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Abstract

This paper is devoted to the study of large time bounds for the Sobolev norms of the solutions of the following fractional cubic 
Schrödinger equation on the torus:

i∂t u = |D|αu + |u|2u, u(0, ·) = u0,

where α is a real parameter. We show that, apart from the case α = 1, which corresponds to a half-wave equation with no dispersive 
property at all, solutions of this equation grow at a polynomial rate at most. We also address the case of the cubic and quadratic 
half-wave equations.
© 2016 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In the study of Hamiltonian partial differential equations, understanding the large time dynamics of solutions is 
an important issue. In usual cases, the conservation of the Hamiltonian along trajectories enables to control one 
Sobolev norm of the solution (in the so-called energy space), but when solutions are globally defined and regular, 
higher norms could grow despite the conservation laws, reflecting an energy transfer to high frequencies. Even for 
notorious equations, such as the nonlinear Schrödinger equation on manifolds, it is an old problem to know whether 
such instability occurs [3], and often still an open question.

Let us start for instance from the particular case of the defocusing Schrödinger equation on the torus of dimension 
one, with a cubic nonlinearity:

i∂tu = −∂2
xu + |u|2u, u(0, ·) = u0. (1)

Here, u is a function of time t ∈ R and of space variable x ∈ T, and u0 ∈ H 1(T). Equation (1) is Hamiltonian, 
and because of the energy conservation, its trajectories are bounded is H 1(T). But it is also well-known that (1) is 
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integrable (see [14,27]), with conservation laws ensuring that if u0 belongs to Hs(T) for some s ∈ N\{0}, then the 
solution u remains bounded in Hs (this is even true for any real s ≥ 1 [17]).

In order to track down large time instability for Hamiltonian systems, Majda, McLaughlin and Tabak [20] suggested 
to replace the Laplacian in (1) by a whole family of pseudo-differential operators: the operators |D|ρ (sometimes 
written as (

√−∂2
x )ρ ) for real ρ. Recall that if w =∑

k∈Z wke
ikx is a function on the torus, then

|D|ρw =
∑
k∈Z

|k|ρwke
ikx.

So we consider the following fractional Schrödinger equation:

i∂tu = |D|αu + |u|2u, u(0, ·) = u0, (2)

where α is any positive number. If α = 2, we recognize the classical Schrödinger equation (1). In the case α = 1, (2) is 
a non-dispersive equation, called the (defocusing) “half-wave” equation:

i∂tu = |D|u + |u|2u, u(0, ·) = u0. (3)

This half-wave equation has been studied by Gérard and Grellier in [9]. In particular, they show that the dynamics of 
(3) is related to the behaviour of the solutions of a toy model equation, called the cubic Szegő equation:

i∂tu = �+(|u|2u), u(0, ·) = u0, (4)

where �+ := 1D≥0 is the projection onto nonnegative Fourier modes. In a more precise way, equation (4) appears to 
be the completely resonant system of (3).

All the equations (2) derive from the Hamiltonian Hα(u) := 1
2 (|D|αu, u) + 1

4‖u‖4
L4 for the symplectic structure 

endowed by the form ω(u, v) = �m(u, v), where (u, v) := ∫
T

uv̄ denotes the standard inner product on L2(T). The 
functional Hα is therefore conserved along trajectories. Gauge invariance as well as translation invariance also imply 
the existence of two other conservation laws for equation (2):

Q(u) := 1

2
‖u‖2

L2

M(u) := (Du,u), where D := −i∂x,

i.e. the mass and the momentum respectively. Starting from these observations, it has been proved that for α = 1, 
equation (3) admits a globally defined flow in Hs with s ≥ 1

2 (see [9]). In the case of the half-wave equation, the 
Brezis–Gallouët inequality [4] also ensures that Hs -norms of solutions grow at most like eexp B|t |, for some constant 
B > 0 depending on s and on the initial data.

The question of the large time instability of global solutions of (2) thus naturally arises: is it possible to find smooth 
initial data whose corresponding orbits are not bounded in some Hs space, or at least not polynomially bounded?1

The cubic Szegő equation discloses this kind of instability, as recently shown in [10,11]: for generic smooth initial 
data, the corresponding solution of the Szegő equation in Hs is polynomially unbounded, for any s > 1

2 . Therefore it 
is reasonable to think that the same statement should hold for the half-wave equation (3), though such a result seems 
far beyond our reach at the current stage of the theory. Nevertheless the theorem we prove in this paper gives an a 
priori bound for all solutions of the half-wave equation:

Theorem 1. Let u0 ∈ C∞(T), and t �→ u(t) the solution of the half-wave equation (3) such that u(0) = u0. Given any 
integer n ≥ 0, we have

‖u(t)‖H 1+n ≤ CeB|t |2 , ∀t ∈ R, (5)

where B can be chosen as Bn‖u0‖8
H 1/2 with Bn > 0 depending only on n, and where C can be chosen to depend only 

on n and ‖u0‖H 1+n .

1 We say that a solution t �→ u(t) is polynomially bounded in Hs if there are positive constants C and A (not depending on time) such that for 
all t ∈ R, ‖u(t)‖Hs ≤ C(1 + |t |)A .
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The bound appearing in (5) is an improvement the “double exponential bound” mentioned above. But as a matter 
of fact, finding any explicit non-trivial solution of (2) is still an open problem, and nothing is known about the op-
timality of (5). Solution with rapidly growing Hs-norms could perfectly well exist. H. Xu [25] typically proved the 
existence of exponentially growing solutions for a perturbation of the Szegő equation. Also striking is the result of 
Hani–Pausader–Tzvetkov–Visciglia [15], in the context of the Schrödinger equation, as well as its recent counterpart 
in [26].

Notice that in the case of the Szegő equation, the best bound quantifying the growth of Sobolev norms of solutions 
is eB|t |: it was obtained by Gérard and Grellier in [8, section 3]. Hence (5) is likely to be improved, but recall that, 
as far as we know, the only way of proving the simple exponential bound for Szegő solutions makes use of the Lax 
pair structure associated with the equation. Elementary methods would only give an eB|t |2 bound (see Appendix A). 
Unfortunately, such a Lax pair structure apparently does not exist as regards the half-wave equation.

Even so, the proof of (5) in Theorem 1 suggests that we could get a simple exponential bound, instead of eB|t |2 , if 
we could deal with a less than cubic nonlinearity, say quadratic. Putting an L3-norm in the energy H1, instead of the 
L4 one, would give rise to a nonlinearity of the form |u|u, but the singularity at the origin may lead to solutions less 
regular than their initial data. It is possible to avoid this phenomenon by considering a system of two equations rather 
than a single scalar one :⎧⎨⎩

i∂tu1 = |D|u1 + u2u1,

i∂tu2 = |D|u2 + u2
1

2
,

(6)

with (u1, u2)|t=0 = (u0
1, u

0
2). System (6) only involves (analytic) quadratic nonlinearities. It happens that Schrödinger 

systems of that kind frequently appear in physics: they are closely linked with the SHG (Second-Harmonic Generation) 
theory in optics, and the study of propagation of solitons in so-called χ(2) (or quadratic) media or materials (for a 
review, see e.g. [19, section 4]). Quadratic systems are also relevant in fluid mechanics, to describe the interaction 
between long nonlinear waves in fluid flows [13]. From a mathematical point of view, the interest in quadratic systems 
is more recent [16].

In the case of system (6), we prove the following theorem:

Theorem 2. Let (u0
1, u

0
2) ∈ C∞(T) × C∞(T), and t �→ (u1(t), u2(t)) the solution of (6) such that (u1(0), u2(0)) =

(u0
1, u

0
2). Given any integer n ≥ 0, we have

‖u1(t)‖H 1+n , ‖u2(t)‖H 1+n ≤ CeB ′|t |, ∀t ∈ R, (7)

where B ′ can be chosen as B ′
n(‖u0

1‖2
H 1/2 + ‖u0

2‖2
H 1/2) with B ′

n > 0 depending only on n, and where C can be chosen 
to depend only on n and on the sum ‖u0

1‖H 1+n + ‖u0
2‖H 1+n .

Let us now return to equation (2). When α �= 1, (2) has dispersive properties. Using them for α > 1 and proving 
some Strichartz estimate for the operator e−it |D|α , Demirbas, Erdoğan and Tzirakis show in [7] that (2) is globally 
well-posed in the energy space H

α
2 (and even below), with a method relying on Bourgain’s high-low frequency 

decomposition.
Still for α > 1, a naive calculation leads to an exponential bound for Hs-norms of solutions, i.e. a bound of the 

form eA|t |. On the other hand, results such as Bourgain’s [2] or Staffilani’s [22] suggest that because of dispersion, 
solutions should be polynomially bounded. The polynomial growth of solutions of (2) for α > 1 is also announced to 
be true in [7]. Indeed we establish a theorem also involving (part of) the case α < 1:

Theorem 3. Let α ∈ ( 2
3 , 1) ∪ (1, 2), and u0 ∈ C∞(T). There exists a unique u ∈ C∞(R, C∞(T)) solution of (2) with 

u(0) = u0. Furthermore, this solution satisfies

‖u(t)‖Hα+n ≤ C1(1 + C2|t |)A, ∀t ∈ R, ∀n ∈N, (8)

where



512 J. Thirouin / Ann. I. H. Poincaré – AN 34 (2017) 509–531
A :=

⎧⎪⎪⎨⎪⎪⎩
2n + α

α − 1
when α ∈ (1,2),

2n(23α − 2)

(2α − 1)(3α − 2)
+ 10α

3α − 2
when α ∈ ( 2

3 ,1),

and C1 and C2 are positive constants.
In the case when α ∈ (1, 2), C1 depends only on ‖u0‖Hα+n , and C2 can be chosen as Cα,n‖u0‖κ

Hα/2 with κ :=
4 + α−1

2n+α
and Cα,n > 0 a constant which only depends on α and n.

Here again, it is not known whether (8) is optimal or not. Theorem 3, of course, does not prevent solutions of (2)
from large time blow-up, and proving that some of them go to infinity in a certain topology, even at a very low rate, 
would be a big step forward.

