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Abstract

A general bilinear optimal control problem subject to an infinite-dimensional state equation is considered. Polynomial ap-
proximations of the associated value function are derived around the steady state by repeated formal differentiation of the 
Hamilton–Jacobi–Bellman equation. The terms of the approximations are described by multilinear forms, which can be obtained 
as solutions to generalized Lyapunov equations with recursively defined right-hand sides. They form the basis for defining a sub-
optimal feedback law. The approximation properties of this feedback law are investigated. An application to the optimal control of 
a Fokker–Planck equation is also provided.
© 2019 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In this article, we consider the following bilinear optimal control problem:

inf
u∈L2(0,∞;Rm)

J (u, y0) := 1

2

∞∫
0

‖y(t)‖2
Y dt + α

2

∞∫
0

‖u(t)‖2
Rm dt, (1)

where:

{ d
dt

y(t) = Ay(t) +∑m
j=1(Njy(t) + Bj )uj (t), for t > 0

y(0) = y0.
(2)
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Here, V ⊂ Y ⊂ V ∗ is a Gelfand triple of real Hilbert spaces, y0 ∈ Y , A : D(A) ⊂ Y → Y is the infinitesimal generator 
of an analytic C0-semigroup eAt on Y , Nj ∈ L(V , Y), Bj ∈ Y , and α > 0. Additional assumptions on the system, in 
particular a stabilizability assumption, will be made in subsections 2.1 and 3.2. The goal pursued with problem (1) is 
the stabilization of the dynamical system (2) around the steady state 0 when a perturbation y0 is applied. We denote 
by V the associated value function: for y0 ∈ Y , V(y0) is the value of problem (1) with initial condition y0.

Rather than investigating this problem as a mathematical programming problem, which associates an optimal open-
loop control with a given initial value y0, we take the perspective of designing an optimal feedback law. The design 
of an optimal feedback law is intimately related to the computation of the value function V , which is in general 
a very difficult task, since y takes values in an infinite-dimensional space. Even after discretization, the computa-
tion time needed for obtaining V usually increases exponentially with the dimension of the discretized state space, 
a phenomenon known as the curse of dimensionality, see, e.g., [8, Preface] and [6, Appendix A]. Nonetheless, the 
computation of a feedback law, rather than an open-loop control, is particularly relevant in the context of stabilization 
problems.

The goal of this article is to construct a Taylor approximation of the value function at the origin, and to derive 
from this approximation a feedback law which generates good open-loop controls for small values of y0. We begin by 
proving the existence of a sequence of multilinear forms Tk : Y k → R such that for any p ≥ 2,

Vp(y) :=
p∑

k=2

1

k!Tk(y, ..., y)

is a polynomial approximation of order p + 1 of the value function V in the neighborhood of 0, that is to say,

V(y) − Vp(y) =O(‖y‖p+1
Y ). (3)

The sequence (Tk)k≥2 is constructed by induction. The bilinear mapping T2 is the solution to an algebraic operator 
Riccati equation. For all k ≥ 3, the mapping Tk is the solution to the following generalized Lyapunov equation: for all 
z1, ..., zk ∈ D(A),

k∑
i=1

Tk(z1, ..., zi−1,A�zi, zi+1, ..., zk) = 1

2α

m∑
j=1

Rj,k(z1, ..., zk), (4)

where the operator A� generates an exponentially stable semigroup on Y and the right-hand side 
∑m

j=1 Rj,k is 
known and depends on Nj , Bj , T2, ..., Tk−1 in an explicit fashion. The terminology generalized Lyapunov equations
is motivated by the fact that (4) can be seen as a generalization of operator Lyapunov equations, which can typically 
be written as follows:

T (A�z1, z2) + T (z1,A�z2) =R(z1, z2).

To achieve this task and to present the resulting expressions in a convenient manner, we exploit the symmetry structure 
of the formal derivatives of V . From the approximation Vp of the value function V , we derive the following feedback 
law:

(up(y))j = − 1

α
DVp(y)(Njy + Bj ), ∀j = 1, . . . ,m,

and analyze the associated closed-loop system:

d

dt
y(t) = Ay(t) +

m∑
j=1

(Njy(t) + Bj )(up(y(t)))j , y(0) = y0. (5)

We denote by Up(y0) the open-loop generated by up for a given initial condition y0, that is to say, Up(y0; t) =
up(y(t)), where y(t) is the solution to (5). On top of (3), we prove that

J (Up(y0), y0) ≤ V(y0) +O(‖y0‖p+1
Y ). (6)

In other words, we prove that the open-loop controls generated by up are O(‖y0‖p+1)-optimal. We also prove for all 
y0 sufficiently small, there exists an optimal control ū such that
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‖Up(y0) − ū‖L2(0,∞;Rm) =O
(‖y0‖(p+1)/2

Y

)
. (7)

In the finite-dimensional case, expansion techniques for Lyapunov functions or for the value function associated 
with nonlinear control problems have a long history, which dates back at least to [2]. To the best of our knowledge, our 
article is the first one dealing with Taylor expansions of any order for infinite-dimensional systems. A sophisticated 
analysis is also required for proving the well-posedness of the closed-loop system associated with up. Moreover, the 
convergence rate analysis has apparently received little attention so far, especially concerning the rate of convergence 
of the suboptimal controls to the optimal ones. As far as we know, estimates (6) and (7) are new. In this respect, we 
are only aware of the analysis done in [15] for systems of the form: d

dty(t) = Ay(t) + εϕ(y(t)) + Bu(t).
Let us mention some additional related literature. In [2], the author considers a general stabilization problem for 

a nonlinear system that can be expanded in a power series around the origin. It is shown that the optimal control can 
be characterized in terms of a convergent power series as well. In [26], the expandability of the optimal control for 
nonlinear analytic and differentiable systems is analyzed in detail. As in the other works on this topic, an important 
assumption is the local stabilizability of the underlying system. Moreover, it is shown in [26] that the lowest order 
terms of the approximation are defined by the linearized dynamics. For nonlinear systems with linear controls, in 
[15,16], the degree of approximation of the truncated Taylor series to the optimal control is analyzed. In [12], the 
formal power series approach is discussed for the particular case of bilinear control systems. The explicit structure 
of the terms up to the third order are given and shown to be unique for locally stabilizable systems. More recent 
developments, which are based on Taylor series expansions and their use for a numerical approximation of the value 
function can be found in [27] and [1], as well as in the survey article [21]. For a further detailed overview on obtaining 
optimal feedback controls including numerical experiments in the finite-dimensional case, we refer to the survey [7]
and to the references therein.

In the infinite-dimensional case, we are only aware of the results from [32], where a third-order approximation 
for a stabilization problem of the Burgers equation with the control entering linearly is investigated theoretically and 
numerically. To the best of our knowledge, a more general analysis of Taylor approximations for infinite-dimensional 
control systems does not exist yet. Many researchers have addressed the topic of existence of a solution to the control-
related Hamilton–Jacobi–Bellman (HJB) equations in infinite dimensions. We mention the early monograph [5] and 
the seminal series of papers by Crandall and Lions. In [17,18] the HJB equation related to finite horizon optimal con-
trol problems for semi-linear evolution equations with controls entering linearly was investigated and regularity of the 
value function was obtained under smallness requirements on the nonlinearity, so that optimal feedback controls could 
be obtained by dynamic programming. Existence of a unique solution to the associated HJB equation is obtained by 
a smoothing technique based on the Yosida approximation of the value function. Moreover, expansions of the value 
function, of the optimal states, and of the optimal controls, with respect to the parameter quantifying the influence 
of the nonlinearity, could be obtained. In the present article we focus on the expansion of the value function itself. 
Concerning the analysis of abstract control systems we refer to the monographs [4,9,23,34], and the references given 
there.

Our article is structured as follows. Section 3 is a preparatory section. We show that if V is Fréchet differentiable, 
then it is the solution to some HJB equation. In Theorem 14, we further show that if V is (p + 1)-times differentiable 
in the neighborhood of 0, then DpV(0) is a solution to a generalized Lyapunov equation. This result motivates the 
construction of Vp . Our main contributions start in section 4. In this section, we rigorously define the sequence of 
multilinear forms (Tk)k≥2, the polynomial approximations Vp, and the feedback laws up . In section 5, we prove the 
well-posedness of the closed-loop system associated with up, in the neighborhood of 0. In section 6, we prove the 
existence of an optimal (open-loop) control and investigate some of its regularity properties. Section 7 contains our 
main results: in Theorem 33, we prove the error estimates (3) and (6). Estimate (7) is proved in Theorem 35.

2. Analytical preliminaries

2.1. State equation

Throughout the article, V ⊂ Y ⊂ V ∗ denotes a Gelfand triple of real Hilbert spaces, where the embedding of V
into Y is dense and compact and where V ∗ stands for the topological dual of V . Further, a : V × V → R denotes a 
V –Y -coercive bilinear form on V × V , i.e. a satisfies the following assumption.



1364 T. Breiten et al. / Ann. I. H. Poincaré – AN 36 (2019) 1361–1399
Assumption A1. There exist ν > 0 and λ ∈R such that a(v, v) ≥ ν‖v‖2
V − λ‖v‖2

Y , for all v ∈ V .

Associated with a, there exists a unique closed linear operator A in Y characterized by D(A) = {v ∈ V : w �→
a(v, w) is Y -continuous} and by 〈Av, w〉Y = −a(v, w), for all v ∈ D(A) and w ∈ V , see e.g. [9, Part II, Chapter 1, 
Section 2.7]. Moreover, A has a uniquely defined extension as bounded linear operator in L(V , V ∗), which will be 
denoted by the same symbol, see [31, Section 2.2]. We make the following assumption on the operators Nj .

Assumption A2. For all j = 1, ..., m, Nj ∈ L(V , Y) and N∗
j ∈ L(V , Y).

Moreover, we assume that Bj ∈ Y and we choose α > 0. The inner product on Y is denoted by 〈·, ·〉 or 〈·, ·〉Y and 
duality between V and V ∗ by 〈·, ·〉V,V ∗ . We are now prepared to state the problem under consideration:

inf
u∈L2(0,∞;Rm)

J (u, y0) := 1

2

∞∫
0

‖S(u, y0; t)‖2
Y dt + α

2

∞∫
0

‖u(t)‖2
Rm dt, (P )

where S(u, y0; ·) is the solution to{ d
dt

y(t) = Ay(t) +∑m
j=1(Njy(t) + Bj )uj (t), for t > 0,

y(0) = y0.
(8)

Here, S(u, y0) is referred to as solution of (8) if for each T > 0, it lies in the space

W(0, T ) =
{
y ∈ L2(0, T ;V ) : d

dt
y ∈ L2(0, T ;V ∗)

}
.

We recall that W(0, T ) is continuously embedded in C([0, T ], Y) [24, Theorem 3.1]. Let us note that the origin is a 
steady state of the uncontrolled system (8). Associated with (P ) and (8), we define the value function on Y :

V(y0) = inf
u∈L2(0,∞;Rm)

J (u, y0).

The following lemma summarizes some properties of equation (8). The proof is quite standard and therefore deferred 
to the Appendix.

Lemma 1. Assume that A1 and A2 hold. For all u ∈ L2(0, ∞; Rm) and for all y0 ∈ Y , there exists a unique solution 
y to (8) and a continuous function c such that

‖y‖W(0,T ) ≤ c(T ,‖y0‖Y ,‖u‖L2(0,T ;Rm)). (9)

Moreover, there exists a constant C > 0 such that for all T ≥ 0, for all u ∈ L2(0, ∞; Rm) and for all y0 and ỹ0 ∈ Y , 
we have

‖y‖2
L∞(0,T ;Y) ≤ (‖y0‖2

Y + C‖u‖2
L2(0,T ;Rm)

)
e
C(T +‖u‖

L2(0,T ;Rm)
)
, (10)

‖ỹ − y‖2
L∞(0,T ;Y) ≤ ‖ỹ0 − y0‖2

Y e
C(T +‖u‖

L2(0,T ;Rm)
)
. (11)

If further y lies in L2(0, ∞; Y), the constant C is such that

‖y‖2
L∞(0,∞;Y ) ≤

(
‖y0‖2

Y + C
(‖y‖2

L2(0,∞;Y)
+ ‖u‖2

L2(0,∞;Rm)

))
e
C‖u‖2

L2(0,∞;Rm), (12)

‖y‖2
L2(0,∞;V )

≤ C
(
‖y‖2

L2(0,∞;Y)
+ (‖y‖2

L∞(0,∞;Y) + 1
)‖u‖2

L2(0,∞;Rm)

)
, (13)∥∥∥∥dy

dt

∥∥∥∥2

L2(0,∞;V ∗)
≤ C

(
‖y‖2

L2(0,∞;V )
+ (‖y‖2

L∞(0,∞;Y) + 1
)‖u‖2

L2(0,∞;Rm)

)
. (14)

Additionally, limT →∞ ‖y(T )‖Y = 0.
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Proposition 2. If problem (P ) admits a feasible control (i.e. a control u ∈ L2(0, ∞; Rm) such that J (u, y0) < ∞), 
then it has a solution.

The proof uses standard arguments and it is therefore given in the Appendix. Note that in Section 5, we construct 
a feedback law generating feasible controls (for small values of ‖y0‖Y ).

Remark 3. We recall some additional properties of the operator A generated by a. First, it is well known that A
generates an analytic semigroup, see e.g. [31, Sections 3.6 and 5.4], that we denote by eAt . Let us set A0 = A − λI , 
if λ > 0 and A0 = A otherwise. Then −A0 has a bounded inverse in Y , see [31, p. 75], and in particular it is maximal 
accretive, see [31, 20]. We observe that D(A0) = D(A) and the fractional powers of −A0 are well-defined. Throughout 
D(A) is endowed with the graph norm. In particular, we have D((−A0)

1
2 ) = [D(−A0), Y ] 1

2
:= (D(−A0), Y)2, 1

2
for 

the real interpolation space with indices 2 and 1
2 , see [9, Proposition 6.1, Part II, Chapter 1].

For the following regularity result, we require the following assumption.

Assumption A3. It holds that [D(−A0), Y ] 1
2

= [D(−A∗
0), Y ] 1

2
= V .

Sufficient conditions under which A3 holds are given in [25]. One of them is that D(−A0) = D(−A∗
0). For further 

discussion we refer to [9, Part II, Chapter 2.1].

Lemma 4. Let A1–A3 hold. Then, there exists a continuous function c such that for all T > 0, for all y0 ∈ V , and 
for all u ∈ L2(0, T ; Rm) the solution to (8) satisfies y ∈ H 1(0, T ; Y) ∩ L2(0, T ; D(−A0)) and the following estimate 
holds:

‖y‖H 1(0,T ;Y)∩L2(0,T ;D(−A0))
≤ c(T ,‖y0‖V ,‖u‖L2(0,T ;Rm)). (15)

Proof. Let y denote the solution to (8) and define z = (−A0)
1
2 y. Then, z satisfies⎧⎨⎩

d
dt

z(t) = Az(t) +∑m
j=1(Ñj z(t) + B̃j )uj (t), for t > 0,

z(0) = (−A0)
1
2 y0,

(16)

where Ñj = (−A0)
1
2 Nj(−A0)

− 1
2 and B̃j = (−A0)

1
2 Bj .

As a consequence of A3 we have that (−A0)
1
2 ∈ L(Y, V ∗) and (−A0)

− 1
2 ∈ L(Y, V ). It follows that Ñj ∈ L(Y, V ∗)

and B̃j ∈ V ∗ for all j . Now we can proceed as in the proof of the first part of Lemma 1 to obtain that z ∈
H 1(0, T ; V ∗) ∩ L2(0, T ; V ) and this implies that y ∈ H 1(0, T ; Y) ∩ L2(0, T ; D(−A0)) and that (15) holds. �
Remark 5. For finite dimensional systems with V = Y = R

n, Assumptions A1, A2, and A3 are trivially satisfied. In 
Section 8, we describe two infinite-dimensional control problems related to partial differential equations for which the 
general assumptions are satisfied.

