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Abstract

In this paper we study the behaviour of the free boundary close to its contact points with the fixed boundary B ∩ {x1 = 0} in the 
obstacle type problem{

div(xa
1 ∇u) = χ{u>0} in B+,

u = 0 on B ∩ {x1 = 0}
where a < 1, B+ = B ∩ {x1 > 0}, B is the unit ball in Rn and n ≥ 2 is an integer.

Let � = B+ ∩ ∂{u > 0} be the free boundary and assume that the origin is a contact point, i.e. 0 ∈ �. We prove that the free 
boundary touches the fixed boundary uniformly tangentially at the origin, near to the origin it is the graph of a C1 function and 
there is a uniform modulus of continuity for the derivatives of this function.
© 2015 Elsevier Masson SAS. All rights reserved.
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1. Introduction

This paper concerns the study of the obstacle problem, where singularity or degeneracy in the operator gives rise 
to interesting behaviour of the solutions close to such singular or degenerate points.

The classical setting of the obstacle problem asks for the smallest supersolution u over a given obstacle ψ , in a 
domain D, with prescribed boundary values.

The solution to this problem then (formally) satisfies
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�u = �ψχ{u=ψ} in D

which amounts to that v = u − ψ satisfies

�v = f χ{v>0} in D

where f = −�ψ .
An important ingredient in the study of such problems is the behaviour of the solution close to a free boundary 

point x0 ∈ � = D ∩ ∂{v > 0}. Indeed, any local analysis of this problem involves the standard scaling and blowup 
technique, i.e., the consideration of

vr(x) = v(rx + x0)

rα

where α is the (unknown) growth rate for the function v, or the rate by which the original solution u detaches from 
the obstacle ψ .

Classical theory has been concerned with the case when α = 2, which is a consequence of the assumption λ0 ≤
f ≤ 	0, for fixed 0 < λ0 ≤ 	0, close to the free boundary point x0. See [1] or [6].

For those points x0 with f (x0) = 0, until very recently, no theory had been developed. For example if f is a 
first order homogenous function and x0 = 0 ∈ �, then one expects v to have a cubic growth at the origin in the 
noncoincidence set {v > 0}, i.e. α = 3 (see [11]).

One expects a similar phenomena in the problem

div
(
c(x)∇u

) = χ{u>0} in D.

The classical rate α = 2 is a consequence of the assumption c0 ≤ c(x) ≤ C0, for fixed 0 < c0 ≤ C0, close to the 
free boundary point x0. When the coefficient c(x) is degenerate or singular at the free boundary point x0 then the 
corresponding rate α might be different from 2.

In this paper we consider coefficients of the form c(x) = xa
1 for a < 1. As the singularity (a < 0) or degeneracy 

(0 < a < 1) of the coefficient is on the set {x1 = 0} we are interested to study the free boundary near to a point in this 
set.

One may notice that when a ≤ −1, if the corresponding energy of the solution is finite then u is constant on the set 
D ∩ {x1 = 0}. But if this is a positive constant then the free boundary does not come close to the set {x1 = 0}. Thus in 
the case a ≤ −1, to study the free boundary close to the set {x1 = 0} we should assume that u = 0 on D ∩ {x1 = 0}. 
Because of this reason we consider a problem where u = 0 on D ∩ {x1 = 0} for all a < 1.

Let us now present in more details the problem we are studying in this paper. For n ≥ 2 let D ⊂ R
n+ = {x ∈

R
n | x1 > 0} be a bounded domain, a < 1, the function g ≥ 0 satisfy

∫
D

xa
1

(|∇g|2 + g2)dx < ∞

and g = 0 on ∂D ∩ {x1 = 0}. Let u be the unique minimiser of the energy

∫
D

(
xa

1 |∇u|2 + 2u+)
dx (1.1)

satisfying u = g on ∂D.
Then we have u ∈ C

1,α
loc (D) ∩ W

2,p

loc (D) for all 0 < α < 1 and 1 < p < ∞. The equation

div(xa
1 ∇u) = χ{u>0} in D (1.2)

is satisfied in the sense of distributions and pointwise almost everywhere.
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We define the noncoincidence set 
 and the free boundary � as follows


 = {u > 0} and � = D ∩ ∂
.

Let us also define the contact set

�′ = {x1 = 0} ∩ �.

Then we are interested in the free boundary � near to a contact point which has a positive distance from ∂D ∩R
n+.

In [8] the authors have studied the case a = 0, but for a more general no-sign obstacle problem, i.e. �u = χ{u �=0}.
In the case D = B+

r = Br ∩R
n+, Br = {x ∈ R

n | |x| < r} for some r > 0, by considering v = xa−1
1 u we obtain that 

v solves the problem

div(xb
1∇v) = xb−1

1 χ{v>0} (1.3)

in B+
r , where b = 2 − a and there is no Dirichlet boundary condition on Br ∩ {x1 = 0}.

In the case of a general domain D, close to a contact point x0 ∈ �′ which is away from ∂D ∩ R
n+ we investigate 

the free boundary by considering the problem for v.
In [3] the regularity of the solution to the obstacle problem with an elliptic Heston operator has been investigated. 

This problem corresponds to the case 0 < a when no boundary condition is assumed on {x1 = 0}.
For the range of values −1 < a < 1 the operator in (1.2) is rather well understood. In [4] many properties of elliptic 

equations for operators with coefficients in Muckenhoupt classes have been established. In the case −1 < a < 1 the 
coefficient xa

1 belongs to the Muckenhoupt class A2. Specially to deal with the case a ≤ −1 we consider the function 
v instead of u. In the appendix we establish relevant properties of solutions of the homogenous equation with b > 1
by first deriving a Poisson formula for the solution in the half ball B+ = B+

1 .
Also for the range −1 < a < 1 there is a connection between the operators considered here and an extension 

problem associated with fractional Laplacian. In [2] it has been established that if u solves the equation{
div(xa

1 ∇u) = 0 in R
n+,

u = f on {x1 = 0}
then

C(−�)sf = lim
x1→+0

xa
1 ∂x1u

where C > 0 depends only on a and n, and s = 1
2 (1 − a) (0 < s < 1). Although we do not use this result, we use ideas 

developed in [2] to derive the Poisson formula for the half ball which we have computed in the appendix.
For a generalisation of this extension technique one may refer to [10].
This paper is structured as follows. In Section 2, the main notations used in this paper have been enlisted. In 

Section 3, the main results of this paper are presented. In Section 4, the spaces in which the existence of the solutions 
is established are defined, the existence and uniqueness of the solutions to the main obstacle problem is established, 
similarly the existence and uniqueness of the solutions to the auxiliary obstacle problem (1.3) is established and 
the local reduction of the main problem to the auxiliary problem is proved. In Section 5, the optimal regularity 
of the solution to the auxiliary problem is proved. In Section 6, the optimal nondegeneracy of the solution to the 
auxiliary problem is proved. In Section 7, we consider a variation of Weiss balanced energy formula and establish 
its main properties. In Section 8, we classify all possible global solutions. In Section 9, by a compactness argument 
we prove that close to a contact point away from ∂D ∩ R

n+ the free boundary touches the fixed boundary uniformly 
tangentially. In Section 10, using a compactness argument together with directional monotonicity and known results 
about regularity of the free boundary for the classical obstacle problem at regular points we establish that the free 
boundary close the a contact point away from ∂D ∩ R

n+ might be given by a C1 graph with a uniform modulus of 
continuity for the derivatives. In the appendix we have gathered some technical results including key properties of 
the solutions of the homogenous equations div(xa

1 ∇u) = 0 in D with parameter a > 1 and no boundary condition on 
∂D ∩ {x1 = 0}.
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2. Notation

c, c1, c2, C, C1, C2 generic constants;
χD characteristic function of the set D (D ⊂R

n);

D the closure of D;
∂D boundary of D;
D◦ interior of D;
| · | absolute value, length of a vector, norm of a matrix, Lebesgue measure or surface measure;
‖ · ‖ norm of functions;
[·] seminorm of functions;
x, x′ x = (x1, · · · , xn), x′ = (x2, · · · , xn);
R

n+
{
x ∈ R

n | x1 > 0
}
;

Bm
r (x)

{
y ∈ R

m | |y − x| < r
}
;

Br(x), B(x), B Bn
r (x), Bn

1 (x), Bn
1 (0);

B+
r (x) Br(x) ∩R

n+;
{x1 ≥ a}, {x1 = a} {

x ∈ R
n | x1 ≥ a

}
,
{
x ∈ R

n | x1 = a
}
;

e1, · · · , en standard basis of Rn;
e, υ arbitrary unit vectors, outward normals are denoted by υ;
e ⊥ e1 e is orthogonal to e1;
∂ef directional derivative of f (in the direction e);
f + max(0, f );
Cb(D) functions in C(D) with finite ‖ · ‖C(D) norm;
C1

b(D) functions in C1(D) with finite ‖ · ‖C1(D) norm;
⊂⊂ compactly contained.

3. Main results

In the rest of this paper (except in the appendix) we have a < 1 and b = 2 − a > 1. Let us introduce an auxiliary 
obstacle problem. Let the function g ≥ 0 satisfy∫

D

xb
1

(|∇g|2 + g2)dx < ∞.

Let us note that here we do not demand that g = 0 on ∂D ∩ {x1 = 0}.
Let v be the unique minimiser of the energy∫

D

(
xb

1 |∇v|2 + 2xb−1
1 v+)

dx (3.1)

satisfying v = g on ∂D ∩R
n+. Let us note that here we do not demand that v = g on ∂D ∩ {x1 = 0}.

Then we have v ∈ C
1,α
loc (D) ∩ W

2,p

loc (D) for all 0 < α < 1 and 1 < p < ∞. The equation (1.3) is satisfied in the 
sense of distributions and pointwise almost everywhere in D.

For the solution v to the auxiliary obstacle problem we define the noncoincidence set 
, the free boundary � and 
the contact set �′ similarly as we defined them for the main obstacle problem.

In the following lemma, for domains D = B+
r , we reduce the main obstacle problem (1.2) to the auxiliary obstacle 

problem (1.3).

Lemma 1. Let r > 0. If u is a solution of the obstacle problem (1.2) in B+
r then defining v = xa−1

1 u we have that v is 
a solution of the obstacle problem (1.3) in B+

r .



H. Shahgholian, K. Yeressian / Ann. I. H. Poincaré – AN 34 (2017) 293–334 297
By Lemma 1 to study the structure of the free boundary away from ∂D ∩ R
n+ we might study the free boundary 

arising in the obstacle problem (1.3) where there is no fixed boundary condition on ∂D ∩ {x1 = 0}.
In the following theorem we prove the optimal growth of solutions. This optimal growth is the basis of optimal 

regularity estimates for the solution which results in uniform estimates for different blowup sequences.

Theorem 1 (Optimal growth). There exists C > 0 such that if v is a solution of the obstacle problem (1.3) in D and 
B+

r (x0) ⊂ D then we have

v(x) ≤ C
(

inf
B+

r
8
(x0)

v + r2

r + x0
1

)
for x ∈ B+

r
8
(x0). (3.2)

In the following theorem we prove the optimal nondegeneracy of the solutions. Using the optimal nondegeneracy 
we are able to rule out trivial blowup limits.

Theorem 2 (Optimal nondegeneracy). There exists a c > 0 such that if v is a solution of the obstacle problem (1.3) in 
D then for x0 ∈ 
 and B+

r (x0) ⊂⊂ D we have

sup

∩∂Br (x0)

v ≥ v(x0) + cr2

r + x0
1

. (3.3)

Definition 1. We call v a global solution if it is a function defined on Rn+ such that it solves the obstacle problem (1.3)

in each B+
R for R > 0, v ∈ C1(Rn+) ∩ C

1,1
loc (Rn+) and there exists C ≥ 0 such that

‖v‖C(B+
R ) ≤ C(1 + R), [v]C1(B+

R ) ≤ C for R > 0 (3.4)

and

[v]C1,1(BR∩{x1>δ}) ≤ C

δ
for R > 0 and δ > 0. (3.5)

We denote by P∞ the set of all global solutions.
For t0 > 0 and t > 0 let us define

wt0(t) = t

b
− t0

b − 1
+ tb0

b(b − 1)

1

tb−1
. (3.6)

In the following theorem by a novel method based on shrinkdowns we are able to classify all the global solutions.

Theorem 3 (Classification of global solutions). We have

P∞ = {
0
} ∪

{x1

b
+ c

∣∣ c ≥ 0
}

∪
{
wt0(x1)χ{x1>t0}

∣∣ t0 > 0
}

.

In the following theorem we prove the uniform C1 regularity of the free boundary near contact points away from 
∂D ∩ R

n+. The proof of this result is based on the theorems mentioned above, compactness arguments, directional 
monotonicity and known regularity of the free boundary in the classical obstacle problem near regular points.

Theorem 4 (C1 regularity of the free boundary). There exists 0 < r < 1
2 and a modulus of continuity σ such that for v

solution of the obstacle problem (1.3) in B+ such that 0 ∈ �′ there exists g ∈ C1(Bn−1
r ) such that 0 ≤ g < r , g(0) = 0, 

0 ∈ ∂{g > 0},

 ∩ (

(0, r) × Bn−1
r

) =
{
(x1, x

′)
∣∣ g(x′) < x1 < r , x′ ∈ Bn−1

r

}
and σ is a modulus of continuity for ∇x′g in Bn−1

r .
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4. Preliminary analysis

4.1. Spaces

Let n ≥ 2 be an integer and D ⊂R
n+ be a bounded domain.

Let us define for a ∈R and u ∈ H 1
loc(D)

‖u‖2
H 1(D;xa

1 )
=

∫
D

xa
1

(|∇u|2 + u2)dx.

We define H 1
0 (D; xa

1 , {x1 = 0}) and H 1
0 (D; xa

1 ) respectively as the completion of C∞
c (Rn+) and C∞

c (D) with 
respect to the norm ‖ · ‖H 1(D;xa

1 ).

For a > −1 we also define H 1(D; xa
1 ) and H 1

0 (D; xa
1 , ∂D∩R

n+) as the completion of C∞(Rn) and C∞
c

(
(D∪{x1 ≤

0})◦) with respect to the norm ‖ · ‖H 1(D;xa
1 ).

One may check that for a ∈ R, H 1
0 (D; xa

1 , {x1 = 0}) and H 1
0 (D; xa

1 ) are separable Hilbert spaces and H 1
0 (D; xa

1 )

is a closed linear subspace of H 1
0 (D; xa

1 , {x1 = 0}).
Similarly for a > −1, H 1(D; xa

1 ) and H 1
0 (D; xa

1 , ∂D ∩R
n+) are separable Hilbert spaces and H 1

0 (D; xa
1 ; {x1 = 0})

and H 1
0 (D; xa

1 , ∂D ∩R
n+) are closed linear subspaces of H 1(D; xa

1 ).
By the boundedness of D there exists a C > 0 such that if a ∈R and u ∈ C∞

c

(
(D ∪ {x1 ≤ 0})◦) then the following 

Poincaré type inequality holds∫
D

xa
1 u2dx ≤ C

∫
D

xa
1 |∇u|2dx. (4.1)

Let us note that for a ≤ −1 the integral on the right hand side might diverge. By the definition of H 1
0 (D; xa

1 ), C∞
c (D)

is dense in H 1
0 (D; xa

1 ) with respect to the norm ‖ · ‖H 1(D;xa
1 ), thus from (4.1) by a density argument we obtain that 

(4.1) holds for u ∈ H 1
0 (D; xa

1 ). Similarly (4.1) holds for a > −1 and u ∈ H 1
0 (D; xa

1 , ∂D ∩R
n+).

