
Available online at www.sciencedirect.com
Ann. I. H. Poincaré – AN 29 (2012) 401–411
www.elsevier.com/locate/anihpc

Dimension of images of subspaces under Sobolev mappings ✩

Stanislav Hencl ∗, Petr Honzík

Department of Mathematical Analysis, Charles University, Sokolovská 83, CZ – 186 00 Prague 8, Czech Republic

Received 16 June 2011; received in revised form 24 November 2011; accepted 3 January 2012

Available online 20 January 2012

Abstract

Let m < α < p � n and let f ∈ W1,p(Rn,Rk) be p-quasicontinuous. We find an optimal value of β(n,m,p,α) such that for
Hβ a.e. y ∈ (0,1)n−m the Hausdorff dimension of f ((0,1)m × {y}) is at most α. We construct an example to show that the value
of the optimal β does not increase once p goes below the critical case p < α.
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1. Introduction

It is well known that each Sobolev function satisfies the ACL condition, i.e., the function is absolutely continuous
when restricted to almost all lines parallel to coordinate axes. It follows that images of Hn−1 almost all segments
are rectifiable curves and thus have Hausdorff dimension at most one. We would like to study how often it can
happen that the images of m-dimensional subspaces have bigger Hausdorff dimension. Such a result was studied for
quasiconformal mapping by Gehring and Väisälä [2] and for supercritical Sobolev mappings (i.e. f ∈ W 1,p , p > n)
by Kaufmann [3] and recently by Balogh, Monti and Tyson [1].

Let Ω ⊂ R
n be a domain, p > n and let f ∈ W 1,p(Ω,Rk) be continuous. It was shown by Kaufmann that images

of m-dimensional subspaces have zero H
pm

p−n+m measure. Let us point out that naive application of (1 − n
p
) Hölder

continuity would give the worse exponent pm
p−n

. He also gave a probabilistic construction to show that the value
pm

p−n+m
is optimal. This was later generalized in a nice paper of Balogh, Monti and Tyson [1] where they showed that

for any m < α <
pm

p−n+m
it is true that the image of Hβ a.e. m-dimensional subspace has dimension at most α where

β = n − m − (1 − m
α
)p (see Theorem 1.1 below for exact formulation). By a similar construction as Kaufmann they
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also showed that this value of β is optimal for all p > n. The results of [1] are actually even more general and they deal
also with mappings with values in metric spaces or with quasiconformal mappings and mappings in Sobolev–Lorentz
spaces. We have not pursued this direction.

The counterexample in [1] is constructed for all p � 1 and in Problem 6.4 the authors ask for any generalization
of the positive statements also in the subcritical case p < n. We were able to show that basically the same statement
holds if α < p. Here dimH(A) denotes the Hausdorff dimension of a set A (see Section 2 for the definition).

Theorem 1.1. Let n, k ∈N and m ∈ {1, . . . , n − 1}. Let m < α < p � n and set

β = β(α,p) := (n − m) −
(

1 − m

α

)
p.

Suppose that f ∈ W 1,p(Rn,Rk) is a p-quasicontinuous representative. If we denote

E = {
y ∈ (0,1)n−m: dimH

(
f

(
(0,1)m × {y}))� α

}
,

then dimH(E) � β .

Since the important things occur on a set of measure zero we need to have a good representative of our function.
In the theorem, we choose the p-quasicontinuous representative, but in fact the only thing that we will need is that the
value of the representative of f is equal to the limit of integral averages whenever such limit exists.

The statement of the similar and even slightly sharper theorem for p > n was given already by Balogh, Monti
and Tyson [1] and the proof there is simpler. It relies on the Sobolev embedding theorem into Hölder continuous
functions which is not available for us. Instead we need to use some analogous estimate on possibly smaller balls (see
Lemma 3.1 below) and some finer covering arguments.

Let us now recall the statement of the counterexample from [1] that shows that the value of β from the previous
theorem is optimal at least for Minkowski dimension.

Theorem 1.2. Let p � 1, let α satisfy m < α � pm
p−n+m

for p > n − m and m < α for p � n − m, and define

β = β(α,p) = (n − m) −
(

1 − m

α

)
p.

Let E ⊂ (0,1)n−m be any Borel set for which

lim sup
r→0+

rβN(E, r) < ∞.

Then, for any integer k > α, there is a continuous map f ∈ W 1,p(Rn,Rk) so that f (Rm × {a}) has Hausdorff dimen-
sion at least α, for Hβ -almost every a ∈ E.

The requirement that α < p in Theorem 1.1 is natural as Theorem 1.3 below indicates. We were able to improve
the construction from [1] and to show that in the case p < α, p < n even better example exists. We have shown that
we do not get any improvement on β once p goes below the critical value α. This degeneracy seems to be connected
with the fact that p-quasicontinuous representatives of Sobolev function are well-defined and have Lebesgue points
up to a set of dimension n − p (see Theorem 2.3 below) and for p < α we have β(α,p) < n − p.

Theorem 1.3. Let 1 � p < n, m < p < α and let

β̃ < n − p = β(p,p).

Let E ⊂ (0,1)n−m be any Borel set for which
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lim sup
r→0+

rβ̃N(E, r) < ∞.

Then, for any integer k > α, there is a continuous map f ∈ W 1,p(Rn,Rk) so that f (Rm × {a}) has Hausdorff dimen-
sion at least α, for Hβ̃ -almost every a ∈ E.

