 5P =D +1x—yPr) >

drt. (A4)
0

We consider for a positive number ¢ > 0 and a complex number z, ¢? = 2 (),
By (A.4), K(x, y; a) has clearly an analytic extension for Jia > 0.

Lemma 14. For a > 0 not necessarily an integer, K (x, y; a) retains the properties (A.2) and (A.3).

Proof. Carlson’s theorem [7] states that if f is analytic for %z > 0, continuous for %z > 0, f(n) =0 for n =
0,1,2,---, there exists ¢ > 0 such that | f(z)| < C1e‘! and there exists 0 < ¢ < 7 such that | f(iz2)| < Cpec?!
then f(z) =0 for iz > 0.

We consider the left hand sides of the equations (A.2) and (A.3) as analytic functions of a for ta > 0. We have that
(A.2) and (A.3) hold for integer values of a > 2 and one may check that the growth conditions assumed in Carlson’s
theorem are also satisfied. Applying Carlson’s theorem we prove the claim. O

Lemma 15. Let a > 1, g € C2°(R")) and u be given by (A.1). Then we have u € C (B™).
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Proof. Let 0 < € < 1 such that supp g C {x; > €}. Let us fix 0 < r < {z to be chosen later. We decompose
i € € €
BT = (B N{0<x; < 5}) U (Bl_, N{x| > 5}) U ((B\Bl_,) N{x; > 5})

There exists c¢ » > 0 such that for x € (BN {0 < x; < %}) U (Bi—r N{x| > %}), O<t<landye€dBN{y > ¢}
we have
e =P =0 +lx = yPr=ce,

from which it follows that u € Cg((B N{0 <x; < 5P U(Bi1—r N{x1 > 5}).
We consider the cover
€

(B\Bi-7) N {x1 > =} € Usocgpape -5y (B N Bar(x¥).

Thus it is enough to show that u € Cg(B N By, (x%)) for each x° € 9B N {x1 > %}.
Using (A.2) we have

/ 3y, K (x,y;a)s(dy) =0 for xe BT,i=1,--- ,n.

IBNRY}

Thus we may write

X
A u(x) = / I, K(x,y;a)(g(y) — g(—))s(dy)

|x]
dBNR™

and we consider the decomposition dy,u(x) = vi(x) 4+ v2(x) where

vi(x) = / O, K (x,y;a)(g(y) — g(%))s(dy)
By (x9)N3 BN{y| >€}
and
va(x) = / 0 K (x, y: a)(g(y) — g(%))swy).

B;, (x9NdBN{y;>€}
For x € By, (x")NBand y € Bjr(xo) NdB N {y; > e} we have

lx — 3121 — 1) + |x — y*t = 4r?

thus vy € Cp(Bar (x%) N B).

Thus we should only show that vy is in Cp(B2, x% N B). Around x° we might straighten the boundary part
B4, (x%) N 3B of the domain By, (x°) N B. Then by similar estimates as for the boundedness of the derivatives of
harmonic functions in half spaces given by the half space Poisson kernel we show that v; is bounded in B», x% N B.
And this proves the lemma. O

Lemma 16. The statement of Lemma 13 holds for a > 1 (not necessarily an integer).

Proof. Leta > 1, g € C°(R'}) and u be given by (A.1). Then by the previous lemma we have that u € C,;(BJF) -
H'(B™;x{) and by (A.3) we have that div(x{Vu) =0 in B™. By (A.2) and the property K (x, y; a) — 0 for x —
x0 = y we have that u = g on 9B N R’ . Thus u is the solution of the desired equation with boundary condition g. Now
by the boundedness of the solution operator we have that |[u| z1(p+. ) < Cliglgr s+ x4) for some constant C > 0
independent of g. By this inequality and Lemma 12 the lemma is proved. O
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A.3. Maximum principles

Lemma 17. Let a > 1, u € Hl(D;xi‘) and diV(xi‘Vu) =0 in D (in the sense of distributions), then u(x) <
SUPy pAR?: u fora.e. x € D.

Proof. Let M = SUpy pRe U, We have (u — M)* € HO1 (D; x{,9D NRY). By testing the equation satisfied by u, by
(u — M)t we obtain

/x;’vu Vu—M)Tdx=0
D

from which it follows that

/xﬁV(u — M) Pdx =0.
D
Now by applying the Poincaré inequality (4.1) we obtain (u — M)* =0 a.e. in D, i.e. u < M a.e. in D which

proves the lemma. O

Lemma 18. Let D, be the interior of D in the relative topology ofﬁ. Leta>1,ue H(D; x{) and div(x{Vu) =0
in D (in the sense of distributions). If u attains its maximum in D, then it is constant.