By Lemma 12 for a > 1, C∞
c (Rn+) is dense in H 1(D; xa

1 ) with respect to the norm ‖ · ‖H 1(D;xa
1 ) and it follows that 

H 1
0 (D; xa

1 , {x1 = 0}) = H 1(D; xa
1 ). Also similarly we have the for a > 1, C∞

c (D) is dense in H 1
0 (D; xa

1 ; ∂D ∩ R
n+)

with respect to the norm ‖ · ‖H 1(D;xa
1 ) and it follows that H 1

0 (D; xa
1 ) = H 1

0 (D; xa
1 , ∂D ∩R

n+).
Let a ∈ R and r > 0 then one may see there exists C > 0 such that for u ∈ C∞

c (Rn) we have∫
∂Br∩Rn+

xa
1 u2s(dx) ≤ C

∫
B+

r

xa
1

(
u2 + |∇u|2)dx. (4.2)

Let us note that for a ≤ −1 the integral on the right hand side might diverge. By a density argument for a ∈ R from 
(4.2) we obtain that there exists a bounded trace operator from H 1

0 (B+
r ; xa

1 , {x1 = 0}) to L2(∂Br ∩R
n+; xa

1 ). Similarly 
for a > −1 there exists a bounded trace operator from H 1(B+

r ; xa
1 ) to L2(∂Br ∩R

n+; xa
1 ).

Let a < 1 and b = 2 − a. Let r > 0 then for u ∈ H 1
0 (B+

r ; xa
1 ; {x1 = 0}) defining v = xa−1

1 u we have that v ∈
H 1(B+

r ; xb
1 ), the map from u to v is bijective and bounded (together with its inverse). Also this map from u to v, 

maps H 1
0 (B+

r ; xa
1 ) to H 1

0 (B+
r ; xb

1 ; ∂Br ∩R
n+) and this restricted map is again bijective and bounded (together with its 

inverse).

4.2. The main obstacle problem

Let a < 1. For u ∈ C∞
c (Rn+) we have

∣∣∫ udx
∣∣ = ∣∣∫ x

− a
2

1 x
a
2

1 udx
∣∣ ≤

(∫
x−a

1 dx
) 1

2
(∫

xa
1 u2dx

) 1
2

D D D D
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and by the boundedness of D and a < 1 we have 
∫
D

x−a
1 dx < ∞. It follows that the integral 

∫
D

udx for u ∈ H 1
0 (D; xa

1 )

is a bounded linear functional on H 1
0 (D; xa

1 ).
Using the boundedness of the linear functional mentioned above and the Poincaré inequality (4.1) for each g ∈

H 1
0 (D; xa

1 , {x1 = 0}) such that g ≥ 0 a.e. in D there exists a unique minimiser of (1.1) among the admissible set of 
functions{

u ∈ H 1
0 (D;xa

1 , {x1 = 0}) ∣∣ u = g on ∂D
}

.

By a similar reasoning as in [6] and using the Lp (cf. [5]) estimates for elliptic equations with variable coefficients 
we obtain that u ∈ W

2,p

loc (D) for all 1 < p < ∞ and (1.2) holds in the sense of distributions and pointwise a.e. in D. 
Also from Sobolev imbeddings it follows that u ∈ C

1,α
loc (D) for all 0 < α < 1.

Conversely if u ∈ H 1
0 (D; xa

1 , {x1 = 0}) and (1.2) holds in the sense of distributions then we have∫
D

(
xa

1 ∇u · ∇ϕ + χ{u>0}ϕ
)
dx = 0 for ϕ ∈ C∞

c (D). (4.3)

Now let v ∈ H 1
0 (D; xa

1 , {x1 = 0}) such that u = v on ∂D, i.e. v − u ∈ H 1
0 (D; xa

1 ), and v ≥ 0 a.e. in D. Then by a 
density argument from (4.3) we obtain∫

D

(
xa

1 ∇u · ∇(v − u) + χ{u>0}(v − u)
)
dx = 0. (4.4)

From (4.4) because v ≥ 0 a.e. in D we obtain that∫
D

(
xa

1 ∇u · ∇(v − u) + (v − u)
)
dx ≥ 0. (4.5)

Because (4.5) holds for all v in the admissible set, we obtain that u satisfies the variational inequality formulation 
of the obstacle problem (1.2) and thus is the unique solution with its values on ∂D as boundary condition.

4.3. The auxiliary obstacle problem

Let b > 1 then reasoning similarly as for the main obstacle problem discussed above for g ∈ H 1(D; xb
1 ) such that 

g ≥ 0 a.e. in D there exists a unique minimiser of (3.1) among the admissible set of functions{
v ∈ H 1(D;xb

1 )
∣∣ v = g on ∂D ∩R

n+
}

.

Also we have v ∈ W
2,p

loc (D) for all 1 < p < ∞ and (1.3) holds in the sense of distributions and pointwise a.e. in D. 
From Sobolev imbeddings it follows that v ∈ C

1,α
loc (D) for all 0 < α < 1.

If v ∈ H 1(D; xb
1 ) and (1.3) holds in the sense of distributions then v is the unique minimiser of (3.1) with its values 

on ∂D ∩R
n+ as boundary condition.

4.4. Locally reducing the main problem to the auxiliary problem

When we say that u is a solution of the obstacle problem (1.2) we mean that u ∈ H 1
0 (D; xa

1 , {x1 = 0}), u ≥ 0 a.e. in 
D and (1.2) holds in the sense of distributions. Similarly when we say that v is solution of the obstacle problem (1.3)
we mean that v ∈ H 1(D; xb

1 ), v ≥ 0 a.e. in D and (1.3) holds in the sense of distributions.

Proof of Lemma 1. As mentioned in the subsection 4.1, because u ∈ H 1
0 (B+

r ; xa
1 , {x1 = 0}) we have that v ∈

H 1(B+
r ; xb). For ϕ ∈ C∞

c (D) we compute
1
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∫
D

xb
1∇v · ∇ϕdx =

∫
D

xb
1∇(xa−1

1 u) · ∇ϕdx

=
∫
D

xb
1

(
(a − 1)xa−2

1 ue1 + xa−1
1 ∇u

) · ∇ϕdx

=
∫
D

(1 − b)u∂x1ϕdx +
∫
D

x1∇u · ∇ϕdx

=
∫
D

(b − 1)∂x1uϕdx +
∫
D

x1∇u · ∇ϕdx

=
∫
D

xa
1 ∇u · ∇(xb−1

1 ϕ)dx = −
∫
D

χ{u>0}xb−1
1 ϕdx

= −
∫
D

χ{v>0}xb−1
1 ϕdx

which proves that (1.3) holds in the sense of distributions and this completes the proof of the lemma. �
In the rest of this paper we will study the obstacle problem (1.3).

5. Optimal regularity and proof of Theorem 1

The function wt0(t) was defined in (3.6).

Lemma 2. Let b > 1 and t0 > 0 then

wt0(t0) = w′
t0
(t0) = 0, (5.1)

wt0(t) > 0 for t ∈ (0, t0) ∪ (t0,∞) (5.2)

and there exists C > 0 (depending only on b) such that for t > 1
4 t0 we have

wt0(t) ≤ C

t0
(t − t0)

2 and w′′
t0
(t) ≤ C

t0
. (5.3)

Proof. We have

wt0(t) = t0w1(
t

t0
). (5.4)

Let λ = t
t0

then we have

w1(λ) = λ

b
− 1

b − 1
+ 1

b(b − 1)

1

λb−1

and computing we obtain

w1(1) = w′
1(1) = 0 (5.5)

and

w′′
1(λ) = 1

λb+1
. (5.6)

By (5.4) and (5.5) we obtain (5.1). By (5.4), (5.5) and (5.6) we obtain (5.2).
Now assume t > 1

4 t0. We have λ > 1
4 thus

w′′
1(λ) = 1

λb+1
< 4b+1. (5.7)

By (5.4) and (5.7) the second inequality in (5.3) follows.
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By Taylor remainder formula, (5.5) and (5.7) we obtain

w1(λ) ≤ 1

2
4b+1(λ − 1)2. (5.8)

By (5.4) and (5.8) the first inequality in (5.3) is also proved and this finishes the proof of the lemma. �
Proof of Theorem 1. We consider two cases, x0

1 ≤ r
4 and x0

1 > r
4 .

Case x0
1 ≤ r

4 . Let us define x1 = x0 − x0
1e1, then we have

B+
3
4 r

(x1) ⊂ B+
3
4 r+|x1−x0|(x

0) = B+
3
4 r+x0

1
(x0) ⊂ B+

3
4 r+ r

4
(x0) = B+

r (x0).

Let us define

φ(x) = 1

b
(x1 − 3

4
r)

then we have

div(xb
1∇φ) = xb−1

1 for x1 > 0

and

φ ≤ 0 in B+
3
4 r

(x1).

Let us decompose

v = v1 + v2 in B+
3
4 r

(x1)

where⎧⎨
⎩

div(xb
1∇v1) = xb−1

1 χ{v>0} in B+
3
4 r

(x1),

v1 = 0 on ∂B 3
4 r

(x1) ∩R
n+

and ⎧⎨
⎩

div(xb
1∇v2) = 0 in B+

3
4 r

(x1),

v2 = v on ∂B 3
4 r

(x1) ∩R
n+.

(5.9)

Because of

−div(xb
1∇φ) = −xb−1

1 ≤ −xb−1
1 χ{v>0} = −div(xb

1∇v1) ≤ 0 in B+
3
4 r

(x1)

and

φ ≤ 0 = v1 on ∂B 3
4 r

(x1) ∩R
n+

by maximum principle we obtain

φ ≤ v1 ≤ 0 in B+
3
4 r

(x1). (5.10)

Because v ≥ 0 by maximum principle and (5.9) we obtain that v2 ≥ 0. Also this follows from v ≥ 0 and the second 
inequality in (5.10).

We compute

B+
r
8
(x0) ⊂ B+

r
8 +|x0−x1|(x

1) = B+
r +x0(x

1) ⊂ B+
r
8 + r

4
(x1) = B+

3 r
(x1).
8 1 8
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Now by Harnack inequality Lemma 19 in B+
3
8 r

(x1) we have

sup
B+

r
8
(x0)

v = sup
B+

r
8
(x0)

(v1 + v2) ≤ sup
B+

r
8
(x0)

v2 ≤ sup
B+

3
8 r

(x1)

v2 ≤ C inf
B+

3
8 r

(x1)

v2

≤ C inf
B+

r
8
(x0)

v2 = C inf
B+

r
8
(x0)

(v − v1) ≤ C inf
B+

r
8
(x0)

(v − φ)

= C inf
B+

r
8
(x0)

(
v − 1

b
(x1 − 3

4
r)

) ≤ C inf
B+

r
8
(x0)

(
v + 3

4

r

b

)

= C
(

inf
B+

r
8
(x0)

v + 3

4

r

b

) ≤ C1
(

inf
B+

r
8
(x0)

v + r
)
.

Thus we have proved that there exists C > 0 (independent of v, r and x0) such that in the case x0
1 ≤ r

4 we have

v(x) ≤ C
(

inf
B+

r
8
(x0)

v + r
)

for x ∈ B+
r
8
(x0). (5.11)

Case x0
1 > r

4 . We define

φ(x) = wx0
1
(x1) − C

x0
1

(
3

16
r)2

here C > 0 is as in (5.3). Then we have

div(xb
1∇φ) = xb−1

1 for x1 > 0.

For x ∈ B 3
16 r

(x0) we have

x1 > x0
1 − 3

16
r = x0

1 − 3

4

r

4
> x0

1 − 3

4
x0

1 = 1

4
x0

1

thus by (5.3) we have

φ(x) = wx0
1
(x1) − C

x0
1

(
3

16
r)2 ≤ C

x0
1

(x1 − x0
1)2 − C

x0
1

(
3

16
r)2 ≤ 0

i.e.

φ ≤ 0 in B 3
16 r

(x0).

Similarly as in the previous case we decompose v = v1 + v2, but in the current case we consider the domain 
B 3

16 r
(x0).

Let us define

w(y) = v2
(
x0

1y + (x0)′
)

for y ∈ B 3
16

r

x0
1

(e1).

We have

div(xb
1∇w) = 0 in B 3

16
r

x0
1

(e1) and
1

8

r

x0
1

<
3

16

r

x0
1

<
3

16

r
r
4

= 3

4
.

Our operator is uniformly elliptic with variable coefficients in the domain B 3
4
(e1). By Harnack inequality we obtain

sup
B 1

8
r

x0
1

(e1)

w ≤ C1 inf
B 1

8
r

x0
1

(e1)
w.

By the definition of w it follows that

sup
B r

8
(x0)

v2 ≤ C1 inf
B r

8
(x0)

v2.
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Now we can compute

sup
B r

8
(x0)

v = sup
B r

8
(x0)

(v1 + v2) ≤ sup
B r

8
(x0)

v2 ≤ C1 inf
B r

8
(x0)

v2

= C1 inf
B r

8
(x0)

(v − v1) ≤ C1 inf
B r

8
(x0)

(v − φ)

= C1 inf
B r

8
(x0)

(
v − (

wx0
1
(x1) − C

x0
1

(
3

16
r)2))

≤ C1 inf
B r

8
(x0)

(
v + C

x0
1

(
3

16
r)2

)

≤ C2 inf
B r

8
(x0)

(
v + r2

x0
1

) ≤ C2
(

inf
B r

8
(x0)

v + r2

x0
1

)
.

Thus we have proved that there exists C > 0 (independent of v, r and x0) such that in the case x0
1 > r

4 we have

v(x) ≤ C
(

inf
B r

8
(x0)

v + r2

x0
1

)
for x ∈ Br

8
(x0). (5.12)

One may see that there exists C3 > 0 such that

rχ{x0
1≤ 1

4 r} + r2

x0
1

χ{x0
1> 1

4 r} ≤ C3r
2

r + x0
1

. (5.13)

From (5.11), (5.12) and (5.13) we obtain (3.2). �
Remark 1. Let us note that from Theorem 1 it follows that the solution has a linear bound on its growth away from 
a contact point (which are by definition in {x1 = 0}) and that it has a usual quadratic bound on its growth away from 
free boundary points (which are by definition in Rn+ because � ⊂ D ⊂R

n+).

Corollary 1. There exists a C > 0 such that if R ≥ 16 and v is a solution of the obstacle problem (1.3) in B+
R with 

� ∩ B+
2 �= ∅ then we have

v(x) ≤ C(1 + |x|) for x ∈ B+
R
8

.