Remark 6. The reader will have noticed that our controls are functions of time, but are fixed with respect to their 
spatial distribution. The technical reason for this choice is related to the well-posedness of the control system (8). 
Already the properties asserted in Lemma 1 will not hold for general bilinear control systems. The difficulties are 
related to Hölder estimates, as detailed in Remark 37 after the proof of Lemma 1.

2.2. Notation for multilinear forms and differentiability properties

We denote by BY (δ) the closed ball of Y with radius δ and center 0. For k ≥ 1, we make use of the following norm:

‖(y1, ..., yk)‖Y k = max ‖yi‖Y . (17)

i=1,...,k
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We denote by BYk (δ) the closed ball of Y k with radius δ and center 0, for the norm ‖ · ‖Y k . For k ≥ 1, we say that 
T : Y k → R is a bounded multilinear form if for all i ∈ {1, ..., k} and for all z1, ..., zi−1, zi+1, ..., zk ∈ Y k−1, the 
mapping z ∈ Y �→ T (z1, ..., zi−1, z, zi+1, ..., zk) is linear and

‖T ‖ := sup
y∈B

Yk (1)

|T (y)| < ∞. (18)

We denote by M(Y k, R) the set of bounded multilinear forms. For all T ∈ M(Y k, R) and for all (z1, ..., zk) ∈ Y k ,

|T (z1, ..., zk)| ≤ ‖T ‖
k∏

i=1

‖zi‖Y . (19)

Bounded multilinear forms T ∈ M(Y k, R) are said to be symmetric if for all z1, ..., zk ∈ Y k and for all permutations 
σ of {1, ..., k},

T (zσ(1), ..., zσ(k)) = T (z1, ..., zk).

Given two multilinear forms T1 ∈ M(Y k, R) and T2 ∈ M(Y 
, R), we denote by T1 ⊗ T2 the bounded multilinear 
mapping which is defined for all (y1, ..., yk+
) ∈ Y k+
 by

(T1 ⊗ T2)(y1, . . . , yk+
) = T1(y1, ..., yk)T2(yk+1, ..., yk+
).

For y ∈ Y , we denote

y⊗k = (y, ..., y) ∈ Y k.

Lemma 7. Let T : Y k → R be a multilinear form. Then, T ∈ M(Y k, R) if and only if it is continuous. In this case, it 
is also Lipschitz continuous on bounded subsets of Y k. More precisely, for all M > 0, for all y and v ∈ BYk (M),

|T (y) − T (v)| ≤ kMk−1 ‖T ‖ ‖y − v‖Y k . (20)

The proof is given in the Appendix.

Lemma 8. Let T ∈ M(Y k, R). Then, it is also infinitely many times differentiable. In particular, for all y =
(y1, ..., yk) ∈ Y k and z = (z1, ..., zk) ∈ Y k ,

DT (y1, ..., yk)(z1, ..., zk) =
k∑

i=1

T (y1, ..., yi−1, zi , yi+1, ..., yk). (21)

Moreover, for all M > 0, for all y and ỹ ∈ BYk (M),∣∣DT (y)z
∣∣≤ kMk−1‖z‖Y k (22)∣∣DT (ỹ)z − DT (y)z

∣∣≤ k(k − 1)Mk−2 ‖T ‖ ‖ỹ − y‖Y k ‖z‖Y k . (23)

Proof. The Fréchet differentiability of T ∈ M(Y k, R), as well as formula (21) follows from (20), taking v1 = y1 +
θz1, ..., vk = yk + θzk . Formula (22) follows directly from formula (21). Formula (23) follows from Lemma 7, from 
(21), and from the following relation:

‖T (·, ..., ·, zi , ·, ..., ·)‖ = ‖zi‖Y ‖T ‖.
Finally, one can prove by induction that T is infinitely many times differentiable, observing that DT (y1, ..., yk)×
(z1, ..., zk) can be written as a sum of bounded multilinear forms. �

The following lemma provides a useful chain rule.

Lemma 9. Let f ∈ W 1,1(0, ∞; Y k) and T ∈ M(Y k, R). Then, F := T ◦ f lies in W 1,1(0, ∞) and satisfies

F ′(t) = DT (f (t))f ′(t), for a.e. t ≥ 0.
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Proof. Using the continuous embedding of W 1,1(0, ∞; Y k) in L∞(0, ∞; Y k), we first obtain that

∞∫
0

|F(t)|dt ≤ ‖T ‖ ‖f ‖L1(0,∞;Y k) ‖f ‖k−1
L∞(0,∞;Y k)

< ∞

∞∫
0

DT ◦ f (t)f ′(t)dt ≤ k‖T ‖ ‖f ‖k−1
L∞(0,∞;Y k)

‖f ′‖L1(0,∞;Y k) < ∞.

Therefore, F ∈ L1(0, ∞) and DT ◦ f (·)f ′(·) ∈ L1(0, ∞). It remains to prove that DT ◦ f (·)f ′(·) is the derivative 
of F in the sense of distributions.

Let (fn)n∈N be a sequence in C1(0, ∞; Y k), with limit f in W 1,1(0, ∞; Y k). Let φ ∈ C∞
c (0, ∞) be a test function. 

By the chain rule, we have

∞∫
0

T ◦ fn(t)φ
′(t)dt = −

∞∫
0

DT ◦ fn(t)f
′
n(t)φ(t)dt. (24)

Using the continuous embedding of W 1,1(0, ∞; Y k) in L∞(0, ∞; Y k), we obtain that (fn)n∈N is bounded in 
L∞(0, ∞; Y k). Let M > 0 be an upper bound of ‖fn‖L∞(0,∞;Y k) and ‖f ‖L∞(0,∞;Y k). By Lemma 7,

∣∣∣ ∞∫
0

(T ◦ fn − T ◦ f )φ′(t)dt

∣∣∣≤ kMk−1 ‖T ‖ ‖fn − f ‖L1(0,∞;Y k)‖φ′‖L∞(0,∞) −→
n→∞ 0.

By Lemma 8,

∣∣∣ ∞∫
0

(
DT ◦ fn(t)f

′
n(t) − DT ◦ f (t)f ′(t)

)
φ(t)dt

∣∣∣
≤

∞∫
0

∣∣(DT ◦ fn(t) − DT ◦ f (t)
)
f ′

n(t)
∣∣ |φ(t)|dt +

∞∫
0

∣∣DT ◦ f (t)
(
f ′

n(t) − f ′(t)
)∣∣ |φ(t)|dt

≤ k(k − 1)Mk−2‖T ‖ ‖fn − f ‖k−1
L∞(0,∞;Y k)

‖f ′
n‖L1(0,∞;Y k) ‖φ‖L∞(0,∞)

+ kMk−1‖T ‖ ‖f ′
n − f ′‖L1(0,∞;Y k) ‖φ‖L∞(0,∞) −→

n→∞ 0.

Passing to the limit in (24), we obtain that

∞∫
0

T ◦ f (t)φ′(t)dt = −
∞∫

0

DT ◦ f (t)f ′(t)φ(t)dt,

which justifies that F is differentiable in the sense of distributions, with F ′(·) = DT ◦ f (·)f ′(·). This concludes the 
proof. �
3. Derivation of a generalized Lyapunov equation

The goal of this section is to prove that the derivatives of V at 0 of order three and more, provided that they exist, 
are solution to a linear equation, that we call generalized Lyapunov equation. The existence of a unique solution to 
this equation and its use for approximating V and designing feedback laws will be discussed in the following sections. 
Rather than postulating this equation, we derive it from the HJB equation under the assumption that V is (k +1)-times 
Fréchet differentiable in Y , with k ≥ 3, and under a continuity assumption for optimal controls. We stress that the 
assumptions on V , in particular the differentiability at 0, are only used to obtain the generalized Lyapunov equation. 
The results obtained in the following sections do not rely on this assumption.
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3.1. Derivation of the HJB equation

We prove in this subsection that the value function V is a solution the Hamilton–Jacobi–Bellman equation (HJB), 
under the assumption that V is continuously differentiable and under a continuity assumption for optimal controls.

Following standard arguments, it can be verified that the dynamic programming principle for the infinite horizon 
problem holds: for all y0 ∈ Y , for all τ > 0,

V(y0) = inf
u∈L2(0,τ ;Rm)

τ∫
0


(S(u, y0; t), u(t))dt + V(S(u, y0; τ)), (25)

where 
(y, u) = 1
2‖y‖2

Y + α‖u‖2
Rm . Moreover, for τ > 0, any control u ∈ L2(0, ∞; Rm) is a solution to problem (P )

with initial condition y0 if and only if u|(0,τ ) minimizes the r.h.s. of (25) and u|(τ,∞) is a solution to problem (P ) with 
initial condition S(u, y0; τ).

Proposition 10. In addition to A1–A3, assume that there exists an open neighborhood Y0 of the origin in Y which is 
such that the two following statements hold:

1. For all y0 ∈ D(A) ∩ Y0, problem (P ) possesses a solution u which is right-continuous at time 0.
2. The value function is continuously differentiable on Y0.

Then, for all y ∈ D(A) ∩ Y0, the following Hamilton–Jacobi–Bellman equation holds:

DV(y)Ay + 1

2
‖y‖2

Y − 1

2α

m∑
j=1

(
DV(y)(Njy + Bj )

)2 = 0. (26)

Proof. The proof uses standard arguments. Let y0 ∈ D(A) ∩ Y0 be arbitrary. By assumption, there exists an optimal 
solution ū to (P ) with initial condition y0 which is right-continuous at time 0. Let u0 denote the limit of ū at time 0. 
Let ȳ = S(ū, y0) be the associated state. Our proof is based on the following relations:

DV(y0)
(
Ay0 +

m∑
j=1

(Njy0 + Bj )(u0)j
)+ 
(y0, u0) = 0, (27)

u0 ∈ arg minu∈Rm DV(y0)
(
Ay0 +

m∑
j=1

(Njy0 + Bj )uj

)+ 
(y0, u). (28)

Step 1: Proof of (27). By the dynamic programming principle, for all τ > 0,

V(y0) =
τ∫

0


(ȳ(s), ū(s))ds + V(ȳ(τ )).

Thus,

1

τ

τ∫
0


(ȳ(s), ū(s))ds + 1

τ

(
V(ȳ(τ ) − V(y0)

)= 0. (29)

For any T > 0, we have ȳ ∈ C([0, T ]; Y) and therefore, we can fix τ0 > 0 such that ȳ(τ ) ∈ Y0, for all τ ∈ [0, τ0]. 
Relation (27) follows then by passing to the limit in (29), in Y , when τ → 0. By continuity of ȳ and ū at time 0, the 
first term of the left-hand side of (29) clearly converges to 
(y0, u0). To prove the convergence of the second term, we 
need to prove the differentiability of ȳ at time 0 and to establish a chain rule property. For all τ ∈ (0, τ0), we have

1

τ

(
ȳ(τ ) − y0

)= 1

τ

(
eAτ y0 − y0

)+ 1

τ

m∑
j=1

τ∫
0

eA(τ−s)
(
(Nj ȳ(s) + Bj )ūj (s)

)︸ ︷︷ ︸
=:f (s)

ds. (30)
j
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The first term of the r.h.s. converges to Ay0. Regarding the second one, observe first that by Lemma 4, ȳ ∈
C([0, τ0]; V ), therefore, since ū is right-continuous and Nj ∈ L(V , Y), the function fj : s ≥ 0 �→ fj (s) ∈ Y is right-
continuous at time 0. We have

1

τ

τ∫
0

eA(τ−s)fj (s)ds − fj (0) = 1

τ

τ∫
0

eA(τ−s)
(
fj (s) − fj (0)

)
ds

︸ ︷︷ ︸
=:(a)

+ 1

τ

τ∫
0

(
eA(τ−s)fj (0)

)− fj (0)ds

︸ ︷︷ ︸
=:(b)

. (31)

Since A generates an analytic semigroup (see Remark 3), there exist M > 0 and ω > 0 such that ‖eAs‖L(Y ) ≤ Meωs . 
We obtain

‖(a)‖Y ≤ 1

τ

τ∫
0

‖eA(τ−s)‖L(Y )‖fj (s) − fj (0)‖Y ds ≤ Meωτ0
(

sup
s∈[0,τ ]

‖fj (s) − fj (0)‖Y

)
−→
τ→0

0. (32)

Moreover, for f̃j (t) := eAtfj (0), it holds that f̃j ∈ C([0, τ ], Y), therefore

‖(b)‖Y ≤ 1

τ

τ∫
0

‖f̃j (τ − s) − f̃j (0)‖Y ds ≤ max
s∈[0,τ ] ‖f̃j (s) − f̃j (0)‖Y −→

τ→0
0. (33)

Combining (30)–(33), we obtain that

1

τ

(
ȳ(τ ) − y(0)

)−→
τ→0

Ay0 +
m∑

j=1

(Njy0 + Bj )(u0)j .

We now have

1

τ

(
V(ȳ(τ )) − V(y0)

)− DV(y0)(Ay0 +
m∑

j=1

(Njy0 + Bj )(u0)j )

= 1

τ

1∫
0

[
DV(y0 + s(ȳ(τ ) − y0)) − DV(y0)

]
(ȳ(τ ) − y0)ds

︸ ︷︷ ︸
=:(c)

+ DV(y0)
( ȳ(τ ) − y0

τ
− (Ay0 +

m∑
j=1

(Njy0 + Bj )(u0)j )
)
.

Clearly, the second term of the r.h.s. converges to 0. Using the continuity of DV , and the fact that (ȳ(τ ) − y0)/τ is 
bounded, we obtain

‖(c)‖Y ≤
(

max
z∈BY (‖ȳ(τ )−y0‖Y )

‖DV(y0 + z) − DV(y0)‖
)∥∥∥1

τ

(
ȳ(τ ) − y0

)∥∥∥
Y

−→
τ→0

0.

Passing to the limit in (29), we obtain: 
(y0, u0) + DV(y0)(Ay0 +∑m
j=1(Njy0 + Bj )(u0)j ) = 0, which proves (27).

Step 2: Proof of (28) and conclusion. Let u ∈ R
m and let ũ be the piecewise constant control equal to u on (0, 1)

and equal to 0 on (1, ∞). Let ỹ = S(y0, ũ). Then, by (25), for all τ ∈ (0, 1),

1

τ

τ∫
0


(ỹ(s), u)ds + 1

τ

(
V(ỹ(τ ) − V(y0)

)≥ 0.

We can pass to the limit (when τ → 0) with exactly the same arguments as the ones used in the first part of the proof. 
We therefore obtain
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DV(y0)
(
Ay0 +

m∑
j=1

(Njy0 + Bj )uj

)+ 
(y0, u) ≥ 0.

Since the l.h.s. in the above expression is equal to 0 for u = u0, we deduce that it reaches its minimum 0 at u = u0. 
The l.h.s. being linear-quadratic with respect to u, the following relation can easily be obtained:

(u0)j = − 1

α
DV(y0)(Njy0 + Bj ). (34)

Equation (26) follows then from (27) and (34). �
Remark 11. Note that for the last step of the proof the quadratic nature of the control cost was essential to obtain a 
convenient expression for the argmin in (28).

3.2. A generalized operator Lyapunov equation

We prove in Theorem 14 that if V is (k + 1)-times differentiable, then DkV(0) is a solution to a generalized 
Lyapunov equation, by differentiating the HJB equation k-times. Note that in this subsection, the k-th derivative 
DkV(0) is represented by a multilinear form in M(Y k, R).

The case k = 3. We assume that V is four times Fréchet differentiable on Y and that the assumptions of Propo-
sition 10 hold. Note that the differentiability on Y implies the differentiability on D(A). Differentiating the HJB 
equation (26) a first time with respect to y in the direction z1 ∈ D(A) yields

D2V(y)(Ay, z1) + DV(y)Az1 + 〈y, z1〉Y
− 1

α

m∑
j=1

(
D2V(y)(Njy + Bj , z1) + DV(y)Njz1

)(
DV(y)(Njy + Bj )

)= 0.

