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Abstract

We consider entire solutions to Lu = f (u) in R2, where L is a nonlocal operator with translation invariant, even and com-
pactly supported kernel K . Under different assumptions on the operator L, we show that monotone solutions are necessarily 
one-dimensional. The proof is based on a Liouville type approach. A variational characterization of the stability notion is also 
given, extending our results in some cases to stable solutions.
© 2016 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In this paper, we consider solutions of an integral equation driven by a nonlocal, linear operator of the form

Lu(x) :=
∫
Rn

(
u(x) − u(y)

)
K(x − y)dy. (1)
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We suppose that K is a measurable and nonnegative kernel, such that K(ζ) = K(−ζ ) for a.e. ζ ∈ R
n. We consider 

both integrable and non-integrable kernels K .
We recall that in the past few years, there has been an intense activity in this type of operators, both for their 

mathematical interest and for their applications in concrete models. In particular, the fractional operators that we 
consider here can be seen as a compactly supported version of the fractional Laplacian (−�)s with s ∈ (0, 1) (and 
possibly arising from a more general kernel, which is not scale invariant and does not possess equivalent extended 
problems). Also, convolution operators are nowadays very popular, also in relation with biological models, see, among 
the others [26,27,30,32].

We consider here solutions u of the semilinear equation

Lu = f (u) in R
2. (2)

Notice that, in the biological framework, the solution u of this equation is often thought as the density of a biological 
species and the nonlinearity f is a logistic map, which prescribes the birth and death rate of the population. In this 
setting, the nonlocal diffusion modeled by L is motivated by the long-range interactions between the individuals of 
the species.

The goal of this paper is to study the symmetry properties of solutions of (2) in the light of a famous conjecture 
of De Giorgi arising in elliptic partial differential equations, see [18]. The original problem consisted in the following 
question:

Conjecture 1.1. Let u be a bounded solution of

−�u = u − u3

in the whole of Rn, with

∂xnu(x) > 0 for any x ∈R
n.

Then, u is necessarily one-dimensional, i.e. there exist u� : R → R and ω ∈ R
n such that u(x) = u�(ω · x), for 

any x ∈R
n, at least when n ≤ 8.

The literature has presented several variations of Conjecture 1.1: in particular, a weak form of it has been investi-
gated when the additional assumption

lim
xn→±∞u(x1, . . . , xn) = ±1 (3)

is added to the hypotheses. When the limit in (3) is uniform with respect to the variables (x1, . . . , xn−1) ∈ R
n−1, the 

version of Conjecture 1.1 obtained in this way is due to Gibbons and is related to problems in cosmology.
In spite of the intense activity of the problem, Conjecture 1.1 is still open in its generality. Up to now, Conjec-

ture 1.1 is known to have a positive answer in dimension 2 and 3 (see [2,28] and also [1,5]) and a negative answer 
in dimension 9 and higher (see [20]). Also, the weak form of Conjecture 1.1 under the limit assumption in (3) was 
proved, up to the optimal dimension 8, in [35] (see also [25] for more general conditions at infinity), and the version 
of Conjecture 1.1 under a uniform limit assumption in (3) holds true in any dimension (see [3,6,23]). Since it is almost 
impossible to keep track in this short introduction of all the research developed on this important topic, we refer to [24]
for further details and motivations.

The goal of this paper is to investigate whether results in the spirit of Conjecture 1.1 hold true when the Laplace 
operator is replaced by the nonlocal operator in (1). We remark that symmetry results in nonlocal settings have been 
obtained in [8–12,19,36], but all these works dealt with fractional operators with scaling properties at the origin and 
at infinity (and somehow with nice regularizing effects).

Also, some of the problems considered in the previous works rely on an extension property of the operator that 
brings the problem into a local (though higher dimensional and either singular or degenerate) problem (see how-
ever [7,15] where symmetry results for fractional problems have been obtained without extension techniques).

In this sense, as far as we know, this paper is the first one to take into account kernels that are compactly supported, 
for which the above regularization techniques do not always hold and for which equivalent local problems are not 
available. Moreover, the strategy used in our proof is different from the ones already exploited in the nonlocal setting, 
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since it relies directly on a technique introduced by [5] and refined in [2], which reduced the symmetry property of 
the level sets of a solution to a Liouville type property for an associated equation (of course, differently from the 
classical case, we will have to deal with equations, and in fact inequalities, of integral type, in which the appropriate 
simplifications are more involved).