Proof. By the previous theorem choosing 16 ≤ r ≤ R we have

v(x) ≤ C
(
inf
B+

r
8

v + r
) ≤ C

(
inf
B+

2

v + r
) = Cr for x ∈ B+

r
8

. (5.14)

Taking r = 16 in (5.14) we obtain

v(x) ≤ 16C for x ∈ B+
2 . (5.15)

For x ∈ B+
R
8
\B+

2 taking r = 8|x| in (5.14) we obtain

v(x) ≤ 8C|x| for x ∈ B+
R
8
\B+

2 . (5.16)

Combining (5.15) and (5.16) the corollary is proved. �
Lemma 3. There exists a C > 0 such that if v is a solution of the obstacle problem (1.3) in D, x0 ∈ D, d =
dist(x0, D\
), B+

8d(x0) ⊂ D then

|∇v(x0)| ≤ Cd

d + x0
1

. (5.17)
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Proof. If x0 ∈ D\
 then we have ∇v(x0) = 0 and clearly (5.17) holds.
Now assume x0 ∈ 
 then we have d = dist(x0, D\
) = dist(x0, �).
Because B+

8d(x0) ⊂ D and infB+
d (x0) v = 0 by Theorem 1 we have

sup
B+

d (x0)

v ≤ Cd2

d + x0
1

. (5.18)

Let us define φx0(x) = b−1(x1 − x0
1). Now using B+

d (x0) ⊂ 
, (5.18) and Lemma 20 we compute

|∇v(x0)| = |∇(v − φx0)(x
0) + ∇φx0(x

0)|
≤ |∇(v − φx0)(x

0)| + |∇φx0(x
0)|

≤ C1

d
sup

B+
d (x0)

|v − φx0 | + 1

b

≤ C1

d
sup

B+
d (x0)

v + C1

d
sup

B+
d (x0)

|φx0 | + 1

b

≤ C1

d

Cd2

d + x0
1

+ C1

d

d

b
+ 1

b
= C2d

d + x0
1

+ C3. (5.19)

If d < 3
4x0

1 then for x ∈ Bd(x0) we have 1
4x0

1 < x1 thus by Lemma 2 we have

0 ≤ wx0
1
(x1) ≤ C4

x0
1

d2. (5.20)

In the case d < 3
4x0

1 using Bd(x0) ⊂ 
, (5.18), (5.20) and Lemma 20 we compute

|∇v(x0)| = |∇(v − wx0
1
)(x0)| ≤ C1

d
sup

Bd(x0)

|v − wx0
1
|

≤ C1

d
sup

Bd(x0)

v + C1

d
sup

Bd(x0)

wx0
1

≤ C1

d

Cd2

d + x0
1

+ C1

d

C4

x0
1

d2 = C2d

d + x0
1

+ C5
d

x0
1

. (5.21)

By (5.19) and (5.21) we have

|∇v(x0)| ≤ ( C2d

d + x0
1

+ C3
)
χ{d≥ 3

4 x0
1 } + ( C2d

d + x0
1

+ C5
d

x0
1

)
χ{d< 3

4 x0
1 } ≤ C6d

d + x0
1

and this proves the lemma. �
Corollary 2. There exists a C > 0 such that if R ≥ 32, v is a solution of the obstacle problem (1.3) in B+

R and 
B+

2 \
 �= ∅ then we have

|∇v(x)| ≤ C for x ∈ B+
R
18

.

Proof. Let x0 ∈ B+
R
18

. Because B+
2 \
 �= ∅ we have

d = dist(x0,B+
R \
) ≤ dist(x0,B+

2 \
) ≤ |x0| + 2. (5.22)

We compute

B+
8d(x0) ⊂ B+

8d+|x0| ⊂ B+
8(|x0|+2)+|x0| = B+

16+9|x0| ⊂ B+
16+9 R = B+

16+ R ⊂ B+
R .
18 2
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Thus by Lemma 3 we have

|∇v(x0)| ≤ Cd

d + x0
1

≤ C

which proves the corollary. �
Corollary 3. There exists a C > 0 such that if 0 < r < 1, v is a solution of the obstacle problem (1.3) in Br(e1) and 
v(e1) = 0 then we have

|∇v(x)| ≤ C|x − e1| for x ∈ Br
9
(e1).

Proof. Let x0 ∈ Br
9
(e1) and d = dist(x0, Br(e1)\
). We compute

B+
8d(x0) ⊂ B+

8d+|x0−e1|(e1) ⊂ B+
8|x0−e1|+|x0−e1|(e1) = B+

9|x0−e1|(e1) ⊂ B+
r (e1).

Thus by Lemma 3 we have

|∇v(x0)| ≤ Cd

d + x0
1

≤ Cd

x0
1

≤ Cd

1 − r
9

≤ Cd

1 − 1
9

= C1d ≤ C1|x0 − e1|

and this proves the corollary. �
Lemma 4. There exists a C > 0 such that if v is a solution of the obstacle problem (1.3) in D, y ∈ D, d =
dist(y, D\
), 4r < d + y1 and B+

8d+9r (y) ⊂ D then

[v]C1,1(B+
r (y)) ≤ C

d + y1
.

Proof. For z ∈ D we denote d(z) = dist(z, D\
). Because 4r < d(y) + y1 we have

1

d(y) + y1 − 2r
<

2

d(y) + y1
.

For x ∈ B+
r (y) we have

d(x) + x1 > d(y) + y1 − 2r .

Thus we obtain that for x ∈ B+
r (y)

1

d(x) + x1
<

1

d(y) + y1 − 2r
<

2

d(y) + y1
. (5.23)

Also for x ∈ B+
r (y) we have

B+
8d(x)

(x) ⊂ B+
8d(x)+|x−y|(y) ⊂ B+

8d(y)+9|x−y|(y) ⊂ B+
8d(y)+9r

(y) ⊂ D. (5.24)

We should show that there exists C > 0 such that

|∇v(x2) − ∇v(x1)| ≤ C

d(y) + y1
|x2 − x1| for x1, x2 ∈ B+

r (y).

Fix x1, x2 ∈ B+
r (y). We consider the two cases B+

2 1 ( x1+x2
) ⊂ 
 and B+

2 1 ( x1+x2
) ∩ 
c �= ∅ separately.
|x −x | 2 |x −x | 2
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Case B+
|x2−x1|(

x1+x2

2 ) ⊂ 
. Let us denote x0 = x1+x2

2 . We have d(x0) = dist(x0, D\
) ≥ |x2 − x1|. Let us define 

φx0
1
(x) = b−1(x1 − x0

1) and using (5.24), Theorem 1 and Lemma 20 we estimate

|∇v(x2) − ∇v(x1)|
|x2 − x1| ≤ [∇v]C0,1(B+

|x2−x1|
2

(x0))

≤ [∇v]C0,1(B+
d(x0)

2

(x0)) = [∇(v − φx0
1
)]C0,1(B+

d(x0)
2

(x0))

≤ C1

(d(x0))2
sup

B+
d(x0)

(x0)

|v − φx0
1
|

≤ C1

(d(x0))2
sup

B+
d(x0)

(x0)

v + C1

(d(x0))2
sup

B+
d(x0)

(x0)

|φx0
1
|

≤ C1

(d(x0))2

C(d(x0))2

d(x0) + x0
1

+ C1

(d(x0))2

d(x0)

b

= C2

d(x0) + x0
1

+ C3

d(x0)
.

In the case d(x0) < 3
4x0

1 for x ∈ Bd(x0)(x
0) we have x1 > 1

4x0
1 and using (5.24), Theorem 1, Lemmas 2 and 20 we 

estimate

|∇v(x2) − ∇v(x1)|
|x2 − x1| ≤ [∇v]C0,1(B+

|x2−x1|
2

(x0)) ≤ [∇v]C0,1(B+
d(x0)

2

(x0))

≤ [∇(v − wx0
1
)]C0,1(B+

d(x0)
2

(x0)) + [∇wx0
1
]C0,1(B+

d(x0)
2

(x0))

≤ C1

(d(x0))2
sup

B+
d(x0)

(x0)

|v − wx0
1
| + [∇wx0

1
]C0,1(B+

d(x0)
2

(x0))

≤ C1

(d(x0))2
sup

B+
d(x0)

(x0)

v + C1

(d(x0))2
sup

B+
d(x0)

(x0)

wx0
1
+ [∇wx0

1
]C0,1(B+

d(x0)
2

(x0))

≤ C1

(d(x0))2

C(d(x0))2

d(x0) + x0
1

+ C1

(d(x0))2

C

x0
1

(d(x0))2 + C

x0
1

= CC1

d(x0) + x0
1

+ (CC1 + C)
1

x0
1

= C4

d(x0) + x0
1

+ C5

x0
1

.

Thus we have in the case B+
|x2−x1|(

x1+x2

2 ) ⊂ 
 the estimate

|∇v(x2) − ∇v(x1)|
|x2 − x1| ≤ ( C2

d(x0) + x0
1

+ C3

d(x0)

)
χ{d(x0)≥ 3

4 x0
1 } + ( C4

d(x0) + x0
1

+ C5

x0
1

)
χ{d(x0)< 3

4 x0
1 }

≤ C6

d(x0) + x0
1

≤ 2C6

d(y) + y1

where we used (5.23) for the last inequality.

Case B+
|x2−x1|(

x1+x2

2 ) ∩ 
c �= ∅. We compute

B+
|x2−x1|(x

0) ⊂ B+
|x2−x1|+|x0−y|(y) ⊂ B+

|x2−x1|+ 1
2 |x1−y|+ 1

2 |x2−y|(y)

⊂ B+
3 |x1−y|+ 3 |x2−y|(y) ⊂ B+

3r (y) ⊂ B+
8d+9r (y) ⊂ D
2 2
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thus B+
|x2−x1|(x

0) ∩ (D\
) �= ∅ and by (5.24), (5.17) and (5.23) we compute

|∇v(x2) − ∇v(x1)| ≤ |∇v(x2)| + |∇v(x1)|
≤ Cd(x2)

d(x2) + x2
1

+ Cd(x1)

d(x1) + x1
1

≤ C

d(x2) + x2
1

3

2
|x2 − x1| + C

d(x1) + x1
1

3

2
|x2 − x1|

≤ 3

2
C

( 1

d(x2) + x2
1

+ 1

d(x1) + x1
1

)
|x2 − x1|

≤ C8

d(y) + y1
|x2 − x1|

and this completes the proof of the lemma. �
Corollary 4. There exists a C > 0 such that if R ≥ 32, v is a solution of the obstacle problem (1.3) in B+

R and 
B+

2 \
 �= ∅ then

[v]C1,1(B R
20

∩{x1>δ}) ≤ C

δ
for δ > 0.

Proof. Let 0 < δ, y ∈ B R
20

∩ {y1 > δ}, r = y1
8 and d = dist(y, D\
). We compute

4r = y1

2
< y1 ≤ d + y1. (5.25)

By an estimate like (5.22) we have d ≤ |y| + 2 and we compute

B+
8d+9r (y) ⊂ B+

8d+9r+|y| ⊂ B+
8(|y|+2)+9r+|y|

= B+
9|y|+9r+16 = B+

9|y|+ 9
8 y1+16

⊂ B+
9|y|+ 9

8 |y|+16

⊂ B+
10|y|+16 ⊂ B+

R
2 +16

⊂ B+
R . (5.26)

Thus by (5.25), (5.26) and Lemma 4 we have

[v]C1,1(B+
y1
8

(y)) = [v]C1,1(B+
r (y)) ≤ C1

d + y1
≤ C1

y1
<

C1

δ
for y ∈ B R

20
∩ {y1 > δ}. (5.27)

Also by Corollary 2 we have

|∇v(x)| ≤ C2 for x ∈ B+
R
18

. (5.28)

Using (5.27) and (5.28) we compute

[v]C1,1(B R
20

∩{x1>δ}) = sup
x1,x2∈B R

20
∩{x1>δ}

|∇v(x2) − ∇v(x1)|
|x2 − x1|

= max
(

sup
x1,x2∈B R

20
∩{x1>δ}, |x2−x1|< 1

8 x1
1

|∇v(x2) − ∇v(x1)|
|x2 − x1| ,

sup
x1,x2∈B R

20
∩{x1>δ}, |x2−x1|≥ 1

8 x1
1

|∇v(x2) − ∇v(x1)|
|x2 − x1|

)

≤ max
(

sup
x1∈B R ∩{x1>δ}

sup
x2∈B 1 x1 (x1)

|∇v(x2) − ∇v(x1)|
|x2 − x1| ,
20 8 1
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sup
x1,x2∈B R

20
∩{x1>δ}

8

x1
1

(|∇v(x2)| + |∇v(x1)|))

≤ max
(C1

δ
,
8

δ
2C2

) = C3

δ

and this proves the corollary. �
Corollary 5. There exists a C > 0 such that if 0 < r < 1, v is a solution of the obstacle problem (1.3) in Br(e1) and 
v(e1) = 0 then we have

[v]C1,1(B r
9
(e1))

≤ C.

Proof. Because v(e1) = 0 we have dist
(
e1, Br(e1)\


) = 0. We compute

4
r

9
< (e1)1 = dist

(
e1,Br(e1)\


) + (e1)1

and

B+
8 dist(e1,Br (e1)\
)+9 r

9
(e1) = B+

r (e1).

Thus by Lemma 4 we have

[v]C1,1(B r
9
(e1))

≤ C

dist
(
e1,Br(e1)\


) + (e1)1
= C

and this proves the corollary. �
6. Optimal nondegeneracy and proof of Theorem 2

Let us define

p1(y) = 1

2(n − 1)
|y′|2 − 1

b + 1

1

2
y2

1 − 1

b2 − 1

1

yb−1
1

+ 1

2(b − 1)

and

px0(x) = (x0
1)2p1

(x − (x0)′

x0
1

)
.

Lemma 5. There exist c > 0 and 0 < ε0 < 1 such that for 0 < ε < ε0 and x, x0 ∈ R
n+ we have

wx0
1
(x1) + ε

x0
1

px0(x) ≥ c

x0
1

ε|x − x0|2 for x1 ≤ c

ε
x0

1 .

Proof. We compute

wx0
1
(x1) + ε

x0
1

px0(x) = x0
1w1(

x1

x0
1

) + εx0
1p1

(x − (x0)′

x0
1

)

= x0
1

( x1

bx0
1

− 1

b − 1
+ 1

b(b − 1)

(x0
1)b−1

xb−1
1

)

+ εx0
1

( 1

2(n − 1)

∣∣x′ − (x0)′

x0
1

∣∣2 − 1

b + 1

1

2
(
x1

x0
1

)2 − 1

b2 − 1
(
x0

1

x1
)b−1 + 1

2(b − 1)

)

= ε

2(n − 1)x0
1

|x′ − (x0)′|2 + x0
1

{ x1

bx0
1

− 1

b − 1
+ 1

b(b − 1)

(x0
1)b−1

xb−1
1

+ ε
(
− 1

b + 1

1

2
(
x1

x0
)2 − 1

b2 − 1
(
x0

1

x
)b−1 + 1

2(b − 1)

)}
. (6.1)
1 1
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Let us define

f (t) = t

b
− 1

b − 1
+ 1

b(b − 1)

1

tb−1
+ ε

(
− 1

b + 1

1

2
t2 − 1

b2 − 1

1

tb−1
+ 1

2(b − 1)

)
(6.2)

then we have

f (1) = f ′(1) = 0. (6.3)

We claim that there exists ε0 > 0 such that for 0 < ε < ε0 we have

f (t) ≥ 1

4
ε(t − 1)2 for 0 < t ≤ 1

3bε
. (6.4)

By direct computations one may see that there exists c1 > 0 such that for 0 < ε < 1 we have

f ′′(t) ≥ 1

2
ε for 0 < t < c1ε

− 1
b+1 . (6.5)

For 0 < ε < cb+1
1 we have 1 < c1ε

− 1
b+1 . Thus for

0 < ε < min(1, cb+1
1 ) (6.6)

by (6.3) and (6.5) we have

f (t) ≥ 1

4
ε(t − 1)2 for 0 < t ≤ c1ε

− 1
b+1 . (6.7)

We estimate

f (t) = t

b
− ε

2(b + 1)
t2 + (ε

2
− 1

) 1

b − 1
+ (1

b
− ε

b + 1

) 1

b − 1

1

tb−1

≥ t

b
− ε

2(b + 1)
t2 − 1

b − 1
=

(1

b
− ε

2(b + 1)
t
)
t − 1

b − 1
. (6.8)

In addition to (6.6) assume

ε <
(
c1(b − 1)

1

2b

)1+b

. (6.9)

Now for t such that

c1ε
− 1

1+b ≤ t ≤ 1

3bε

using (6.8) we estimate

f (t) − εt2 ≥ (1

b
− ε

2(b + 1)
t
)
t − 1

b − 1
− εt2

=
(1

b
− ( 1

2(b + 1)
+ 1

)
εt

)
t − 1

b − 1

≥
(1

b
− ( 1

2(b + 1)
+ 1

) 1

3b

)
t − 1

b − 1

≥ t

2b
− 1

b − 1
≥ 1

2b

c1

ε
1

1+b

− 1

b − 1

=
(
c1(b − 1)

1

2b

1

ε
1

1+b

− 1
) 1

b − 1
≥ 0 (6.10)

for the last inequality we used (6.9).
Also from (6.9) we have

1 <
2b

b − 1
<

c1

ε
1

1+b

thus for c1ε
− 1

1+b ≤ t we have 1 < t and it follows (t − 1)2 ≤ t2.