Combining Theorem 1 and 3 thus indicate that α = 1 is an isolate point in the family of equations (2). Notice that, 
when α < 1, Theorem 3 includes the existence of a flow, which had not been proved so far. As for the condition α > 2

3 , 
it appears to be convenient in the proof for technical reasons ; but since the heart of our work is to prove that the case 
α = 1 is more likely to disclose weak turbulence phenomena than other cases, we postpone discussions and comments 
concerning the relevance of the value 2

3 until Appendix B.
The proof of Theorems 1, 2 and 3 is based on an idea which appeared in [24] and was later developped by Ozawa 

and Visciglia in [21]: in this last paper, the authors use a modified energy method, in order to sharpen H 1-estimates 
and thus prove well-posedness for the half-wave equation with quartic nonlinearity. To put it shortly, the idea consists 
in introducing a nonlinear energy which is in fact a perturbation of the norm one wishes to bound. The perturbation 
does not modify the size of the norm, but induces simplifications while differentiating, so that time-differentiation 
behaves like an anti-self-adjoint operator.

In the sequel of this paper, we begin by proving Theorems 1, 2, and the first part of Theorem 3, which can be done 
by elementary means. Then we address the case of α < 1, using Bourgain spaces as in [1,5,6] — a theory which we 
fully develop for the convenience of the reader.

We were about to finish this paper when we were informed of a work by Planchon and Visciglia also applying the 
modified energy method to solutions of nonlinear Schrödinger equations on certain Riemaniann manifolds, and for 
every power nonlinearity.

2. The case α ≥ 1

Throughout this section, we suppose that α ∈ [1, 2). We fix u0 ∈ C∞(T), and we study t �→ u(t), the associated 
solution of (2) (or (3), depending on the value of α).

2.1. The modified energy method

Fix n ∈N. The following lemma gathers some standard inequalities of which we will make an extensive use.

Lemma 2.1. There exists an absolute constant C > 0, a constant Cα depending on α and a constant Cn depending on 
n such that, for every t ∈R,

(i) ‖u(t)‖Hα/2 ≤ C‖u0‖2
Hα/2 ,

(ii) if α > 1, ‖u(t)‖L∞ ≤ Cα‖u0‖2
Hα/2 ,

(iii) if α = 1, ‖u(t)‖L∞ ≤ Cn‖u0‖2
H 1/2

√√√√log

(
1 + ‖u(t)‖2

H 1+n

C2‖u0‖4
H 1/2

)
.

We justify briefly these inequalities: (i) derives from the conservation of Q +Hα together with the Sobolev em-
beddings in dimension one, and (ii) is a consequence of (i) and the injection Hα/2 ↪→ L∞. As for (iii), it follows from 
the classical Brezis–Gallouët inequality: for s > 1 , and w ∈ Hs(T),
2
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‖w‖L∞ ≤ Cs‖w‖H 1/2

[
log

(
1 + ‖w‖Hs

‖w‖H 1/2

)]1/2

(9)

(see e.g. [8]). Here, to infer (iii), we begin by squaring the ratio of the two norms, and we then take into account the 

fact that the function x �→ x

√
log(1 + 1

x2 ) is increasing.

To prove the estimates we have in mind, we are going to establish an inequality between the Hα+n-norm of the 
solution and its derivative, and apply a Gronwall lemma. As announced, we define for this purpose a well-chosen 
nonlinear functional2:

Eα,n(u) := ‖u‖2
L2 + ‖|D|α+nu‖2

L2 + 2�e(|D|α+nu, |D|n(|u|2u)) − 1
2‖|D| α

2 +n(|u|2)‖2
L2 . (10)

Roughly speaking, Eα,n is a perturbation of the square of the Hα+n-norm of u (the first two terms) by the means of 
two corrective quantities. First of all, let us show that the latter do not substantially modify the size of ‖u‖2

Hα+n . To 
turn this into a rigorous statement, we begin by restricting ourselves to intervals of time on which ‖u‖Hα+n is larger 
than a certain constant M depending on ‖u0‖Hα/2 , and we show that on such intervals,

1

2
‖u‖2

Hα+n ≤ Eα,n(u) ≤ 2‖u‖2
Hα+n, (11)

for a suitable choice of M which we precise later.
Set J1(u) := 2�e(|D|α+nu, |D|n(|u|2u)). We can write3

|J1(u)| � ‖|D|α+nu‖L2‖|D|n(|u|2u)‖L2

� ‖u‖Hα+n‖u‖2
L∞‖u‖Hn,

where we used the tame estimates for products in Hs , for s ≥ 0. Then interpolate Hn between Hα+n and Hα/2 (or 
just bound the L2-norm by a constant if n = 0), and using Lemma 2.1, get

|J1(u)| � ‖u‖2−εα,n

Hα+n ‖u0‖2εα,n

Hα/2‖u‖2
L∞, where εα,n := min

(
1,

2α

2n + α

)
.

On the other side, introducing J2(u) := −‖|D| α
2 +n(|u|2)‖2

L2 , we similarly obtain:

|J2(u)| � ‖u‖2
L∞‖u‖2

H
α
2 +n

� ‖u‖2−εα,n

Hα+n ‖u0‖2εα,n

Hα/2‖u‖2
L∞ .

In sight of (ii) and (iii), all these estimates show that J1(u) and J2(u) are of lower order than ‖u‖2
Hα+n . More precisely, 

if we now set, for real x,

gα(x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xεα,n/2 if α > 1,

xε1,n/2

log

(
1 + x2

C2‖u0‖4
H1/2

) if α = 1,

we see that it suffices to request for instance that gα(‖u‖Hα+n) � ‖u0‖4+2εα,n

Hα/2 , which holds true whenever ‖u‖Hα+n is 
greater than a certain M. As a conclusion, (11) is proved on intervals of the form [T ∗, T ] which satisfy

‖u(t)‖Hα+n ≥ M̃ := max{M,2‖u0‖Hα+n}, ∀t ∈ [T ∗, T ], and ‖u(T ∗)‖Hα+n = M̃.

Now we study the evolution of Eα,n(u) on [T ∗, T ]. As the L2-norm of u is conserved, we denote by J0(u) :=
‖|D|α+nu‖2

L2 , and compute at once:

d

dt
J0(u) = 2�e(|D|α+nu̇, |D|α+nu),

2 From now on, the time-dependence of the terms will always be implicit. In addition, we will always restrict ourselves to nonnegative times 
t ≥ 0, since it is possible to reverse the evolution of (2) via the transformation u(t) ↔ ū(−t).

3 The symbol � is understood as refering to constants depending only on n, or absolute constants, whose explicit form is not particularly 
meaningful.
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where the dot refers to the time-derivative, and commutes with |D|ρ for all ρ. According to equation (2), |D|αu =
iu̇ − |u|2u, so

d

dt
J0(u) = 2�m(|D|α+nu̇, |D|nu̇) − 2�e(|D|α+nu̇, |D|n(|u|2u)).

Because of the imaginary part, the first term of this sum is zero. As for the second one, it combines with the time-
derivative of J1(u), and we thus have

d

dt
[J0 + J1](u) = 2�e(|D|α+nu, |D|n(|u|2u)̇ )

= 2�e
(
∂n
x |D|αu, ∂n

x (u̇|u|2 + u[|u|2 ]̇ )
)

.

Applying Leibniz formula, we get three terms (or only two when n = 0) :

2�e(∂n
x |D|αu, (∂n

x u̇)|u|2)

+ 2�e

(
∂n
x |D|αu,

n∑
k=1

(
n

k

)
[(∂n−k

x u̇)∂k
x (|u|2) + (∂k

xu)∂n−k
x (|u|2)̇

)
+ 2�e(∂n

x |D|αu,u∂n
x (|u|2)̇ ).

Each of these terms has to be estimated. The first one and the third one are more tricky, since all the time- and 
space-derivative are concentrated on the same function.

First term: A simplification fortunately occurs. Rewrite

∂n
x |D|αu = i∂n

x u̇ − ∂n
x (|u|2u),

and observe that �e(i∂n
x u̇, (∂n

x u̇)|u|2) = 0. The first term then equals −2�e(∂n
x (|u|2u), (∂n

x u̇)|u|2). Let Q1 be this new 
quantity. Assuming that n ≥ 1, we can bound

|Q1|� ‖|u|2u‖Hn‖u‖2
L∞‖u̇‖Hn � ‖u‖4

L∞‖u‖Hn(‖u‖Hα+n + ‖u‖2
L∞‖u‖Hn).

Indeed, because of the equation, we have ‖u̇‖Hs � ‖u‖Hα+s + ‖u‖2
L∞‖u‖Hs for any s ≥ 0, so that ‖u̇‖Hn � ‖u‖Hα+n

(using again the property of the interval [T ∗, T ]). Hence |Q1| � ‖u‖2−εα,n

Hα+n ‖u0‖2εα,n

Hα/2‖u‖4
L∞ with the same εα,n as 

above (notice that it is true even if n = 0).
Second term: As announced, we suppose here that n ≥ 1, and fix a k ∈ {1, · · · , n}. We must estimate Q(k)

2 :=
2�e(∂n

x |D|αu, (∂n−k
x u̇)∂k

x (|u|2)). Using the Sobolev embedding H 1/4 ↪→ L4 as well as tame estimates again, write

|Q(k)
2 |� ‖∂n

x |D|αu‖L2‖∂n−k
x u̇‖L4‖∂k

x (|u|2)‖L4

� ‖u‖Hα+n‖u‖
H

α+n−k+ 1
4
‖u‖L∞‖u‖

H
k+ 1

4
.

Interpolate the Hs -norms between Hα/2 et Hα+n, and get finally

|Q(k)
2 | � ‖u‖2−θ(α,n)

Hα+n ‖u0‖2+2θ(α,n)

Hα/2 ‖u‖L∞,

where θ(α, n) := α−1
2n+α

.

In the same way, Q′ (k)
2 := 2�e(∂n

x |D|αu, (∂k
xu)∂n−k

x (|u|2)̇ ) can be proven to be controlled by the same quantity 
(with the same exponents).