In this paper, we prove the following one-dimensional result in dimension 2. The case of dimension 3, following 
the approach of Ambrosio and Cabré in the local case for instance would require deeper analysis of optimal energy 
estimates. Here, and throughout the paper, Br denotes the open Euclidean ball with radius r > 0 and centered at the 
origin, Br(x) = x + Br , and χE denotes the characteristic function of a set E.

Theorem 1.2. Let n = 2 and let L be an operator of the form (1), with K satisfying either

m0χBr0
(ζ ) ≤ K(ζ) ≤ M0χBR0

(ζ ) (4)

or

m0χBr0
(ζ ) ≤ |ζ |2+2s K(ζ ) ≤ M0χBR0

(ζ ), (5)

for any ζ ∈ R
2, for some fixed M0 ≥ m0 > 0, R0 ≥ r0 > 0, and 0 < s < 1 in (5). Let u be a solution of (2), with u ∈

C1(R2) and f ∈ C1,α(R). Assume that

∂x2u(x) > 0 for any x ∈R
2. (6)

Then, u is necessarily one-dimensional.

The assumptions in (4) and (5) correspond, respectively, to the case of an integrable kernel of convolution type and 
to the case of a cutoff fractional kernel. For the existence and further properties of one-dimensional solutions of (2)
under quite general conditions, see Theorem 3.1(b) in [4], and [14,16]. As far as assumption (5) is concerned, there 
is no direct reference on the existence of one-dimensional solutions. However, an adaptation of the techniques in [33]
could lead to such a result.

We recall that if condition (5) (or, more generally, (H1) below) is assumed, one needs to interpret (1) in the principal 
value sense, i.e., as customary,

Lu(x) := P.V.

∫
Rn

(
u(x) − u(y)

)
K(x − y)dy

:= lim
r→0

∫
Rn\Br(x)

(
u(x) − u(y)

)
K(x − y)dy.

As a matter of fact, our proof of Theorem 1.2 does not use any special structure of the kernel K , but only relies 
on the following facts: the kernel K has compact support, and the operator L satisfies a Harnack inequality. More 
precisely, we need:

(H1) The operator L is of the form (1), with the kernel K satisfying K ≥ 0, K(ζ) = K(−ζ ) and K(ζ) ≥ m0χBr0
(ζ )

in R2 for some m0 > 0 and r0 > 0. Moreover, K has compact support in BR0 for some R0 > 0, that is,

K ≡ 0 in R
2 \ BR0 ,

and ∫
BR0

|ζ |2K(ζ)dζ < ∞.

(H2) The operator L satisfies the following Harnack inequality: if ϕ is continuous and positive in R2 and is a weak 
solution to Lϕ + c(x)ϕ = 0 in BR , with c(x) ∈ L∞(B1) and ‖c‖L∞(BR) ≤ b, then

sup
BR/2

ϕ ≤ C inf
BR/2

ϕ

for some constant C depending on L and b, but independent of ϕ.
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Under these assumptions, we have the following.

Theorem 1.3. Let n = 2, let L be an operator of the form (1), with K and L satisfying (H1) and (H2), and let u be a 
solution of (2), with u ∈ C1(R2) and f ∈ C1(R). Assume that

∂x2u(x) > 0 for any x ∈R
2.

If K is not integrable, assume in addition that u ∈ C3(R2). Then, u is necessarily one-dimensional.

When (4) holds, then (H2) follows from the results of Coville (more precisely, Corollary 1.7 in [17]). Similarly, 
when (5) is in force, then (H2) follows from a suitable generalization of the results in [21] (see Remark 1.5 below). 
Thus, thanks to the results in [17,21], Theorem 1.2 follows from Theorem 1.3 — the only difference being the regu-
larity assumed on the solution u.

Notice that when the kernel K is non-integrable at the origin, then one expects the operator L to be regularizing, 
and thus bounded solutions u to (2) to be at least C1 (recall that f is C1(R)). Moreover, when f is smooth, then u is 
expected to be smooth. However, in case that K is integrable at the origin as in (4), then it is not clear if all bounded 
solutions are in C1(R2), and this is why we need to take this assumption in Theorem 1.2.

Remark 1.4. Notice that one can produce a C1 solution by the following argument: rewrite equation (2) into the 
following form:∫

Rn

u(y)K(x − y)dy = u(x) − f (u(x)).

Hence if K is C1, then the left hand-side of the equation is also C1. Therefore, assuming that the map r → r − f (r)

is invertible with a C1 inverse, leads to a C1 solution u.

Remark 1.5. Thanks to the results of [21], the Harnack inequality holds for fractional truncated kernels as in (5) — 
see (2.2)–(2.3) in [21]. Moreover, a straightforward adaptation of their proof allows to take into account the (bounded) 
zero order term c(x), and thus condition (H2) is satisfied for kernels K satisfying (5).