310 H. Shahgholian, K. Yeressian / Ann. I. H. Poincaré – AN 34 (2017) 293–334
By (6.7) and (6.10) for 0 < t < 1
3bε

we have

f (t) ≥ 1

4
ε(t − 1)2χ

{0<t≤c1ε
− 1

b+1 }
+ εt2χ

{c1ε
− 1

b+1 <t≤ 1
3b

ε−1}
≥ 1

4
ε(t − 1)2

and this proves (6.4).
If x1 ≤ 1

3b
ε−1x0

1 then by (6.4) we have

wx0
1
(x1) + ε

x0
1

px0(x) = ε

2(n − 1)x0
1

|x′ − (x0)′|2 + x0
1f (

x1

x0
1

)

≥ ε

2(n − 1)x0
1

|x′ − (x0)′|2 + x0
1

1

4
ε(

x1

x0
1

− 1)2

= ε

2(n − 1)x0
1

|x′ − (x0)′|2 + 1

x0
1

1

4
ε(x1 − x0

1)2

≥ ε

x0
1

min
( 1

2(n − 1)
,

1

4

)|x − x0|2 ≥ ε

x0
1

1

2n
|x − x0|2

and by taking c = min( 1
2n

, 1
3b

) the lemma is proved. �
Proof of Theorem 2. Assume v is a solution of the obstacle problem (1.3) in D, x0 ∈ 
 and B+

r (x0) ⊂⊂ D. Let 
c > 0 and 0 < ε0 < 1 be as in Lemma 5.

We claim that if 0 < ε < ε0 and r < ( c
ε

− 1)x0
1 then

sup

∩∂Br (x0)

v ≥ v(x0) + c

x0
1

εr2. (6.11)

To prove this claim let us define

h(x) = v(x) − v(x0) − (
wx0

1
(x1) + ε

x0
1

px0(x)
)
.

Then we have

div(xb
1∇h) = 0 in 
, h(x0) = 0

and

h(x) ≤ −v(x0) < 0 for x ∈ �. (6.12)

We have the inclusion(
∂(Br(x

0) ∩ 
)
) ∩R

n+ ⊂ ((
Br(x

0) ∩R
n+
) ∩ �

) ∪ (

 ∩ ∂Br(x

0)
)
. (6.13)

Applying the maximum principle Lemma 17 in the domain Br(x
0) ∩ 
 and using (6.13) we have

0 = h(x0) ≤ sup
(∂(Br (x0)∩
))∩Rn+

h ≤ max
(

sup
(Br (x0)∩Rn+)∩�

h, sup

∩∂Br (x0)

h
)

. (6.14)

From (6.12) and (6.14) we obtain

0 ≤ sup

∩∂Br (x0)

h ≤ sup

∩∂Br (x0)

v − v(x0) − inf

∩∂Br (x0)

(
wx0

1
(x1) + ε

x0
1

px0(x)
)
. (6.15)

If x ∈ ∂Br(x
0) because r < ( c

ε
− 1)x0

1 we have

x1 ≤ x0
1 + r < x0

1 + (
c

ε
− 1)x0

1 = c

ε
x0

1
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thus by Lemma 5 we have

wx0
1
(x1) + ε

x0
1

px0(x) ≥ c

x0
1

εr2 for x ∈ ∂Br(x
0) ∩R

n+. (6.16)

By (6.15) and (6.16) we prove the claim and obtain (6.11).
Now let us choose

ε = x0
1

2r + x0
1

min(c, ε0)

then we have 0 < ε < ε0 and( c

ε
− 1

)
x0

1 =
( c

x0
1

2r+x0
1

min(c, ε0)

− 1
)
x0

1

=
((2r

x0
1

+ 1
)

max
(
1,

c

ε0

) − 1
)
x0

1

≥ 2r

x0
1

max
(
1,

c

ε0

)
x0

1 = 2r max
(
1,

c

ε0

) ≥ 2r > r .

We compute

1

x0
1

εr2 = 1

x0
1

x0
1

2r + x0
1

min(c, ε0)r
2 = 1

2r + x0
1

min(c, ε0)r
2 ≥ 1

2
min(c, ε0)

r2

r + x0
1

and this proves the theorem. �
Corollary 6. There exists a c > 0 such that if v is a solution of the obstacle problem (1.3) in D, x0 ∈ ∂
 and 
B+

r (x0) ⊂⊂ D then we have

sup
B+

r (x0)

v ≥ cr2

r + x0
1

. (6.17)

Proof. Because x0 ∈ ∂
 there exists x1 ∈ 
 such that |x1 − x0| < r
2 . We have

B+
r
2
(x1) ⊂ B+

r
2 +|x1−x0|(x

0) ⊂ B+
r
2 + r

2
(x0) = B+

r (x0)

and applying the previous lemma to the point x1 we estimate

sup
B+

r (x0)

v ≥ sup
B+

r
2
(x1)

v ≥ sup

∩∂B r

4
(x1)

v ≥ v(x1) + c( r
4 )2

r
4 + x1

1

≥ c( r
4 )2

r
4 + x1

1

≥ c1r
2

r + x1
1

≥ c1r
2

r + x0
1 + r

2

≥ c2r
2

r + x0
1

and this proves the corollary. �
7. Weiss monotonicity formula

Weiss balanced energy was introduced in [9] to study obstacle problems. Let us define for b > 1 and v ∈
H 1(B+

r ; xb
1 ) the Weiss balanced energy

W(r, v) = 1

rn+b

∫
+

(
xb

1 |∇v|2 + 2xb−1
1 v

)
dx − 1

rn+b+1

∫
∂B ∩Rn

xb
1v2s(dx). (7.1)
Br r +
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By the trace inequality (4.2), W(r, v) is well defined for v ∈ H 1(B+
r ; xb

1 ).
Let v be a function defined in B+ and 0 < r < 1. We define the linear blowup

vr(x) = v(rx)

r
for x ∈ B+.

Lemma 6. For r > 0 and v ∈ H 1(B+
r ; xb

1 ) we have W(r, v) = W(1, vr).
For v ∈ H 1(B+

r0
; xb

1 ), W(r, v) as a function of 0 < r < r0 is locally bounded and absolutely continuous.

Let v be a solution of the obstacle problem (1.3) in B+
r0

such that v ∈ C1
b(B+

r0
) and there exists a C > 0 such that

[v]C1,1(Br0∩{x1>δ}) ≤ C

δ
for δ > 0. (7.2)

Then for 0 < r < r0 we have

d

dr
W(r, v) = 2r

∫
∂B∩Rn+

xb
1 (∂rvr)

2s(dx) (7.3)

and if W(r, v) is independent of r ∈ (0, r0) then v is first order homogenous in B+
r0

.

Proof. Let r > 0 and v ∈ H 1(B+
r ; xb

1 ). We compute

W(r, v) = 1

rn+b

∫
B+

r

(
xb

1 |∇v|2 + 2xb−1
1 v

)
dx − 1

rn+b+1

∫
∂Br∩Rn+

xb
1v2s(dx)

=
∫

B+

(
xb

1 |∇v(rx)|2 + 2xb−1
1

1

r
v(rx)

)
dx − 1

r2

∫
∂B∩Rn+

xb
1v2(rx)s(dx)

=
∫

B+

(
xb

1 |∇vr(x)|2 + 2xb−1
1 vr(x)

)
dx −

∫
∂B∩Rn+

xb
1v2

r (x)s(dx) = W(1, vr )

and this proves the first claim.
Let v ∈ H 1(B+

r0
; xb

1 ) then for 0 < r < r0 by direct computation using polar coordinates we have∫
∂Br∩Rn+

xb
1v2s(dx) = −2rb+n−1

∫
B+

r0\B+
r

1

|x|n+b
xb

1v(x)∇v(x) · xdx

+ (
r

r0
)b+n−1

∫
∂Br0∩Rn+

xb
1v2(x)s(dx). (7.4)

The equation (7.4) together with the fact that for f ∈ L1
loc(R

n), 
∫
B+

r
f dx as a function of r is locally bounded and 

absolutely continuous function proves the second claim.
Let v be a solution of the obstacle problem (1.3) in B+

r0
such that v ∈ C1

b(B+
r0

) and there exists C > 0 such that (7.2)
holds.

Then by the Theorem of Rademacher we have that the distributional second derivatives ∂xixj
v satisfy

|∂xixj
v(x)| ≤ C

δ
for a.e. x ∈ Br0 ∩ {x1 > δ}.

Let δk = r0
2k for k ∈ {0} ∪N. We may decompose

B+
r0

= ∪k∈N
(
Br0 ∩ {

δk < x1 ≤ δk−1
})

.
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Then for k ∈ N there exists Ek ⊂ B+
r0

such that |Ek| = 0 (here | · | denotes the n-dimensional Lebesgue measure) 
and for x ∈ Br0 ∩ {

δk < x1 ≤ δk−1
}\Ek we have

|∂xixj
v(x)| ≤ C

δk

= 2C

δk−1
≤ 2C

x1
. (7.5)

Now defining E = ∪k∈NEk we have that |E| = 0 and for x ∈ B+
r0

\E the inequality (7.5) holds.
Thus

x1|∂xixj
v(x)| ≤ 2C for a.e. x ∈ B+

r0
.

Now we have enough regularity and for 0 < r < r0 we compute

1

2

d

dr
W(r, v) = 1

2

d

dr
W(1, vr )

= 1

2

∫
B+

(
xb

1 2∇vr · ∇∂rvr + 2xb−1
1 ∂rvr

)
dx

− 1

2

∫
∂B∩Rn+

xb
1 2vr∂rvrs(dx)

=
∫

B+

(
div(xb

1∂rvr∇vr) − div(xb
1∇vr)∂rvr + xb−1

1 ∂rvr

)
dx

−
∫

∂B∩Rn+

xb
1vr∂rvrs(dx)

=
∫

B+

(−div(xb
1∇vr)∂rvr + xb−1

1 ∂rvr

)
dx

+
∫

∂B+
xb

1∂rvr∇vr · υs(dx) −
∫

∂B∩Rn+

xb
1vr∂rvrs(dx)

=
∫

∂B+
xb

1∂rvr∇vr · υs(dx) −
∫

∂B∩Rn+

xb
1vr∂rvrs(dx)

=
∫

∂B∩Rn+

xb
1∂rvr∇vr · υs(dx) −

∫
∂B∩Rn+

xb
1vr∂rvrs(dx)

=
∫

∂B∩Rn+

xb
1

(
∂υvr − vr

)
∂rvrs(dx). (7.6)

It is easy to see that on ∂B ∩R
n+ we have

∂υvr − vr = r∂rvr . (7.7)

By (7.6) and (7.7) we obtain (7.3).
The last claim follows from (7.3) and (7.7). �

8. Global solutions and proof of Theorem 3

A global solution was defined in Definition 1 and the set P∞ was defined as the set of all global solutions. We 
denote by P∞,hom. the set of first oder homogenous global solutions.
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Lemma 7 (Classification of homogenous global solutions). We have

P∞,hom. =
{
0,

x1

b

}
.

Proof. Let us consider the two cases when 
 =R
n+ and 
 �=R

n+ separately.
Case 
 = R

n+. We write v = x1
b

+ h where h ∈ H 1(B+
r ; xb

1 ) for each r > 0, div(xb
1∇h) = 0 in Rn+ and h is first 

order homogenous. We have that ∇h is 0-th order homogenous. Thus for r > 0 by the Poisson kernel formula proved 
in Lemma 16 we have

∇h(x) = ∇h(rx) =
∫

∂B∩Rn+

∇K(rx, y;b)h(y)s(dy).

Sending r → 0 we obtain

∇h(x) =
∫

∂B∩Rn+

∇K(0, y;b)h(y)s(dy).

Therefore ∇h is a constant vector. So we have

h(x) = c + p · x
for some c ∈R and p ∈R

n, and by first order homogeneity of h we obtain that c = 0.
We compute

0 = div(xb
1∇h) = div

(
xb

1∇(p · x)
) = bp1x

b−1
1

from which it follows that p1 = 0. So we have

h(x) = p′ · x′

for some p′ ∈R
n−1.

Because v = x1
b

+ h should be nonnegative we obtain that p′ = 0 and thus h = 0 and v = x1
b

.
Case 
 �=R

n+. Let e ⊥ e1 and w = ∂ev. Similarly as in the proof of Lemma 6 we have x1|∇w| ≤ x1|∇2v| ≤ C a.e. 
in Rn+. It follows that w ∈ H 1(B+

r ; xb
1 ) for all r > 0. Also the following equation holds

div(xb
1∇w) = 0 in 
 (8.1)

and w is 0-th order homogenous.
We claim that w ≥ 0 in 
. Otherwise we denote m = inf∂B∩Rn+ w < 0. Then there exists x0 ∈ ∂B ∩ R

n+ such that 

m = w(x0). Let us define 
rel. to be the interior of 
 in the relative topology of Rn+. If v(x0) = 0 then because 
m = w(x0) = ∂ev(x0) < 0 we would have v(x0 + te) < 0 for small enough t > 0 which is in contradiction with v ≥ 0, 
thus v(x0) > 0. So in particular x0 ∈ 
rel.. Let 
0

rel. be the open component of 
rel. in the relative topology of Rn+
such that x0 ∈ 
0

rel.. By 0-th order homogeneity we have that

w(x0) = inf
∂B∩Rn+

w = inf

0

rel.

w.

Now because w solves (8.1) in the (usual) interior of 
0
rel. and attains its infimum in 
0

rel., by strong maximum 
principle Lemma 18 it is a constant function in 
0

rel.. Because ∂
0
rel. ∩ ∂� �= ∅ and w = 0 on � we obtain that w = 0

on 
0
rel., a contradiction with w(x0) < 0.

Hence for arbitrary e ⊥ e1 we have proved that ∂ev ≥ 0 in 
.
Therefore ∂ev = 0 in 
 for all e ⊥ e1. It follows that v does not depend on x′ and depends only on x1.
If 
 �= ∅ then because also we consider the case 
 �= R

n+, there exists η > 0 such that v(x) = 0 for x ∈ {x1 = η}. 
Now by first order homogeneity of v we obtain that v = 0 in Rn+ which contradicts with 
 �= ∅.