Third term: This term is the most delicate. We have

2�e(∂n
x |D|αu,u∂n

x (|u|2)̇ ) = 2�e
(
ū∂n

x |D|αu, ∂n
x (|u|2)̇

)
� 2�e

(
∂n
x (ū|D|αu), ∂n

x (|u|2)̇
)

,

where the � sign means that the equality is true up to terms of order ‖u‖2−θ(α,n)

Hα+n ‖u0‖2+2θ(α,n)

Hα/2 ‖u‖L∞ (which we con-

trol in the same way as for the second term). Thus we would like to estimate Q3 := 2�e(|D|n(ū|D|αu), |D|n(|u|2)̇ ), 
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but as |u|2 is real, it appears, expanding the real part, that Q3 = (|D|n(ū|D|αu + u|D|αū), |D|n(|u|2)̇ ), which com-
bines with the time-derivative of J2(u), and finally leads to the following expression:(

|D|n [ū|D|αu + u|D|αū − |D|α(ūu)
]
, |D|n(|u|2)̇

)
. (12)

Now we have a very simple Leibniz lemma on the operator |D|α, which we will prove in section 2.2:

Lemma 2.2. Let α ∈ [1, 2). For any integer n ∈ N, there is a constant Cn > 0 depending only on n, such that for all 
function u ∈ Hα+n(T),

‖ū|D|αu + u|D|αū − |D|α(ūu)‖Hn ≤ Cn‖u‖1+ α−1
2n+α

Hα/2 ‖u‖1− α−1
2n+α

Hα+n .

Such a result is better than the crude L∞-Hα+n estimate, because of the exponent of the Hα+n-norm (which is strictly 
less than 1 as soon as α > 1).

Consequently, expression (12) is controlled by ‖u‖2−θ(α,n)

Hα+n ‖u0‖2+2θ(α,n)

Hα/2 ‖u‖L∞ as well. To sum up, only the second 
and the third term really matter, whence∣∣∣∣ d

dt
Eα,n(u)

∣∣∣∣� ‖u‖2−θ(α,n)

Hα+n ‖u0‖2+2θ(α,n)

Hα/2 ‖u‖L∞ .

First, assume α > 1. In this situation, we can incorporate the L∞-norm into the Hα/2 one (see (ii) of Lemma 2.1), 
so for t ∈ [T ∗, T ],∣∣∣∣∣∣

t∫
T ∗

d

dτ
Eα,n(u)dτ

∣∣∣∣∣∣≤
t∫

T ∗

∣∣∣∣ d

dτ
Eα,n(u)

∣∣∣∣dτ � ‖u0‖4+2θ(α,n)

Hα/2

t∫
T ∗

‖u(τ)‖2−θ(α,n)

Hα+n dτ.

Furthermore, remembering our estimates (11) on Eα,n(u),∣∣∣∣∣∣
t∫

T ∗

d

dτ
E(u)dτ

∣∣∣∣∣∣= |E(u)(t) − E(u)(T ∗)| ≥ 1

2
‖u(t)‖2

Hα+n − 2‖u(T ∗)‖2
Hα+n .

Let f (t) := ‖u(t)‖2
Hα+n . The above calculation ensures that for some Cα,n > 0 depending on α and n,

f (t) ≤ 4f (T ∗) + Cα,n‖u0‖4+2θ(α,n)

Hα/2

t∫
T ∗

f (τ)1− 1
2 θ(α,n)dτ.

Now θ(α, n) is positive. A “Gronwall’s lemma” argument (which is also known as “Osgood’s lemma”) thus proves 
that f (t) ≤ 4f (T ∗)(1 + C|t − T ∗|)A for t ∈ [T ∗, T ]. Notice that the value of f (T ∗), i.e. of M̃, only depends on 
the value of ‖u0‖Hα+n . Moreover, this inequality remains true even for t outside any interval of type [T ∗, T ], so it 
globally holds and the first part of Theorem 3 is proved. At last, the constant A can be set to 2

θ(α,n)
, i.e. 4n+2α

α−1 , which 
implies the statement.

It remains to consider the case α = 1. This time, θ(1, n) = 0 for any n, and in addition, the L∞-norm of u is not 
bounded by a constant anymore. Using part (iii) of Lemma 2.1, and going on as in the previous case with an auxiliary 
function g(t) = ‖u(t)‖2

H 1+n/C2‖u0‖4
H 1/2 , we find,

g(t) ≤ 4g(T ∗) + Cn‖u0‖4
H 1/2

t∫
T ∗

g(τ)
√

log(1 + g(τ))dτ,

for all t ∈ [T ∗, T ]. Osgood’s lemma then yields g(t) ≤ Cg(T ∗)eB|t |2 , and the proof of Theorem 1 is complete.
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2.2. A Leibniz lemma

We eventually turn to the

Proof of Lemma 2.2. Let u = ∑
k∈Z uke

ikx ∈ Hα+n(T). We intend to control the Hn-norm of Fα(u) := ū|D|αu +
u|D|αū − |D|α(ūu). A straightforward computation yields

Fα(u) =
+∞∑

k=−∞
eikx

( +∞∑
l=−∞

(|l|α + |k − l|α − |k|α)ulul−k

)
.

The key idea is to replace |l|α + |k − l|α − |k|α by a more symmetric coefficient, and then to recognize a convolution 
product. More precisely, define a continuous function ϕ of the real variable x ∈ R \ {0, 1} with

ϕ(x) := |x|α + |1 − x|α − 1

|x| α
2 |1 − x| α

2
,

and ϕ(0) = ϕ(1) = 0. For every l, k ∈ Z with k �= 0, we then have |l|α + |k − l|α − |k|α = ϕ( l
k
)|l| α

2 |k − l| α
2 , which is 

true even if k = 0, once we have assigned ϕ(±∞) = 2, by convention.
Now, to show that ϕ is bounded on R, it suffices to check that it is bounded near 0 and −∞, and then to invoke 

the symmetry of ϕ around x = 1
2 . And actually, since α ≤ 2, limx→0 ϕ(x) = 0 and limx→−∞ ϕ(x) = 2. Studying the 

variations of ϕ even show that ‖ϕ‖L∞(R) = 2, and hence is independent of α.
As a consequence,

+∞∑
k=−∞

|k|2n

∣∣∣∣∣
+∞∑

l=−∞
(|l|α + |k − l|α − |k|α)ulul−k

∣∣∣∣∣
2

≤ 2
+∞∑

k=−∞
|k|2n

∣∣∣∣∣
+∞∑

l=−∞
|l| α

2 |k − l| α
2 |ul ||ul−k|

∣∣∣∣∣
2

≤ 22n
+∞∑

k=−∞

⎡⎣∣∣∣∣∣
+∞∑

l=−∞
|l| α

2 +n|k − l| α
2 |ul ||ul−k|

∣∣∣∣∣
2

+
∣∣∣∣∣

+∞∑
l=−∞

|l| α
2 |k − l| α

2 +n|ul ||ul−k|
∣∣∣∣∣
2
⎤⎦ ,

because of the inequality |k|n ≤ 2n−1(|l|n + |k − l|n), satisfied for any n ≥ 1, any k and l.
When n = 0, the result is immediate, since

+∞∑
k=−∞

∣∣∣∣∣
+∞∑

l=−∞
|l| α

2 |k − l| α
2 |ul ||ul−k|

∣∣∣∣∣
2

=
∥∥∥∥∣∣∣|D| α

2 ũ

∣∣∣2∥∥∥∥2

L2
=
∥∥∥|D| α

2 ũ

∥∥∥4

L4
,

where ũ := ∑
k∈Z |uk|eikx . Using as always the embedding L4 ↪→ H 1/4, and interpolating between α/2 and α, we 

get the result.
From here on, we suppose n �= 0. We shall deal with the first part of the above sum (the last one follows identically). 

We consider two sequences v := (|l| α
2 +n|ul |)l∈Z and w := (|l| α

2 |u−l |)l∈Z. With these notations,

+∞∑
k=−∞

∣∣∣∣∣
+∞∑

l=−∞
|l| α

2 +n|k − l| α
2 |ul ||ul−k|

∣∣∣∣∣
2

= ‖v � w‖2
�2 .

By Schur’s lemma, ‖v � w‖�2 ≤ ‖v‖�2‖w‖�1 . But ‖v‖�2 ≤ ‖u‖ α +n . As for ‖w‖�1 , write

H 2
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+∞∑
k=−∞

|wk| =
∑

|k|≤N

|wk| +
∑

|k|>N

|wk|

≤
⎛⎝ ∑

|k|≤N

|wk|2
⎞⎠

1
2 √

2N + 1 +
⎛⎝ ∑

|k|>N

|wk|2(1 + |k|2)
⎞⎠

1
2
⎛⎝ ∑

|k|>N

1

1 + |k|2

⎞⎠
1
2

≤ √
2N + 1‖w‖�2 +

√
2

N
‖w‖h1 .

Taking the infimum over N ∈ N, we finally get ‖w‖�1 ≤ √‖w‖�2‖w‖h1 . In our case, ‖w‖�2 ≤ ‖u‖
H

α
2

, and similarly 
‖w‖h1 ≤ ‖u‖

H
α
2 +1 .

Now we can conclude:

‖Fα(u)‖2
Hn � ‖u‖2

H
α
2 +n

‖u‖
H

α
2
‖u‖

H
α
2 +1

� ‖u‖2
(

1+ α−1
2n+α

)
H

α
2

‖u‖2
(

1− α−1
2n+α

)
Hα+n ,

which corresponds to the statement. �
Remark 1. Lemma 2.2 probably takes the best advantage of the form of (12). There is still a kind of “virial” identity 
which holds for any value of α:

d

dt
|u|2 = i

(
u|D|αū − ū|D|αu

)
,

but the inequality ‖u|D|ū − ū|D|u‖L2 � ‖u‖H 1/2‖u‖H 1 , for instance, is false. As a counter-exemple, choose

uN(x) = 1√
logN

N∑
n=1

einx

n
,

and let N → +∞.

2.3. Quadratic half-wave equations

We come to the system of equations (6) and the proof of (7). To see the Hamiltonian structure of (6), choose 
L2(T) ×L2(T) as a phase space, endowed with the inner product 〈(u1, u2), (v1, v2)〉 := (u1, v1) + (u2, v2). Taking the 
imaginary part of 〈·, ·〉 as our symplectic form, we infer from a simple calculation that the Hamiltonian H̃(u1, u2) :=
1
2 [(|D|u1, u1) + (|D|u2, u2) +

∫
T

�e(u2
1u2)] is associated to the system (6).