Differentiating a second time with respect to y in the direction z2 ∈D(A), we obtain

D3V(y)(Ay, z1, z2) + D2V(y)(Az2, z1) + D2V(y)(Az1, z2) + 〈z1, z2〉Y
− 1

α

m∑
j=1

(
D2V(y)(Njy + Bj , z1) + DV(y)Njz1

)(
D2V(y)(Njy + Bj , z2) + DV(y)Njz2

)

− 1

α

m∑
j=1

(
D3V(y)(Njy + Bj , z1, z2)

)(
DV(y)(Njy + Bj )

)

− 1

α

m∑
j=1

(
D2V(y)(Njz2, z1) + D2V(y)(Nj z1, z2)

)(
DV(y)(Njy + Bj )

)
= 0. (35)

Observing that V(y) ≥ 0 for all y and that V(0) = 0, we deduce that DV(0) = 0. Taking y = 0 in the above equation 
and representing D2V(0) as nonnegative self-adjoint operator � = �∗ ∈ L(Y ) such that D2V(0)(z1, z2) = 〈z1, �z2〉Y
for all z1, z2 ∈D(A), we obtain

〈A∗�z1, z2〉 + 〈�Az1, z2〉 + 〈z1, z2〉 − 1

α

m∑
j=1

(B∗
j �z1)(B

∗
j �z2) = 0. (36)

Equation (36) is the algebraic operator Riccati equation, see e.g. [13,22]. Throughout the rest of the paper, we assume, 
on top of Assumptions A1–A3 that

Assumption A4. There exist bounded linear forms F1, ..., Fm ∈ L(Y, R) such that the semigroup e(A+∑m
j=1 Bj Fj )t is 

exponentially stable on Y .
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Clearly A4 is satisfied if the pair (A, [B1, . . . , Bm]) is exactly controllable. A sufficient condition for exponential 
stabilizability is also given by the infinite-dimensional version of the celebrated Hautus criterion as detailed in [3], for 
example.

Since the pair (A, I ) is exponentially detectable on Y , it follows from [13, Theorem 6.2.7] that (36) has a unique 
nonnegative stabilizing solution � ∈L(Y ). Accordingly, we define the operator A� as follows:

A� : D(A�) ⊂ Y → Y, D(A�) = {y ∈ L2(�) | Ay − 1

α

m∑
j=1

BjB
∗
j � ∈ Y

}
,

y �→ A�y := Ay − 1

α

m∑
j=1

BjB
∗
j �y.

In particular, since � is stabilizing, we know that the semigroup eA�t is exponentially stable on Y . Moreover, since ∑m
j=1 BjB

∗
j � ∈ L(Y ), by a perturbation result for analytic semigroups [28], as in Remark 3 we can choose λ̃ ≥ 0 such 

that −Ã0 = −A� + λ̃I is maximal accretive. Endowing D(−Ã0) and D(−A0) with their graph norms, we have that 
the identity operator between these spaces is a homeomorphism D(−Ã0) ∼= D(−A0). Consequently, the interpolation 
spaces defined by the method of traces [9, Part II, Chapter 1, Section 2] are homeomorphic and we thus obtain

[D(−Ã0), Y )] 1
2

= [D(−Ã∗
0), Y ] 1

2
= V.

We continue by differentiating a third time with respect to y in the direction z3 ∈ D(A), which for y = 0 leads us to:

D3V(0)(Az3, z1, z2) + D3V(0)(Az2, z1, z3) + D3V(0)(Az1, z2, z3)

− 1

α

m∑
j=1

(
D3V (0)(Bj , z1, z3) + D2V(0)(Nj z3, z1) + D2V(0)(Nj z1, z3)

)(
D2V(0)(Bj , z2)

)

− 1

α

m∑
j=1

(
D3V(0)(Bj , z2, z3) + D2V(0)(Nj z3, z2) + D2V(0)(Nj z2, z3)

)(
D2V(0)(Bj , z1)

)

− 1

α

m∑
j=1

(
D3V(0)(Bj , z1, z2) + D2V(0)(Nj z2, z1) + D2V(0)(Nj z1, z2)

)(
D2V(0)(Bj , z3)

)
= 0.

We can already observe that this equation is a linear equation with respect to D3V(0). Moreover, using the symmetry 
of the derivatives, we can re-write it in the following form:

D3V(0)(A�z1, z2, z3) + D3V(0)(z1,A�z2, z3) + D3V(0)(z1, z2,A�z3) = 1

2α
R3(z1, z2, z3), (37)

where the multilinear form R3 : Y 3 →R is defined by

R3(z1, z2, z3) = 2
m∑

j=1

(�Bj , z1)
[
(�z2,Nj z3) + (�z3,Njz2)

]
+ 2

m∑
j=1

(�Bj , z2)
[
(�z1,Njz3) + (�z3,Njz1)

]
+ 2

m∑
j=1

(�Bj , z3)
[
(�z1,Njz2) + (�z2,Njz1)

]
.
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Lyapunov equation: general case. The derivation of the Lyapunov equation, for a general k ≥ 3, requires some 
symmetrization techniques for multilinear forms. For i and j ∈N, we make use of the following set of permutations:

Si,j = {σ ∈ Si+j |σ(1) < ... < σ(i) and σ(i + 1) < ... < σ(i + j)
}
,

where Si+j is the set of permutations of {1, ..., i + j}. A permutation σ ∈ Si,j is uniquely defined by the subset 
{σ(1), ..., σ(i)}, therefore, the cardinality of Si,j is equal to the number of subsets of cardinality i of {1, ..., i + j}, 
that is to say,

|Si,j | =
(

i + j

i

)
.

Let us give an example. Representing a permutation σ ∈ S4 by the vector (σ (1), ..., σ(4)), we have:

S2,2 = {
σ ∈ S4 |σ(1) < σ(2) and σ(3) < σ(4)

}
= {

(1,2,3,4), (1,3,2,4), (1,4,2,3), (2,3,1,4), (2,4,1,3), (3,4,1,2)
}
.

Let T be a multilinear form of order i + j . We denote by Symi,j (T ) the multilinear form defined by

Symi,j (T )(z1, ..., zi+j ) =
(

i + j

i

)−1 [ ∑
σ∈Si,j

T (zσ(1), ..., zσ(i+j))
]
. (38)

The two following lemmas contain the main properties related to this specific symmetrization technique which will 
be needed. Their proofs are given in the Appendix. Lemma 12 is a general Leibnitz formula for the differentiation of 
the product of two functions. Lemma 13 is a symmetry property.

Lemma 12. Let f : Y → R and g : Y → R be two k-times continuously differentiable functions. Then, for all k ≥ 1, 
for all y ∈ Y ,

Dk
[
f (y)g(y)

]=
k∑

i=0

(
k

i

)
Symi,k−i

(
Dif (y) ⊗ Dk−ig(y)

)
. (39)

Lemma 13. Let T1 ∈M(Y i, R) and T2 ∈M(Y j , R). Then, for all y ∈ Y ,

Symi,j (T1 ⊗ T2)(y
⊗(i+j)) = T1(y

⊗i )T2(y
⊗j ).

Moreover, if T1 and T2 are symmetric, then Symi,j (T1 ⊗ T2) is also symmetric.

We are now ready to derive the generalized Lyapunov equation.

Theorem 14. Let k ≥ 3. Assume that V : Y → R is (k + 1)-times Fréchet differentiable in a neighborhood of 0 and 
that the assumptions of Proposition 10 hold. Then for all z1, ..., zk ∈D(A),

k∑
i=1

DkV(0)(z1, ..., zi−1,A�zi, zi+1, ..., zk) = 1

2α

m∑
j=1

Rj,k(z1, ..., zk), (40)

where the multilinear form Rj,k : Y k →R is given by

Rj,k = 2k(k − 1)Sym1,k−1
(
Cj,1 ⊗ Gj,k−1

)
+

k−2∑
i=2

(
k

i

)
Symi,k−i

(
(Cj,i + iGj,i ) ⊗ (Cj,k−i + (k − i)Gj,k−i )

)
,

where
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⎧⎪⎪⎨⎪⎪⎩
Cj,i (z1, ..., zi) = Di+1V(0)(Bj , z1, ..., zi), for i = 1, ..., k − 2

Gj,i (z1, ..., zi) = 1

i

[ i∑
j=1

DiV(0)(z1, ..., zj−1,Njzj , zj+1, ..., zi)
]
, for i = 1, ..., k − 1.

Remark 15. The meaning of the expression on the left-hand side of (40) is the following:

k∑
i=1

DkV(0)(z1, ..., zi−1,A�zi, zi+1, ..., zk) = DkV(0)(A�z1, z2, ..., zk)

+ DkV(0)(z1,A�z2, z3, ..., zk) + ... + DkV(0)(z1, ..., zk−1,A�zk).

Proof of Theorem 14. We differentiate the HJB equation k times. First observe that since k ≥ 3,

Dk(‖y‖2
Y ) = 0. (41)

We then have

Dk
[
DV(y)(Ay)

]
(z1, ..., zk) =Dk+1V(y)(Ay, z1, ..., zk)

+
k∑

i=1

DkV(y)(z1, ..., zi−1,Azi, zi+1, ..., zk). (42)

Therefore, the k-th derivative of y �→ DV(y)(Ay), evaluated at y = 0, is given by

k∑
i=1

DkV(0)(z1, ..., zi−1,Azi, zi+1, ..., zk). (43)

For all y ∈ D(A) we set Wj (y) = DV(y)(Njy + Bj ). It remains to compute the k-th derivative of y ∈ D(A) �→
Wj (y)2 at y = 0. Similarly to (42),

DiWj (y)(z1, ..., zi) =Di+1V(y)(Njy + Bj , z1, ..., zi)

+
i∑


=1

DiV(y)(z1, ..., z
−1,Njz
, z
+1, ..., zi),

and therefore,

DiWj (0) = Cj,i + iGj,i . (44)

Using Lemma 12 and observing that D0Wj (0) = Wj (0) = 0, we obtain

Dk
[
Wj (y)2]

|y=0 =
k∑

i=0

(
k

i

)
Symi,k−i

(
DiWj (0) ⊗ Dk−iWj (0)

)
=

k−1∑
i=1

(
k

i

)
Symi,k−i

(
(Cj,i + iGj,i ) ⊗ (Cj,k−i + (k − i)Gj,k−i )

)
. (45)

We compute now the summands of the above expression for i = 1 and i = k − 1. Note first that

Gj,1 = 0 and Cj,1(z) = B∗
j �z.

Therefore,

Sym1,k−1

(
(Cj,1 + Gj,1) ⊗ (Cj,k−1 + (k − 1)Gj,k−1)

)
= Sym1,k−1

(
Cj,1 ⊗ Cj,k−1

)+ (k − 1)Sym1,k−1
(
Cj,1 ⊗ Gj,k−1

)
(46)
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and moreover

Sym1,k−1
(
Cj,1 ⊗ Cj,k−1

)
(z1, ..., zk) =

k∑

=1

Cj,1(z
)Cj,k−1(z1, ..., z
−1, z
+1, ..., zk)

=
k∑


=1

B∗
j �zjD

kV(0)(z1, ..., z
−1,Bj , z
+1, ..., zk)

=
k∑


=1

DkV(0)(z1, ..., z
−1,BjB
∗
j �z
, z
+1, ..., zk). (47)

Combining (45), (46), and (47), we obtain

Dk
[
Wj (y)2]

|y=0(z1, ..., zk) =
k∑


=1

DkV(0)(z1, ..., z
−1,BjB
∗
j �z
, z
+1, ..., zk)

+
k−2∑
i=2

(
k

i

)
Symi,k−i

(
(Cj,i + iGj,i ) ⊗ (Cj,k−i + (k − i)Gj,k−i )

)
(z1, ..., zk)

+ 2k(k − 1)Sym1,k−1

(
Cj,1 ⊗ Gj,k−1

)
(z1, ..., zk). (48)

From (41), (43), and (48), we deduce (40). �
4. Construction of the polynomial approximation

In this section, we construct a sequence (Tk)k≥2, with Tk ∈ M(Y k, R), which enables us to obtain a polynomial 
approximation of the value function V . For all k ≥ 3, Tk is the unique solution to a multilinear equation, with a 
right-hand side which depends explicitly on Nj , Bj , and T2, ..., Tk−1. This multilinear equation is suggested by the 
structure of (40). The existence will be obtained under the generic Assumptions A1–A4.

We start with an existence result for multilinear equations with particular right-hand sides, which will be relevant 
once we turn to (40).

Theorem 16. Let k ≥ 2. For 1 ≤ i < 
 ≤ k, let Ri
 ∈M(Y k, R). Then, there exists a unique T ∈M(Y k, R) such that 
for all (z1, ..., zk) ∈ D(A)k ,

k∑
i=1

T (z1, ..., zi−1,A�zi, zi+1, ..., zk) =R(z1, ..., zk), (49)

where:

R(z1, ..., zk) =
∑

1≤i<
≤k

m∑
j=1

Ri
(z1, ..., zi−1,Nj zi, zi+1, ..., z
−1,Nj z
, z
+1, ..., zk).

Moreover, if R is symmetric, then T is also symmetric.

Proof. Part 1: Existence. For all (z1, ..., zk) ∈ Y k , we define:

T (z1, ..., zk) = −
∞∫

0

R(eA�tz1, ..., e
A�tzk)dt.

Let us justify the well-posedness of T . All along the article, the constant C is a generic constant whose value can 
change. We have
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∞∫
0

∣∣R12(Nj e
A�tz1,Nj e

A�tz2, e
A�tz3, ..., e

A�t zk)
∣∣dt

≤ C

∞∫
0

[
‖Nje

A�tz1‖Y ‖Nje
A�tz2‖Y

k∏
i=3

‖eA�tzi‖Y

]
dt

≤ C

∞∫
0

[
‖eA�tz1‖V ‖eA�tz2‖V

k∏
i=3

‖eA�tzi‖Y

]
dt.

Here, the last step follows from the fact that Nj ∈ L(V , Y). Using the generalized Hölder inequality, we obtain

∞∫
0

∣∣R12(Nj e
A�tz1,Nj e

A�tz2, e
A�tz3, ..., e

A�t zk)
∣∣dt

≤ C‖eA�·z1‖L2(0,∞;V )‖eA�·z1‖L2(0,∞;V )

k∏
i=3

‖eA�·zi‖L∞(0,∞;Y).

Since the semigroup eA�t is analytic and exponentially stable on Y , it follows from [9, Theorem 2.2, Part II, Chapter 3]
that

∞∫
0

∣∣R12(Nj e
A�tz1,Nj e

A�tz2, e
A�tz3, ..., e

A�t zk)
∣∣dt ≤ C

k∏
i=1

‖zi‖Y . (50)

The same estimate can be derived for the other terms of R. It follows that

∞∫
0

|R(eA�tz1, ..., e
A�tzk)|dt ≤ C

k∏
i=1

‖zi‖Y , (51)

which proves that T is well-defined on Y k . If R is symmetric, then T is also symmetric, by (51).
We next prove that T is a solution to (49). Let us first assume that (z1, ..., zk) ∈ D(A2)k and define

F : t ∈ [0,∞) �→R(eA�tz1, ..., e
A�t zk).