Harnack inequalities for general nonlocal operators L have been widely studied and are known for different classes 
of kernels K ; see for instance a rather general form of the Harnack inequality in [21]. Notice that in our case, we need 
a Harnack inequality with a zero order term in the equation. It has been proved when the integral operator is the pure 
fractional Laplacian in [13] and refined in [37]. It is by now well known that the Harnack inequality may fail depending 
on the kernel K under consideration, and a characterization of the classes of kernels for which it holds is out of the 
scope of this paper. Notice indeed that condition (4) is stronger than (H1), but under the general assumption (H1) then 
the Harnack inequality in (H2) is not known, and thus needs to be assumed in Theorem 1.3.

The rest of the paper is devoted to the proof of Theorems 1.2 and 1.3. In particular, Section 2 will present the 
proof these results, making use of suitable algebraic identities and a Liouville type result in a nonlocal setting. Then, 
in Section 3 we will consider the extension of Theorem 1.3 to stable (instead of monotone) solutions, giving also a 
variational characterization of stability.1

2. Proof of Theorems 1.2 and 1.3

The proofs of Theorems 1.2 and 1.3 are exactly the same. We will prove them at the same time. The first step 
towards the proof of these results is a suitable algebraic computation, that we express in this result:

1 This paper is the outcome of two parallel and independent projects developed at the same time for these two classes of operators, see [29,34]. 
Since the motivation and the techniques used are similar, we thought that it was simpler to merge the two projects into a single, and comprehensive, 
paper.
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Lemma 2.1. Let u be as in Theorem 1.2 or 1.3. Let ui := ∂xi
u, for i ∈ {1, 2}, and

v(x) := u1(x)

u2(x)
. (7)

Also, let τ ∈ C∞
0 (R2). Then∫

R2

∫
R2

(
v(x) − v(y)

)2
τ 2(x)u2(x)u2(y)K(x − y)dx dy

= −
∫
R2

∫
R2

(
v(x) − v(y)

) (
τ 2(x) − τ 2(y)

)
v(y)u2(x)u2(y)K(x − y)dx dy. (8)

Proof. First, notice that in case (5), since f ∈ C1,α then u ∈ C1+2s+α(R2). This means that in all cases — either 
(4) or (5) or (H1) —, the derivatives ui are regular enough so that Lui is well defined pointwise, and hence all the 
following integrals converge.

We observe that, for any g and h regular enough,

2
∫
R2

Lh(x)g(x) dx = 2
∫
R2

⎡
⎢⎣∫
R2

(
h(x) − h(y)

)
K(x − y)dy

⎤
⎥⎦ g(x)dx

=
∫
R2

⎡
⎢⎣∫
R2

(
h(x) − h(y)

)
K(x − y)dy

⎤
⎥⎦ g(x)dx

+
∫
R2

⎡
⎢⎣∫
R2

(
h(y) − h(x)

)
K(x − y)dx

⎤
⎥⎦ g(y)dy

=
∫
R2

∫
R2

(
h(x) − h(y)

) (
g(x) − g(y)

)
K(x − y)dx dy. (9)

By (2), we have that

f ′(u(x)
)
ui(x) = ∂xi

(
f
(
u(x)

))

= ∂xi

(
Lu(x)

)= ∂xi

⎛
⎜⎝∫
R2

(
u(x) − u(x − ζ )

)
K(ζ)dζ

⎞
⎟⎠

=
∫
R2

(
ui(x) − ui(x − ζ )

)
K(ζ)dζ

= Lui(x). (10)

Accordingly,

f ′(u)u1u2 = (Lu1
)
u2

and f ′(u)u1u2 = (Lu2
)
u1.

By subtracting these two identities and using (7), we obtain

0 = (Lu1
)
u2 − (Lu2

)
u1 = (L(vu2)

)
u2 − (Lu2

)
(vu2).

Now, we multiply the previous equality by 2τ 2v and we integrate over R2. Recalling (9) together with vu2, we 
conclude that
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0 = 2
∫
R2

L(vu2)(x) τ 2(x)v(x)u2(x) dx − 2
∫
R2

Lu2(x) τ 2(x)v2(x)u2(x) dx

=
∫
R2

∫
R2

(
v(x)u2(x)−v(y)u2(y)

)(
τ 2(x)v(x)u2(x)−τ 2(y)v(y)u2(y)

)
K(x−y)dx dy

−
∫
R2

∫
R2

(
u2(x) − u2(y)

) (
τ 2(x)v2(x)u2(x) − τ 2(y)v2(y)u2(y)

)
K(x − y)dx dy

=: I1 − I2.