Notice that the functional H̃ is invariant under the flow (u1, u2) �→ (eiθu1, e2iθ u2), with θ varying in R. It follows 
then from the Noether theorem that Q̃(u1, u2) := ‖u1‖2

L2 + 2‖u2‖2
L2 is a conservation law for the system (6). As a 

consequence, the L2-norms of u1, u2 stay bounded along the flow lines. In addition, the conservation of H̃ as well as 
Q̃ claims the uniform boundedness of ‖u1‖H 1/2 and ‖u2‖H 1/2 with respect to time.

Immediately, we get, for each n ≥ 0,

‖u1‖H 1+n,‖u2‖H 1+n � eB|t |2 ,
where B > 0 is independent of time: this follows from a straightforward application of inequality (iii) in Lemma 2.1. 
But now, set F(t) := (‖u1‖2

H 1+n + ‖u2‖2
H 1+n). Here we won’t repeat the details of section 2.1, but we suppose from 

the beginning that F is “big enough”, and we compute

d

dt

[
‖|D|1+nu1‖2

L2 + ‖|D|1+nu2‖2
L2

]
= 2�e

[
(|D|1+nu̇1, |D|1+nu1) + (|D|1+nu̇2, |D|1+nu2)

]
= −2�e

[
(|D|1+nu̇1, |D|n(u2u1)) +

(
|D|1+nu̇2, |D|n

(
u2

1

2

))]
.
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Then, correcting the initial quantity with terms of lower order than F(t), we rather estimate

A := 2�e
[
(|D|1+nu1, |D|n(u̇2u1 + u2u̇1)) +

(
|D|1+nu2, |D|n(u̇1u1)

)]
.

Now apply the Leibniz formula:

A = 2�e
[
(∂n

x |D|u1, (∂
n
x u̇2)u1) + (∂n

x |D|u2, (∂
n
x u̇1)u1)

]
+ 2�e

(
∂n
x |D|u1,

n−1∑
k=0

(
n

k

)
[(∂k

x u̇2)∂
n−k
x u1 + (∂n−k

x u2)∂
k
x u̇1

)

+ 2�e

(
∂n
x |D|u2,

n−1∑
k=0

(
n

k

)
(∂k

x u̇1)∂
n−k
x u1

)
+ 2�e(∂n

x |D|u1, u2∂
n
x u̇1). (13)

We aim at showing that each of these terms is controlled by F(t).
Exactly as before, we have a cancellation occuring in the first line of (13): replace u̇1 by i|D|u1, and u̇2 by i|D|u2

(here again the nonlinearities can be neglected), and observe that

2�m
[
(∂n

x |D|u1, (∂
n
x |D|u2)u1) + (∂n

x |D|u2, (∂
n
x |D|u1)u1)

]= 0.

Concerning the second and the third line of (13), straightforward Sobolev estimates and interpolation inequalities 
are enough to conclude.

As for the fourth line of (13), where all time- and space-derivatives concentrate on the same function, we need an 
equivalent of Lemma 2.2 for the operator |D|1/2, namely :

Lemma 2.3 (Kenig–Ponce–Vega, see [18]). For f, g : T → C, we have

‖f |D|sg + g|D|sf − |D|s(fg)‖Lp � ‖|D|s1f ‖Lp1 ‖|D|s2g‖Lp2 ,

provided that 0 < s < 1, s = s1 + s2 and s1, s2 ≥ 0, and on the other side, 1
p

= 1
p1

+ 1
p2

, with p, p1, p2 ∈ (1, +∞).

With this lemma, we can write

2�e(∂n
x |D|u1, u2∂

n
x u̇1) = 2�e(|D|1/2(∂n

x u1), (|D|1/2u2)∂
n
x u̇1) (14)

+ 2�e(|D|1/2(∂n
x u1), u2|D|1/2(∂n

x u̇1)) (15)

+ 2�e(|D|1/2(∂n
x u1), |D|1/2 [u2∂

n
x u̇1

]− (|D|1/2u2)∂
n
x u̇1 − u2|D|1/2(∂n

x u̇1)). (16)

We estimate separately

|(14)| � ‖|D|1/2∂n
x u1‖L4‖|D|1/2u2‖L4‖∂n

x u̇1‖L2

� ‖u1‖
H

3
4 +n

‖u2‖
H

3
4
‖u1‖H 1+n

� (‖u0
1‖2

H 1/2 + ‖u0
2‖2

H 1/2)F (t).

On the other hand, (15) can be rewritten as 2�e(|D|1/2(∂n
x u̇1)|D|1/2(∂n

x u1), u2), i.e.

d

dt

[
�e

(
(∂n

x |D|1/2u1)
2, u2

)]
− �e

(
(∂n

x |D|1/2u1)
2, u̇2

)
.

Thus, perturbing the initial quantity by a term of lower order than F(t), it is enough to control∣∣∣�e
(
(∂n

x |D|1/2u1)
2, |D|u2

)∣∣∣≤ ‖u1‖2

H
3
4 +n

‖u2‖H 1 � (‖u0
1‖2

H 1/2 + ‖u0
2‖2

H 1/2)F (t).

Eventually, using L4-L
4
3 duality, and Lemma 2.3 with s = 1

2 , s1 = 1
2 , s2 = 0, and p = 4

3 , p1 = 4, p2 = 2, we infer 
that

|(16)| � ‖|D|1/2∂n
x u1‖L4‖|D|1/2u2‖L4‖∂n

x u̇1‖L2 � (‖u0
1‖2

1/2 + ‖u0
2‖2

1/2)F (t),

H H
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as above.
To sum up, there exists a constant Cn depending only on n, such that, for all times t ∈ R, F(t) ≤ 4F(0) +

Cn(‖u0
1‖2

H 1/2 + ‖u0
2‖2

H 1/2) 
∫ t

0 F(s)ds, which means, by Gronwall’s lemma, that

F(t) ≤ 4F(0)e
Cn(‖u0

1‖2
H1/2 +‖u0

2‖2
H1/2 )|t |

.

This tells us that ‖u1‖H 1+n and ‖u2‖H 1+n grow at most exponentially, and Theorem 2 is proved.

3. Dispersion estimates and Bourgain spaces

We come back to equation (2) and to the end of the proof of Theorem 3. We have to deal now with the case when 
α < 1. In this case, the boundedness of the Hα/2-norm of the solutions is not enough to get a pointwise control of 
their L∞-norm. In other terms, we need to prove a Strichartz estimate for solutions of (2).

3.1. The Strichartz estimate

From now on, α is fixed, with 2
3 < α < 1. For u0 ∈ D ′(T) and t ∈R, denote by

S(t)u0 := e−it |D|αu0 =
+∞∑

k=−∞
û0(k)ei(kx−|k|αt),

the solution of the homogeneous equation i∂tu = |D|αu, with value u0 at time t = 0.
We are also going to use the Littlewood–Paley decomposition. For this purpose, let ψ be a nonnegative C∞ function 

on R+, such that ψ > 0 on 
[

1
2 + 1

10 ,2 − 1
10

]
and ψ ≡ 0 outside 

]
1
2 ,2

[
. Without loss of generality, we can assume 

that 
∑+∞

j=1 ψ(2−j x) ≡ 1 on [2, +∞). Let then u ∈ D ′(T), and N = 2j for some integer j ≥ 1. We define

�Nu := ψ

( |D|
N

)
u =

∑
|k|∈

[
N
2 ,2N

]ψ
( |k|

N

)
û(k)eikx,

and �1u := u − ∑
j≥1 �2j u. In the sequel, capital letters will always refer to dyadic integers, and we will use the 

simplified notation 
∑

N for a sum over all dyadic integers, starting from 1.
Let us recall a few facts about the Littlewood–Paley decomposition:

u =
∑
N

�Nu, (17)

‖u‖2
Hs �

∑
N

N2s‖�Nu‖2
L2, (18)

By the � sign, we just mean that the two quantities, as norms, are equivalent.
We can now state our Strichartz lemma:

Lemma 3.1 (Strichartz inequality). There exists a constant Cα > 0, depending on α, such that, for every u ∈ L2(T)

and every N = 2j ,

‖e−it |D|α�Nu‖L4((0,1)t ,L∞(T)) ≤ Cα‖u‖L2N
1
2 − α

4 . (19)

This lemma also has a non-localized version:

Corollary 3.2. For every γ > 1
2 − α

4 and every u ∈ Hγ (T), we have

‖e−it |D|αu‖L4((0,1)t ,L∞(T)) ≤ Cα,γ ‖u‖Hγ .
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Proof of the corollary. Using the triangle inequality, (19), and the Cauchy–Schwarz inequality, we can write that

‖e−it |D|αu‖L4L∞ =
∥∥∥∥∥∑

N

e−it |D|α�Nu

∥∥∥∥∥
L4L∞

≤
∑
N

‖e−it |D|α�Nu‖L4L∞ ≤ C
∑
N

N
1
2 − α

4 ‖�Nu‖L2

≤ C

(∑
N

N2γ ‖�Nu‖2
L2

) 1
2
(∑

N

N
−2

(
γ−( 1

2 − α
4 )
)) 1

2

≤ Cα,γ ‖u‖Hγ ,

where the last bound comes from (18). �
Proof of Lemma 3.1. To proove the Strichartz inequality, we proceed in a quite usual manner : we begin by showing 
a dispersion estimate, and to conclude, we apply a T T ∗-argument, combined with the Hardy–Littlewood–Sobolev 
inequality.

Let N = 2j , j ≥ 1, be a dyadic integer.4 For t ∈ R, we have

e−it |D|α�Nu(x) =
∑
k∈Z

�̂Nu(k)ei(kx−|k|αt)

=
∑
k∈Z

∫
T

ψ

( |k|
N

)
u(y)ei(k(x−y)−|k|αt)dy

=: (u ∗x κN)(x, t),

where κN stands for the following kernel:

κN(x, t) :=
∑
k∈Z

ψ

( |k|
N

)
ei(kx−|k|αt).