We already know that F ∈ L1(0, ∞), by (51). In fact, F ∈ W 1,1(0, ∞), with

F ′(t) =
k∑

i=1

R(eA�tz1, ..., e
A�t zi−1, e

A�tA�zi, e
A�tzi+1, ..., zk). (52)

This is seen as follows. For all i < 
, for t ∈ [0, ∞), we define

Fi
j (t) =Ri
(e
A�tz1, ..., e

A�t zi−1,Nj e
A�tzi, e

A�tzi+1, ..., e
A�t z
−1,Nj e

A�tzj , e
A�tz
+1, ..., e

A�tzk),

so that F =∑
1≤i<
≤k

∑m
j=1 Fi
j . To simplify, we focus on F12j . By [13, Theorem 5.1.5], A−1

� exists and A−1
� ∈

L(Y, D(A)). Using the commutativity of A�, A−1
� , and eA�t , we find that

F12j (t) =R12(NjA
−1
� eA�tA�z1,NjA

−1
� eA�tA�z2, e

A�t z3, ..., e
A�tzk) = R̂12j ◦ g12(t),

where

R̂12j (y1, ..., yk) := R12(NjA
−1
� y1,NjA

−1
� y2, y3, ..., yk),

g12(t) := (eA�tA�z1, e
A�tA�z2, e

A�t z3..., e
A�tzk).
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Since NjA
−1
� ∈ L(Y ), it follows that R̂12j ∈ M(Y k, R). Moreover, for zi ∈ D(A2) it holds that A�eA�·A�zi ∈

L1(0, ∞; Y) and hence, g12 ∈ W 1,1(0, ∞; Y k). By Lemma 9 we obtain that F12j ∈ W 1,1(0, ∞) and that

F ′
12j (t) = R12(Nje

A�tA�z1,Nj e
A�tz2, e

A�t z3, ..., e
A�tzk)

+R12(Nj e
A�tz1,Nj e

A�tA�z2, e
A�tz3, ..., e

A�tzk)

+
k∑

i=3

R12(Nj e
A�tz1,Nj e

A�tz2, e
A�tz3, ..., e

A�t zi−1, e
A�tA�zi, e

A�tzi+1, ..., e
A�t zk).

Similar formulas can be obtained in the same manner for Fi
j . It follows that F ∈ W 1,1(0, ∞) and that (52) holds. 
Since R is continuous and ‖eA�tzi‖Y −→

t→∞ 0, we deduce F(t) −→
t→∞ 0. Moreover, F ∈ W 1,1(0, ∞) implies that it is 

absolutely continuous and therefore, for all T ≥ 0,

F(T ) − F(0) =
T∫

0

F ′(t)dt.

Passing to the limit when T → ∞, we obtain

F(0) = −
∞∫

0

F ′(t)dt = −
∞∫

0

k∑
i=1

R(eA�tz1, ..., e
A�tzi−1, e

A�tA�zi, e
A�tzi+1, ..., zk)dt

=
k∑

i=1

T (z1, ..., zi−1,A�zi, zi+1, ..., zk).

Since F(0) =R(z1, ..., zk), equation (49) is satisfied. Since D(A2) is dense in D(A), equation (49) remains valid for 
zi ∈D(A), by continuity.

Part 2: Uniqueness. Let T̃ ∈M(Y k, R) satisfy (49) and let us set E = T̃ − T . For all (z1, ..., zk) ∈ D(A)k ,

k∑
i=1

E(z1, ..., zi−1,A�zi, zi+1, ..., zk) = 0. (53)

For a fixed (z1, ..., zk) ∈ D(A)k , we define

G : t ∈ [0,∞) �→ E(eA�tz1, ..., e
A�tzk).

As in the second part of the proof, we can show that G ∈ W 1,1(0, ∞), with

G′(t) =
k∑

i=1

E(eA�tz1, ..., e
A�tzi−1,A�eA�tzi, e

A�t zi+1, ..., e
A�tzk). (54)

Note that for all t , we have that eA�tzi ∈ D(A). Hence, we deduce from (53) that G′(t) = 0 and therefore that G
is constant. For all i, we have ‖eA�tzi‖Y −→

t→∞ 0, and thus G(t) −→
t→∞ 0 since E is continuous. This implies that G

is identically 0. Since G(0) = E(z1, ..., zk) it follows that E is null on D(A)k . By continuity, E is null on Y k . This 
concludes the proof. �
Remark 17. Theorem 16 can be generalized to equations with a right-hand side of the following form:

R(z1, ..., zk) = R(0)(z1, ..., zk) +
∑

1≤i≤k

m∑
j=1

R(1)
i (z1, ..., zi−1,Njzi, zi+1, ..., zk)

+
∑

1≤i<
≤k

m∑
j=1

R(2)
i
 (z1, ..., zi−1,Njzi, zi+1, ..., z
−1,Nj z
, z
+1, ..., zk), (55)

where R(0), (R(1)
)1≤i≤k , and (R(2)

)1≤i<
≤k are bounded multilinear forms.
i i
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In the following theorem, we use the nonnegative self-adjoint Riccati operator � which was defined in (36).

Theorem 18. There exists a unique sequence of symmetric multilinear forms (Tk)k≥2, with Tk ∈ M(Y k, R) and a 
unique sequence of multilinear forms (Rj,k)k≥3,j=1,...,m, with Rj,k ∈M(D(A)k, R) such that for all (z1, z2) ∈ Y 2,

T2(z1, z2) := 〈z1,�z2〉 (56)

and such that for all k ≥ 3, for all (z1, ..., zk) ∈ D(A)k ,

k∑
i=1

Tk(z1, ..., zi−1,A�zi, zi+1, ..., zk) = 1

2α

m∑
j=1

Rj,k(z1, ..., zk), (57a)

where

Rj,k = 2k(k − 1)Sym1,k−1
(
Cj,1 ⊗ Gj,k−1

)
+

k−2∑
i=2

(
k

i

)
Symi,k−i

(
(Cj,i + iGj,i ) ⊗ (Cj,k−i + (k − i)Gj,k−i )

)
, (57b)

and where⎧⎪⎪⎨⎪⎪⎩
Cj,i (z1, ..., zi) = Ti+1(Bj , z1, ..., zi), for i = 1, ..., k − 2,

Gj,i (z1, ..., zi) = 1

i

[ i∑

=1

Ti (z1, ..., z
−1,Njz
, z
+1, ..., zi)
]
, for i = 1, ..., k − 1.

(57c)

Proof. We prove this claim by induction. The induction assumption is the following: for all p ≥ 2, there exists a 
unique family (Tk)2≤k≤p , Tk ∈ M(Y k, R) and a unique family (Rj,k)3≤k≤p, Rj,k ∈ M(D(A)k, R), j = 1, . . . , m
such that (56) and (57) hold, for all k = 3, ..., p.

For p = 2, it suffices to check that (z1, z2) ∈ Y 2 �→ (z1, �z2) ∈ R is continuous, which directly follows from the 
Cauchy–Schwarz inequality and the fact that � ∈L(Y ).

Let p ≥ 2, assume that the induction assumption is satisfied. Let (Tk)2≤k≤p, Tk ∈ M(Y k, R) and (Rj,k)3≤k≤p , 
Rj,k ∈M(D(A)k, R), j = 1, . . . , m be such that (56) and (57) hold, for all k = 3, ..., p.

Let Rj,p+1 be defined by (57b) and (57c) (taking k = p + 1). The multilinear mapping Rj,p+1 is well-defined, 
since (57b) and (57c) are defined by T2, ..., Tp . Moreover, Rp+1 can be written as a sum of multilinear mappings in 
which the operator Nj appears at most twice. More precisely, since by assumption, T2, ..., Tp are bounded, Rp+1 can 
be written in the form (55). Therefore, by Theorem 16, there exists a unique Tp+1 ∈ M(Yp+1, R) satisfying (57a). 
By induction, T2, ..., Tp are all symmetric. One can easily check that for i = 1, ..., p − 2, Cj,i is symmetric and for 
i = 1, ..., p − 1, Gj,i is symmetric. Therefore, by Lemma 13, Rj,p+1 is symmetric and finally, by Theorem 16, Tp+1
is symmetric. This proves the induction assumption for p + 1 and concludes the proof. �
Remark 19. In the finite-dimensional case Y = R

n, a multilinear form S ∈ M(Y k, R) can be naturally identified 
with a multidimensional array (or tensor) S ∈R

n×···×n. Denoting with vec(S) ∈ R
nk

the associated vectorization of S
allows to interpret (49) as a linear tensor equation of the form

k∑
i=1

(In ⊗ · · · ⊗ In︸ ︷︷ ︸
i−1

⊗AT
�,n ⊗ In ⊗ · · · ⊗ In︸ ︷︷ ︸

k−i

)vec(T) = vec(R),

where In is the identity matrix in Rn×n and A�,n ∈ R
n×n denotes a finite-dimensional approximation of the operator 

A�. Let us particularly emphasize that these types of equations can often be efficiently solved by tensor methods, see 
e.g. [19].

Remark 20. The technique that we have employed for deriving the Lyapunov equations characterizing the high-order 
derivatives is similar to the one used in the literature for general non-linear finite-dimensional problems. It is referred 
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to as Al’brekht’s method. In this general setting, the second-order derivative is still characterized by an algebraic 
Riccati equation and the high-order derivatives by generalized Lyapunov equations. In the general setting, a Taylor 
expansion of the minimizer of the Hamiltonian must be computed. This is not the case in the present article, since the 
Hamiltonian is already quadratic. The Lyapunov equations established in [26, Section 2.3] (in an analytic setting) and 
[21, Section 2] (up to the order 4) have the following form, using the notation of the current article:

k∑
i=1

Tk(z, ..., z,Aπz, z, ..., z) =Rk(z, ..., z),

for all z, and thus the polynomial equality is only established for the diagonal terms z⊗k. Let us also mention that our 
proof of existence and uniqueness for the Lyapunov equations is new. In the finite-dimensional setting (see e.g. [21, 
Section 2]), the proof relies on a calculation of the eigenvalues of the linear mapping T ∈ M((Rn)k, R) �→ �(T ) ∈
M((Rn)k, R), where

�(T )(z1, ...zk) =
k∑

i=1

Tk(z1, ..., zi−1,Aπzi, zi+1, ..., zk).

This proof cannot be straightforwardly extended to the infinite-dimensional setting.

For all p ≥ 2, we define the function Vp as follows:

Vp : Y →R, Vp(y) =
p∑

k=2

1

k!Tk(y, . . . , y), (58)

where the sequence (Tk)k≥2 is given by Theorem 18. The definition of Vp is motivated by Theorem 14.

Remark 21. In Theorem 33, we prove that Vp is an approximation of order p + 1 of V , in the neighborhood of 0. 
This result is obtained without assuming the differentiability of V .

5. Well-posedness of the closed-loop system

In this section, we analyze the non-linear feedback law up : y ∈ V → R, defined by

(up(y))j = − 1

α
DVp(y)(Njy + Bj ) = − 1

α

( p∑
k=2

1

(k − 1)!Tk(Njy + Bj , y
⊗k−1)

)
. (59)

Its form is suggested by (34) and (58). Note that the explicit expression of up follows from Lemma 8 and from the 
symmetry of the multilinear forms Tk . In this section, we discuss the well-posedness of the closed-loop system

d

dt
y = Ay +

m∑
j=1

(Njy + Bj )(up(y))j , y(0) = y0 (60)

for a fixed value of p ≥ 2. We recall that throughout this section and the remainder of the paper, Assumptions A1–A4
are supposed to hold. In Theorem 25, we will establish the existence of a solution to (60), provided that ‖y0‖Y is 
sufficiently small. We denote this closed-loop solution by

S(up, y0).

The distinction with the notation S(u, y0) used for an open-loop control u ∈ L2(0, ∞; Rm) will be clear from the 
context. We also denote by

Up(y0; t) = up(S(up, y0; t)) (61)

the open-loop control generated with the feedback law up and the initial condition y0. We will prove in Corollary 26
that Up(y0) is well-defined in L2(0, ∞; Rm), provided that ‖y0‖Y is small enough.
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The strategy that we use to prove the well-posedness of (60) is rather standard and has been applied in the context 
of infinite-dimensional systems several times, see e.g. [10,29,32]. It consists in proving that the non-linear part of 
the closed-loop system satisfies a Lipschitz continuity property. To this purpose, we introduce the nonlinear mapping 
F : W∞ → L2(0, ∞; V ∗) defined by

F(y) = − 1

α

m∑
j=1

(Njy + Bj )
( p∑

k=3

1

(k − 1)!Tk(Njy + Bj , y
⊗k−1)

)

− 1

α

m∑
j=1

(
NjyT2(Njy + Bj , y) + BjT2(Njy, y)

)
. (62)

It can be expressed as the sum of monomial functions of degree greater or equal to 2. Observe that the closed-loop 
system (60) can be written as follows:

d

dt
y = Ay +

m∑
j=1

(Njy + Bj )(up(y))j

= Ay +
m∑

j=1

(Njy + Bj )
(

− 1

α

p∑
k=2

1

(k − 1)!Tk(Njy + Bj , y
⊗k−1)

)

=
(
A − 1

α

m∑
j=1

BjB
∗
j �
)
y + F(y) = A�y + F(y). (63)

In Lemma 23 we prove that F is well-defined and Lipschitz continuous on bounded subsets (for the L∞(0, ∞; Y)-
norm), and that the associated Lipschitz modulus can be made as small as necessary, by restricting the size of the 
considered subset. The well-posedness of (60) is then obtained in Theorem 25 with a fixed-point argument.

We set

W∞ := W(0,∞) =
{
y ∈ L2(0,∞;V ) : d

dt
y ∈ L2(0,∞;V ∗)

}
.

We recall that W∞ is continuously embedded in C(0, ∞; Y) [24, Theorem 3.1]: there exists a constant C0 > 0 such 
that for all y ∈ W∞,

‖y‖L∞(0,∞;Y) ≤ C0‖y‖W∞ . (64)

The following lemma is a technical lemma, used for analyzing the non-linear mapping F .

Lemma 22. There exists a constant C > 0 such that for all δ ∈ [0, 1], for all j = 1, . . . , m for all k = 2, ..., p, and for 
all y1 and y2 ∈ BY (δ) ∩ V ,

‖(Njy2 + Bj )Tk(Njy2 + Bj , y
⊗k−1
2 ) − (Njy1 + Bj )Tk(Njy1 + Bj , y

⊗k−1
1 )‖V ∗

≤ C
(
δ‖y2 − y1‖V + (‖y1‖V + ‖y2‖V ) ‖y2 − y1‖Y

)
.

Proof. Let δ ∈ [0, 1], let y1 and y2 ∈ BY (δ). Then we have

‖(Njy2 + Bj )Tk(Njy2 + Bj , y
⊗k−1
2 ) − (Njy1 + Bj )Tk(Njy1 + Bj , y

⊗k−1
1 )‖V ∗

≤ ‖Nj(y2 − y1)Tk(Njy2 + Bj , y
⊗k−1
2 )‖V ∗︸ ︷︷ ︸

=:(a)

+‖(Njy1 + Bj )Tk(Nj (y2 − y1), y
⊗k−1
2 )‖V ∗︸ ︷︷ ︸

=:(b)

+ ‖(Njy1 + Bj )
(
Tk(Njy1 + Bj , y

⊗k−1
2 ) − Tk(Njy1 + Bj , y

⊗k−1
1 )

)‖V ∗︸ ︷︷ ︸
=:(c)

.
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We need to find a bound on the three terms of the right-hand side of the above inequality. Note first that ‖Njy1 +
Bj‖V ∗ ≤ M := ‖Nj‖L(Y,V ∗) + ‖Bj‖Y . We have

(a) ≤ ‖Nj‖L(Y,V ∗) ‖y2 − y1‖Y ‖Tk‖
(‖Nj‖L(V ,Y ) ‖y2‖V + ‖Bj‖Y

)
δk−1,

(b) ≤ M ‖Tk‖ ‖Nj‖L(V ,Y ) ‖y2 − y1‖V δk−1,

(c) ≤ M(k − 1)δk−2 ‖Tk‖
(‖Nj‖L(V ,Y ) ‖y1‖V + ‖Bj‖Y

) ‖y2 − y1‖Y .

For the upper estimate of (c), we used Lemma 7 and the fact that

‖Tk(Njy1 + Bj , ·, ..., ·)‖ ≤ (‖Nj‖L(V ,Y ) · ‖y1‖V + ‖Bj‖Y

) · ‖Tk‖.
The lemma follows, since δk−1 ≤ δ and since V is continuously embedded in Y . �

We now prove a Lipschitz continuity property satisfied by F .