By writing

v(x)u2(x) − v(y)u2(y) = (u2(x) − u2(y)
)
v(x) + (v(x) − v(y)

)
u2(y),

we see that

I1 =
∫
R2

∫
R2

(
u2(x)−u2(y)

) (
τ 2(x)v(x)u2(x)−τ 2(y)v(y)u2(y)

)
v(x)K(x−y)dx dy

+
∫
R2

∫
R2

(
v(x)−v(y)

) (
τ 2(x)v(x)u2(x)−τ 2(y)v(y)u2(y)

)
u2(y)K(x−y)dx dy. (11)

In the same way, if we write

τ 2(x)v2(x)u2(x)−τ 2(y)v2(y)u2(y) = (τ 2(x)v(x)u2(x)−τ 2(y)v(y)u2(y)
)
v(x)

+ (v(x) − v(y)
)
τ 2(y)v(y)u2(y),

we get that

I2 =
∫
R2

∫
R2

(
u2(x)−u2(y)

) (
τ 2(x)v(x)u2(x)−τ 2(y)v(y)u2(y)

)
v(x)K(x−y)dx dy

+
∫
R2

∫
R2

(
u2(x)−u2(y)

) (
v(x)−v(y)

)
τ 2(y)v(y)u2(y)K(x−y)dx dy. (12)

By (11) and (12), after a simplification we obtain that

I1 − I2 =
∫
R2

∫
R2

(
v(x)−v(y)

) (
τ 2(x)v(x)u2(x)−τ 2(y)v(y)u2(y)

)
u2(y)K(x−y)dx dy

−
∫
R2

∫
R2

(
u2(x)−u2(y)

) (
v(x)−v(y)

)
τ 2(y)v(y)u2(y)K(x−y)dx dy.

Now we notice that

τ 2(x)v(x)u2(x) − τ 2(y)v(y)u2(y) = (v(x) − v(y)
)
τ 2(x)u2(x) +

+ (τ 2(x) − τ 2(y)
)
u2(x) v(y) + (u2(x) − u2(y)

)
τ 2(y) v(y),

and so

I1 − I2 =
∫
R2

∫
R2

(
v(x) − v(y)

)2
τ 2(x)u2(x)u2(y)K(x − y)dx dy

+
∫
R2

∫
R2

(
v(x) − v(y)

) (
τ 2(x) − τ 2(y)

)
v(y)u2(x)u2(y)K(x − y)dx dy.

This proves (8). �
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Now we use a Liouville type approach to prove that solutions v of the integral equation in (8) are necessarily 
constant (and this is the only step in which the assumption that the ambient space is R2 plays a crucial role):

Lemma 2.2. Let u be as in Theorem 1.2 or 1.3, and let v = u1/u2. Then v is constant.

Proof. First, by the previous Lemma v satisfies (8) for all τ ∈ C∞
c (R2).

Let R > 1, to be taken arbitrarily large in the sequel. Let τ := τR ∈ C∞
0 (B2R), such that 0 ≤ τ ≤ 1 in R

2, τ = 1
in BR and

|∇τ | ≤ CR−1, (13)

for some C > 0 independent of R > 1. Throughout the proof, C will denote a positive constant which may change 
from a line to another, but which is independent of R > 1. Using (8), and recalling (4), (6) and the support properties 
of τ , we observe that

0 ≤ J1 :=
∫
R2

∫
R2

(
v(x) − v(y)

)2
τ 2(x)u2(x)u2(y)K(x − y)dx dy

≤
∫∫
RR

∣∣v(x)−v(y)
∣∣ ∣∣τ(x)−τ(y)

∣∣ ∣∣τ(x)+τ(y)
∣∣ |v(y)|u2(x)u2(y)K(x−y)dx dy

=: J2, (14)

where

RR := {(x, y) ∈R
2 ×R

2 s.t. |x − y| ≤ R0} ∩ SR and

SR :=
(
(B2R × B2R) \ (BR × BR)

)
∪
(
B2R × (R2 \ B2R)

)
∪
(
(R2 \ B2R) × B2R

)
.

Moreover, making use of the Cauchy–Schwarz inequality, we see that

J 2
2 ≤

∫∫
RR

(
v(x) − v(y)

)2 (
τ(x) + τ(y)

)2
u2(x)u2(y)K(x − y)dx dy

·
∫∫
RR

(
τ(x) − τ(y)

)2
v2(y)u2(x)u2(y)K(x − y)dx dy. (15)

Now we notice that

u2(x) ≤ C u2(y) (16)

for any (x, y) ∈ RR , for a suitable C > 0, possibly depending on R0 but independent of R > 1 and (x, y) ∈ RR . 
This is a consequence of (10) with f ′(u) ∈ L∞(R2) and of assumption (H2) applied recursively to some shifts of the 
continuous and positive function u2.