Our first step will be to estimate ‖κN(·, t)‖L∞(T) for fixed t ∈ (−1, 1), t �= 0. Applying the Poisson summation 
formula to the function Fx,t (y) := ψ(|y|/N)ei(yx−|y|αt), which is C∞ and compactly supported, we have

κN(x, t) =
∑
k∈Z

Fx,t (k) =
∑
n∈Z

F̂x,t (2πn) =
∑
n∈Z

∫
R

Nψ(|ξ |)ei
[
Nξ(x−2πn)−Nαt |ξ |α]dξ,

and to study ‖κN‖L∞ , we naturally restrict ourselves to x ∈ (−π, π].
The integrals above will be estimated by a stationnary phase result called the Van der Corput lemma (see [23]):

Lemma 3.3 (Van der Corput). Let ϕ, � :R → C be two smooth functions, with � compactly supported on R. Suppose 
in addition that there exists A > 0 such that |ϕ′′| ≥ A on supp(�). Then∣∣∣∣∣∣

∫
R

eiϕ(x)�(x)dx

∣∣∣∣∣∣≤ C√
A

∫
R

|� ′(x)|dx,

where C > 0 is an absolute constant.

In our case, the phase reads Nξ(x − 2πn) −Nαt |ξ |α , and we denote it by φn(ξ). Compute φ′
n(ξ) = N(x − 2πn) −

αNαtξ |ξ |α−2. In particular, φ′
n(ξ) = 0 if and only if

sgn(ξ) (N |ξ |)1−α = αt

x − 2πn
. (20)

Because of ψ cutting all frequences below 1
2 , and because of the condition 1 − α > 0, we have (N |ξ |)1−α ≥ 1 on 

supp(ψ), whereas |tα| ≤ 1. Furthermore, when n �= 0, |x − 2πn|−1 ≤ π−1: in that case, (20) cannot hold.

4 For N = 1, (19) holds trivially.
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So suppose first n �= 0. Then ‖φ′
n‖L∞(supp(ψ)) ≥ N |x − 2πn| − Nα21−α , and integrating by parts, it is easy to 

estimate the integral

In :=
∫
R

Nψ(|ξ |)eiφn(ξ)dξ =
∫
R

N
d

dξ

(
1

iφ′
n(ξ)

d

dξ

(
ψ(|ξ |)
iφ′

n(ξ)

))
eiφn(ξ)dξ.

Thus, we have |In| ≤ CN‖φ′
n‖−2

L∞‖ψ‖H 2 , where C is proportionnal to the size of supp(ψ). Finally, we sum on n:∣∣∣∣∣∣
∑
n�=0

In

∣∣∣∣∣∣≤ C

N

∑
n�=0

(
|x − 2πn| −

(
2

N

)1−α
)−2

≤ C

N

∑
n�=0

(2π |n| − π − 1)−2 ≤ C̃

N
, (21)

with C̃ just depending on ψ .
The only difficult part, then, is I0, because (20) could be satisfied. At this point, we apply Lemma 3.3, and calculate 

φ′′
0 (ξ) = α(1 − α)Nαt |ξ |α−2. It is clear that |φ′′

0 (ξ)| ≥ α(1 − α)Nα|t |22−α on supp(ψ), so we have

|I0| ≤ C
N1− α

2√|t | , (22)

where C > 0 is a constant depending on α and ψ .
So far, (21) and (22) show that there exists a constant C > 0, depending only on α and ψ , such that ‖κN(·, t)‖L∞ ≤

C|t |−1/2N1−α/2 for all t ∈ (−1, 1), t �= 0. In particular, for fixed t , considering S(t)�N as an operator mapping L1(T)

to L∞(T), we have

‖S(t)�N‖L1→L∞ ≤ C
N1− α

2√|t | . (23)

Now comes the T T ∗-argument. Define a linear operator T : u �→ S(t)�Nu. We want to prove that T maps L2(T)

into L4((0, 1)t , L∞(T)), as well as to bound its norm. To this end, we rather study the operator T T ∗, where T ∗ :
L4/3((0, 1)t , L1(T)) → L2(T) is (a restriction of) the adjoint of T . We can find T ∗ explicitely. Let g ∈ L4/3L1: for 
u ∈ L2(T),

∫∫
(0,1)×T

[S(t)�Nu(x)]g(t, x)dxdt =
⎛⎝u,

1∫
0

S(−s)�Ng(s, x)

⎞⎠
L2(T)

.

Thus, T T ∗(g)(t, x) = ∫ 1
0 �NS(t − s)�Ng(s, x)ds, and by (23), for all t ∈ (0, 1),

‖T T ∗(g)(t, ·)‖L∞(T) ≤ C

1∫
0

N1− α
2√|t − s| ‖g(s, ·)‖L1(T)ds.

In the integral of the left hand side, we recognize a convolution product between t �→ ‖g(t, ·)‖L1(T) and the function 
ω : t �→ |t |−1/2. The Hardy–Littlewood–Sobolev inequalities guarantee that the convolution with ω maps L4/3((0, 1)t )

to L4((0, 1)t ). In other terms, ‖T T ∗(g)‖L4L∞ ≤ CN1−α/2‖g‖L4/3L1 , which implies that the operator norm of T is 
bounded:

‖T ‖L2→L4((0,1)t ,L∞(T)) ≤ CN
1
2 − α

4 .

This finishes the proof of Lemma 3.1. �
Remark 2. Notice that the results of Lemma 19 and Corollary 3.2 remain true, with the same constants, when replacing 
(0, 1)t by any time interval of length 1. This follows from the fact that S(t) is an isometry in any Hs(T), s ≥ 0.
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3.2. Bourgain spaces and embedding results

The Strichartz estimate of Corollary 3.2 will enable us to prove the local well-posedness of equation (2) in a certain 
Hilbert space, usually called a Bourgain space, which we are now going to define.

Definition. Let u :R ×T → C, and s, b ∈R.

• We say that u ∈ Hs,b if for all t ∈ R, u(t) ∈ Hs(T), and if in addition, the function t �→ ‖u(t)‖Hs(T) belongs to 
Hb(R). Then, the norm ‖u‖Hs,b is just the Hb-norm of t �→ ‖u(t)‖Hs(T).

• We say that u ∈ Xs,b
α if the function v : (t, x) �→ S(−t)u(t, x) belongs to Hs,b. Then, we define ‖u‖

X
s,b
α

:=
‖v‖Hs,b = ‖S(−t)u(t, x)‖Hs,b .

The space Xs,b
α is called a Bourgain space. Explicitely,

‖u‖2
X

s,b
α

= 1

2π

∑
k∈Z

∫
R

(1 + |k|2)s(1 + |τ + |k|α|2)b|Fu(τ, k)|2dτ, (24)

where Fu(·, k) stands for the Fourier transform of û(·, k) with respect to time, i.e. the Fourier transform in both time-
and space-variables.

Bourgain spaces are very convenient for several reasons. Playing on the two exponents s and b, we begin by 
showing two embedding results:

Lemma 3.4. For any b > 1
4 , we have ‖u‖L4(Rt ,L2(T)) � ‖u‖

X
0,b
α

.

Proof. Assuming u ∈ X0,2b
α , write Fu(τ, k) = ∫

R
û(t, k)e−itτ dt , so by the inverse Fourier transform and the Cauchy–

Schwarz inequality (observing that 4b > 1),

|û(t, k)|2 =
∣∣∣∣∣∣ 1

2π

∫
R

Fu(τ, k)eitτ dτ

∣∣∣∣∣∣
2

≤ C

⎛⎝∫
R

|Fu(τ, k)|2(1 + |τ + |k|α|2)2bdτ

⎞⎠⎛⎝∫
R

dτ

(1 + |τ + |k|α|2)2b

⎞⎠ .

Summing over k ∈ Z, we find ‖u(t)‖2
L2(T)

≤ Cb‖u‖2
X

0,2b
α

, or equivalently ‖u‖L∞(Rt ,L2(T)) ≤ C‖u‖
X

0,2b
α

. But the equal-

ity ‖u‖L2(Rt ,L2(T)) = ‖u‖
X

0,0
α

also follows from (24) and the Parseval formula. Interpolating between these two 
statements gives the result. �

The following lemma is a consequence of the Strichartz inequality.

Lemma 3.5. For any b > 1
2 and γ > 1

2 − α
4 , we have ‖u‖L4(Rt ,L∞(T)) � ‖u‖

X
γ,b
α

.

Proof. Let u ∈ X
γ,b
α , and v := S(−t)u. Suppose at first that t �→ u(t, ·) is supported on an interval It of length 1. 

Thus it is possible to apply Corollary 3.2 directly : indeed,

‖u‖L4(Rt ,L∞) = ‖S(t)v‖L4(It ,L∞) =
∥∥∥∥∥∥S(t)

∫
R

v̂(τ )eitτ dτ

∥∥∥∥∥∥
L4(It ,L∞)

≤
∫
R

‖S(t)v̂(τ )‖L4(It ,L∞)dτ

≤ C

∫
‖v̂(τ )‖Hγ dτ ≤ C

⎛⎝∫
‖v̂(τ )‖2

Hγ (1 + |τ |2)bdτ

⎞⎠
1
2
⎛⎝∫

dτ

(1 + |τ |2)b

⎞⎠
1
2

≤ Cb‖v‖Hγ,b .
R R R
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Since ‖v‖Hγ,b = ‖u‖
X

γ,b
α

, this finishes the first part of the proof.
Now, we remove the special assumption on u. By simple construction, it is possible to find a function ϑ ∈

C∞
0 ((0, 1)), such that 0 ≤ ϑ ≤ 1 on R, and 

∑
n∈Z ϑ(t − n/2) = 1, for all t ∈ R. We have

‖u‖4
L4(Rt ,L∞(T))

=
∫
R

dt

∥∥∥∥∥∑
n∈Z

u(t, ·)ϑ
(
t − n

2

)∥∥∥∥∥
4

L∞(T)

≤
∫
R

dt

∣∣∣∣∣∑
n∈Z

ϑ
(
t − n

2

)
‖u(t, ·)‖L∞(T)

∣∣∣∣∣
4

=
∫
R

dt
∑
n1∈Z

n2,n3,n4∈{n1−1,n1,n1+1}

ϑ
(
t − n1

2

)
ϑ
(
t − n2

2

)
ϑ
(
t − n3

2

)
ϑ
(
t − n4

2

)
‖u(t, ·)‖4

L∞(T)

≤ C
∑
n1∈Z

∥∥∥ϑ (
t − n1

2

)
u(t, ·)

∥∥∥4

L4(Rt ,L∞(T))
,

thanks to the elementary inequality: abcd ≤ 1
4 (a4 + b4 + c4 + d4). To each term of the sum, we apply the first part of 

the proof, and we find, using the embedding �4(N) ↪→ �2(N):

‖u‖L4(Rt ,L∞(T)) �
(∑

n∈Z

∥∥∥ϑ (
t − n

2

)
S(−t)u(t, ·)

∥∥∥4

Hγ,b

) 1
4

�
(∑

n∈Z

∥∥∥ϑ (
t − n

2

)
S(−t)u(t, ·)

∥∥∥2

Hγ,b

) 1
2

� ‖S(−t)u(t, ·)‖Hγ,b .