So we should have 
 = ∅ and v = 0 in Rn+. �
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Definition 2. For 0 ≤ δ < 1 let us define the open cone

Cδ = {
x ∈R

n | x1 > δ|x|}. (8.2)

Proof of Theorem 3. Assume v ∈ P∞ and v �= 0.
Step 1. In this step we show that vR = 1

R
v(Rx) → x1

b
in Cb(B

+) as R → ∞.
By the assumptions (3.4) and (3.5) we have

‖vR‖C1(B+) ≤ C and [vR]C1,1(B∩{x1>δ}) ≤ C

δ
for R > 1 and δ > 0. (8.3)

Thus vR is uniformly bounded in C1
b(B+) and in C1,1(B ∩ {x1 > δ}) for any 0 < δ < 1. By compact embeddings 

and diagonal selection argument there exists a sequence Rj → ∞ and v∞ ∈ C0,1(B+) such that v∞ ∈ C1,1(B ∩{x1 >

δ}) for 0 < δ < 1, vRj
→ v∞ in C0,α(B+) for any 0 < α < 1, vRj

→ v∞ in C1,α(B ∩ {x1 > δ}) for any 0 < α < 1
and 0 < δ < 1 and ∇vRj

→ ∇v∞ weakly in L2(B+).
By the second bound in (8.3) and the pointwise convergence ∇vRj

→ ∇v∞ in B ∩ {x1 > δ} we have

[v∞]C1,1(B∩{x1>δ}) ≤ C

δ
for δ > 0. (8.4)

We have that vRj
is a minimiser in B+, i.e.∫

B+

(
xb

1 |∇vRj
|2 + 2xb−1

1 v+
Rj

)
dx ≤

∫
B+

(
xb

1 |∇ψ |2 + 2xb−1
1 ψ+)

dx (8.5)

for all ψ ∈ H 1(B+; xb
1 ) such that ψ = vRj

on ∂B+ ∩R
n+.

Let ϕ ∈ H 1(B+; xb
1 ) and ϕ = v∞ on ∂B+ ∩R

n+. Let ψ = ϕ + vRj
− v∞ in (8.5), then we obtain∫

B+

(
xb

1 |∇vRj
|2 + 2xb−1

1 v+
Rj

)
dx

≤
∫

B+

(
xb

1 |∇(ϕ + vRj
− v∞)|2 + 2xb−1

1 (ϕ + vRj
− v∞)+

)
dx. (8.6)

Using the convergence vRj
→ v∞ in Cb(B+) we have∫

B+
2xb−1

1

(
v+
Rj

− (ϕ + vRj
− v∞)+

)
dx →

∫
B+

2xb−1
1

(
v+∞ − ϕ+)

dx. (8.7)

Using the convergence ∇vRj
→ ∇v∞ weakly in L2(B+) we compute∫

B+
xb

1

(|∇vRj
|2 − |∇(ϕ + vRj

− v∞)|2)dx

=
∫

B+
xb

1

(−|∇ϕ|2 − 2∇ϕ · ∇(vRj
− v∞) + 2∇vRj

· ∇v∞ − |∇v∞|2)dx

→
∫

B+
xb

1

(|∇v∞|2 − |∇ϕ|2)dx. (8.8)

From (8.6), (8.7) and (8.8) we obtain∫
B+

(
xb

1 |∇v∞|2 + 2xb−1
1 v+∞

)
dx ≤

∫
B+

(
xb

1 |∇ϕ|2 + 2xb−1
1 ϕ+)

dx

which proves that v∞ is a minimiser in B+.
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Let us consider ϕ ∈ C∞
c (B). By the equation satisfied by vRj

we have

−
∫

B+
xb

1∇vRj
· ∇(vRj

ϕ)dx =
∫

B+
xb−1

1 χ{vRj
>0}vRj

ϕdx.

Also we have∫
B+

xb
1∇vRj

· ∇(vRj
ϕ)dx =

∫
B+

xb
1 |∇vRj

|2ϕdx +
∫

B+
xb

1∇vRj
· ∇ϕvRj

dx

thus ∫
B+

xb
1 |∇vRj

|2ϕdx = −
∫

B+
xb−1

1 χ{vRj
>0}vRj

ϕdx −
∫

B+
xb

1∇vRj
· ∇ϕvRj

dx. (8.9)

Similarly we have∫
B+

xb
1 |∇v∞|2ϕdx = −

∫
B+

xb−1
1 χ{v∞>0}v∞ϕdx −

∫
B+

xb
1∇v∞ · ∇ϕv∞dx. (8.10)

Now because we might pass to the limit on the right hand side of (8.9) and obtain the terms on the right hand side 
of (8.10) we have∫

B+
xb

1 |∇v∞|2ϕdx = lim
j→∞

∫
B+

xb
1 |∇vRj

|2ϕdx. (8.11)

Fix 0 < r < 1. Let r < r1 < 1 and ϕ ∈ C∞
c (B) such that 0 ≤ ϕ ≤ 1 in B , ϕ = 1 in Br and ϕ = 0 in B\Br1 . Then 

from (8.11) it follows that∫
B+

r1

xb
1 |∇v∞|2dx ≥ lim

j→∞

∫
B+

r

xb
1 |∇vRj

|2dx.

Sending r1 → r we obtain∫
B+

r

xb
1 |∇v∞|2dx ≥ lim

j→∞

∫
B+

r

xb
1 |∇vRj

|2dx.

Therefore for all 0 < r < 1 we have vRj
→ v∞ strongly in H 1(B+

r ; xb
1 ).

Also we have the convergence vRj
→ v∞ in Cb(B+).

Now for 0 < r < 1 by the convergence vRj
→ v∞ strongly in H 1(B+

r ; xb
1 ) and vRj

→ v∞ in Cb(B+) we may pass 
to the limit in the balanced energy W(r, vRj

) and obtain that W(r, vRj
) → W(r, v∞).

For any R > 1 by (8.3) we have

W(R,v) = W(1, vR) ≤
∫

B+

(
xb

1 |∇vR|2 + 2xb−1
1 vR

)
dx

≤
∫

B+

(
xb

1C2 + 2xb−1
1 C

)
dx = C1

thus as a function of R > 1, W(R, v) is uniformly bounded.
By (3.4), v has enough regularity and thus the equation (7.3) holds and W(R, v) is monotonically nondecreasing 

for R > 1.



H. Shahgholian, K. Yeressian / Ann. I. H. Poincaré – AN 34 (2017) 293–334 317
Therefore a finite limit limR→∞ W(R, v) = W(+∞, v) exists.
We compute for 0 < r < 1

W(r, v∞) = lim
j→∞W(r, vRj

) = lim
j→∞W(rRj , v) = W(+∞, v)

thus W(r, v∞) is independent of 0 < r < 1. Now by Lemma 6 we obtain that v∞ is first order homogenous.
We have 
 �= ∅ thus there exists x0 ∈ 
. Let R > 2|x0| then

B+
R
2
(x0) ⊂ B+

R
2 +|x0| ⊂ B+

R
2 + R

2
= B+

R

and by Theorem 2 we have

sup
B+

vR ≥ 1

R
sup


∩∂B R
2

(x0)

v ≥ 1

R

(
v(x0) + c(R

2 )2

R
2 + x0

1

)
≥ c

4

R

R
2 + x0

1

≥ c

4

R

R
2 + |x0| ≥ c

4
.

Passing to the limit R = Rj → ∞ we obtain

sup
B+

v∞ ≥ c

4
(8.12)

thus v∞ �= 0 in B+.
Because v∞ is a first order homogenous function in B+ we have v∞(0) = 0 and v∞(x) = v( x

2|x| )(2|x|) for all x ∈
B+\{0}. Then we might extend v∞ as a first order homogenous function in Rn+ as follows, v∞(x) = v∞( x

2|x| )(2|x|)
for all x ∈R

n+\B+.
Because v∞ ∈ C0,1(B+) and (8.4) holds we obtain that (3.4) holds for (the extended) v∞.
One may see that because v∞ is solution in B+, its extension in Rn+ as above is a solution in each B+

r for r > 0.
Thus v∞ is a homogenous global solution, i.e. v∞ ∈ P∞,hom.. Because v∞ �= 0 in B+ from Lemma 7 we obtain 

that v∞ = x1
b

. By the uniqueness of the limit v∞ we conclude that vR → v∞ = x1
b

in Cb(B
+) as R → ∞, as desired.

Step 2. In this step we show that v depends only on x1.
Let us denote for R > 0

ε(R) = sup
r≥R

sup
B+

|vr − x1

b
|

and

h = v − x1

b
.

By the definition of ε(R) we know that it is a nonnegative and nonincreasing function of R > 0 and by the first 
step we have that ε(R) → 0 as R → ∞.

Next

sup
y∈B+

R

|h(y)| = sup
y∈B+

R

|v(y) − y1

b
| = R sup

y∈B+
R

| 1

R
v(y) − 1

R

y1

b
|

= R sup
x∈B+

| 1

R
v(Rx) − x1

b
| = R sup

x∈B+
|vR(x) − x1

b
| ≤ Rε(R)

which implies

v(y) = y1

b
+ h(y) ≥ y1

b
− |h(y)| ≥ y1

b
− |y|ε(|y|)

and consequently{
y ∈ R

n+
∣∣ y1 > b|y|ε(|y|)

}
⊂ 
.

Let 0 < δ < 1 and Rδ > 0 be large enough such that ε(Rδ) < 1δ.

b



318 H. Shahgholian, K. Yeressian / Ann. I. H. Poincaré – AN 34 (2017) 293–334
It follows that

Cδ ∩ Bc
Rδ

⊂
{
y ∈ R

n+
∣∣ y1 > b|y|ε(|y|)

}
⊂ 


where Cδ is defined in (8.2).
Assume δ < 1

3 and

x0 ∈ C3δ ∩ Bc
2Rδ

then one may see that

Bδ|x0|(x0) ⊂ Cδ ∩ Bc
Rδ

⊂ 
.

We have that h solves the linear equation div(xb
1∇h) = 0 in Bδ|x0|(x0) ⊂ 
, therefore by Lemma 20 for e ⊥ e1 we 

have

|∂eh(x0)| ≤ C

δ|x0| sup
B

δ|x0|(x0)

|h| ≤ C

δ|x0| sup
B+

δ|x0|+|x0|

|h|

≤ C

δ|x0| (1 + δ)|x0|ε((1 + δ)|x0|)
= C

δ
(1 + δ)ε

(
(1 + δ)|x0|) ≤ C1

δ
ε(|x0|).

We have that ∂eh = ∂ev − ∂e(
x1
b

) = ∂ev = 0 on � and by (3.4) we have |∂eh| = |∂ev| ≤ |∇v| ≤ C2.
Let R > 2Rδ . For x ∈ ∂(
 ∩ BR) ∩R

n+ we have

|∂eh(x)| ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x ∈ ∂
 ∩ B+
R ,

C2, x ∈ 
 ∩ ∂BR ∩ Cc
3δ ,

C1

δ
ε(R), x ∈ 
 ∩ ∂BR ∩ C3δ .

(8.13)

Let us define for x ∈ ∂BR ∩R
n+ the function

g(x) =
⎧⎨
⎩

C2, x ∈ ∂BR ∩ Cc
3δ ∩R

n+,

C1

δ
ε(R), x ∈ ∂BR ∩ C3δ .

(8.14)

And let q be solution of div(xb
1∇q) = 0 in B+

R with boundary data q = g on ∂BR ∩ R
n+. The shrinkdown qR is a 

solution in B+ thus for x ∈ B+
R
2

we have

q(x) = RqR(
x

R
) = R

∫
∂B∩Rn+

K(
x

R
,y;b)qR(y)s(dy)

=
∫

∂B∩Rn+

K(
x

R
,y;b)q(Ry)s(dy)

=
∫

∂B∩Rn+

K(
x

R
,y;b)g(Ry)s(dy)

=
∫

∂B∩{0<y1≤3δ}
K(

x

R
,y;b)g(Ry)s(dy)

+
∫

K(
x

R
,y;b)g(Ry)s(dy)
∂B∩{y1>3δ}
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≤ C2

∫
∂B∩{0<y1≤3δ}

K(
x

R
,y;b)s(dy)

+ C1

δ
ε(R)

∫
∂B∩{y1>3δ}

K(
x

R
,y;b)s(dy)

≤ C2

∫
∂B∩{0<y1≤3δ}

C4y
b
1 s(dy)

+ C1

δ
ε(R)

∫
∂B∩{y1>3δ}

C4y
b
1 s(dy)

≤ C5δ
b+1 + C6

δ
ε(R). (8.15)

By (8.13), (8.14) and the maximum principle we have that

−q(x) ≤ ∂eh ≤ q(x) for x ∈ 
 ∩ B+
R

but then from (8.15) it follows that

|∂eh| ≤ C5δ
b+1 + C6

δ
ε(R) in 
 ∩ B+

R
2

.

For a fixed x ∈ 
 and 0 < δ < 1
3 by sending R → ∞ we obtain

|∂eh(x)| ≤ C5δ
b+1.

Because this holds for all x ∈ 
 and 0 < δ < 1
3 we obtain ∂eh(x) = 0. Thus ∂eh = 0 in Rn+ for all e ⊥ e1 and this 

proves that h depends only on x1. Therefore v = x1
b

+ h depends only on x1.
Step 3. In this step we finish the proof of the theorem.
Let 
0 be a component of 
. Because h depends only on x1 and div(xb

1∇h) = 0 in 
0 we have that there exist C1
and C2 such that

v = x1

b
+ C1 + C2

xb−1
1

in 
0. (8.16)

If 
 = R
n+ then 
0 = R

n+. By (3.4), v has finite energy in B+
R for each R > 0. Because x1−b

1 has infinite energy 
we should have C2 = 0. Also because we should have v(0) ≥ 0 it follows that C1 ≥ 0.

If 
 �= R
n+ then 
0 is a proper subset of Rn+. Thus there exists t0 > 0 such that t0e1 ∈ ∂
0 ∩ R

n+ ⊂ �. Therefore 
we should have

v(t0e1) = ∂x1v(t0e1) = 0. (8.17)

Now by finding the correct values of the coefficients C1 and C2 in (8.16) such that the two equations in (8.17) hold we 
obtain that v(x1) = wt0(x1). Now from (5.2) it follows that either 
0 is equal to (0, t0) ×R

n−1 or (t0, ∞) ×R
n−1. But 

in the case 
0 = (0, t0) × R
n−1 we will have infinite energy thus the only possibility is when 
0 = (t0, ∞) × R

n−1

and v = wt0(x1)χ{x1>t0} in 
0.
Because all connected open sets (t0, ∞) for t0 > 0 intersect. We obtain that 
 has only one component and v =

wt0(x1)χ{x1>t0}. This finishes the proof of the theorem. �
9. Tangential touch of the free boundary

Definition 3. For 0 < η we call σ a modulus of continuity defined on [0, η) if σ : [0, η) → [0, ∞), σ(0) = 0, σ is 
nondecreasing and 0 = σ(+0) = limτ→0, τ>0 σ(τ).
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Lemma 8. There exists 0 < η1 < 1 (depending only on n and b) and a modulus of continuity σ1 (defined on [0, η1)

and depending only on n and b) such that if v is a solution of the obstacle problem (1.3) in B+ and 0 ∈ �′ then

sup
B+

|vr − x1

b
| ≤ σ1(r) for 0 < r < η1. (9.1)

Proof. We argue by contradiction. If the claim of the lemma does not hold then there exists ε > 0, vj solutions of the 
obstacle problem (1.3) in B+, 0 ∈ �′

vj and 0 < rj → 0 such that

sup
B+

|vj

rj − x1

b
| ≥ ε. (9.2)

We have that vj

rj is solution of the obstacle problem (1.3) in B+
(rj )−1 and 0 ∈ �′(vj

rj ) (here �′(vj
rj ) denotes the 

contact set associated with vj
rj ) thus by the Corollaries 1, 2 and 4 there exists C > 0 such that for any R > 0 and large 

enough j we have the uniform bounds

‖vj

rj ‖C(B+
R ) ≤ C(1 + R), [vj

rj ]C1(B+
R ) ≤ C

and

[vj

rj ]C1,1(BR∩{x1>δ}) ≤ C

δ
for δ > 0.