From (13), (16) and the assumption v u2 ∈ L∞(R2), we obtain that, for any (x, y) ∈RR ,(
τ(x) − τ(y)

)2
v2(y)u2(x)u2(y) ≤ CR−2 |x − y|2 v2(y)u2

2(y) ≤ CR−2 |x − y|2,
for some C > 0 independent of R > 1 (the constant C in the last term may be larger than the one in the second term). 
Hence, by (4), (H1) and the symmetry in the (x, y) variables,∫∫

RR

(
τ(x) − τ(y)

)2
v2(y)u2(x)u2(y)K(x − y)dx dy

≤ C R−2
∫∫

|x − y|2 K(x − y)dx dy
RR
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≤ 2C R−2
∫

B2R

⎡
⎢⎣∫
BR0

|z|2 K(z)dz

⎤
⎥⎦ dx ≤ C,

for some C > 0. Therefore, recalling (15),

J 2
2 ≤ C

∫∫
RR

(
v(x) − v(y)

)2 (
τ(x) + τ(y)

)2
u2(x)u2(y)K(x − y)dx dy. (17)

Hence, since

(
τ(x) + τ(y)

)2 = τ 2(x) + τ 2(y) + 2τ(x) τ (y) ≤ 2τ 2(x) + 2τ 2(y),

we can use the symmetric role played by x and y in (17) and obtain that

J 2
2 ≤ C

∫∫
RR

(
v(x) − v(y)

)2
τ 2(x) u2(x)u2(y)K(x − y)dx dy,

up to renaming C > 0. So, we insert this information into (14) and we conclude that

⎡
⎢⎣ ∫∫
R2×R2

(
v(x) − v(y)

)2
τ 2(x)u2(x)u2(y)K(x − y)dx dy

⎤
⎥⎦

2

= J 2
1

≤ J 2
2 ≤ C

∫∫
RR

(
v(x) − v(y)

)2
τ 2(x) u2(x)u2(y)K(x − y)dx dy, (18)

for some C > 0.
Since RR ⊆R

2 ×R
2 and u2 and K are nonnegative, we can simplify the estimate in (18) by writing

∫∫
R2×R2

(
v(x) − v(y)

)2
τ 2(x)u2(x)u2(y)K(x − y)dx dy ≤ C.

In particular, since τ = 1 in BR ,

∫∫
BR×BR

(
v(x) − v(y)

)2
u2(x)u2(y)K(x − y)dx dy ≤ C.

Since C is independent of R, we can send R → +∞ in this estimate and obtain that the map

R
2 ×R

2 � (x, y) �→ (
v(x) − v(y)

)2
u2(x)u2(y)K(x − y)

belongs to L1(R2 ×R
2).

Using this and the fact that RR approaches the empty set as R → +∞, we conclude from Lebesgue’s dominated 
convergence theorem that

lim
R→+∞

∫∫
R

(
v(x) − v(y)

)2
u2(x)u2(y)K(x − y)dx dy = 0.
R
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Therefore, going back to (18) and recalling the properties of τ = τR ,⎡
⎢⎣ ∫∫
R2×R2

(
v(x) − v(y)

)2
u2(x)u2(y)K(x − y)dx dy

⎤
⎥⎦

2

= lim
R→+∞

⎡
⎢⎣ ∫∫
R2×R2

(
v(x) − v(y)

)2
τ 2(x)u2(x)u2(y)K(x − y)dx dy

⎤
⎥⎦

2

≤ lim
R→+∞C

∫∫
RR

(
v(x) − v(y)

)2
τ 2(x) u2(x)u2(y)K(x − y)dx dy.

= 0.

This and (6) imply that
(
v(x) − v(y)

)2
K(x − y) = 0 for a.e. (x, y) ∈ R

2 ×R
2. Hence, recalling assumption (H1), we 

have that v(x) = v(y) for any x ∈ R
2 and any y ∈ Br0(x). As a consequence, the set {y ∈ R

2 s.t. v(y) = v(0)} is open 
and closed in R

2, and so, by connectedness, we obtain that v is constant. �
By combining Lemmata 2.1 and 2.2, we can finish the proof of Theorems 1.2 and 1.3:

Completion of the proof of Theorems 1.2 and 1.3. Using first Lemma 2.1 and then Lemma 2.2, we obtain that v is 
constant, where v is as in (7). Let us say that v(x) = a for some a ∈R. So we define ω := (a,1)√

a2+1
and we observe that

∇u(x) = u2(x) (v(x),1) = u2(x)
√

a2 + 1 ω.