The very last bound comes from the following classical lemma:

Lemma 3.6. For any b ∈ [0, 1], any function w ∈ Hb(R), any smooth ϑ as above, the following norms are equivalent:

‖w‖Hb(R) �
(∑

n∈Z
‖ϑ(· − n/2)w(·)‖2

Hb(R)

) 1
2

. �

3.3. The nonlinear estimate

To solve (2) locally in time, we need to introduce a restriction space. For T > 0, let Xs,b
α (T ) be the set of all 

functions u defined on [−T , T ] such that there exists a function ũ ∈ Xs,b
α with ũ|[−T ,T ] ≡ u. Endowed with the norm

‖u‖
X

s,b
α (T )

:= inf
{
‖ũ‖

X
s,b
α

∣∣∣ ũ ∈ Xs,b
α , ũ ≡ u on [−T ,T ]

}
,

Xs,b
α (T ) is a Banach space, so we can apply Picard’s fixed-point theorem in Xs,b

α (T ). From here on, we strictly follow 
the scheme of the proof of [5, Theorem 3].

Fix a function ϕ ∈ C∞
0 (R), such that ϕ(t) = 1 when |t | ≤ 1. Then for T ∈ (0, 1], a solution of (2) on the interval 

[−T , T ] is a fixed point of the application

K : u �−→ ϕ(t)S(t)u0 − iϕ
(

t
T

) t∫
0

S(t − s)
[
|u(s)|2u(s)

]
ds. (25)

Thanks to the definition of Bourgain spaces, estimating the first part of K is elementary: ‖ϕ(t)S(t)u0‖X
s,b
α

=
‖ϕ‖Hb(Rt )

‖u0‖Hs(T). All the difficulty lies in the nonlinear part, and we now turn to our central proposition.

Proposition 3.7. Let γ > 1
2 − α

4 , b > 1
2 , b′ > 1

4 such that b + b′ < 1. Then

‖u1u2u3‖
X

γ,−b′
α

≤ C‖u1‖X
γ,b
α

‖u2‖X
γ,b
α

‖u3‖X
γ,b
α

.
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Proof. We prove this proposition thanks to a duality argument. Since (Xσ,β
α )′ = X

−σ,−β
α for any σ , β ∈ R, it is 

sufficent to show that, for a given u0 ∈ X
−γ,b′
α , we have∣∣∣∣∣∣

∫
R×T

u1u2u3u0

∣∣∣∣∣∣≤ ‖u0‖
X

−γ,b′
α

3∏
j=1

‖uj‖X
γ,b
α

. (26)

In fact, we restrict the proof of (26) to the case of smooth functions uj , u0, with compact support in time — and then 
conclude by density of such functions. To start with, we introduce new functions w0, w1, w2, w3 by

Fwj(τ, k) := (1 + |k|2) γ
2 (1 + |τ + |k|α|2) b

2 Fuj (τ, k), for j ∈ {1,2,3},
Fw0(τ, k) := (1 + |k|2)− γ

2 (1 + |τ + |k|α|2) b′
2 Fu0(τ, k),

and we can replace the right hand side of (26) by ‖w0‖L2(R×T)

∏3
j=1 ‖wj‖L2(R×T).

To estalish (26), we perform a time- and space-localization. By L0, Lj , N0, Nj , we refer to dyadic integers, and 
L := (L0, L1, L2, L3) will concern time, whereas N := (N0, N1, N2, N3) will hint at space. Define, for j ∈ {1, 2, 3},

u
Lj Nj

j (t, x) := 1

2π

∑
|n|∈[Nj ,2Nj [

einx

∫
Lj ≤|τ+|n|α |<2Lj

(1 + |n|2)− γ
2 (1 + |τ + |n|α|2)− b

2 Fwj(τ,n)eitτ dτ,

u
L0N0
0 (t, x) := 1

2π

∑
|n|∈[N0,2N0[

einx

∫
L0≤|τ+|n|α |<2L0

(1 + |n|2) γ
2 (1 + |τ + |n|α|2)− b′

2 Fw0(τ, n)eitτ dτ.

A simple calculus shows that, for j ∈ {1, 2, 3} first,

‖uLj Nj

j ‖2
X

σ,β
α

= C
∑

|n|�Nj

∫
|τ+|n|α |�Lj

(1 + |n|2)σ−γ (1 + |τ + |n|α|2)β−b|Fwj(τ,n)|2dτ

� L
2(β−b)
j N

2(σ−γ )

j

∑
|n|�Nj

∫
|τ+|n|α |�Lj

|Fwj(τ,n)|2dτ

︸ ︷︷ ︸
=: cj (Lj ,Nj )2

,

where cj (Lj , Nj) satisfies 
∑

Lj

∑
Nj

cj (Lj , Nj)
2 ≤ ‖wj‖2

L2(R×T)
. (Here, and in all the sequel, the summation over 

Lj or Nj means the summation over all dyadic integers.) We have a similar result for uL0N0
0 , so finally, for any 

σ, β ∈ R,

‖uLj Nj

j ‖
X

σ,β
α

� L
β−b
j N

σ−γ

j cj (Lj ,Nj ), (27)

‖uL0N0
0 ‖

X
σ,β
α

� L
β−b′
0 N

σ+γ

0 c0(L0,N0). (28)

Now we are going to estimate

I (L,N) :=
∣∣∣∣∣∣
∫

R×T

u
L1N1
1 u

L2N2
2 u

L3N3
3 u

L0N0
0

∣∣∣∣∣∣ .
Notice that integrating on T implies that I (L, N) = 0 unless N0 ≤ 2(N1 + N2 + N3). From now on, we suppose that 
this condition is fulfilled. Moreover, the proof below does not take into account the precise role of the uj ’s, neither 
the conjugate bar, so we can assume that N1 ≥ N2 ≥ N3.

Using the Hölder inequalities, Lemmas 3.4 and 3.5, and finally (27) and (28), choosing any β ∈ ( 1
2 , b), β ′ ∈ ( 1

4 , b′), 
γ ′ ∈ ( 1 − α , γ ), we bound I (L, N):
2 4
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I (L,N) ≤ ‖uL1N1
1 ‖L4(Rt ,L2(T)) · ‖uL2N2

2 ‖L4(Rt ,L∞(T)) · ‖uL3N3
3 ‖L4(Rt ,L∞(T)) · ‖uL0N0

0 ‖L4(Rt ,L2(T))

≤ ‖uL1N1
1 ‖

X
0,β′
α

· ‖uL2N2
2 ‖

X
γ ′,β
α

· ‖uL3N3
3 ‖

X
γ ′,β
α

· ‖uL0N0
0 ‖

X
0,β′
α

≤ (L0L1)
β ′

(L2L3)
β

Lb′
0 (L1L2L3)b

(N2N3)
γ ′ N

γ

0

(N1N2N3)γ

3∏
j=0

cj (Lj ,Nj )

≤ L
−ε0
0 L

−ε1
1 (L2L3)

−ε′
(N2N3)

−η′
(

N0

N1

)γ 3∏
j=0

cj (Lj ,Nj ),

where ε0, ε1, ε′, η′ are some positive constants. Consequently, we can sum on L2, N2, L3, N3, making use of the 
bound cj (Lj , Nj) ≤ ‖wj‖L2(R×T) for j ∈ {2, 3}. Then, by Cauchy–Schwarz,

∑
L0,L1

∑
L2,N2,L3,N3

I (L,N) �
(

N0

N1

)γ

‖w2‖L2‖w3‖L2

⎛⎝∑
L0

c0(L0,N0)L
−ε0
0

⎞⎠⎛⎝∑
L1

c1(L1,N1)L
−ε1
1

⎞⎠
�
(

N0

N1

)γ

K0(N0)
1
2 K1(N1)

1
2 ‖w2‖L2‖w3‖L2,

introducing Kj(Nj ) := ∑
Lj

cj (Lj , Nj)
2 for j ∈ {0, 1}. It remains to sum on N0, N1, remembering that N0 ≤ 6N1, 

and using Cauchy–Schwarz again:

∑
L,N

I (L,N) �
+∞∑

�=−3

∑
N0

(
N0

2�N0

)γ

K0(N0)
1
2 K1(2

�N0)
1
2 ‖w2‖L2‖w3‖L2

�
+∞∑

�=−3

2−γ �

⎛⎝∑
N0

K0(N0)

⎞⎠
1
2
⎛⎝∑

N0

K1(2
�N0)

⎞⎠
1
2

‖w2‖L2‖w3‖L2

� ‖w0‖L2‖w1‖L2‖w2‖L2‖w3‖L2 .

Hence (26) is proven, and so is Proposition 3.7. �
Remark 3. The condition b + b′ < 1 has not been used in the proof, except for the fact that b′ < b ; but it will be 
crucial in the next proposition.

3.4. Local and global well-posedness

We are now ready to state our

Proposition 3.8. Let γ > 1
2 − α

4 and 1
2 < b < 1. If u0 ∈ Hγ (T), there exists T0 > 0, depending only on ‖u0‖Hγ , 

such that the problem (2) admits a unique solution u ∈ X
γ,b
α (T ) for all T ≤ T0. This solution satisfies ‖u‖

X
γ,b
α (T )

≤
C‖u0‖Hγ (T), where C > 0 is an absolute constant.

If in addition u0 belongs to Hs(T) for some s > γ , then u(t) ∈ Hs(T) for all t ∈ [−T0, T0].