Lemma 23. The mapping F is well-defined. Moreover, there exists a constant C1 > 0 such that for all δ ∈ [0, 1], for 
all y1 and y2 ∈ W∞ with ‖y1‖L∞(0,∞;Y) ≤ δ and ‖y2‖L∞(0,∞;Y) ≤ δ,

‖F(y2) − F(y1)‖L2(0,∞;V ∗) ≤ C1
(
δ + ‖y1‖L2(0,∞;V ) + ‖y2‖L2(0,∞;V )

)‖y2 − y1‖W∞ . (65)

Proof. Observe that F(0) = 0. Therefore, (65) will ensure that F(y) ∈ L2(0, ∞; V ∗) (at least for ‖y‖L∞(0,∞;Y) ≤ 1, 
but the well-posedness can actually be checked for any y). Let y1 and y2 ∈ W∞ be such that ‖y1‖L∞(0,∞;Y) ≤ δ and 
‖y2‖L∞(0,∞;Y) ≤ δ. By Lemma 22,∥∥[(Njy2(·) + Bj

)
Tk

(
Njy2(·) + Bj , y

⊗k−1
2 (·))]

− [(Njy1(·) + Bj

)
Tk

(
Njy1(·) + Bj , y

⊗k−1
1 (·))]∥∥

L2(0,∞;V ∗)
≤ C

(
δ‖y2 − y1‖L2(0,∞;V ) + (‖y1‖L2(0,∞;V ) + ‖y2‖L2(0,∞;V ))‖y2 − y1‖L∞(0,∞;Y)

)
.

With estimates similar to the ones used in Lemma 22, one can show that∥∥[Njy2(·)T2
(
Njy2(·) + Bj , y2(·)

)+ BjT2
(
Njy2(·), y2(·)

)]
− [Njy1(·)T2

(
Njy1(·) + Bj , y1(·)

)+ BjT2
(
Njy1(·), y1(·)

)]∥∥
L2(0,∞;V ∗)

≤ C
(
δ‖y2 − y1‖L2(0,∞;V ) + (‖y1‖L2(0,∞;V ) + ‖y2‖L2(0,∞;V ))‖y2 − y1‖L∞(0,∞;Y)

)
.

Using the continuous embedding of W∞ in L∞(0, ∞; Y), we obtain (65), which concludes the proof. �
With regard to a fixed-point argument, let us consider the linearized nonhomogeneous system associated to (60)

d

dt
z = A�z + f, z(0) = y0 (66)

for which we have the following result.

Proposition 24. There exists a constant C2 > 0 such that for all f ∈ L2(0, ∞; V ∗) and for all y0 ∈ Y , there exists a 
unique mild solution z ∈ W∞ to (66) satisfying

‖z‖W∞ ≤ C2(‖f ‖L2(0,∞;V ∗) + ‖y0‖Y ).

In particular, z ∈ Cb([0, ∞); Y).

This result can be verified with the techniques of [9, Theorem 2.2, Part II, Chapter 3] and [32]. We are now ready 
to prove the well-posedness of (60).
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Theorem 25. There exist two constants δ0 > 0 and C > 0 such that for all y0 ∈ BY (δ0), the closed-loop system (60)
admits a unique solution S(up, y0) ∈ W∞ satisfying

‖S(up, y0)‖W∞ ≤ C‖y0‖Y . (67)

Moreover, the mapping y0 ∈ BY (δ0) �→ S(up, y0) is Lipschitz continuous.

Proof. In the proof, we denote by C0 the constant involved in (64) and by C1 and C2 the two constants obtained in 
Lemma 22 and Lemma 23. We set

C = C2 + 1, δ0 = min
( 1

CC0
,

1

2C2(C0 + 1)C1C2
,

1

2C(C0 + 2)C1C2

)
.

Let us fix y0 ∈ BY (δ0). Consider the mapping Z : y ∈ W∞ �→ Z(y), where Z(y) is the solution of

d

dt
z = A�z + F(y), z(0) = y0,

which exists by Proposition 24. We show that Z is a contraction in

� := {y ∈ W∞ : ‖y‖W∞ ≤ C‖y0‖Y

}
.

Note that ‖y‖W∞ ≤ C‖y0‖Y ≤ Cδ0 for all y ∈ � and that

‖y‖L∞(0,∞;Y) ≤ C0‖y‖W∞ ≤ C0Cδ0 ≤ 1. (68)

Let us show that Z(�) ⊆ �. Let y ∈ �. Applying Lemma 23 (with δ = C0Cδ0), we obtain

‖F(y)‖L2(0,∞;V ∗) = ‖F(y) − F(0)‖L2(0,∞;V ∗) ≤ C1(δ + Cδ0)‖y‖W∞
≤ C1(C0Cδ0 + Cδ0)C‖y0‖Y ≤ C2(C0 + 1)C1δ0‖y0‖Y .

Therefore, by Proposition 24,

‖Z(y)‖W∞ ≤ C2
(‖F(y)‖L2(0,∞;V ∗) + ‖y0‖Y

)
≤ C2(C0 + 1)C1C2δ0︸ ︷︷ ︸

≤1

‖y0‖2
Y + C2‖y0‖Y ≤ (C2 + 1)‖y0‖Y ,

which proves that Z(y) ∈ �.
Next, for y1 and y2 ∈ � we set z =Z(y2) −Z(y1). Then we have

d

dt
z = A�z + F(y2) − F(y1), z(0) = 0.

Taking δ = C0Cδ0 and applying Lemma 23 and Proposition 24, we obtain

‖Z(y2) −Z(y1)‖W∞ = ‖z‖W∞ ≤ C2‖F(y2) − F(y1)‖L2(0,∞;V ∗)

≤ C2C1
(
δ + ‖y1‖L2(0,∞;V )︸ ︷︷ ︸

≤Cδ0

+‖y2‖L2(0,∞;V )︸ ︷︷ ︸
≤Cδ0

)‖y2 − y1‖W∞ ≤ C(C0 + 2)C1C2δ0︸ ︷︷ ︸
≤1/2

‖y2 − y1‖W∞ .

Hence, Z is a contraction and the well-posedness of (60) follows with the Banach fixed point theorem.
We finally prove that the mapping y0 ∈ BY (δ0) �→ S(up, y0) is Lipschitz continuous. Let y1,0 and y2,0 ∈ BY (δ0), 

let y1 = S(up, y1,0), let y2 = S(up, y2,0), let z = y2 − y1. It holds

d

dt
z = A�z + F(y2) − F(y1), z(0) = y2,0 − y1,0.

By (68), we obtain

‖y1‖L∞(0,∞;Y) ≤ C0Cδ0 and ‖y2‖L∞(0,∞;Y) ≤ C0Cδ0.
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Applying again Lemma 23 with δ = C0Cδ0, we obtain that

‖F(y2) − F(y1)‖L2(0,∞;V ∗) ≤ C(C0 + 2)C1δ0‖y2 − y1‖W∞ .

Therefore, by Proposition 24,

‖y2 − y1‖W∞ ≤ C2‖F(y2) − F(y1)‖L2(0,∞;V ∗) + C2‖y2,0 − y1,0‖Y

≤ C(C0 + 2)C1C2δ0︸ ︷︷ ︸
≤1/2

‖y2 − y1‖W∞ + C2‖y2,0 − y1,0‖Y .

It follows that

‖y2 − y1‖W∞ ≤ 2C2‖y2,0 − y1,0‖Y ,

which proves the Lipschitz continuity of the mapping y0 �→ S(up, y0) and concludes the proof of the theorem. �
Corollary 26. Let δ0 be given by Theorem 25. The following mapping:

y0 ∈ BY (δ0) �→ Up(y0) = up(S(up, y0; ·)) ∈ L2(0,∞;Rm)

is well-defined and continuous. Moreover, there exists a constant C > 0 such that for all y0 ∈ BY (δ0),

V(y0) ≤ J (Up(y0), y0) ≤ C‖y0‖2
Y . (69)

Proof. We begin by proving that Up is well-defined and continuous. We actually prove that the mapping is Lipschitz 
continuous. Since Up(0) = 0, the Lipschitz continuity ensures also the well-posedness. We set � = S(up, BY (δ0)) ⊂
W∞. By Theorem 25, there exists δ > 0 such that for all y ∈ �,

‖y‖L∞(0,∞;Y) ≤ δ and ‖y‖L2(0,∞;Y) ≤ δ.

For all y1 and y2 ∈ BY (δ),∣∣Tk(Njy2 + Bj , y
⊗k−1
2 ) − Tk(Njy1 + Bj , y

⊗k−1
1 )

∣∣
≤ ∣∣Tk(Nj (y2 − y1), y

⊗k−1
2 )

∣∣+ ∣∣Tk(Njy1 + Bj , y
⊗k−1
2 ) − Tk(Njy1 + Bj , y

⊗k−1
1 )

∣∣
≤ ‖Tk‖ ‖Nj‖L(V ,Y ) ‖y2 − y1‖V δk−1 + ‖Tk‖

(‖Nj‖L(V ,Y ) ‖y1‖V + ‖Bj‖Y

)
(k − 1)δk−2‖y2 − y1‖Y .

In the last inequality, we used Lemma 7 and the fact that

‖Tk(Njy1 + Bj , ·, ..., ·)‖ ≤ ‖Tk‖
(‖Nj‖L(V ,Y ) ‖y1‖V + ‖Bj‖Y

)
.

As a consequence, for all y1 and y2 ∈ �,∥∥Tk

(
Njy2(·) + Bj , y

⊗k−1
2 (·))− Tk

(
Njy1(·) + Bj , y

⊗k−1
1 (·))∥∥2

L2(0,∞)

≤ C
(‖y2 − y1‖2

L2(0,∞;V )
+ ‖y1‖2

L2(0,∞;V )
‖y2 − y1‖2

L∞(0,∞;Y) + ‖y2 − y1‖2
L2(0,∞;Y)

)
≤ C‖y2 − y1‖2

W∞ .

It follows that the mapping: y ∈ � �→ up(y(·)) ∈ L2(0, ∞; Rm) is Lipschitz continuous. By composition with y0 ∈
BY (δ0) �→ S(up, y0), the mapping Up is Lipschitz continuous and well-posed.

Let us prove inequality (69). Since S(up, ·) and Up are both Lipschitz continuous, there exists C > 0 such that for 
all y0 ∈ BY (δ0),

‖S(up, y0)‖L2(0,∞;Y) ≤ C‖y0‖Y and ‖Up(y0)‖L2(0,∞;Rm) ≤ C‖y0‖Y .

It follows that

V(y0) ≤ J (Up(y0), y0) ≤ C2(1 + α)/2 ‖y0‖2
Y ,

which concludes the proof. �
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6. Properties of the optimal control

Proposition 27. Let δ0 > 0 be given by Theorem 25. Then, for all y0 ∈ BY (δ0), there exists a solution u to problem (P )
with initial value y0. Moreover, y := S(u, y0) lies in L2(0, ∞; V ) ∩ L∞(0, ∞; Y) and the following estimates hold:

‖y‖L∞(0,∞;Y) ≤ C‖y0‖Y and ‖y‖L2(0,∞;V ) ≤ C‖y0‖Y , (70)

where the constant C is independent of y0.

Proof. By Corollary 26, we have V(y0) ≤ C‖y0‖2
Y ≤ Cδ2

0 . Hence, Proposition 2 guarantees the existence of a so-
lution u to problem (P ), with initial condition y0. Let y = S(u, y0). We deduce from V(y0) = ‖y‖2

L2(0,∞;Y)
+

α
2 ‖u‖2

L2(0,∞;Rm)
that

‖u‖2
L2(0,∞;Rm)

≤ 2

α
C‖y0‖2 ≤ 2Cδ2

0

α
and ‖y‖2

L2(0,∞;Y)
≤ C‖y0‖2

Y ≤ 2Cδ2
0 . (71)

Estimate (70) follows then from (12), (13), and (71). �
Proposition 28. The value function V is continuous on BY (δ0), with δ0 > 0 given by Theorem 25.

Proof. Let ε2 > 0. We construct ε1 > 0 in such a way that for all ŷ0 ∈ BY (δ0) and ỹ0 ∈ BY (δ0),

‖ỹ0 − ŷ0‖Y ≤ ε1 =⇒ |V(ỹ0) − V(ŷ0)| ≤ ε2. (72)

Before defining ε1, we need to introduce some constants. By Corollary 26, there exists a constant C > 0 such that for 
all y0 ∈ BY (δ0), V(y0) ≤ C‖y0‖2

Y ≤ Cδ2
0 . We set

ε3 = 1

2
min

[
δ0,
( ε2

2C

)1/2 ]
and T = Cδ2

0

ε2
3

.

The constant T is defined in such a way that for each solution u to (P ) with initial value y0 ∈ BY (δ0), there exists 
τ ∈ [0, T ] such that ‖S(u, y0; τ)‖Y ≤ ε3. Indeed, if it was not the case, one would have

V(y0) >

T∫
0

‖S(u, y0; t)‖2
Y dt ≥ T ε2

3 = Cδ2
0,

in contradiction with Corollary 26. For all y0 ∈ BY (δ0), it holds: V(y0) ≤ Cδ2
0 , and therefore, if u is an optimal solution 

to (P ) with initial value y0, then

‖u‖2
L2(0,∞;Rm)

≤ 2

α
Cδ2

0 . (73)

By Lemma 1, there exist M and L > 0 such that for all u ∈ L2(0, T ; Rm) with ‖u‖2
L2(0,T ;Rm)

≤ 2Cδ2/α, for all y0

and ỹ0 ∈ BY (δ0),

‖S(u, y0)‖L∞(0,T ;Y) ≤ M and ‖S(u, ỹ0) − S(u, y0)‖L∞(0,T ;Y) ≤ L‖ỹ0 − y0‖Y . (74)

We finally define

ε1 = min
( ε2

4T ML
,
ε3

L

)
.

We are ready to prove (72). Let ỹ0 and ŷ0 ∈ BY (δ0) be such that ‖ỹ0 − ŷ0‖Y ≤ ε1. Let ũ and û be associated optimal 
solutions, and let ỹ and ŷ be the associated trajectories. Take τ ∈ [0, T ] such that ‖ỹ(τ )‖Y ≤ ε3. By (73) and (74), we 
have

‖S(ũ, ŷ0) − S(ũ, ỹ0)‖L∞(0,T ;Y) ≤ L‖ŷ0 − ỹ0‖Y ≤ Lε1.
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We set y1 = S(ũ, ŷ0; τ). It holds that

‖y1‖Y ≤ ‖S(ũ, ỹ0)‖Y + ‖S(ũ, ŷ0) − S(ũ, ỹ0)‖Y ≤ ‖ỹ(τ )‖Y︸ ︷︷ ︸
≤ε3

+Lε1 ≤ 2ε3.

Therefore, using the definition of ε3, we obtain that ‖y1‖Y ≤ δ0 and thus that

V(y1) ≤ C(2ε3)
2 ≤ ε2/2. (75)

By the dynamic programming principle, see (25), we have

V(ŷ0) ≤
τ∫

0



(
S(ũ, ŷ0; t), ũ(t)

)
dt + V(S(ũ, y0; τ)︸ ︷︷ ︸

=y1

) ≤
τ∫

0



(
S(ũ, ŷ0; t), ũ(t)

)
dt + ε2/2. (76)

We find now an upper estimate on the integral of the r.h.s. in the above inequality. We have

τ∫
0



(
S(u, ŷ0; t), u(t)

)
dt =

τ∫
0



(
S(ũ, ŷ0, ; t), ũ(t)

)
dt

≤ 1

2

τ∫
0

‖S(ũ, ỹ0; t)‖2
Y + α‖ũ(t)‖2

Rm + ‖S(ũ, ŷ0; t)‖2
Y − ‖S(ũ, ỹ0; t)‖2

Y

≤ J (ũ, ỹ0) + 1

2

τ∫
0

〈S(ũ, ŷ0; t) − S(ũ, ỹ0; t), S(ũ, ŷ0; t) + S(ũ, ỹ0; t)〉Y dt

≤ V(ỹ0) + 1

2
T Lε1 2M ≤ V(ỹ0) + ε2/2. (77)

Combining (76) and (77), we obtain that V(ŷ0) ≤ V(ỹ0) + ε2. One can similarly prove that V(ỹ0) ≤ V(ŷ0) + ε2, by 
exchanging the symbols “ ˆ” and “ ˜” in the above proof. Therefore, (72) holds and the continuity of V is demon-
strated. �
7. Error estimate for the polynomial approximation

In this section, we prove the two main results of the article. In Theorem 33, we give an estimate for the quality of 
the feedback law up for ‖y0‖Y small enough. This will be based on the fact that Vp provides a Taylor approximation of 
V of order p + 1 in a neighborhood in Y of 0. In Theorem 35, we give an estimate for ‖ū− Up(y0)‖L2(0,∞;Rm), where 
ū is a solution to problem (P ) with initial condition y0, with y0 small enough, and where Up(y0) is the open-loop 
control associated with the feedback law up and the initial condition y0 (see the definition given by (61)).