Arguing as in the first step of the proof of Theorem 3 we obtain that there exists a subsequence jk and a global 
solution v0 such that vjk

rjk
→ v0 in C0,α(B+

R ) for any R > 0 and 0 < α < 1 and in C1,α(BR ∩ {x1 > δ}) for any R > 0, 
0 < α < 1 and δ > 0.

We have 0 ∈ �′
vj ⊂ ∂
vj thus by Corollary 6 for τ > 0 and large enough j we have

sup
B+

τ

v
j
rj = 1

rj
sup
B+

rj τ

vj ≥ cτ

and passing to the limit rjk
→ 0 we obtain

sup
B+

τ

v0 ≥ cτ for τ > 0.

So we have 0 ∈ ∂{v0 > 0}.
Because vj

rj is uniformly continuous in B+ and 0 ∈ �′(vj
rj ) we have vj

rj (0) = 0. Because vjk
rjk

→ v0 uniformly in 

B+ we have v0(0) = 0.
Thus we have v0 ∈ P∞, v0(0) = 0 and 0 ∈ ∂{v0 > 0} and consequently from Theorem 3 we obtain v0 = x1

b
and this 

contradicts (9.2). �
Theorem 5. Let b > 1. There exists 0 < η2 < 1 (depending only on n and b) and a modulus of continuity σ2 (defined on 
[0, η2) and depending only on n and b) such that if v is a solution of the obstacle problem (1.3) in B+ (corresponding 
to the parameter b) and 0 ∈ �′ then we have{

x ∈ (0, η2) × Bn−1
η2

∣∣ x1 > |x′|σ2(|x′|)
}

⊂ 
.

Proof. Let x ∈ B+
η1

, r = |x| and y = x
|x| then using (9.1) we have

v(x) = rvr(y) = r
y1

b
+ r

(
vr(y) − y1

b

) ≥ x1

b
− r|vr(y) − y1

b
|

≥ x1

b
− r sup

+
|vr − x1

b
| ≥ x1

b
− rσ1(r) = x1

b
− |x|σ1(|x|)
B
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thus {
x ∈ B+

η1

∣∣ x1 > b|x|σ1(|x|)
}

⊂ 
. (9.3)

Let 0 < η2 < 1
2η1 be small enough such that 2bσ1(2η2) < 1. Let us define σ2(η) = 2bσ1(2η) for η ∈ [0, η2).

We claim that{
x ∈ (0, η2) × Bn−1

η2

∣∣ x1 > |x′|σ2(|x′|)
}

⊂
{
x ∈ B+

η1

∣∣ x1 > b|x|σ1(|x|)
}

. (9.4)

Assume x ∈ (0, η2) × Bn−1
η2

such that |x′|σ2(|x′|) < x1.
We compute

|x| ≤ x1 + |x′| ≤ 2η2 < η1

thus x ∈ B+
η1

.
In the case |x′| ≤ x1 we estimate

b|x|σ1(|x|) ≤ b(x1 + |x′|)σ1(x1 + |x′|) ≤ 2bx1σ1(2x1) ≤ 2bσ1(2η2)x1 < x1

and in the case x1 < |x′| we estimate

b|x|σ1(|x|) ≤ b(x1 + |x′|)σ1(x1 + |x′|)
≤ bx1σ1(x1 + |x′|) + b|x′|σ1(x1 + |x′|)
≤ bx1σ1(2η2) + b|x′|σ1(2|x′|)
≤ 1

2
x1 + 1

2
|x′|σ2(|x′|) <

1

2
x1 + 1

2
x1 = x1.

thus b|x|σ1(|x|) < x1 holds in both cases of |x′| ≤ x1 and x1 < |x′|. Therefore the inclusion (9.4) holds.
By (9.3) and (9.4) the theorem is proved. �

10. C1 regularity of the free boundary and proof of Theorem 4

For a function v defined in B+ and x0 ∈ B+ we define

vx0(y) = 1

x0
1

v
(
x0

1(y − e1) + x0) for y ∈ B+
1
x0
1

(− 1

x0
1

(x0)′
)
. (10.1)

For 0 < η < 1
2 and x0 ∈ (0, η) × Bn−1

1
2

we have x0 ∈ B+ and

B+
1

2η

⊂ B+
1

2η
+ 1

x0
1
|(x0)′|

(− 1

x0
1

(x0)′
) = B+

1
x0
1

( x0
1

2η
+|(x0)′|)

(− 1

x0
1

(x0)′
)

⊂ B+
1
x0
1

( η
2η

+ 1
2
)(− 1

x0
1

(x0)′
) = B+

1
x0
1

(− 1

x0
1

(x0)′
)

and therefore vx0 is well defined in B+
1

2η

.

Lemma 9. There exists 0 < η3 < 1
4 (depending only on n and b) and a modulus of continuity σ3 (defined on [0, η3)

and depending only on n and b) such that if v is a solution of the obstacle problem (1.3) in B+ and x0 ∈ (
(0, η3) ×

Bn−1
1
2

) ∩ �v then we have

‖vx0 − w1(y1)χ{y1>1}‖C1(B 1
2
(e1))

≤ σ3(x
0
1)

where the functions vx0 and w1 are respectively defined in (10.1) and (3.6). Let us note that because x0
1 < η3 < 1

4 by 
the remark before the lemma we have that vx0 is well defined in B+

2 and this contains B 1
2
(e1).

In short, this lemma says that vx0 (a scaling of v) is σ3(x
0) close to the class P∞.
1
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Proof. We argue by contradiction. If the claim of the lemma does not hold then there exists ε > 0, vj solutions of the 
obstacle problem (1.3) in B+, xj ∈ (

(0, 14 ) × Bn−1
1
2

) ∩ �vj with xj

1 → 0 such that

‖vj

xj − w1(y1)χ{y1>1}‖C1(B 1
2
(e1))

≥ ε. (10.2)

For R > 0 because xj

1 → 0 by the remark before the lemma we have that vj

xj is well defined in B+
R for large 

enough j . One may check that actually it is a solution of the obstacle problem (1.3) in B+
R .

Arguing as in Lemma 8 there exists a subsequence jk → ∞ and a global solution v0 such that vjk

xjk
→ v0 in 

C0,α(B+
R ) for any 0 < α < 1 and R > 0 and in C1,α(BR ∩ {x1 > δ}) for any 0 < α < 1, R > 0 and 0 < δ < 1.

We have xj ∈ �vj thus by Corollary 6 for 0 < τ < 1 and large enough j we have

sup
Bτ (e1)

v
j

xj = 1

x
j

1

sup
B

x
j
1 τ

(xj )

v ≥ 1

x
j

1

c(x
j

1 τ)2

x
j

1 τ + x
j

1

= cτ 2

τ + 1

and passing to the limit jk → ∞ we obtain

sup
Bτ (e1)

v0 ≥ cτ 2

τ + 1
for τ > 0

thus e1 ∈ {v0 > 0}.
Because xj ∈ �vj we have that vj

xj (e1) = 0 thus we have v0(e1) = 0. So together with e1 ∈ {v0 > 0} we obtain that 
e1 ∈ �v0 .

Hence we have v0 ∈ P∞ and e1 ∈ �v0 . From Theorem 3 we obtain v0 = w1(y1)χ{y1>1}. By the C1, 1
2 (B2 ∩{y1 > 1

4 })
convergence of vj

xj to v0 we come to contradiction with (10.2) and this proves the lemma. �
Remark 2. By considering respectively 1

2η3 and η3τ
η3−2τ

+ 1
τ

∫ 2τ

τ
σ3(s)ds instead of η3 and σ3(τ ) we might assume that 

σ3(+0) = 0, σ3 is strictly increasing, σ3 is continuous on (0, η3), τ ≤ σ3(τ ) for 0 < τ < η3 and limτ→η3,τ<η3 σ3(τ ) =
+∞.

Let us note that by Remark 2 for 0 ≤ t < +∞ the inverse 0 ≤ σ−1
3 (t) < η3 is well defined.

Lemma 10. There exists 0 < ζ1 < 1 and ε1 > 0 such that if v is a solution of the obstacle problem (1.3) in B(e1), 
v(e1) = 0, υ ∈ ∂B ∩ {υ1 > 0} and

‖v − w1(y1)χ{y1>1}‖C1(B 1
2
(e1))

≤ ε1υ1

then

∂υv ≥ 0 in Bζ1(e1).

Proof. Let c > 0 and υ ∈ ∂B ∩ {υ1 > 0}. Near to y1 = 1 we have that ∂νw1(y1) is linear and w1(y1) is quadratic thus 
one expects to have c∂νw1(y1) − w1(y1) ≥ 0 for large enough c > 0. We shall however give an exact estimate for 
1 < y1 < 2

c∂υw1(y1) − w1(y1) = cυ1w
′
1(y1) − w1(y1)

= cυ1

(1

b
(1 − 1

yb
1

)
)

−
(y1

b
− 1

b − 1
+ 1

b(b − 1)

1

yb−1
1

)

= 1

byb
1

(yb
1 − 1)

(
cυ1 − y1

(b − 1)yb
1 − byb−1

1 + 1

(b − 1)(yb
1 − 1)

)

≥ 1

byb
(yb

1 − 1)(cυ1 − y1) ≥ 1

byb
(yb

1 − 1)(cυ1 − 2). (10.3)

1 1
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Thus taking

c = 2

υ1
(10.4)

we have

c∂υw1(y1) − w1(y1) ≥ 0 in B(e1) ∩ {y1 > 1}. (10.5)

Let c1 > 0 and 0 < ε0 < 1 be as in Lemma 5, C2 > 0 be the constant in Corollary 3 and define

ε = min
(ε0

2
,
c1

2

)
, r1 = min

(1

2
,

9

2bC2

)
and c3 = ε

16
(
r1

18
)2c1.

We claim that if υ ∈ ∂B ∩ {υ1 > 0}, c as in (10.4) and

∥∥v − w1(y1)χ{y1>0}
∥∥

C(B 1
9 r1

(e1))
+

n∑
j=1

∥∥∂yj
v − ∂yj

w1(y1)χ{y1>0}
∥∥

C(B 1
9 r1

(e1))
≤ 1

2
c3υ1 (10.6)

then c∂υv − v ≥ 0 in Br1
18

(e1).

Let us argue by contradiction. Assume there exists y0 ∈ Br1
18

(e1) such that c∂υv(y0) − v(y0) < 0. Let us define

h(y) = v(y) − c∂υv(y) − 1

2

(
wy0

1
(y1) + ε

y0
1

py0(y)
)
.

We have

Br1
18

(y0) ⊂ Br1
18 + r1

18
(e1) = Br1

9
(e1). (10.7)

In particular we have that Br1
18

(y0) ⊂ Br1
9
(e1) ⊂ R

n+, where the last inclusion holds because by the definition of r1 we 

have r1
9 < 1.

Because y0 ∈ Br1
18

(e1) we have 1 − r1
18 < y0

1 and because ε ≤ c1
2 we have 2 ≤ c1

ε
, therefore for y ∈ Br1

18
(y0) we 

have

y1 < y0
1 + r1

18
< y0

1 + 1 − r1

18
< 2y0

1 ≤ c1

ε
y0

1 (10.8)

and by Lemma 5 we have

wy0
1
(y1) + ε

y0
1

py0(y) ≥ c1

y0
1

ε|y − y0|2 ≥ 0 for y ∈ Br1
18

(y0). (10.9)

In 
 we have

�h(y) + b

y1
∂y1h(y) = 1

2y1
+ cυ1

y2
1

(
1 − b∂y1v(y)

)
.

By Corollary 3 and the definition of r1 we have

|∇v(y)| ≤ C2|y − e1| < 1

9
C2r1 ≤ 1

2b
for y ∈ Br1

9
(e1). (10.10)

Using (10.7) and (10.10) for y ∈ 
 ∩ Br1
18

(y0) we have

�h(y) + b

y1
∂y1h(y) ≥ 1

2y1
+ cυ1

y2
1

(
1 − b|∇v(y)|) ≥ 1

2y1
+ cυ1

2y2
1

≥ 0.

Since

h(y) ≤ 0 for y ∈ Br1
18

(y0) ∩ � (10.11)

and
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∂(B r1
18

(x0) ∩ 
) ⊂ (
B r1

18
(x0) ∩ �

) ∪ (
∂B r1

18
(x0) ∩ 


)
after applying the maximum principle in the domain Br1

18
(y0) ∩ 
 we arrive at

0 < v(y0) − c∂υv(y0) = h(y0) ≤ sup
∂(B r1

18
(y0)∩
)

h

= max
(

sup
B r1

18
(y0)∩�

h, sup
∂B r1

18
(y0)∩


h
)

. (10.12)

From (10.11) and (10.12) we obtain

0 ≤ sup
∂B r1

18
(y0)∩


h ≤ sup
∂B r1

18
(y0)∩


(v − c∂υv)

− 1

2
inf

y∈∂B r1
18

(y0)∩


(
wy0

1
(y1) + ε

y0
1

py0(y)
)
. (10.13)

We have

1

2

c1

y0
1

ε(
r1

18
)2 ≥ 1

4c
(1 + c)

c1

y0
1

ε(
r1

18
)2 = 1

8
(1 + c)

c1

y0
1

ε(
r1

18
)2υ1

≥ 1

8
(1 + c)

c1

2
ε(

r1

18
)2υ1 = (1 + c)c3υ1. (10.14)

By (10.9), (10.13) and (10.14) we obtain

(1 + c)c3υ1 ≤ 1

2

c1

y0
1

ε(
r1

18
)2 ≤ sup

∂B r1
18

(y0)∩


(v − c∂υv). (10.15)

Using (10.5) and (10.7) we estimate

sup
∂B r1

18
(y0)∩


(
v − c∂υv

) ≤ sup
y∈∂B r1

18
(y0)∩


(
w1(y1)χ{y1>0} − c∂υ(w1(y1)χ{y1>0})

)

+ ∥∥v − c∂υv − (
w1(y1)χ{y1>0} − c∂υ(w1(y1)χ{y1>0})

)∥∥
C(B r1

18
(y0))

≤ sup
y∈B(e1)

(
w1(y1)χ{y1>0} − c∂υ(w1(y1)χ{y1>0})

)
+ ∥∥v − c∂υv − (

w1(y1)χ{y1>0} − c∂υ(w1(y1)χ{y1>0})
)∥∥

C(B r1
9

(e1))

≤ (1 + c)
(∥∥v − w1(y1)χ{y1>0}

∥∥
C(B r1

9
(e1))

+
n∑

j=1

∥∥∂yj
v − ∂yj

w1(y1)χ{y1>0}
∥∥

C(B r1
9

(e1))

)
. (10.16)

By (10.6), (10.15) and (10.16) we come to a contradiction and this proves our claim.
Because c > 0 from the claim by taking ζ1 = r1

18 the lemma is proved. �
Corollary 7. Let ζ1, ε1 and v be as in Lemma 10. Let 0 < δ < 1 and

‖v − w1(y1)χ{y1>1}‖C1(B 1
2
(e1))

≤ ε1δ

then for all y ∈ � ∩ B 1
2 ζ1

(e1) we have

B 1
2 ζ1

(y) ∩ (
y + Cδ

) ⊂ {v > 0} and B 1
2 ζ1

(y) ∩ (
y − Cδ

) ⊂ {v = 0}. (10.17)
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Proof. By Lemma 10 and the definition of Cδ we have that for all υ ∈ Cδ ∩ ∂B

∂υv ≥ 0 in Bζ1(e1). (10.18)

From (10.18) because v ≥ 0 it follows that

if y ∈ B 1
2 ζ1

(e1) and v(y) = 0 then B 1
2 ζ1

(y) ∩ (y − Cδ) ⊂ {v = 0}. (10.19)

This in particular proves the second inclusion in (10.17).
Let y ∈ B 1

2 ζ1
(e1) ∩�. If there exists y1 ∈ B 1

2 ζ1
(y) ∩(y+Cδ) such that v(y1) = 0, then by (10.19) we have that v = 0

in B 1
2 ζ1

(y1) ∩ (y1 − Cδ). From y1 ∈ y + Cδ it follows that y ∈ y1 − Cδ , thus y is in the interior of B 1
2 ζ1

(y1) ∩ (y1 − Cδ)

where we have v = 0 and this contradicts with y ∈ �. This proves the first inclusion in (10.17). �
Lemma 11. There exists 0 < ζ2 < 1, c1 > 0 and C2 > 0 such that if v is a solution of the obstacle problem (1.3) in 
B(e1) and v(e1) = 0 then v solves the obstacle problem

�v = f χ{v>0} in Bζ2(e1)

with f ≥ c1 in Bζ2(e1) and ‖f ‖C0,1(Bζ2 (e1))
≤ C2.