Proof. We intend to show that the functional K, defined in (25), is a contraction in some ball of the space Xγ,b
α (T ), 

for well-chosen T .
Since the first part of K has been previously bounded, we turn to

M2(u) :=
∥∥∥∥∥∥ϕ (

t
T

) t∫
0

S(t − s)
[
|u(s)|2u(s)

]
ds

∥∥∥∥∥∥
γ,b

=
∥∥∥∥∥∥ϕ (

t
T

) t∫
0

S(−s)
[
|u(s)|2u(s)

]
ds

∥∥∥∥∥∥
γ,b

.

Xα (T ) H
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Here, we take advantage of the regularizing property of time-integration. Let U ∈ C∞
0 (R ×T), and b, b′ as in Propo-

sition 3.7. Set G(t, x) := ϕ
(

t
T

) ∫ t

0 U(s, x)ds. For fixed k ∈ Z, a lemma of Ginibre [12, lemma (3.11)] guarantees 
that

‖Ĝ(t, k)‖Hb(Rt )
=
∥∥∥∥∥∥ϕ (

t
T

) t∫
0

Û (s, k)ds

∥∥∥∥∥∥
Hb(Rt )

� T 1−b−b′ ‖Û(t, k)‖
H−b′

(Rt )
,

with an implicit constant which only depends on ϕ, b, b′. Squaring this identity, we find∫
R

(1 + |τ |2)b|F(G)(τ, k)|2dτ � T 1−b−b′
∫
R

(1 + |τ |2)−b′ |F(U)(τ, k)|2dτ.

Eventually, multiply by (1 + |k|2)γ and sum over k to get ‖G‖Hγ,b � T 1−b−b′ ‖U‖
Hγ,−b′ , which remains true, by 

approximation, for less regular functions.
As a consequence,

M2(u) � T 1−b−b′ ‖S(−t)
[
|u(t)|2u(t)

]
‖
Hγ,−b′ = T 1−b−b′ ‖|u|2u‖

X
γ,−b′
α

� T 1−b−b′ ‖u‖3
X

γ,b
α

,

by Proposition 3.7. This calculation is valid for any ũ ∈ X
γ,b
α such that ũ = u on [−T , T ]. Thus, we proved that

‖K(u)‖
X

γ,b
α (T )

≤ ‖ϕ‖Hb(Rt )
‖u0‖Hγ (T) + CT 1−b−b′ ‖u‖3

X
γ,b
α (T )

. (29)

So K stabilizes the ball B centered at the origin, of radius C̃‖u0‖Hγ (for some arbitrary C̃ > ‖ϕ‖Hb(Rt )
), provided 

that T ≤ T0 with

T0 :=
(

C̃ − ‖ϕ‖Hb(Rt )

C̃3C‖u0‖2
Hγ

) 1
1−b−b′

.

Reasoning in the same way, by means of the identity

|u|2u − |v|2v = u(u − v)u + (u − v)v̄(u + v),

we show that for T ≤ T0,5 there exists a positive constant c < 1 such that ‖K(u) − K(v)‖
X

γ,b
α (T )

≤ c‖u − v‖
X

γ,b
α (T )

for all u, v ∈ B . Hence K : B → B is a contraction, and has a fixed point, also called u. Since u ∈ B , we have 
‖u‖

X
γ,b
α (T )

≤ C̃‖u0‖Hγ (T).

To prove the uniqueness of u, notice first, in view of (29), that any other fixed point of K in Xγ,b
α (T ), as a function of 

some Xγ,b
α (T̃ ) for some smaller T̃ ≤ T , lies in the ball centered at 0 and of radius C̃‖u0‖Hγ , so equals u in that space, 

by unicity of the fixed point. Now let v ∈ X
γ,b
α (T ) be another solution of (2). Observe that, because b > 1

2 , both u and 
v are continuous functions from [−T , T ] to Hγ (T). Define T1 := sup{t ∈ [0, T ] | u(t) = v(t)}, and suppose T1 < T . 
Then, translating time, and restarting the equation with u(T1) = v(T1) as an initial data, we get a contradiction, by the 
previous remark.

Finally, if u0 ∈ Hs(T) for s > γ , and if u is the associated solution in Xγ,b
α (T0), let us show that u(t) ∈ Hs(T) for 

all |t | ≤ T0. It is crucial to see, modifying slightly the proof of Proposition 3.7, that whenever s > γ > 1
2 − α

4 , and b, 
b′ as above,

‖u1u2u3‖
X

s,−b′
α

≤ C

3∑
j=1

⎛⎝‖uj‖X
s,b
α

∏
k �=j

‖uk‖X
γ,b
α

⎞⎠ .

Given ũ in the intersection of the ball of radius C̃‖u0‖Hs in the space Xs,b
α (T ), and of the ball of radius C′‖u0‖Hγ in 

the space Xγ,b
α (T0), (29) becomes, for T ≤ T0:

5 Or possibly a fixed fraction of T0.
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‖K(ũ)‖
X

s,b
α (T )

≤ ‖ϕ‖Hb(Rt )
‖u0‖Hs(T) + CT 1−b−b′ ‖ũ‖2

X
γ,b
α (T )

‖ũ‖
X

s,b
α (T )

≤
(
‖ϕ‖Hb(Rt )

+ CC̃C′ 2T 1−b−b′ ‖u0‖2
Hγ (T)

)
‖u0‖Hs(T).

This shows that if T is chosen small enough, regardless of the size of ‖u0‖Hs , K stabilizes the set we described above. 
The same can be done while estimating ‖K(u) −K(v)‖

X
s,b
α (T )

, and K therefore has a fixed point ũ in some Xs,b
α (T ). 

Obviously, since Xs,b
α (T ) ↪→ X

γ,b
α (T ), we have ũ ≡ u on [−T , T ]. Repeating this argument after translating time and 

restarting the equation from ũ(T ) = u(T ), the claim is proved. �
The next corollary follows as an immediate consequence, and uses explicitly the condition α > 2

3 :

Corollary 3.9. Let u0 ∈ C∞(T). Then (2) admits a unique global solution u ∈ C(R, C∞(T)).
Besides, let b ∈ ( 1

2 , 1). For any γ ∈ ( 1
2 − α

4 , α2 ], there exists T (γ )

0 , Cγ > 0, such that for any t ∈R,

‖u(· − t)‖
X

γ,b
α (T

(γ )

0 )
≤ Cγ ‖u0‖Hγ (T). (30)

Proof. It suffices to notice that

α > 2
3 ⇐⇒ 1

2 − α
4 < α

2 ,

so there exists T0 > 0, only depending on ‖u0‖Hα/2 , such that (2) can be solved locally in Xα/2,b
α (T0). But the energy 

Hα and the mass Q are conserved along the trajectory, so ‖u(t)‖Hα/2 remains bounded by 2(Hα + Q)(u0). This 
proves that the solution is global, and we have u(t) ∈ C∞(T) for all t ∈ R because of the second part of the previous 
proposition. (30) also follows. �
3.5. End of the proof of Theorem 3

All the needed results are gathered: now we can study the growth of the Sobolev norms of the solutions of (2) for 
α ∈ ( 2

3 , 1).
We begin with the Hα-norm, introducing as in (10) the modified energy:

Eα(u) := ‖u‖2
L2 + ‖|D|αu‖2

L2 + 2�e(|D|αu, |u|2u)︸ ︷︷ ︸
=:J1(u)

− 1
2 (|D|α(|u|2), |u|2)︸ ︷︷ ︸

=:J2(u)

,

when u is a solution of (2). J1 and J2 are of lower order than ‖u‖2
Hα , so that when ‖u‖Hα is big enough, arguing as in 

section 2.1, we have 1
2‖u‖2

Hα ≤ Eα(u) ≤ 2‖u‖2
Hα .

Let us study the evolution of Eα(u). The L2-norm is conserved, so we directly pass on to

d

dt
‖|D|αu‖2

L2 = 2�e(|D|αu̇, |D|αu) = −2�e(|D|αu̇, |u|2u).

This combines with the derivative of J1(u), and gives rise to two terms:

d

dt
[ ‖|D|αu‖2

L2 + J1(u)] = 2�e(|D|αu, u̇|u|2) + 2�e(|D|αu,u(|u|2)̇ ) =: Q1(u) + Q2(u).

Thanks to the equation, a simplification occurs: Q1(u) = −2�m(|D|αu, |u|4u). The Sobolev embedding H 2/5 ↪→ L10

and interpolation between Hα/2 and Hα then allows to bound

|Q1(u)| � ‖u‖2−ε
Hα , where ε := 6

α

(
α − 2

3

)
> 0.

On the other hand, Q2(u) combines with the derivative of J2(u):

Q2(u) + d
dt

J2(u) = (ū|D|αu + u|D|αū − |D|α(ūu), (|u|2)̇ ).

Since (|u|2)̇ = i(u|D|αū− ū|D|αu), we bound ‖(|u|2)̇ ‖L2 � ‖u‖L∞‖u‖Hα . As for the other side of the scalar product, 
we appeal to Lemma 2.3, since α < 1:
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‖ū|D|αu + u|D|αū − |D|α(ūu)‖L2 � ‖|D| α
2 u‖2

L4 .

At this point, we have a Gagliardo–Nirenberg inequality:

Lemma 3.10. For any p > 2, s > 0, there exists C > 0 such that

‖|D|sf ‖Lp ≤ C

(
‖f ‖L∞ +

∥∥∥|D|s p
2 f

∥∥∥ 2
p

L2
‖f ‖1− 2

p

L∞

)
,

for every function f : T → R.

Choose a real γ ∈ ( 1
2 − α

4 , α2 ), for instance γ = 2+α
8 , and apply Lemma 3.10 with f = |D| α

2 −γ u, p = 4 and s = γ . 
Thus

‖|D| α
2 u‖2

L4 � ‖|D| α
2 +γ u‖L2‖|D| α

2 −γ u‖L∞

— the other terms can be neglected.
All these calculations lead to the following fact: there exists a small θ > 0 (which can be chosen to be 3α−2

8α
), and 

constants C1, C2 > 0 such that for all t ∈R,

‖u(t)‖2
Hα ≤ C1‖u0‖2

Hα + C2

t∫
0

‖u(τ)‖2−2θ
Hα ‖u(τ)‖L∞‖|D| α

2 −γ u(τ)‖L∞dτ.