Proof. We claim that if x° € D,,; such that u(x) < u(x°) for x € D and r > 0 such that Bt (x9 ¢ D then u = u(x°)
in Bzr(xo).
1
If 3x? <r we define x! =x0 — x?el and then we have x° € B;”r (x) and
3
B} (x') C By, ,%) € BF(x") C D.
3 3 1
Using the Poisson formula (A.1) (after a translation and scaling to bring the problem to the domain B™) we obtain
that u = u(x") in B} (x'). We have
3
Bf () C BY ') c B ()
3 3+x Kl

thus u = u(x°) in Bf(xo).
3
If 3x? > r then we have Bﬁ % c {x1 > x? — 7} C {x1 > 15} and we might apply the usual strong maximum

principle for uniformly elliptic with variable coefficient elliptic equations in B£ (x%). Thus u = u(xY) in Bﬁ (x% and
this finishes the proof of the claim.
From connectedness of D it is easy to see that from the claim the proof of the lemma follows. O

A.4. Harnack inequality

Lemma 19. Let a > 1. For 0 <y < 1 there exists a C > 0 such that if u € H'(B;"; x{), div(x{Vu) = 0 in B, (in the
sense of distributions) and u > 0 in B, then Supgy, U < CinfB;rr u.

Proof. There exists c¢;, C2 > 0 such that
c1 <K(x,y;a) <C, for xij and y € 0BNR/. (A.5)

Let us define v(z) = u(rz) for z € BT. We have that v is a nonnegative solution in BY.
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By the Poisson equation (A.1) and the inequalities in (A.5), for 1 72e B;r we have

v(zh = / K@, y;a)v(y)sdy) < C; / v(y)s(dy)

9BMR™ 9BNR™
G
< o K@, y;a)v(y)s(dy) = —U(Z )-
9BNR".

It follows that

supv < Czinfv
By By

by which the lemma is proved. O
A.5. Regularity estimates

Lemma 20. Let a > 1 and k = 1, 2. There exists a C > 0 such that if u € HI(B;"(xo); x{) and div(x{Vu) =0 in
Br+ (x%) (in the sense of distributions) then

C
IVFux®) < = sup |ul
B (x0)

here |V2u(x%)| means a norm of the matrix V2u(x®), for example the Frobenius norm which is the square root of the
sum of the square power of all entries.

Proof. We might assume that (x°)’ =0, i.e. x* = x?el.

In the case x? < 7 we have

B+ C B+ o0 6= B+ NICeke B+ <x0> =B (x°).
1

Let us define v(z) = u(%rz) for z € B*. We have that v is solution in B* thus by the Poisson equation (A.1) we
have

k 4 0
Vi (=—x")| < Csup|v|
3}’ B+
and by the definition of v it follows that
Cy
sup |u| < — sup |ul.

k
¥B* "B

IVFu(x%) <

3_’)k

Now let us consider the case 4r <xV 1 We have < 5. Let us define v(z) = u(xlz) then v solves

8x O
b
Av+ amu_o in B I (el)
By regulamty theory for unlformly elliptic with variable coefficients we have

vk <
VEu(en)| = —— sup ol
( ()) BLO(el)
8x

and by the definition of v it follows that

IVFu(x%)| < sup v <

0 3 =Tk 3
(x)k (8;_?) B (e1) (8 B, 0 ™ B (x0)
8x1

and this completes the proof of the lemma. O
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A.6. Regularity of classical obstacle problem at regular points

Lemma 21. Let c1, C2, M > 0 and 0 < r; < 1 then there exists 0 < ry <ry, d > 0 and a modulus of continuity oy
such that if w is a solution of the obstacle problem

Aw = fX{w>0} inU=(0—-Mri,1+Mr) x B;1]—1

with f > c1in U, || fllco1yy < Ca, there exists a function g defined on B;‘l_l such that g is Lipschitz with Lipschitz
constant not exceeding M, g(0) =1,

Q:{xGU | g(x/)<x1}
and
{x1<1-d}NnU C{w=0}

then g € C! (Bj’z_l) and o4 is a modulus of continuity for Vg in B;’z_l.
Proof. Cf. [6, Chapter 6]. O
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