Proof. Because v solves the obstacle problem (1.3) in B(e1) we have

�v = f χ{v>0} in B(e1)

where

f (y) = (1 − b∂y1v)y−1
1 for y ∈ B(e1).

By Corollary 3, choosing ζ2 small enough there exists c1 > 0 and C2 > 0 such that c1 ≤ f ≤ C2 in Bζ2(e1).
By Corollary 5 and Theorem of Rademacher we have

|∇2v(y)| ≤ C3 for a.e. y ∈ Bζ2(e1).

It follows that |∇y′f | ≤ C4 a.e. in Bζ2(e1). Together with Corollary 3 it follows that |∂y1f | ≤ C5 a.e. in Bζ2(e1)

and this completes the proof of the lemma. �
Proof of Theorem 4. Step 1. Let 0 < ζ1 < 1 and ε1 > 0 as in Lemma 10.

By Lemma 9 and Corollary 7 for all 0 < δ < 1 if v is a solution of the obstacle problem (1.3) in B+ with 0 ∈ �′
and x0 ∈ (

(0, σ−1
3 (ε1δ)) × Bn−1

1
2

) ∩ �v then for all y ∈ �v
x0 ∩ B 1

2 ζ1
(e1) we have

B 1
2 ζ1

(y) ∩ (
y + Cδ

) ⊂ {vx0 > 0} and B 1
2 ζ1

(y) ∩ (
y − Cδ

) ⊂ {vx0 = 0}.

Step 2. In this step we show that there exists 0 < r1 < 1
2 such that if v is a solution of the obstacle problem (1.3) in 

B+ with 0 ∈ �′ then

C 1
2

√
2 ∩ (

(0, r1] × Bn−1
r1

) ⊂ 
. (10.20)

Let η2 and σ2 as in Theorem 5. By choosing 0 < r1 < η2 small enough such that σ2(r1) < 1 from the definition of 
C 1

2

√
2 it follows that

C 1
2

√
2 ∩ (

(0, r1] × Bn−1
r1

) ⊂
{
x ∈ (0, η2) × Bn−1

η2

∣∣ x1 > |x′|σ2(|x′|)
}

. (10.21)

Now because 0 ∈ �′ from Theorem 5 and (10.21) we obtain (10.20).
Step 3. In this step we show that there exists 0 < r2 < r1 such that for v solution of the obstacle problem (1.3) in 

B+ with 0 ∈ �′ there exists gv : Bn−1
r → [0, r2) such that

2
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 ∩ (
(0, r2) × Bn−1

r2

) =
{
x

∣∣ gv(x
′) < x1 < r2, x′ ∈ Bn−1

r2

}
(10.22)

and

gv(x
′) ≤ |x′| for x′ ∈ Bn−1

r2
. (10.23)

Let us define

r2 = min
(√

2

2
r1,

1

2
, σ−1

3 (
1

2
ε1)

)
.

Fix x′ ∈ Bn−1
r2

and define k(t) = v(t, x′) for t ∈ (0, r1]. By the second step we know that k(r1) > 0. Then by the 
continuity of k we know that in a neighbourhood of r1, k is positive.

Let us denote

U = {
t ∈ (0, r1] | k(t) > 0

}
then U is open in the relative topology of (0, r1].

Let us show that U is connected. We assume that U has a component I not containing r1. Then we have I = (t1, t2)
with t2 < r1. Let us define x0 = (t2, x′) then we have x0 ∈ �v . For x0 ∈ (0, r2) ×Bn−1

r2
we have x0 ∈ (

0, σ−1
3 ( 1

2ε1)
) ×

Bn−1
1
2

. Thus by the first step we have

B 1
2 ζ1

(e1) ∩ (
e1 − C 1

2

) ⊂ {vx0 = 0}.
But this contradicts with k > 0 in (t1, t2). This contradiction proves that U is connected.

Let U = (t0, r1] and let us define gv(x
′) = t0.

By the definition of U the equation (10.22) follows. By the second step the inequality (10.23) follows.
Step 4. In this step we show that there exists 0 < r3 < r2, 0 < r4 < 1 and 0 < δ1 < 1 such that if 0 < δ < δ1, v is 

solution of the obstacle problem (1.3) in B+ with 0 ∈ �′ and

x0 ∈ �v ∩ (
(0, σ−1

3 (ε1δ)) × Bn−1
r3

)
then we have that (0, 2) × Bn−1

1 is in the domain of vx0 and


v
x0 ∩ (

(0,2) × Bn−1
1

) =
{
y

∣∣ gv,x0(y
′) < y1 < 2, y′ ∈ Bn−1

1

}
where

gv,x0(y
′) = 1

x0
1

gv

(
x0

1y′ + (x0)′
)

for y′ ∈ Bn−1
1 ,

gv,x0(0) = 1 and gv,x0 is Lipschitz continuous in Bn−1
r4

with Lipschitz constant not exceeding 2δ.
Let

x = x0
1(y − e1) + x0 = x0

1y + (x0)′ and y = 1

x0
1

(
x − (x0)′

)
,

r3 = 1
2 r2 and take 0 < δ1 ≤ 1

2 small enough such that σ−1
3 (ε1δ1) ≤ r3.

Because 2r3 = r2, by the third step we have


 ∩ (
(0,2r3) × Bn−1

2r3

) =
{
x

∣∣ gv(x
′) < x1 < 2r3, x′ ∈ Bn−1

2r3

}
.

From here by translating by −(x0)′ and scaling by 1
x0

1
we obtain


v
x0 ∩

(
(0,

1

x0
1

2r3) × Bn−1
1
x0
1

2r3

(− 1

x0
1

(x0)′
))

=
{
y

∣∣ gv,x0(y
′) < y1 <

1

x0
2r3, y′ ∈ Bn−1

1
x0 2r3

(− 1

x0
(x0)′

)}
. (10.24)
1 1 1
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One may see that because x0 ∈ (0, r3) × Bn−1
r3

we have

(0,2) × Bn−1
1 ⊂ (0,

1

x0
1

2r3) × Bn−1
1
x0
1

2r3

(− 1

x0
1

(x0)′
)
.

Thus from (10.24) we obtain


v
x0 ∩ (

(0,2) × Bn−1
1

) =
{
y

∣∣ gv,x0(y
′) < y1 < 2, y′ ∈ Bn−1

1

}
. (10.25)

By the first step we have that for 0 < δ < δ1 because x0 ∈ (
(0, σ−1

3 (ε1δ)) × Bn−1
r3

) ∩ �v for y ∈ �v
x0 ∩ B 1

2 ζ1
(e1)

we have

B 1
2 ζ1

(y) ∩ (y + Cδ) ⊂ {vx0 > 0} and B 1
2 ζ1

(y) ∩ (y − Cδ) ⊂ {vx0 = 0}. (10.26)

Because 0 < δ < δ1 ≤ 1
2 we have that C 1

2
⊂ Cδ thus taking y = e1 we have

B 1
2 ζ1

(e1) ∩ (e1 + C 1
2
) ⊂ {vx0 > 0} and B 1

2 ζ1
(e1) ∩ (e1 − C 1

2
) ⊂ {vx0 = 0}. (10.27)

From (10.27) it follows that by defining r4 = 1
4ζ1 for y′ ∈ Bn−1

r4
we have y = (gv,x0(y′), y′) ∈ �v

x0 ∩ B 1
2 ζ1

(e1). 

Now from the inclusions in (10.26) it follows that gv,x0 is Lipschitz continuous in Bn−1
r4

with Lipschitz constant not 

exceeding (1 − δ2)− 1
2 δ.

Because 0 < δ < 1
2 we have that (1 − δ2)− 1

2 < 2 and this finishes the proof of the claim of this step.
Step 5. Let r3, r4 and δ1 as in the forth step. In this step we show that there exists 0 < r5 < r4, 0 < δ2 < δ1 and a 

modulus of continuity σ4 such that for 0 < δ < δ2, v a solution of the obstacle problem (1.3) in B+ with 0 ∈ �′ and

x0 ∈ �v ∩ (
(0, σ−1

3 (ε1δ)) × Bn−1
r3

)
we have gv,x0 ∈ C1(Bn−1

r5
), σ4 is a modulus of continuity for ∇y′gv,x0 in Bn−1

r5
and |∇y′gv,x0 | ≤ 2δ in Bn−1

r5
.

We have that vx0 is a solution in B(e1) with vx0(e1) = 0. By Lemma 11 we have that vx0 is the solution of the 
obstacle problem

�vx0 = f χ{v
x0>0} in Bζ2(e1)

with f ≥ c1 > 0 in Bζ2(e1) and ‖f ‖C0,1(Bζ2 (e1))
≤ C2.

By the forth step we have that gv,x0 is Lipschitz continuous in Bn−1
r4

with Lipschitz constant not exceeding 2δ.

Let r̃5 = min( 2
√

5
5 ζ2, r4) and δ̃2 = min(δ1, 14 ).

We have

(1 − 1

2
r̃5,1 + 1

2
r̃5) × Bn−1

r̃5
⊂ Bζ2(e1).

For δ < δ̃2 ≤ 1
4 we have that gv,x0 is Lipschitz continuous in Bn−1

r̃5
⊂ Bn−1

r4
with Lipschitz constant not exceeding 1

2 .
Thus by Lemma 21 there exists 0 < r5 < r̃5, d > 0 and a modulus of continuity σ4 such that if

{x1 < 1 − d} ∩ (
(1 − 1

2
r̃5,1 + 1

2
r̃5) × Bn−1

r̃5

) ⊂ {vx0 = 0}

then gv,x0 ∈ C1(Bn−1
r5

) and σ4 is a modulus of continuity for ∇x′gv,x0 in Bn−1
r5

.

Let us define δ2 = min(δ̃2, 12
d
r̃5

). Then for 0 < δ < δ2 we have that

1 − d < 1 − 2δr̃5 ≤ 1 − 2δ|y′| ≤ gv,x0(y
′) for y′ ∈ Bn−1

r̃5

and this proves the claim of this step.
Step 6. Let r3, r5, δ2 and σ4 as in the fifth step. In this step we show that there exists 0 < r6 < r3 such that for v a 

solution of the obstacle problem (1.3) in B+ with 0 ∈ �′, z ∈ Bn−1
r and gv(z) > 0 we have

6
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gv ∈ C1(Bn−1
r5gv(z)

(z)
)
,

σ4(
·

gv(z)
) is a modulus of continuity for ∇x′gv in Bn−1

r5gv(z)(z) and |∇x′gv| ≤ 1
ε1

σ3(gv(z)) in Bn−1
r5gv(z)

(z).
It follows directly from the fifth step and the definition of gv,x0 that for 0 < δ < δ2 and

x0 ∈ �v ∩ (
(0, σ−1

3 (ε1δ)) × Bn−1
r3

)
(10.28)

we have

gv ∈ C1(Bn−1
r5x

0
1
((x0)′)

)
,

σ4(
·

x0
1
) is a modulus of continuity for ∇x′gv in Bn−1

r5x
0
1
((x0)′) and |∇x′gv| ≤ 2δ in Bn−1

r5x
0
1
((x0)′).

Let us define r6 = min
(
σ−1

3 (ε1δ2), r3
)
. Let z ∈ Bn−1

r6
such that gv(z) > 0. By the third step we have that 

gv(z) ≤ r6 ≤ σ−1
3 (ε1δ2) thus σ3(gv(z)) ≤ ε1δ2 and defining δ = 1

2ε1
σ3(gv(z)) we have 0 < δ < δ2. Let us define 

x0 = (gv(z), z). Then (10.28) holds, so we have

gv ∈ C1(Bn−1
r5gv(z)

(z)
)
,

σ4(
·

gv(z)
) is a modulus of continuity for ∇x′gv in Bn−1

r5gv(z)(z) and |∇x′gv| ≤ 2δ = 1
ε1

σ3(gv(z)) in Bn−1
r5gv(z)

(z).

Step 7. Let r6 as in step 6. In this step we show that for v a solution of the obstacle problem (1.3) in B+ with 0 ∈ �′
we have gv ∈ C(Bn−1

r6
) and for z ∈ Bn−1

r6
the gradient ∇x′gv(z) exists and if gv(z) = 0 then ∇x′gv(z) = 0.

For those z ∈ Bn−1
r6

such that gv(z) > 0 the continuity and differentiability of gv at z follows from the sixth step.
Now let us consider a z ∈ Bn−1

r6
such that gv(z) = 0. Either gv = 0 in a neighbourhood of z, in which case clearly 

gv is continuous and differentiability at z and ∇x′gv(z) = 0, or (0, z) is a contact point. In the case (0, z) ∈ �′, let us 
translate the origin of Rn to (0, z) and consider ṽ(x) = 2v( 1

2x + (0, z)). Then ṽ is a solution in B+ with 0 ∈ �′
ṽ

Now 
applying a similar reasoning as in step 3 to ṽ we obtain that


ṽ ∩ (
(0, r2) × Bn−1

r2

) =
{
x

∣∣ gṽ(x
′) < x1 < r2, x′ ∈ Bn−1

r2

}
and

gṽ(x
′) ≤ |x′| for x ∈ Bn−1

r2
.

From which by the definition of ṽ it follows that


v ∩ (
(0,

r2

2
) × Bn−1

r2
2

(z)
) =

{
x

∣∣ gv(x
′) < x1 <

r2

2
, x′ ∈ Bn−1

r2
2

(z)
}

(10.29)

and

gv(x
′) ≤ |x′ − z| for x′ ∈ Bn−1

r2
2

(z). (10.30)

From (10.30) it immediately follows that gv is continuous at z.
Applying Theorem 5 to ṽ and obtain{

x ∈ (0, η2) × Bn−1
η2

∣∣ x1 > |x′|σ2(|x′|)
}

⊂ 
ṽ

and by the definition of ṽ it follows that{
x ∈ (0,

η2

2
) × Bn−1

η2
2

(z)
∣∣ x1 > |x′ − z|σ2(2|x′ − z|)

}
⊂ 
v . (10.31)

Because r2 ≤ η2 by (10.29) and (10.31) we have{
x

∣∣ |x′ − z|σ2(2|x′ − z|) < x1 <
r2

2
, x′ ∈ Bn−1

r2
2

(z)
}

⊂
{
x

∣∣ gv(x
′) < x1 <

r2 , x′ ∈ Bn−1
r2 (z)

}

2 2
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from which it follows that

gv(x
′) ≤ |x′ − z|σ2(2|x′ − z|) for x′ ∈ Bn−1

r2
2

(z). (10.32)

Finally from (10.32) we obtain that gv is differentiable at z and ∇x′gv(z) = 0.
Step 8. In this step we finish the proof of the theorem.
Let v be a solution of the obstacle problem (1.3) in B+ with 0 ∈ �′. From the sixth and seventh steps it follows 

that if z ∈ Bn−1
r6

then |∇x′gv(z)| ≤ 1
ε1

σ3(gv(z)).