Thus, if ω · y = 0 then

u(x + y) − u(x) =
1∫

0

∇u(x + ty) · y dt =
1∫

0

u2(x + ty)
√

a2 + 1 ω · y dt = 0.

Therefore, if we set u�(t) := u(tω) for any t ∈ R, and we write any x ∈R
2 as

x = (ω · x)ω + yx

with ω · yx = 0, we conclude that

u(x) = u ((ω · x)ω + yx) = u ((ω · x)ω) = u� (ω · x) .

This completes the proof of Theorem 1.3. �
It is an interesting open problem to investigate if symmetry results in the spirit of Theorems 1.2 and 1.3 hold true 

in higher dimension.

3. Stable solutions and extension of the main results

We discuss here the extension of Theorems 1.2 and 1.3 to the more general context of bounded stable solutions u
of (2) in the whole space Rn with n ≥ 2. In the case of second order equations, there are two equivalent definitions of 
stability: a variational one and a non-variational one. In case of nonlocal operators (1), these two different definitions 
read as follows.

(S1) The following inequality holds

1

2

∫
Rn

∫
Rn

(
ξ(x) − ξ(x + y)

)2
K(y)dy dx ≥

∫
Rn

f ′(u)ξ2

for every ξ ∈ C∞
c (Rn). That is, the second variation of the energy functional associated to (2) is nonnegative 

under perturbations with compact support in Rn.
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(S2) There exists a positive continuous solution ϕ > 0 to the linearized equation

Lϕ = f ′(u)ϕ in R
n. (19)

For completeness, we observe that a more general version of Theorems 1.2 and 1.3 holds true, namely if we replace 
assumption (6) with the following non-variational stability condition (S2).

Theorem 3.1. Let n = 2 and L be an operator of the form (1), with K satisfying either (4), or (5), or (H1)–(H2). Let u

be a solution of (2), with u ∈ C1(R2) and f ∈ C1,α(R), and with u ∈ C3(R2) in case (H1)–(H2). Assume that u is 
stable, in the sense of (S2). Then, u is necessarily one-dimensional.

Notice that, in this setting, Theorems 1.2 and 1.3 are a particular case of Theorem 3.1, choosing ϕ := u2 = ∂x2u

and recalling (10).
The proof of Theorem 3.1 is exactly the one of Theorem 1.3, with only a technical difference: instead of (7), one 

has to define, for i ∈ {1, 2},

v(x) := ui(x)

ϕ(x)
.

Then the proof of Theorem 1.3 goes through (replacing u2 with ϕ when necessary) and implies that v is constant, 
i.e. ui = aiϕ, for some ai ∈ R. This gives that ∇u(x) = ϕ(x) (a1, a2), which in turn implies the one-dimensional 
symmetry of u.

Given the result in Theorem 3.1, we discuss next the equivalence between the two definitions of stability (S1) 
and (S2). We will always assume that the kernel K satisfies assumption (H1).

Proposition 3.2. Let n ≥ 1 and L be any operator of the form (1). Let u be a bounded solution of (2) in the whole 
of Rn with f ∈ C1(R). Assume that the kernel K satisfies assumption (H1). Then, (S2) =⇒ (S1).

Proof. Let ξ ∈ C∞
0 (Rn). Using ξ2/ϕ as a test function in the equation Lϕ = f ′(u)ϕ, we find∫

Rn

f ′(u)ξ2 =
∫
Rn

ξ2

ϕ
Lϕ.

Next, we use (9) (which holds in Rn as in R2) to see that at least at the formal level for any function v and w such that 
Lw is well defined and v belongs to L∞(Rn)∫

Rn

vLw = B(v,w)

2
,

where

B(v,w) :=
∫
Rn

∫
Rn

(
v(x) − v(y)

)(
w(x) − w(y)

)
K(x − y)dx dy.

We find (recall that ϕ is such that Lϕ exists and ξ is compactly supported)

2
∫
Rn

f ′(u)ξ2 = B
(
ϕ, ξ2/ϕ

)
.