Our analysis consists first in defining a perturbed cost function Jp which has the property that Vp is its minimal 
value functional over a set of controls specified below. This is achieved by constructing a remainder term rp, defined 
for p ≥ 2 and y ∈ V by

rp(y) = 1

2α

m∑
j=1

2p∑
i=p+1

p∑

=i−p

qp,
,j (y)qp,i−
,j (y), (78)

where⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
qp,1,j (y) = Cj,1(y),

qp,i,j (y) = 1
i!
(
Cj,i (y

⊗i ) + iGj,i (y
⊗i )
)
,

∀i = 2, ..., p − 1,

qp,p,j (y) = 1 Gj,p(y⊗p).

(79)
(p−1)!
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We recall that the definitions of Cj,i and Gj,i are given by (57c). The perturbed cost function Jp is defined by

Jp(u, y0) := 1

2

∞∫
0

‖S(u, y0; t)‖2
Y dt + α

2

∞∫
0

‖u‖2
Rm(t)dt +

∞∫
0

rp
(
S(u, y0; t)

)
dt.

The well-posedness of Jp , for a certain class of controls, will be investigated in Lemma 32. Note that rp is not 
necessarily non-negative.

Proposition 29. For all p ≥ 2 and all y ∈ D(A), we have

rp(y) = −DVp(y)(Ay) − 1

2
‖y‖2

Y + 1

2α

m∑
j=1

(
DVp(y)(Njy + Bj )

)2
. (80)

Moreover, for all p ≥ 2, there exists a constant C > 0 such that for all y ∈ V ,

|rp(y)| ≤ C

2p∑
i=p+1

‖y‖2
V ‖y‖i−2

Y . (81)

Remark 30. Relation (80) states that Vp is a solution to the HJB equation associated with the problem of minimizing 
Jp (compare with Proposition (10)). This relation is the key tool to establish Lemma 32.

Proof of Proposition 29. Let us prove (80). Let us fix y ∈ D(A). For p = 2, using that the operator � generating T2
is the solution of the algebraic Riccati equation, we obtain

− DVp(y)(Ay) − 1

2
‖y‖2

Y + 1

2α

m∑
j=1

(
DVp(y)(Njy + Bj )

)2
= −T2(Ay,y) − 1

2
‖y‖2

Y + 1

2α

m∑
j=1

(T2(Njy + Bj , y))2

= −T2(Ay,y) − 1

2
‖y‖2

Y + 1

2α

m∑
j=1

T2(Bj , y)2

︸ ︷︷ ︸
=0

+ 1

2α

m∑
j=1

[
2T2(Bj , y)T2(Njy, y) + T2(Njy, y)2

]

= 1

2α

m∑
j=1

[
2q2,1,j (y)q2,2,j (y) + q2,2,j (y)2

]
= 1

2α
r2(y).

Now let p ≥ 3. Our proof is based on Theorem 18. The expressions of the multilinear forms Cj,i , Gj,i , and Rj,k

can be simplified when the mappings are evaluated at y⊗i and y⊗k , respectively. By definition of Cj,i and Gj,i (see 
(57c)) and using the symmetry of the multilinear forms Ti (proved in Theorem 18),

Cj,i (y
⊗i ) = Ti+1(Bj , y

⊗i ) and Gj,i (y
⊗i ) = Ti (Njy, y⊗i−1). (82)

Moreover, by definition of Rj,k (see (57b)) and by Lemma 13, we have

Rj,k(y
⊗k) = 2k(k − 1)Cj,1(y)Gj,k−1(y

⊗k−1)

+
k−2∑
i=2

(
k

i

)(
Cj,i (y

⊗i ) + iGj,i (y
⊗i )
)(
Cj,k−i (y

⊗k−i ) + (k − i)Gj,k−i (y
⊗k−i )

)
. (83)

Using once again the symmetry of the multilinear forms Tk, we obtain

kTk(A�y,y⊗k−1) = 1

2α

m∑
Rj,k(y

⊗k). (84)

j=1
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We are now ready to prove (80). We first have

DVp(y)(Ay) =
p∑

k=2

1

(k − 1)!Tk

(
Ay,y⊗k−1). (85)

Moreover, by (82),

DVp(y)(Njy + Bj ) =
p∑

i=2

1

(i − 1)!Ti (Njy + Bj , y
⊗i−1)

=
p∑

i=2

1

(i − 1)!
(
Gj,i (y

⊗i ) + Cj,i−1(y
⊗i−1)

)
= Cj,1(y) +

p−1∑
i=2

1

i!
(
Cj,i (y

⊗i ) + iGj,i (y
⊗i )
)+ 1

(p − 1)!Gj,p(y⊗p)

=
p∑

i=1

qp,i,j (y).

The expression DVp(y)(Njy + Bj ) is therefore the sum of monomial functions of degree 1, ..., p. As a consequence, (
DVp(y)(Njy +Bj )

)2 can be expressed as a sum of monomial functions q̃p,2,j , q̃p,3,j , ..., q̃p,2p,j of degree 2, ..., 2p, 
respectively:

(
DVp(y)(Njy + Bj )

)2 =
2p∑
k=2

q̃p,k,j (y). (86)

We compute now these monomial functions. First,

q̃p,2,j (y) = qp,1,j (y)2 = Cj,1(y)2 = T2(Bj , y)2 = 〈�Bj ,y〉2.

For 3 ≤ k ≤ p, we obtain

q̃p,k,j (y) = 2qp,1,j (y)qp,k−1,j (y)︸ ︷︷ ︸
=:(a)

+
p−2∑
i=2

qp,i,j (y)qp,k−i,j (y)︸ ︷︷ ︸
=:(b)

. (87)

The terms (a) and (b) can be expressed explicitly as follows:

(a) = 2

(k − 1)!Cj,1(y)
(
Cj,k−1(y

⊗k−1) + (k − 1)Gj,k−1(y
⊗k−1)

)
= 2k

k! Tk(BjB
∗
j �y,y⊗k−1) + 2k(k − 1)

k! Cj,1(y)Gj,k−1(y
⊗k−1),

(b) = 1

k!
k−2∑
i=2

(
k

i

)(
Cj,i (y

⊗i ) + iGj,i (y
⊗i )
)(
Cj,k−i (y

⊗k−i ) + (k − i)Gj,k−i (y
⊗k−i )

)
,

and thus, using (83), relation (87) becomes

q̃p,k,j (y) = 2k

k! Tk(BjB
∗
j �y,y⊗k−1) + 1

k!Rk(y
⊗k). (88)

For p + 1 ≤ k ≤ 2p, we have

q̃p,k,j (y) =
p∑

qp,i,j (y)qp,k−i,j (y). (89)

i=k−p
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Using (85), (86), (88), and (89), and grouping monomial functions of same degree, we obtain

− DVp(y)(Ay) − 1

2
‖y‖2

Y + 1

2α

m∑
j=1

(
DVp(y)(Njy + Bj )

)2
= −1

2

[
2T2(A�y,y) + ‖y‖2

Y − 1

α

m∑
j=1

T2(Bj , y)2]

+
p∑

k=3

1

k!
[
kTk(Ay, y⊗k−1) − 1

2α

m∑
j=1

Rj,k(y
⊗k)
]+ 1

2α

2p∑
k=p+1

m∑
j=1

q̃p,k,j (y) = rp(y).

The terms in brackets in the above expression are equal to zero by (84). This proves (80).
Let us prove (81). From (78) and Theorem 18, we obtain that for all p ≥ 2, there exists a constant C̃ > 0 such that 

for all i = 1, ..., p, |qp,i(y)| ≤ C̃‖y‖V ‖y‖i−1
Y . We deduce that for all i = p, ..., 2p and all 
 = i − p, ..., p,

|qp,
,j (y)qp,i−
,j (y)| ≤ C̃2 ‖y‖2
V ‖y‖i−2

Y .

Estimate (81) follows then from the definition of rp. �
Lemma 31. Let p ≥ 2 and let δ0 > 0 be the constant given by Theorem 25. Then, there exists a constant C > 0 such 
that for all y0 ∈ BY (δ0),

∞∫
0

rp
(
ȳ(t)

)
dt ≤ C‖y0‖p+1

Y and

∞∫
0

rp
(
S(up, y0; t)

)
dt ≤ C‖y0‖p+1

Y ,

where ȳ is an optimal trajectory for problem (P ) with initial value y0.

Proof. By Theorem 25, there exists a constant C1 such that for all y0 ∈ BY (δ0),

‖yp‖L2(0,∞;V ) ≤ C1‖y0‖Y and ‖yp‖L∞(0,∞;Y) ≤ C1‖y0‖Y ,

where yp = S(up, y0). By Proposition 27, increasing if necessary the value of C1 > 0, for each solution ū to problem 
(P ) associated to an initial value y0 ∈ BY (δ0) we have

‖ȳ‖L2(0,∞;V ) ≤ C1‖y0‖Y and ‖ȳ‖L∞(0,∞;Y) ≤ C1‖y0‖Y ,

where ȳ = S(ū, y0). Let us denote by C2 the constant provided by Proposition 29. We obtain

∞∫
0

rp(ȳ(t))dt ≤ C2

2p∑
i=p+1

‖ȳ‖2
L2(0,T ;V )

‖ȳ‖i−2
L∞(0,∞;Y)

≤ C2

2p∑
i=p+1

Ci
1‖y0‖i

Y ≤ C2‖y0‖p+1
Y

2p∑
i=p+1

Ci
1δ

i−(p+1)
0 ,

and these inequalities also hold for yp. The lemma follows with C = C2
∑2p

i=p+1 Ci
1δ

i−(p+1)

0 . �
In the following lemma, we establish that the control Up(y0) = up(S(up, y0; ·)) obtained from (59) is optimal with 

respect to Jp(·, y0) for small values of ‖y0‖Y , over all feasible controls for (P ).

Lemma 32. Let p ≥ 2 and let δ0 > 0 be given by Theorem 25. Let u be any feasible control for (P ) with initial value 
y0 ∈ BY (δ0) ∩ V . Then Jp(u, y0) and Jp(Up(y0), y0) are finite and

Vp(y0) = Jp(Up(y0), y0) ≤ Jp(u, y0).
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Proof. We start with a computation for an arbitrary feasible control associated with an initial condition y0 ∈
BY (δ0) ∩ V . There exists at least one such control, namely Up(y0). Let us set y = S(u, y0). By Lemmas 1 and 4, we 
have that y ∈ H 1(0, T ; Y), for every T > 0. Together with Lemma 31, this implies that Jp(u, y0) and Jp(Up(y0), y0)

are finite. Moreover, for all T > 0, we have y ∈ W 1,1(0, T ; Y) and by Lemma 9, the chain rule can be applied to each 
of the bounded multilinear forms which appear as summands in Vp(y(·)). Omitting the time variable in what follows, 
we obtain

d

dt
Vp(y) = DVp(y)

(
Ay +

m∑
j=1

(Njy + Bj )uj

)= DVp(y)(Ay) +
m∑

j=1

ujDVp(y)(Njy + Bj ).

By Proposition 29,

d

dt
Vp(y) = −rp(y) − 1

2
‖y‖2

Y + 1

2α

m∑
j=1

(
DVp(y)(Njy + Bj )

)2 +
m∑

j=1

ujDVp(y)(Njy + Bj )

= −
p(y,u) + 1

2α

m∑
j=1

(
DVp(y)(Njy + Bj )

)2 +
m∑

j=1

ujDVp(y)(Njy + Bj ) + α

2

m∑
j=1

u2
j ,

where


p(y,u) := 1

2
‖y‖2

Y + α

2

m∑
j=1

u2
j + rp(y).

Hence, it follows that

d

dt
Vp(y) = −
p(y,u) + α

2

m∑
j=1

(
uj + 1

α
DVp(y)(Njy + Bj )

)2

= −
p(y,u) + α

2

m∑
j=1

(
uj − (up(y))j

)2
. (90)

We deduce that for an arbitrary feasible u,

Vp(y(T )) − Vp(y0) ≥ −
T∫

0


p(y,u)dt. (91)

We also deduce from (90) that for the specific u = Up(y0),

Vp(yp(T )) − Vp(y0) = −
T∫

0


p(yp,Up(y0))dt, (92)

since for this control, the squared expression vanishes. By Lemma 1, we have limT →∞ y(T ) = 0 and
limT →∞ yp(T ) = 0 in Y . Together with the continuity of Vp, this implies that

Vp(y(T )) −→ 0
T →∞ and Vp(yp(T )) −→

T →∞ 0.

Finally, passing to the limit in (91) and (92), we obtain

Jp(u, y0) =
∞∫

0


p(y,u) ≥ Vp(y0) =
∞∫

0


p(yp,Up(y0)) = Jp(Up(y0), y0).

The lemma is proved. �
We now prove that Vp is a Taylor expansion of V and analyze the quality of the feedback law up in the neighbor-

hood of 0.
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Theorem 33. Let δ0 > 0 be given by Theorem 25, let C be the constant given by Lemma 32. Then, for all y0 ∈ BY (δ0),

J (Up(y0), y0) ≤ V(y0) + 2C‖y0‖p+1
Y , (93)

|V(y0) − Vp(y0)| ≤ C‖y0‖p+1
Y . (94)

Proof. We first prove the result for y0 ∈ BY (δ0) ∩ V . The following inequalities follow directly from Lemma 31 and 
Lemma 32 and from the suboptimality of U(y0):

|Vp(y0) −J (Up(y0), y0)| ≤ C‖y0‖p+1
Y , Vp(y0) ≤ Jp(ū, y0),

|V(y0) −Jp(ū, y0)| ≤ C‖y0‖p+1
Y , V(y0) ≤ J (Up(y0), y0),

where ū is a solution to (P ) with initial value y0. Therefore,

J (Up(y0), y0) − 2C‖y0‖p+1
Y ≤ Vp(y0) − C‖y0‖p+1

Y ≤ Jp(ū, y0) − C‖y0‖p+1
Y

≤ V(y0) ≤ J (Up(y0), y0) ≤ Vp(y0) + C‖y0‖p+1
Y ,

which proves inequalities (93) and (94) for y0 ∈ BY (δ0) ∩ V . By Lemma 7, Vp is continuous, by Proposition 28, 
V is continuous on BY (δ0). By Theorem 25 and Corollary 26, the mappings: y0 ∈ BY (δ0) �→ S(Up(y0), y0) and 
y0 ∈ BY (δ0) �→ Up(y0) are both continuous. Moreover, the following mapping is continuous:

(u, y) ∈ L2(0,∞;Rm) × W∞ �→ 1

2
‖y‖2

L2(0,T ;Y)
+ α

2
‖u‖2

L2(0,∞;Rm)
.

Therefore, by composition, the mapping y0 ∈ BY (δ0) �→ J (Up(y0), y0) is continuous. Finally, since BY (δ0) ∩ V is 
dense in BY (δ0), we can pass to the limit in inequalities (93) and (94). They are therefore satisfied for all y0 ∈ BY (δ0). 
The theorem follows. �
Remark 34. Inequality (93) gives an estimate for the approximation quality of the feedback law up in the neighbor-
hood of 0. In general, an inequality like (94) does not imply that V is p-times differentiable in the neighborhood of 0. 
Indeed, consider the function

f : x ∈ R �→
{

x3 sin(1/x2) if x �= 0

0 if x = 0.

Then, for all x ∈ R, |f (x)| ≤ |x|3, however, f is not continuously differentiable at 0, since for all x �= 0, f ′(x) =
3x2 sin(1/x2) − 2 cos(1/x2), thus f ′(x) � 0 when x ↓ 0.

We finally give an error estimate for the closed-loop control Up(y0) associated with up , for small values of y0.