Denoting by f (t) the right hand side of this inequality, and assuming that t ≥ 0 without loss of generality, this implies 
that

f (t)θ − f (0)θ =
t∫

0

f ′(τ )dτ

f (τ)1−θ

≤ C2

t∫
0

‖u(τ)‖L∞‖|D| α
2 −γ u(τ)‖L∞dτ

≤ C2
√

t · ‖u‖L4([0,t],L∞)‖|D| α
2 −γ u‖L4([0,t],L∞)

≤ C2
√

t

⎛⎜⎜⎝
� t

T
(γ )
0

�∑
k=0

‖u(· − kT
(γ )

0 )‖
X

γ,b
α (T

(γ )

0 )

⎞⎟⎟⎠
⎛⎜⎜⎝

� t

T
(α/2)
0

�∑
k=0

‖u(· − kT
(α/2)

0 )‖
X

α
2 ,b

α (T
(α/2)
0 )

⎞⎟⎟⎠
≤ C2Cγ Cα

2
‖u0‖Hγ ‖u0‖

H
α
2

√
t

(⌈
t

T
(γ )

0

⌉
+ 1

)
·
(⌈

t

T
(α/2)

0

⌉
+ 1

)
,

where we fixed a real b ∈ ( 1
2 , 1), and used the localized version of Lemma 3.5, as well as (30). This achieves to show 

that the Hα-norm of the solution of (2) grows at most polynomially, with the power of t being less than 5
4θ

, hence 
than 10α

3α−2 .
The end of the proof crucially relies on this first step. Indeed, to estimate the evolution of the Hα+n-norm of u, with 

n ≥ 1, we follow exactly the same scheme as for the proof of Theorems 1 and 3 in section 2.1. Each time the L∞-norm 
of u appears, we bound it by ‖u‖Hα (recall that α > 1

2 ). Besides, we do not interpolate the Hs-norms between Hα/2

and Hα+n anymore, but between Hα and Hα+n.
The only difference is that we need a new (and, to some extent, rougher) version of Lemma 2.2:

Lemma 3.11. Let 1
2 < α < 1. For any integer n ≥ 1, there is a constant Cn > 0 (independent of α) such that for all 

function u ∈ Hα+n(T),

‖ū|D|αu + u|D|αū − |D|α(ūu)‖Hn ≤ C‖u‖1+ 1
n
(α− 1

2 )

Hα ‖u‖1− 1
n
(α− 1

2 )

Hα+n .
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Proof. Denote by L the left hand side of the inequality we intend to prove. Writing u = ∑
k∈Z uke

ikx , we clearly 
have

L2 =
+∞∑

k=−∞
|k|2n

∣∣∣∣∣
+∞∑

l=−∞
(|l|α + |k − l|α − |k|α)ulul−k

∣∣∣∣∣
2

�
+∞∑

k=−∞

⎡⎣∣∣∣∣∣
+∞∑

l=−∞
|l|n|k − l|α|ul ||ul−k|

∣∣∣∣∣
2

+
∣∣∣∣∣

+∞∑
l=−∞

|l|α|k − l|n|ul ||ul−k|
∣∣∣∣∣
2
⎤⎦ ,

where we used the elementary inequality |k|n ≤ 2n−1(|l|n + |k − l|n) and the triangle inequality associated to the con-
cave function x �→ xα on R+. Now, define ũ :=∑

k∈Z |uk|eikx , so that L � ‖|D|nũ · |D|αũ‖L2 � ‖u‖Hn+1/4‖u‖Hα+1/4 . 
Interpolating these norms between Hα and Hα+n leads to the result. �

All of this proves that there exists a small θ ′ > 0, and constants C1, C2 > 0 such that for all t ∈ R,

‖u(t)‖2
Hα+n ≤ C1‖u0‖2

Hα+n + C2

t∫
0

‖u(τ)‖2−2θ ′
Hα+n ‖u(τ)‖2+2θ ′

Hα dτ.

This holds with θ ′ = 1
2n

(α − 1
2 ). On the other hand, we know that for some A > 0, ‖u(τ)‖Hα � (1 + |τ |)A for all 

τ ∈ R. By Osgood’s lemma, Theorem 3 is then fully established.

Conflict of interest statement

No conflict.

Acknowledgements

The author would like to express his gratitude towards P. Gérard for his deep insight and generous advice. He also 
thanks J.-C. Saut for the references concerning quadratic medias, and an anonymous referee for careful reading as 
well as valuable comments.

Appendix A. Growth of Sobolev norms for the Szegő equation: an elementary bound

Let u0 ∈ C∞(T) with only nonnegative frequencies (which we denote by u0 ∈ C∞+ (T)), and consider t �→ u(t, x)

the solution of the cubic Szegő equation (4) starting from u0 at time t = 0: u satisfies i∂tu = �+(|u|2u), and for 
all t ∈ R, u(t) also belongs6 to C∞+ (T). The purpose of this section is to give an elementary proof of the following 
estimate, which is the counterpart of Theorem 1:

Proposition 3.12. For all n ∈N, there exist positive constants C and B such that

‖u(t)‖H 1+n ≤ CeB|t |2 . (31)

C is a constant depending on n and ‖u0‖H 1+n , whereas B can be chosen equal to Bn‖u0‖8
H 1/2 (here, Bn depends only 

on n, not on the considered solution).

We recall here that, though (31) is not the best bound available, it is the best one we can prove without resorting to 
the Lax pair formalism. The proof below only relies on the boundedness of trajectories in the space H 1/2(T) (which 
is due to the conservation of mass and momentum). It also uses a standard fact about Hankel operators.

6 All the claims in this section come from [8] and are proven there.
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Definition. Let v ∈ H
1/2
+ (T) (i.e. v has vanishing negative frequencies). The Hankel operator of symbol v is the 

following C-antilinear operator:

Hv :
{

L2+(T) −→ L2+(T)

h �−→ �+(vh̄).

Proposition 3.13. For h ∈ L2+(T), we have ‖Hv(h)‖L2 ≤ ‖v‖H 1/2‖h‖L2 .

Proof. Expand h =∑
k≥0 hke

ikx and v =∑
k≥0 vke

ikx . With these notations,

�+(vh̄) =
∑
k≥0

eikx

⎛⎝∑
l≥k

vlhl−k

⎞⎠ .

A simple application of the Cauchy–Schwarz inequality gives

‖�+(vh̄)‖2
L2 ≤

∑
k≥0

⎛⎝∑
l≥0

|vl+k|2
⎞⎠⎛⎝∑

l≥0

|hl |2
⎞⎠= ‖h‖2

L2

∑
k̃≥0

(1 + k̃)|v
k̃
|2,

which is the yielded result. �
Since the embedding H 1/2(T) ↪→ L∞(T) fails, Proposition 3.13 is an improvement of the standard L∞–L2 esti-

mate of a product in L2, similarly to Lemma 2.2. It is the key of the

Proof of Proposition 3.12. We compute, for n ≥ 0,

d

dt
‖∂1+n

x u‖2
L2 = 2�e(∂1+n

x u̇, ∂1+n
x u) = 2�m(∂1+n

x (|u|2u), ∂1+n
x u).

The last equality comes from the equation, and the fact that the frequencies of u are nonnegative (so we get rid of �+
here). Then, using Leibniz rule, we expand ∂1+n

x (|u|2u) = |u|2∂1+n
x u +∑n

k=1

(1+n
k

)
(∂k

x |u|2)(∂1+n−k
x u) + u∂1+n

x |u|2. 
The first term cancels because of the imaginary part, and the “crossed terms” are easily estimated thanks to Sobolev 
injections and interpolation inequalities, as in the proof of Theorem 1. As for the last term, we have

(u∂1+n
x |u|2, ∂1+n

x u) = (�+(u∂1+n
x |u|2), ∂1+n

x u) = (Hu(∂
1+n
x |u|2), ∂1+n

x u),

because |u|2 is real. So, by Proposition 3.13, and then inequality (9),

d

dt
‖u‖2

H 1+n � ‖u‖2
H 1+n‖u‖H 1/2‖u‖L∞ � ‖u‖2

H 1+n‖u‖2
H 1/2

√
log(1 + ‖u‖2

H 1+n),

and the proof is complete, once we have recalled that ‖u‖H 1/2 ≤ C0‖u0‖2
H 1/2 . �

Appendix B. Some comments on the threshold α = 2
3

In this section, we discuss the bound α = 2
3 that naturally appears in the proof of Theorem 3.

The crucial point, in the proof above, is to know which Strichartz estimate we are able to establish. In particular, 
following the strategy of [5], we would like to know for which values of the parameter γ the inequality

‖e−it |D|αu(x)‖L4
(
(0,1)t ,L4(Tx)

) ≤ C‖u‖Hγ (32)

holds, whenever u ∈ Hγ (T). If true, (32) would imply that equation (2) is well-posed in Hα/2, provided that 2γ < α
2 , 

and we could then adapt the arguments we develop in section 3.5 to prove that solutions are polynomially bounded.
Looking back at (19), and interpolating the L4((0, 1)t , L∞(Tx)) estimate we obtained with the trivial L∞((0, 1)t ,

L2(Tx)) one, we find a bound for ‖e−it |D|αu(x)‖L8
(
(0,1)t ,L4(Tx)

), so (32) is proved with γ = 1
4 − α

8 . The condition 

2γ < α exactly means that α > 2 .
2 3
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However, scaling heuristics suggest that the natural value of γ should rather be γ0 := 1
4 − α

4 . Here, the condition 
2γ0 < α

2 would enable us to extend the conclusions of Theorem 3 until α = 1
2 .

In [7], by a different method, Demirbas, Erdoğan and Tzirakis also prove a Strichartz estimate in the case α > 1, 
but their result corresponds to ours (notice that in their work, they use other notations: what they call α is in fact half 
ours).

So far, we don’t know if (32) can be proved with γ = γ0. Usual counter-examples (such as localized functions) 
only confirm that the scaling exponent γ0 is the best we can hope. Besides, the difficulty is not due to the particular 
framework of the torus, since when α < 1 the speed of propagation of the waves (i.e. the group velocity) is finite 
anyway.
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