Now, it is immediate to check that

ξ2(x)

ϕ(x)
− ξ2(y)

ϕ(y)
=
(
ξ2(x) − ξ2(y)

) ϕ(x) + ϕ(y)

2ϕ(x)ϕ(y)
− (ϕ(x) − ϕ(y))

ξ2(x) + ξ2(y)

2ϕ(x)ϕ(y)
,

and this yields
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2
∫
Rn

f ′(u)ξ2 =
∫
Rn

∫
Rn

(
ϕ(x) − ϕ(y)

)(
ξ2(x) − ξ2(y)

) ϕ(x) + ϕ(y)

2ϕ(x)ϕ(y)
K(x − y)dx dy

−
∫
Rn

∫
Rn

(
ϕ(x) − ϕ(y)

)2 ξ2(x) + ξ2(y)

2ϕ(x)ϕ(y)
K(x − y)dx dy.

Let us now show that

�(x,y) := (ϕ(x) − ϕ(y)
)(

ξ2(x) − ξ2(y)
) ϕ(x) + ϕ(y)

2ϕ(x)ϕ(y)

− (ϕ(x) − ϕ(y)
)2 ξ2(x) + ξ2(y)

2ϕ(x)ϕ(y)
≤ (ξ(x) − ξ(y)

)2
. (20)

Once this is proved, then we will have

2
∫
Rn

f ′(u)ξ2 ≤
∫
Rn

∫
Rn

(
ξ(x) − ξ(y)

)2
K(x − y)dx dy,

and thus the result will be proved.
To establish (20), it is convenient to write � as

�(x,y) = 2
(
ϕ(x) − ϕ(y)

)(
ξ(x) − ξ(y)

) ξ(x) + ξ(y)

ϕ(x) + ϕ(y)
·
(
ϕ(x) + ϕ(y)

)2
4ϕ(x)ϕ(y)

− (ϕ(x) − ϕ(y)
)2 ·
(

ξ(x) + ξ(y)

ϕ(x) + ϕ(y)

)2 2ξ2(x) + 2ξ2(y)(
ξ(x) + ξ(y)

)2 ·
(
ϕ(x) + ϕ(y)

)2
4ϕ(x)ϕ(y)

.

Now, using the inequality

2
(
ϕ(x) − ϕ(y)

)(
ξ(x) − ξ(y)

) ξ(x) + ξ(y)

ϕ(x) + ϕ(y)
≤ (ξ(x) − ξ(y)

)2 + (ϕ(x) − ϕ(y)
)2 ·
(

ξ(x) + ξ(y)

ϕ(x) + ϕ(y)

)2

,

we find

�(x,y) ≤ (ξ(x) − ξ(y)
)2 (ϕ(x) + ϕ(y)

)2
4ϕ(x)ϕ(y)

+

+ (ϕ(x) − ϕ(y)
)2 ·
(

ξ(x) + ξ(y)

ϕ(x) + ϕ(y)

)2

·
(
ϕ(x) + ϕ(y)

)2
4ϕ(x)ϕ(y)

·
{

1 − 2ξ2(x) + 2ξ2(y)(
ξ(x) + ξ(y)

)2
}

.

But since

1 − 2ξ2(x) + 2ξ2(y)(
ξ(x) + ξ(y)

)2 = −
(
ξ(x) − ξ(y)

)2(
ξ(x) + ξ(y)

)2 ,

we obtain

�(x,y) ≤ (ξ(x) − ξ(y)
)2 (ϕ(x) + ϕ(y)

)2
4ϕ(x)ϕ(y)

− (ϕ(x) − ϕ(y)
)2 ·

(
ξ(x) − ξ(y)

)2
4ϕ(x)ϕ(y)

=
(
ξ(x) − ξ(y)

)2
4ϕ(x)ϕ(y)

{(
ϕ(x) + ϕ(y)

)2 − (ϕ(x) − ϕ(y)
)2}

= (ξ(x) − ξ(y)
)2

.

Hence (20) is proved, and the result follows. �
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Notice that the previous proposition holds for any operator of the form (1), with no additional assumptions on K . 
However, we do not know if the two stability conditions (S1) and (S2) are equivalent for all operators L. Indeed, in 
order to show the other implication (S1) =⇒ (S2), we need some additional assumptions. Namely, we need:

if w ∈ L∞(Rn) is any weak solution to Lw = g in B1, with g ∈ L∞(B1), then

‖w‖Cα(B1/2) ≤ C
(‖g‖L∞(B1) + ‖w‖L∞(Rn)

)
for some constants α ∈ (0,1] and C > 0 independent of w and g. (21)

and

the space HK(Rn), defined as the closure of C∞
0 (Rn) under the norm

‖w‖2
HK(Rn) := 1

2

∫
Rn

∫
Rn

(
w(x) − w(y)

)2
K(x − y)dx dy

is compactly embedded in L2
loc(R

n). (22)

Remark 3.3. These two assumptions (21)–(22) are satisfied for all kernels satisfying (5). Indeed, the Cα estimate (21)
can be found in [13, Section 14], while the compact embedding (22) follows easily in two steps: fix p ∈ R

n and use 
(5) to have compactness in L2(Br0/2(p)); then use a standard covering argument to have the compact embedding in 
BR (for any R > 0). See, for instance [31] and [22, Theorem 7.1] for further details on the compact embeddings.