Theorem 35. Let δ0 be given by Theorem 25. There exist δ1 ∈ (0, δ0] and C > 0 such that for all y0 ∈ BY (δ1), there 
exists a solution ū to problem (P ) with initial value y0 satisfying the following error estimates:

‖ȳ − S(up, y0)‖W∞ ≤ C‖y0‖(p+1)/2
Y and ‖ū − Up(y0)‖L2(0,∞;Rm) ≤ C‖y0‖(p+1)/2

Y , (95)

where ȳ = S(ū, y0).

Proof. The value of δ1 is fixed to δ0 for the moment. We first prove the result for y0 ∈ BY (δ1) ∩ V , as in the proof 
of Theorem 33. Let ū be a solution to problem (P ) with initial condition y0 and let ȳ = S(ū, y0), up = Up(y0), 
yp = S(up, y0). By Theorem 25 and Proposition 27, there exists a constant C independent of y0 such that

‖ȳ‖L∞(0,∞;Y) ≤ Cδ1, ‖ȳ‖L2(0,∞;V ) ≤ Cδ1, ‖yp‖L∞(0,∞;Y) ≤ Cδ1, ‖yp‖L2(0,∞;V ) ≤ Cδ1. (96)

Let us emphasize the fact that in the proof, the mapping up(ȳ(·)) ∈ L2(0, ∞; Rm) plays an important role. It can be 
seen as an “intermediate” control between ū and up .
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Step 1: Estimation of ‖ū(·) − up(ȳ(·))‖L2(0,∞;Rm). Since y0 ∈ V , equality (90) holds for (u, y) = (ū, ȳ) and there-
fore, for a.e. t ≥ 0,

d

dt
Vp(ȳ(t)) = −
p(ȳ(t), ū(t)) + α

2

m∑
j=1

(
ūj (t) − (up(ȳ(t)))j

)2
.

Integrating on [0, T ] and passing to the limit when T → ∞, as in the proof of Lemma 32, we obtain that

−Vp(y0) = −
∞∫

0


(ȳ(t), ū(t))dt

︸ ︷︷ ︸
=V(y0)

−
∞∫

0

rp(ȳ(t))dt + α

2

m∑
j=1

∞∫
0

(
ūj (t) − (up(ȳ(t)))j

)2 dt

and finally that

‖ū(·) − up(ȳ(·))‖2
L2(0,∞;Rm)

≤ 2

α

(
|Vp(y0) − V(y0)| +

∞∫
0

|rp(ȳ(t))|dt
)

≤ C‖y0‖p+1
Y , (97)

as a consequence of Theorem 33 and Lemma 31.
Step 2: Estimation of ‖ȳ − yp‖W∞ . We use in this part of the proof ideas similar to the ones developed for the 

well-posedness of the closed-loop system in Theorem 25. We make use of the mapping F , defined by (62). Remember 
that this mapping contains the non-linearities of the closed-loop system (see (63)). Let us set

f (t) =
m∑

j=1

(
Nj ȳ(t) + Bj

)(
ūj (t) − (up(ȳ(t)))j

) ∈ V ∗, for a.e. t ≥ 0.

Omitting the time variable, we have

d

dt
ȳ = Aȳ +

m∑
j=1

(Nj ȳ + Bj )(ūj − (up(ȳ))j ) +
m∑

j=1

(Nj ȳ + Bj )(up(ȳ))j = A�ȳ + F(ȳ) + f.

We also have
d

dt
yp = A�yp + F(yp).

Setting z = ȳ − yp , we obtain

d

dt
z = A�z + F(ȳ) − F(yp) + f, z(0) = 0.

We compute now estimates of ‖F(ȳ) −F(yp)‖L2(0,∞;V ∗) and ‖f ‖L2(0,∞;V ∗), in order to obtain an estimate of ‖z‖W∞
with Proposition 24. By definition of f , we have

‖f ‖2
L2(0,∞;V ∗) ≤ 2

m∑
j=1

(‖Nj‖2
L(Y,V ∗)‖ȳ‖2

L∞(0,∞;Y) + ‖Bj‖2
V ∗
)‖ūj (·) − (up(ȳ(·)))j‖2

L2(0,∞)

≤ C‖y0‖p+1
Y , (98)

where the last inequality follows from the estimates (96) and (97). Since ‖ȳ‖L∞(0,∞;Y) ≤ Cδ1 and ‖ȳp‖L∞(0,∞;Y) ≤
Cδ1, we obtain with Lemma 23 that

‖F(ȳ) − F(yp)‖L2(0,∞;V ∗) ≤ C1
(
Cδ1 + ‖ȳ‖L2(0,∞;V ) + ‖yp‖L2(0,∞;V )

)‖ȳ − yp‖W∞
≤ 3C1Cδ1‖z‖W∞ . (99)

We can now reduce the value of δ1 to

δ1 = min
(
δ0,

1 )
.

6C1C2C
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By (98), (99), and Proposition 24,

‖z‖W∞ ≤ C2
(‖F(ȳ) − F(yp)‖L2(0,∞;V ∗) + ‖f ‖L2(0,∞;V ∗)

)
≤ 3C1C2Cδ1‖z‖W∞ + C2C‖f ‖L2(0,∞;V ∗)

≤ 1

2
‖z‖W∞ + C‖y0‖(p+1)/2

Y .

It follows that

‖z‖W∞ ≤ C‖y0‖(p+1)/2
Y .

The first estimate in (95) is now proved.
Step 3: Estimation of ‖ū − up‖L2(0,∞;Rm). Observing that up(·) = up(yp(·)), we obtain that

‖ū − up‖L2(0,∞;Rm) ≤ ‖ū(·) − up(ȳ(·))‖L2(0,∞;Rm) + ‖up(ȳ(·)) − up(·)‖L2(0,∞;Rm)

≤ C‖y0‖(p+1)/2 + ‖up(ȳ(·)) − up(yp(·))‖L2(0,∞;Rm). (100)

We obtain an estimate of the last term of the r.h.s. by proving a Lipschitz property for the mapping y ∈ W∞ �→
up(y(·)) ∈ L2(0, ∞; Rm). With similar estimates to the ones used in the proof of Lemma 22, one can easily show that 
for y1 and y2 ∈ BY (Cδ1), for all k = 2, ..., p,

|Tk(Njy2 + Bj , y
⊗k−1
2 ) − Tk(Njy1 + Bj , y

⊗k−1
1 )| ≤ C

(‖y2 − y1‖V + ‖y1‖V ‖y2 − y1‖Y

)
.

By (96), ‖ȳ‖L∞(0,∞;Y ) ≤ Cδ1 and ‖yp‖L∞(0,∞;Y) ≤ Cδ1. Therefore,

‖up(ȳ(·)) − up(yp(·))‖2
L2(0,∞;Rm)

≤ C
(‖ȳ − yp‖2

L2(0,∞;V )
+ ‖yp‖2

L2(0,∞;V )
‖ȳ − yp‖2

L∞(0,∞;Y)

)
≤ C‖yp − ȳ‖2

W∞ ≤ C‖y0‖p+1
Y .

Combining this estimate with (100), we obtain the second inequality of (95).
Step 4: General case. Let y0 ∈ BY (δ1). Take a sequence (yk

0)k∈N in BY (δ1) ∩ V converging to y0. As we proved in 
the first three steps of this proof, for all k ∈ N, there exists a solution ūk to problem (P ) with initial condition yk

0 such 
that

‖ȳk − S(up, yk
0)‖W∞ ≤ C‖yk

0‖(p+1)/2
Y and ‖ūk − Up(yk

0 )‖L2(0,∞;Rm) ≤ C‖yk
0‖(p+1)/2

Y , (101)

where ȳk = S(ūk, yk
0 ). Using arguments similar to the ones used in the proof of Proposition 2, we obtain that there 

exists an accumulation point (ū, ȳ) to the sequence (ūk, ȳk) for the weak topology of L2(0, ∞; Rm) × W∞ which is 
such that ū is a solution to problem (P ) with initial condition y0 and such that ȳ = S(ū, y0). By Corollary 26, the 
mapping Up is continuous. Therefore, we can pass to the limit in (101) and finally obtain the estimates

‖ȳ − S(up, y0)‖W∞ ≤ C‖y0‖(p+1)/2
Y and ‖ū − Up(y0)‖L2(0,∞;Rm) ≤ C‖y0‖(p+1)/2

Y ,

which concludes the proof. �
Remark 36. The constants δ0, δ1, and C, which are provided by Theorem 33 and Theorem 35, depend on p.

8. Applications to partial differential equations

In this section, we describe two concrete infinite-dimensional bilinear optimal control problems for which Assump-
tions A1–A4 are satisfied.
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8.1. A boundary controlled heat equation

We begin with a practical example from the production process in steel mills. The temperature evolution y of a 
controlled steel profile can be modeled, see [14], according to the partial differential equation

∂y

∂t
= �y in � × (0,∞),

∇y · �n = mu(ycl − y) on � × (0,∞),

y(x,0) = y0(x) in �,

(102)

where � ⊂R
2 denotes a bounded domain with smooth boundary � = δ� and m is a smooth function on �. The control 

variable u can be interpreted as the spraying intensity of a cooling fluid with temperature ycl ∈ H
1
2 (�). Different to 

the model discussed in [14], for simplicity of presentation we assume that the material parameters such as the heat 
capacity and conductivity are constant throughout �.

With regard to the abstract framework from Section 2, we introduce the operator

A : D(A) ⊂ L2(�) → L2(�),

D(A) =
{
y ∈ H 2(�) | ∇y · �n = 0 on �

}
,

Ay = �y.

(103)

We further define the Neumann map N as follows: N v = y if and only if

y − �y = 0 in �, ∇y · �n = −v on �.

It is well-known, see, e.g., [20, Theorem 2.4.2.7/Remark 2.5.1.2] that N is a continuous mapping from H 1/2(�) to 
H 2(�). Finally, from [20, Theorem 1.5.1.2/3] we know that the Dirichlet trace operator C is continuous from H 1(�)

to H 1/2(�). With this notation, we may rewrite the dynamics in the abstract form

ẏ(t) = Ay(t) + Ny(t)u(t) + Bu(t), y(0) = y0,

where N := (−A + I )NCM and B := −(−A + I )NMycl and M is the multiplication operator associated with the 
localization function m. From the regularity of N and C as well as available results in the literature, e.g., [22, Ap-
pendix 3A], we can easily show the validity of the Assumptions A1–A3 with Y = L2(�) and V = H 1(�), endowed 
with the canonical inner products from L2(�) and H 1(�) respectively. Concerning A4, we refer to [33] where stabi-
lizability by finite-dimensional controllers has been shown for a more general setup which includes the linearization 
of the system (102).

8.2. Stabilization of a Fokker–Planck equation

As a second example, we follow the setup discussed in [10] and focus on the controlled Fokker–Planck equation

∂ρ

∂t
= ν̃�ρ + ∇ · (ρ∇G) + u∇ · (ρ∇α) in � × (0,∞),

0 = (ν̃∇ρ + ρ∇G) · �n on � × (0,∞),

ρ(x,0) = ρ0(x) in �,

(104)

where ν̃ > 0, � ⊂R
n denotes a bounded domain with smooth boundary � = ∂�, and ρ0 denotes an initial probability 

distribution with 
∫
�

ρ0(x)dx = 1. To apply the results from [10], we assume that α and G ∈ W 1,∞ ∩ W 2,max(2,n)(�), 

and that the control shape function fulfills ∇α · �n = 0 on �. We introduce ρ∞ = e−�∫
� e−� dx

, where � = log ν̃ + W
ν̃

, 

and observe that ρ∞ is an eigenstate associated with the eigenvalue 0. While the system is known to converge to this 
stationary distribution, this can happen inadequately slowly and a control mechanism becomes relevant. Considering 
(104) as an abstract bilinear control, we arrive at

ρ̇(t) = Aρ(t) + Nρ(t)u(t), ρ(0) = ρ0,
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where the operators A and N are given by

A : D(A) ⊂ L2(�) → L2(�),

D(A) =
{
ρ ∈ H 2(�) |(ν̃∇ρ + ρ∇G) · �n = 0 on �

}
,

Aρ = ν̃�ρ + ∇ · (ρ∇G),

N : H 1(�) → L2(�), Nρ = ∇ · (ρ∇α).

In order to consider (104) as a stabilization problem of the form (P ), we introduce a state variable y := ρ − ρ∞ as the 
deviation to the stationary distribution. As discussed in [10], this yields a system of the form

ẏ(t) = Ay(t) + Ny(t)u(t) + Bu(t), y(0) = ρ0 − ρ∞,

where

B : R→ L2(�), Bc = cNρ∞.

Since 
∫
�

B dx = ∫
�

Nρ∞ dx = 0, the control does not influence the one-dimensional subspace associated with ρ∞. 
Therefore, a splitting of the state space in the form

Y = L2(�) = im(P ) ⊕ im(I − P) =: YP + YQ

by means of the projection P defined by

P : L2(�) → L2(�), Py = y −
∫
�

y dx ρ∞,

im(P ) =
⎧⎨⎩v ∈ L2(�) :

∫
�

v dx = 0

⎫⎬⎭ , ker(P ) = span {ρ∞} ,

was introduced in [10]. We thus focus on

ẏP = ÂyP + N̂yP u + B̂u, yP (0) = Pρ0, (105)

where

Â = PAIP with D(Â) =D(A) ∩ YP ,

N̂ = PNIP with D(N̂) = H 1(�) ∩ YP ,

B̂ = PB,

and IP : YP → Y denotes the injection of YP into Y . With system (105), we associate the cost functional

J (u,ρ0) = 1

2

∞∫
0

‖yP (t)‖2
L2(�)

dt + α

2

∞∫
0

u(t)2 dt. (106)

Let us verify that the Assumptions A1–A4 are satisfied with Y = YP and V = H 1(�) ∩ YP , endowed with the in-
ner products from L2(�) and H 1(�) respectively and for the bilinear system (105) with operators Â, N̂ , and B̂ . 
Concerning A1, we have for every v ∈ V that

a(v, v) = 〈ν̃∇v + v∇G,∇v〉L2(�)

≥ ν̃‖∇v‖2
L2(�)

− |(v∇G,∇v)L2(�)| ≥
ν̃

2
‖∇v‖2

L2(�)
− 1

2ν̃
‖∇G‖2

L∞(�)‖v‖2
L2(�)

.

Thus A1 holds with ν = ν̃
2 and λ = 1

2ν̃
‖∇G‖2

L∞(�)
Using that P ∗y = y − ∫

�
ρ∞y dx 1, we further obtain that

N̂∗φ = I ∗
P N∗P ∗φ = I ∗

P N∗φ = −I ∗
P (∇φ∇α),
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since ∇α · �n = 0 and I ∗
P ψ = ψ − 1

�

∫
�

ψ dx 1. It is now clear that A2 holds. Assumption A3 is satisfied with V =
H 1(�) ∩ YP , see e.g. [9, Part II, Chapter 1, Section 6]. Finally, the exponential stability of the uncontrolled system 
(105) (i.e. with u = 0) implies Assumption A4 with F = 0, see [10, Section 4].

In a recent work [11], we have developed a numerical method for solving the generalized Lyapunov equations, 
using in particular a model reduction technique. This has enabled us to compute polynomial feedback laws for the 
control problem of the Fokker–Planck equation described above, up to the order 6 for a domain of dimension 1 and 
up to the order 5 for a two-dimensional domain.

9. Conclusions

Techniques for the computation of a Taylor expansion of the value function associated with an optimal control 
problem have been extended to the case of an infinite-dimensional bilinear system. Explicit formulas have been derived 
for the right-hand side of the generalized Lyapunov equations arising for the terms of order three and more, and 
existence of solutions for these equations has been established. Non-linear feedback laws have been derived from the 
Taylor expansions. Their efficiency has been proved theoretically with new error estimates.