Let ε > 0 and take tε small enough such that 2
ε1

σ3(tε) < ε and γε small enough such that γε ≤ r5tε and σ4(
γε

tε
) < ε.

Let z1, z2 ∈ Bn−1
r6

such that |z2 − z1| < γε .
In the case gv(z

1), gv(z
2) < tε we have∣∣∇x′gv(z

2) − ∇x′gv(z
1)

∣∣ ≤ ∣∣∇x′gv(z
2)

∣∣ + ∣∣∇x′gv(z
1)

∣∣
≤ 1

ε1
σ3(gv(z

2)) + 1

ε1
σ3(gv(z

1))

≤ 1

ε1
σ3(tε) + 1

ε1
σ3(tε) = 2

ε1
σ3(tε) < ε

In the case when either gv(z
1) ≥ tε or gv(z

1) ≥ tε we might assume that gv(z
1) ≥ tε .

Then we have

|z2 − z1| < γε ≤ r5tε ≤ r5gv(z
1)

thus by the sixth step we have

∣∣∇x′gv(z
2) − ∇x′gv(z

1)
∣∣ ≤ σ4

( |z2 − z1|
gv(z1)

) ≤ σ4(
γε

tε
) < ε.

We have shown that for all ε > 0 and z1, z2 ∈ Bn−1
r6

if |z2 − z1| < γε then |∇x′gv(z
2) − ∇x′gv(z

1)| < ε and this 
completes the proof of the theorem. �
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Appendix A. Technical results

In this appendix we shall list technical results. Some are well known but not easy to find a reference to.

A.1. Spaces

Lemma 12. For a > 1, C∞
c (Rn+) is dense in H 1(D; xa

1 ).

Proof. It is enough to show that for u ∈ C∞(Rn) there exists uε ∈ H 1(D; xa
1 ) such that suppuε ⊂ {x1 > 1

2ε} and 
uε → u in H 1(D; xa

1 ) as ε → 0.
Fix u ∈ C∞(Rn). Let us define for ε > 0

uε(x) = max
(
0,min(1,

x1

ε
− 1)

)
u(x) for x ∈ D.

It is easy to see that uε ∈ H 1(D; xa
1 ) and suppuε ⊂ {x1 > 1

2ε}. Using a > 1 and particularly the regularity u ∈
C∞(Rn) one may see that ‖u − uε‖H 1(D;xa

1 ) → 0 as ε → 0. �
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A.2. Poisson kernel

Lemma 13. Let a ≥ 2 be an integer, u ∈ H 1(B+; xa
1 ) and div(xa

1 ∇u) = 0 in B+ (in the sense of distributions), then 
we have

u(x) =
∫

∂B∩Rn+

K(x,y;a)u(y)s(dy) for x ∈ B+ (A.1)

where

K(x,y;a) = 2a−1 |∂Ba |
|∂Bn+a |

(
1 − |x|2)ya

1

1∫
0

(t (1 − t))
a
2 −1(|x − ȳ|2(1 − t) + |x − y|2t) n+a

2

dt

and ȳ = (−y1, y2, · · · , yn).

Proof. Let a and u be as in the statement of the lemma.
For x ∈ R

n+a we denote X1 = (x1, · · · , xn−1) and X2 = (xn, · · · , xn+a). Let us define the function w defined on 
Bn+a by

w(x) = u
(
X1, |X2|

)
for x ∈ Bn+a .

Then we have w ∈ H 1(Bn+a) and �w = 0 in Bn+a . We might write w using the Poisson kernel for the Laplacian 
in unit ball. Then writing w in terms of u, after some computations we obtain the equation (A.1). �

It follows that for a ≥ 2 an integer, K(x, y; a) satisfies the equations∫
∂B∩Rn+

K(x,y;a)s(dy) = 1 for x ∈ B+ (A.2)

and

divx

(
xa

1 ∇xK(x, y;a)
) = 0 for x ∈ B+ and y ∈ ∂B ∩R

n+. (A.3)

Writing surface area of unit balls using the � function, we have |∂Bm| = 2π
m
2 (�(m

2 ))−1, thus we may write

K(x,y;a) = 2a−1

π
n
2

�(n+a
2 )

�(a
2 )

(
1 − |x|2)ya

1

1∫
0

(t (1 − t))
a
2 −1(|x − ȳ|2(1 − t) + |x − y|2t) n+a

2
dt . (A.4)

We consider for a positive number c > 0 and a complex number z, cz = ez ln(c).
By (A.4), K(x, y; a) has clearly an analytic extension for �a > 0.

Lemma 14. For a > 0 not necessarily an integer, K(x, y; a) retains the properties (A.2) and (A.3).

Proof. Carlson’s theorem [7] states that if f is analytic for �z > 0, continuous for �z ≥ 0, f (n) = 0 for n =
0, 1, 2, · · · , there exists c > 0 such that |f (z)| ≤ C1e

c|z| and there exists 0 < c < π such that |f (iz2)| ≤ C2e
c|z2|

then f (z) = 0 for �z ≥ 0.
We consider the left hand sides of the equations (A.2) and (A.3) as analytic functions of a for �a > 0. We have that 

(A.2) and (A.3) hold for integer values of a ≥ 2 and one may check that the growth conditions assumed in Carlson’s 
theorem are also satisfied. Applying Carlson’s theorem we prove the claim. �
Lemma 15. Let a > 1, g ∈ C∞

c (Rn+) and u be given by (A.1). Then we have u ∈ C1(B+).
b
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Proof. Let 0 < ε < 1 such that suppg ⊂ {x1 > ε}. Let us fix 0 < r < ε
16 to be chosen later. We decompose

B+ = (
B ∩ {0 < x1 ≤ ε

2
}) ∪ (

B1−r ∩ {x1 >
ε

2
}) ∪ (

(B\B1−r ) ∩ {x1 >
ε

2
}).

There exists cε,r > 0 such that for x ∈ (B ∩ {0 < x1 ≤ ε
2 }) ∪ (B1−r ∩ {x1 > ε

2 }), 0 < t < 1 and y ∈ ∂B ∩ {y1 > ε}
we have

|x − ȳ|2(1 − t) + |x − y|2t ≥ cε,r

from which it follows that u ∈ C1
b((B ∩ {0 < x1 ≤ ε

2 }) ∪ (B1−r ∩ {x1 > ε
2 })).

We consider the cover

(B\B1−r ) ∩ {x1 >
ε

2
} ⊂ ∪x0∈∂B∩{x1>

ε
2 }(B ∩ B2r (x

0)).

Thus it is enough to show that u ∈ C1
b(B ∩ B2r (x

0)) for each x0 ∈ ∂B ∩ {x1 > ε
2 }.

Using (A.2) we have∫
∂B∩Rn+

∂xi
K(x, y;a)s(dy) = 0 for x ∈ B+, i = 1, · · · , n.

Thus we may write

∂xi
u(x) =

∫
∂B∩Rn+

∂xi
K(x, y;a)

(
g(y) − g(

x

|x| )
)
s(dy)

and we consider the decomposition ∂xi
u(x) = v1(x) + v2(x) where

v1(x) =
∫

B4r (x
0)∩∂B∩{y1>ε}

∂xi
K(x, y;a)

(
g(y) − g(

x

|x| )
)
s(dy)

and

v2(x) =
∫

Bc
4r (x

0)∩∂B∩{y1>ε}
∂xi

K(x, y;a)
(
g(y) − g(

x

|x| )
)
s(dy).

For x ∈ B2r (x
0) ∩ B and y ∈ Bc

4r (x
0) ∩ ∂B ∩ {y1 > ε} we have

|x − ȳ|2(1 − t) + |x − y|2t ≥ 4r2

thus v2 ∈ Cb(B2r (x
0) ∩ B).

Thus we should only show that v1 is in Cb(B2r (x
0) ∩ B). Around x0 we might straighten the boundary part 

B4r (x
0) ∩ ∂B of the domain B4r (x

0) ∩ B . Then by similar estimates as for the boundedness of the derivatives of 
harmonic functions in half spaces given by the half space Poisson kernel we show that v1 is bounded in B2r (x

0) ∩ B . 
And this proves the lemma. �
Lemma 16. The statement of Lemma 13 holds for a > 1 (not necessarily an integer).

Proof. Let a > 1, g ∈ C∞
c (Rn+) and u be given by (A.1). Then by the previous lemma we have that u ∈ C1

b(B+) ⊂
H 1(B+; xa

1 ) and by (A.3) we have that div(xa
1 ∇u) = 0 in B+. By (A.2) and the property K(x, y; a) → 0 for x →

x0 �= y we have that u = g on ∂B ∩R
n+. Thus u is the solution of the desired equation with boundary condition g. Now 

by the boundedness of the solution operator we have that ‖u‖H 1(B+;xa
1 ) ≤ C‖g‖H 1(B+;xa

1 ) for some constant C > 0
independent of g. By this inequality and Lemma 12 the lemma is proved. �
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A.3. Maximum principles

Lemma 17. Let a > 1, u ∈ H 1(D; xa
1 ) and div(xa

1 ∇u) = 0 in D (in the sense of distributions), then u(x) ≤
sup∂D∩Rn+ u for a.e. x ∈ D.

Proof. Let M = sup∂D∩Rn+ u, we have (u − M)+ ∈ H 1
0 (D; xa

1 , ∂D ∩R
n+). By testing the equation satisfied by u, by 

(u − M)+ we obtain∫
D

xa
1 ∇u · ∇(u − M)+dx = 0

from which it follows that∫
D

xa
1 |∇(u − M)+|2dx = 0.

Now by applying the Poincaré inequality (4.1) we obtain (u − M)+ = 0 a.e. in D, i.e. u ≤ M a.e. in D which 
proves the lemma. �
Lemma 18. Let Drel. be the interior of D in the relative topology of Rn+. Let a > 1, u ∈ H 1(D; xa

1 ) and div(xa
1 ∇u) = 0

in D (in the sense of distributions). If u attains its maximum in Drel. then it is constant.

Proof. We claim that if x0 ∈ Drel. such that u(x) ≤ u(x0) for x ∈ D and r > 0 such that B+
r (x0) ⊂ D then u = u(x0)

in B+
r
4
(x0).

If 3x0
1 < r we define x1 = x0 − x0

1e1 and then we have x0 ∈ B+
2
3 r

(x1) and

B+
2r
3
(x1) ⊂ B+

2r
3 +x0

1
(x0) ⊂ B+

r (x0) ⊂ D.

Using the Poisson formula (A.1) (after a translation and scaling to bring the problem to the domain B+) we obtain 
that u = u(x0) in B+

2r
3
(x1). We have

B+
r
3
(x0) ⊂ B+

r
3 +x0

1
(x1) ⊂ B+

2r
3
(x1)

thus u = u(x0) in B+
r
3
(x0).

If 3x0
1 ≥ r then we have Br

4
(x0) ⊂ {x1 > x0

1 − r
4 } ⊂ {x1 > r

12 } and we might apply the usual strong maximum 

principle for uniformly elliptic with variable coefficient elliptic equations in Br
4
(x0). Thus u = u(x0) in Br

4
(x0) and 

this finishes the proof of the claim.
From connectedness of D it is easy to see that from the claim the proof of the lemma follows. �

A.4. Harnack inequality

Lemma 19. Let a > 1. For 0 < γ < 1 there exists a C > 0 such that if u ∈ H 1(B+
r ; xa

1 ), div(xa
1 ∇u) = 0 in B+

r (in the 
sense of distributions) and u ≥ 0 in B+

r then supB+
γ r

u ≤ C infB+
γ r

u.

Proof. There exists c1, C2 > 0 such that

c1 ≤ K(x,y;a) ≤ C2 for x ∈ B+
γ and y ∈ ∂B ∩R

n+. (A.5)

Let us define v(z) = u(rz) for z ∈ B+. We have that v is a nonnegative solution in B+.
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By the Poisson equation (A.1) and the inequalities in (A.5), for z1, z2 ∈ B+
γ we have

v(z1) =
∫

∂B∩Rn+

K(z1, y;a)v(y)s(dy) ≤ C2

∫
∂B∩Rn+

v(y)s(dy)

≤ C2

c1

∫
∂B∩Rn+

K(z2, y;a)v(y)s(dy) = C2

c1
v(z2).

It follows that

sup
B+

γ

v ≤ C3 inf
B+

γ

v

by which the lemma is proved. �
A.5. Regularity estimates

Lemma 20. Let a > 1 and k = 1, 2. There exists a C > 0 such that if u ∈ H 1(B+
r (x0); xa

1 ) and div(xa
1 ∇u) = 0 in 

B+
r (x0) (in the sense of distributions) then

|∇ku(x0)| ≤ C

rk
sup

B+
r (x0)

|u|

here |∇2u(x0)| means a norm of the matrix ∇2u(x0), for example the Frobenius norm which is the square root of the 
sum of the square power of all entries.

Proof. We might assume that (x0)′ = 0, i.e. x0 = x0
1e1.

In the case x0
1 ≤ r

4 we have

B+
3
4 r

⊂ B+
3
4 r+|x0|(x

0) = B+
3
4 r+x0

1
(x0) ⊂ B+

3
4 r+ r

4
(x0) = B+

r (x0).

Let us define v(z) = u( 3
4 rz) for z ∈ B+. We have that v is solution in B+ thus by the Poisson equation (A.1) we 

have

|∇kv(
4

3r
x0)| ≤ C sup

B+
|v|

and by the definition of v it follows that

|∇ku(x0)| ≤ C

( 3r
4 )k

sup
3r
4 B+

|u| ≤ C1

rk
sup

B+
r (x0)

|u|.

Now let us consider the case 1
4r < x0

1 . We have r

8x0
1

< 1
2 . Let us define v(z) = u(x0

1z) then v solves

�v + b

z1
∂z1v = 0 in B r

8x0
1

(e1).

By regularity theory for uniformly elliptic with variable coefficients we have

|∇kv(e1)| ≤ C

( r

8x0
1
)k

sup
B r

8x0
1

(e1)

|v|

and by the definition of v it follows that

|∇ku(x0)| ≤ 1

(x0
1)k

C

( r

8x0
1
)k

sup
B r

8x0
1

(e1)

|v| ≤ C

( r
8 )k

sup
B r

8
(x0)

|u| ≤ C1

rk
sup

B+
r (x0)

|u|

and this completes the proof of the lemma. �
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A.6. Regularity of classical obstacle problem at regular points

Lemma 21. Let c1, C2, M > 0 and 0 < r1 < 1 then there exists 0 < r2 < r1, d > 0 and a modulus of continuity σ4
such that if w is a solution of the obstacle problem

�w = f χ{w>0} in U = (1 − Mr1,1 + Mr1) × Bn−1
r1

with f ≥ c1 in U , ‖f ‖C0,1(U) ≤ C2, there exists a function g defined on Bn−1
r1

such that g is Lipschitz with Lipschitz 
constant not exceeding M , g(0) = 1,


 =
{
x ∈ U

∣∣ g(x′) < x1

}
and

{x1 < 1 − d} ∩ U ⊂ {w = 0}
then g ∈ C1(Bn−1

r2
) and σ4 is a modulus of continuity for ∇x′g in Bn−1

r2
.

Proof. Cf. [6, Chapter 6]. �
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