Using (21)–(22), we have the following.

Proposition 3.4. Let n ≥ 1 and L be any operator of the form (1) with kernel K satisfying (5). Let u be any bounded 
solution of (2) in the whole of Rn, with f ∈ C1,α(R). Then, (S1) =⇒ (S2)

Proof. Let R > 0 and consider the quadratic form

QR(ξ) = 1

2

∫
Rn

∫
Rn

(
ξ(x) − ξ(y)

)2
K(x − y)dx dy −

∫
BR

f ′(u)ξ2 dx,

for ξ ∈ C∞
0 (Rn). Let HK(Rn) be as in (22) and λR be the infimum of QR among the class SR defined by

SR :=

⎧⎪⎨
⎪⎩ξ ∈ HK(Rn) s.t. ξ = 0 in R

n \ BR and
∫
BR

ξ2 = 1

⎫⎪⎬
⎪⎭ .

Since the functional QR is bounded from below in SR (recall that f ′(u) is bounded) and thanks to the compactness 
assumption in (22), we see that its infimum λR is attained for a function φR ∈ SR . Moreover, by assumption (S1), we 
have

λR ≥ 0. (23)

Also, we can assume that φR ≥ 0, since if φ is minimizer then |φ| is also a minimizer. Thus, the function φR ≥ 0 is a 
solution, not identically zero, of the problem{

LφR = f ′(u)φR + λRφR in BR,

φR = 0 in R
n \ BR.

It follows from the strong maximum principle for integro-differential operators (remember that K satisfies (5)) that 
φR is continuous in Rn and φR > 0 in BR . On the other hand, for any 0 < R < R′ we have∫

B ′

φR LφR′ =
∫

B ′

φR′ LφR <

∫
B

φR′ LφR.
R R R
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The equality above is a consequence of (9) (in Rn), while the inequality follows from the fact that φR = 0 in BR′ \BR , 
and thus LφR < 0 in that annulus. Hence, using the equations for φR and φR′ we deduce that

λR′
∫
BR

φRφR′ < λR

∫
BR

φRφR′ .

Therefore, λR′ < λR for any R′ > R > 0. From this and (23), it follows that λR > 0 for all R > 0.
Now consider the problem{

LϕR = f ′(u)ϕR in BR,

ϕR = cR in R
n \ BR,

(24)

for any fixed cR > 0. The solution to this problem can be found by writing ψR = ϕR − cR , which solves{
LψR = f ′(u)ψR + cRf ′(u) in BR,

ψR = 0 in R
n \ BR.

It is immediate to check that the energy functional associated to this last problem is bounded from below and coercive, 
thanks to the inequality λR > 0. Therefore, ψR and ϕR exist.

Next we claim that ϕR > 0 in BR . To show this, we use ϕ−
R as a test function for the equation for ϕR . We find

1

2

∫
Rn

∫
Rn

(
ϕR(x) − ϕR(y)

)(
ϕ−

R (x) − ϕ−
R (y)

)
K(x − y)dx dy

=
∫
BR

f ′(u)ϕRϕ−
R

= −
∫
BR

f ′(u)|ϕ−
R |2.

Now, since(
ϕR(x) − ϕR(y)

)(
ϕ−

R (x) − ϕ−
R (y)

)≤ −(ϕ−
R (x) − ϕ−

R (y)
)2

,

this yields

QR(ϕ−
R ) = 1

2

∫
Rn

∫
Rn

(
ϕ−

R (x) − ϕ−
R (y)

)2
K(x − y)dx dy −

∫
BR

f ′(u)|ϕ−
R |2 dx ≤ 0.

Since λR > 0, this means that ϕ−
R vanishes identically, and thus ϕR ≥ 0. Since K satisfies (5), ϕR is then continuous 

and positive in Rn. The above arguments also imply that the solution ϕR of (24) is unique, whence (1/cR)ϕR is 
actually independent of R > 0. Therefore, one can choose the constant cR > 0 so that ϕR(0) = 1. Then, by the Hölder 
regularity in (21) and the Harnack inequality in (H2), we have that, for a sequence (Rk)k∈N → +∞, the functions ϕRk

converge to a continuous function ϕ > 0 in Rn and satisfying (19). �
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