Generalizations of our results in several directions appear to be possible and can be of interest. These include 
semilinear equations with nonlinearities up to third order as they appear in many biologically relevant systems. It 
can also be of interest to investigate a wider class of bilinear control systems related to abstract evolution equations 
in a semigroups setting, strengthening if necessary the regularity assumptions on N . Extensions of the approach to 
general finite-horizon problems will lead to some interesting theoretical and numerical issues, including the fact that 
the generalized Lyapunov equations corresponding to (49) become time-dependent.
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Appendix A. Proofs

In this Appendix, we provide the proofs for several results which were used in the main part of the manuscript.

Proof of Lemma 1. The existence can be proved by standard Galerkin arguments and the a-priori estimates below. 
To verify these estimates and to alleviate the notation, we often omit the time variable t . We first prove estimates (9)
and (10). Multiplying the state equation by y and using A1, we obtain

1

2

d

dt
‖y‖2

Y =
〈

dy

dt
, y

〉
V ∗,V

= 〈Ay,y〉V ∗,V +
m∑

j=1

〈Njy, y〉V ∗,V uj +
m∑

j=1

〈Bj , y〉V ∗,V uj

≤ (λ‖y‖2
Y − ν‖y‖2

V

)+ m∑
j=1

(‖Nj‖L(V ,Y ) ‖y‖V ‖y‖Y |uj |
)+ m∑

j=1

(‖Bj‖V ∗ ‖y‖V |uj |
)
. (107)

By Young’s inequality,

‖Nj‖L(V ,Y ) ‖y‖V ‖y‖Y |uj | ≤ ν

4
‖y‖2

V + C‖y‖2
Y |uj |2,

‖Bj‖V ∗ ‖y‖V |uj | ≤ ν

4
‖y‖2

V + C |uj |2.
(108)

Therefore, combining (107) and (108),

d ‖y‖2
Y + ν‖y‖2

V ≤ C
(‖y‖2

Y + ‖u‖2
Rm + ‖y‖2

Y ‖u‖2
Rm

)
. (109)
dt
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We integrate (109) (without the term ν‖y‖2
V ) and apply Gronwall’s inequality: for all t ∈ [0, T ],

‖y(t)‖2
Y ≤

(
‖y0‖2

Y + C

t∫
0

‖u‖2
Rm

)
eC

∫ t
0 1+‖u‖2

Rm

≤ (‖y0‖2
Y + C‖u‖2

L2(0,T ;Rm)

)
e
C(T +‖u‖

L2(0,T ;Rm)
)
.

Estimate (10) is proved. Using (109) once again, together with (10) and the state equation (8), estimate (9) follows. 
Let us prove (11). Let us set δy = S(u, ỹ0) − S(u, y0). We have

d

dt
δy(t) = Aδy(t) +

m∑
j=1

Njδy(t)uj (t),

therefore, using the same techniques as for the derivation of (109), we obtain

d

dt
‖δy‖2

Y ≤ C
(‖δy‖2

Y + ‖δy‖2
Y ‖u‖2

Rm

)
,

and finally, by Gronwall’s inequality,

‖δy(t)‖2
Y ≤ ‖δy(0)‖2

Y eC
∫ t

0 1+‖u‖2
Rm ≤ ‖ỹ0 − y0‖2

Y e
C(T +‖u‖

L2(0,T ;Rm)
)
.

Estimate (11) is proved.
We now assume that y ∈ L2(0, ∞; Y). We integrate estimate (109) and obtain

‖y(t)‖2
Y ≤ ‖y0‖2

Y + C
(‖y‖2

L2(0,∞;Y)
+ ‖u‖2

L2(0,∞;Rm)

)+ C

t∫
0

‖y(s)‖2
Y ‖u(s)‖2

Rm ds.

Estimate (12) follows with Gronwall’s inequality. From (109), we also obtain

ν‖y‖2
V ≤ C

(‖y‖2
Y + ‖u‖2

Rm + ‖y‖2
Y ‖u‖2

Rm

)
.

Estimate (13) follows directly by integration. Finally, for a.e. t ≥ 0,∥∥∥∥dy

dt

∥∥∥∥2

V ∗
≤ 3
(
‖A‖2

L(V ,V ∗)‖y‖2
V +

m∑
j=1

‖Nj‖2
L(Y,V ∗)‖y‖2

Y |uj |2 +
m∑

j=1

‖Bj‖2
Y |uj |2

)
.

Estimate (14) follows directly by integration.
To verify the asymptotic behavior, we use the fact that y ∈ L2(0, ∞, Y) and y ∈ C([0, ∞], Y) imply the existence 

of a monotonically increasing sequence of numbers (tk)∞k=1 such that ‖y(tk)‖Y → 0, tk → ∞ as k → ∞. Since y ∈
W(0, ∞) for any T > 0, we have that

d

dt
〈y, y〉 = 2

〈
d

dt
y, y

〉
V ∗,V

for a.e. t > 0,

see [30, Proposition 1.2, Chapter 3]. Given any T > 0 and choosing tk > T , we estimate

‖y(T )‖2
Y = ‖y(tk)‖2

Y − 2

tk∫
T

〈
d

dt
y(t), y(t)

〉
V ∗,V

dt

≤ ‖y(tk)‖2
Y + 2

∥∥∥∥ d

dt
y

∥∥∥∥
L2(T ,∞;V ∗)

‖y‖L2(T ,∞,V ) −→ 0

for tk → ∞, T → ∞. �
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Remark 37. Let us briefly comment on the difficulties arising (already in Lemma 1) when using controls in an infinite-
dimensional space. To this purpose, we take Y = L2(�), V = H 1(�) (with � ⊂R

n) and focus on the following state 
equation:

ẏ(x, t) = Ay(x, t) + y(x, t)u(x, t) + Bu(x, t),

with u(·, t) ∈ Y . After multiplying the state equation with y (as in (107)), one needs to estimate the term 〈yu, y〉Y . 
For n = 2, the Gagliardo–Nirenberg inequality yields

〈yu,y〉Y ≤ ‖u‖Y ‖y‖2
L4(�)

≤ C‖u‖Y ‖y‖V ‖y‖Y .

One can then proceed as in the proof of Lemma 1. For n = 3, we obtain with the Gagliardo–Nirenberg inequality and 
Young’s inequality the following estimate:

〈yu,y〉Y ≤ ‖u‖Y ‖y‖2
L4(�)

≤ C‖u‖Y ‖y‖3/2
V ‖y‖1/2

Y ≤ ν

4
‖y‖2

V + C‖u‖4
Y ‖y‖2

Y .

Hence the r.h.s. of the above inequality is not integrable in time, since we only have u ∈ L2(0, ∞; Y).

Proof of Proposition 2. Since there exists a feasible control and since J is bounded from below, V(y0) is finite and 
there exists a minimizing sequence (un)n∈N in L2(0, ∞; Rm) with associated states yn := S(un, y0). By definition 
of J , the sequences (un)n∈N and (yn)n∈N are bounded in L2(0, ∞; Rm) and L2(0, ∞; Y), respectively. We deduce 
from estimates (12), (13), and (14), that the sequence (yn)n∈N is bounded in W(0, ∞). Extracting if necessary a 
subsequence, there exists (ū, ȳ) ∈ L2(0, ∞; Rm) ×W(0, ∞) such that (un, yn) ⇀ (ū, ȳ) in L2(0, ∞; Rm) ×W(0, ∞).

We prove now that ȳ = S(ū, y0). Let T > 0, and choose v ∈ W(0, T ) arbitrarily. For all n ∈N, we have

T∫
0

〈 d

dt
yn(t), v(t)

〉
V ∗,V

dt =
T∫

0

〈
Ayn(t) +

m∑
j=1

(Njyn(t) + Bj )(un(t))j , v(t)
〉
V ∗,V dt. (110)

Since d
dt

yn ⇀ d
dt

ȳ in L2(0, T ; V ∗), we can pass to the limit in the l.h.s. of the above equality. Moreover, since 
Ayn ⇀ Aȳ in L2(0, T ; V ∗),

T∫
0

〈Ayn(t), v(t)〉V ∗,V dt −→
n→∞

T∫
0

〈Aȳ(t), v(t)〉V ∗,V dt.

We also have

∣∣∣ T∫
0

〈Njyn(t), v(t)〉V ∗,V (un(t))j dt −
T∫

0

〈Nj ȳ(t), v(t)〉 (ū(t))j dt

∣∣∣
≤
∣∣∣ T∫

0

〈
Nj(yn(t) − ȳ(t)), (un(t))j v(t)〉Y dt

∣∣∣+ ∣∣∣ T∫
0

〈Nj ȳ(t), v(t)〉Y
(
(un(t))j − (ū(t))j

)
dt

∣∣∣. (111)

Since yn ⇀ ȳ weakly in L2(0, T ; V ) we have that Njyn ⇀ Nj ȳ weakly in L2(0, T ; Y). Boundedness of (un)n∈N in 
L2(0, T ; Rm) and the fact that v ∈ W(0, T ) ⊂ L∞(0, T ; Y) imply that ((un)j v)n∈N is bounded in L2(0, T ; Y), and 
thus the first integral on the right-hand side of (111) converges to 0. Next we note that |〈Nj ȳ(·), v(·)〉Y | ∈ L2(0, T ). 
Together with the weak convergence of un to ū, convergence to 0 of the second integral follows as well. We can now 
pass to the limit in (110) and obtain:

T∫
0

〈 d

dt
ȳ(t), v(t)

〉
V ∗,V

dt =
T∫

0

〈
Aȳ(t) +

m∑
j=1

Nj ȳ(t)uj (t) + Bj ūj (t), v(t)
〉
V ∗,V dt,

for all v ∈ W(0, T ). This implies that ȳ = S(ū, y0).
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Finally, since the following mapping is convex:

(u, y) ∈ L2(0,∞;Rm) × W(0,∞) �→ 1

2

∞∫
0

‖y(t)‖2
Y dt + α

2

∞∫
0

‖u(t)‖2
Rm dt,

it is also weakly lower semi-continuous and therefore,

J (ū, y0) ≤ lim inf
n→∞ J (un, y0),

which proves the optimality of ū. �
Proof of Lemma 7. One can easily check that if T is not bounded, then it is not continuous at 0. Assume now that T
is bounded. Let M > 0, let y = (y1, ..., yk) ∈ Y k and v = (v1, ..., vk) ∈ Y k be such that ‖y‖Y k ≤ M and ‖v‖Y k ≤ M . 
Then, by (19),∣∣T (v1, ..., vk) − T (y1, ..., yk)

∣∣= ∣∣∣[T (v1, ..., vk) − T (y1, v2, ..., vk)
]

+ [T (y1, v2, ..., vk) − T (y1, y2, v3, ..., vk)
]

+ ... + [T (y1, ..., yk−1, vk) − T (y1, ..., yk)
]∣∣∣

= ∣∣T (v1 − y1, v2, ..., vk) + T (y1, v2 − y2, v3, ..., vk)

+ ... + T (y1, ..., yk−1, vk − yk)
∣∣

≤ kMk−1 ‖T ‖‖y − v‖Y k . (112)

The lemma is proved. �
Proof of Lemma 12. We prove the lemma by induction. The case k = 1 is trivially satisfied, since S0,1 and S1,0 both 
consist of the unique permutation of the set {1}.

Let k ≥ 1, let us assume that formula (39) holds. Before proving (39) for k + 1, we make an important observation 
on the structure of Si,k+1−i , for i = 1, ..., k. For any σ ∈ Si,k+1−i , either σ(i) = k + 1 or σ(k + 1) = k + 1. More 
precisely, we can describe Si,k+1−i as follows:

Si,k+1−i = {σ ∈ Sk+1 : ∃ρ ∈ Si,k−i ,
(
σ(1), ..., σ (k + 1)

)= (ρ(1), ..., ρ(k), k + 1
)}

∪ {σ ∈ Sk+1 : ∃ρ ∈ Si−1,k+1−i ,
(
σ(1), ..., σ (i + j)

)= (ρ(1), ..., ρ(i − 1), k + 1, ρ(i), ..., ρ(k)
)}

. (113)

Let us assume that f and g are (k + 1)-times differentiable. Let (z1, ..., zk+1) ∈ Y k+1, using the induction assumption 
and the fact that |Si,k−i | =

(
k
i

)
, we obtain

Dk+1[f (y)g(y)](z1, ..., zk+1)

=D
[ k∑

i=0

∑
ρ∈Si,k−i

Dif (y)(zρ(1), ..., zρ(i))D
k−ig(y)(zρ(i+1), ..., zρ(k))

]
zk+1

=
k∑

i=0

∑
ρ∈Si,k−i

Di+1f (y)(zρ(1), ..., zρ(i), zk+1)D
k−ig(y)(zρ(i+1), ..., zρ(k))︸ ︷︷ ︸

=:(a)

+
k∑

i=0

∑
ρ∈Si,k−i

Dif (y)(zρ(1), ..., zρ(i))D
k−i+1g(y)(zρ(i+1), ..., zρ(k), zk+1)︸ ︷︷ ︸

=:(b)

. (114)

In the sum involved in term (a), we isolate the value i = k. Note that Sk,0 only contains one permutation, the identity 
on {1, ..., k}. We also perform a change of index for the remaining values of i. We finally obtain for term (a) the 
following expression:
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(a) =
k∑

i=1

∑
ρ∈Si−1,k+1−i

Dif (y)(zρ(1), ..., zρ(i−1), zk+1)D
k+1−ig(y)(zρ(i), ..., zρ(k))

+ Dk+1f (y)(z1, ..., zk+1)g(y). (115)

Observe that the last term of the r.h.s. can be written as follows:

Dk+1f (y)(z1, ..., zk+1)g(y) =
∑

ρ∈Sk+1,0

Dk+1f (y)(zρ(1), ...zρ(k+1))D
0g(y). (116)

Isolating the value i = 0 in the sum involved in term (b), we obtain

(b) =
k∑

i=1

∑
ρ∈Si,k−i

Dif (y)(zρ(1), ..., zρ(i))D
k−i+1g(y)(zρ(i+1), ..., zρ(k), zk+1)

+ f (y)Dk+1g(y)(z1, ..., zk+1). (117)

Observe that the last term of the r.h.s. can be written as follows:

f (y)Dk+1g(y)(z1, ..., zk+1) =
∑

ρ∈S0,k+1

D0f (y)Dk+1g(y)(zρ(1), ...zρ(k+1)). (118)

We can now combine (113)–(118). In particular, the terms involved in the sums in (115) and (117) can be combined 
together thanks to the representation of Si,k+1−i provided in (113). We finally obtain

(a) + (b) =
k+1∑
i=0

∑
σ∈Si,k+1−i

Dif (y)(zσ(1),...,σ (i))D
k+1−ig(y)(zσ(i+1), ..., zσ(k+1))

=
k+1∑
i=0

(
k + 1

i

)
Symi,k+1−i

(
Dif (y) ⊗ Dk+1−ig(y)

)
(z1, ..., zk+1).

In the last inequality, we used that |Si,k+1−i| =
(
k+1

i

)
. The Leibnitz formula is proved for k + 1. This concludes the 

proof. �
Proof of Lemma 13. The first part of the lemma follows directly from the definition and from the fact that |Si,j | =(
i+j
i

)
. Assume that T1 and T2 are symmetric. Let us set f : y ∈ Y �→ T1(y

⊗i ) and g : y ∈ Y �→ T2(y
⊗j ). By Lemma 8, 

the functions f and g are both infinitely many times differentiable. Applying the Leibnitz formula to fg, we obtain

Di+j [f (0)g(0)] =
i+j∑

=0

(
i + j




)
Sym
,i+j−


(
D
f (0) ⊗ Di+j−
g(0)

)
.

The derivatives of f of order k > i are all null and the derivatives of g of order k > j are also all null. Therefore, in 
the above sum, all the terms vanish, except the one obtained for 
 = i. Moreover, since T1 and T2 are symmetric,

Dif (0) = i!T1 and Djg(0) = j !T2.

We therefore obtain that

Di+j [f (0)g(0)] = (i + j)!Symi,j

(
T1 ⊗ T2

)
.

This proves that Symi,j

(
T1 ⊗T2

)
is a symmetric multilinear form, since it can be expressed as the (i + j)-th derivative 

of an infinitely many times differentiable function. The lemma is proved. �
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