2. Preliminaries

We use the notation N(E, r) for the smallest number of balls of radius r > 0 that cover the set E ⊂ R
d . For t > 0

we denote the integer part of t as [t]. By Q(z, r) we denote the cube centered at z ∈ R
d with radius r > 0. The

oscillation of a function f on a set A is denoted by oscA f := diamf (A).
We use the usual convention that C denotes a generic positive constant whose value may change from line to line.
In order to prove Theorem 1.3 we will use a probabilistic approach and we will need the following lemma (see [1,

Lemma 4.3] for the proof).

Lemma 2.1. Let {Xi}∞i=1 be a countable sequence of independent random variables, identically distributed according
to the uniform distribution on the unit ball B in R

k . Let c = {ci} ∈ �∞ and finally let 0 < α′ < k + 1. Then there is a
constant C which depends only on k and α′ so that

Eξ

(∣∣∣∣∣
∞∑
i=1

ciXi

∣∣∣∣∣
−α′)

� Cρ(c)−α′

where ρ(c) denotes the second largest value, i.e.

ρ(c) =
{‖c‖∞ if ‖c‖∞ = supi∈N |ci | is not attained,

supi 	=i0
|ci | if the supremum is attained at i0.

2.1. Hausdorff and capacitary dimension

Let α > 0 and ε > 0. We use the usual Hausdorff measure of a set E ⊂R
d , i.e.

Hα
ε (E) = inf

{ ∞∑
i=1

diamα Ai : E ⊂
∞⋃
i=1

Ai, diamAi < ε

}
and Hα(E) = lim

ε→0+Hα
ε (E).

The Hausdorff dimension of a set E is

dimH(E) = sup
{
α > 0: Hα(E) = ∞} = inf

{
α > 0: Hα(E) = 0

}
.

For α > 0 and A ⊂R
k , denote by

Iα(μ) :=
∫
A

∫
A

|x − y|−α dμ(x)dμ(y)

the α-energy of a nonzero finite Radon measure μ with compact support in A. The capacitary dimension of a set A is
defined as

dimc(A) = sup
{
α > 0: ∃μ with Iα(μ) < ∞}

.

We will use the well-known fact (see [4, Theorem 8.9]) that the Hausdorff dimension is equal to the capacitary
dimension.

2.2. Sobolev spaces

For a ball B we denote

fB = 1

|B|
∫
B

f (x)dx.
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Theorem 2.2 (Poincaré inequality). Let f ∈ W 1,p(Rn,Rk) and let B ⊂R
n be a ball of radius R. Then

∫
B

∣∣f (x) − fB

∣∣dx � CR
1+n− n

p

(∫
B

∣∣Df (x)
∣∣p dx

) 1
p

. (2.1)

We will not need the exact definition of a p-quasicontinuous representative. We will need only the following result
from [5, Theorem 3.3.3 and Theorem 2.6.16].

Theorem 2.3. Let 1 � p � n and let f ∈ W 1,p(Rn) be a p-quasicontinuous representative and set

Ep = {
x ∈R

n: x is not a Lebesgue point of f
}
.

Then dimH(Ep) = n − p and for p = 1 we moreover get Hn−1(E1) = 0.

3. Positive result in the subcritical case

For p > n we can use Sobolev embedding theorem to obtain∫
B

∣∣Df (x)
∣∣p dx � C(oscB f )pRn−p (3.1)

for every ball B of radius R. The following technical lemma will be essential for our proof. It tells us that for every
p � 1 we have an analogy of (3.1) on some smaller ball if we add some correction term to power γ > 0. Note that
γ can be chosen as small as we wish.

Lemma 3.1. Suppose that a and b are Lebesgue points of f ∈ W 1,p(Rn,Rk). Let us denote R0 = |a − b| and let
γ > 0. Then there are z ∈ {a, b} and 0 < R � 2R0 such that∫

B(z,R)

∣∣Df (x)
∣∣p dx � Cγ

∣∣f (a) − f (b)
∣∣pRn−p

(
R

R0

)γ

(3.2)

where the positive constant Cγ depends only on γ and dimension n.

Proof. Suppose for contradiction that (3.2) is not valid for each 0 < R � 2R0, Cγ > 0 and for both choices of z. Set

Bi = B
(
a,R02−i+1) for i ∈N∪ {0} and Bi = B

(
b,R02−|i|+1) for i ∈ −N.

Since a and b are Lebesgue points we have fBi
→ f (a) as i → ∞ and similarly fBi

→ f (b) as i → −∞. It follows
that ∑

i∈Z
|fBi

− fBi+1 |�
∣∣f (b) − f (a)

∣∣. (3.3)

For each i ∈N∪ {0} we have Bi+1 ⊂ Bi and for each i ∈ −N we have Bi ⊂ Bi+1. In the first case we can use (2.1) to
obtain

|fBi
− fBi+1 |�

1

|Bi+1|
∫

Bi+1

∣∣f (x) − fBi

∣∣dx � C

|Bi |
∫
Bi

∣∣f (x) − fBi

∣∣dx

� C
(
R02−i

)1− n
p

(∫
Bi

∣∣Df (x)
∣∣p dx

) 1
p

and we have a similar estimate also in the second case if we exchange the roles of i and i + 1. Together with (3.3) and
the opposite inequality to (3.2) for each Bi this implies
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∣∣f (a) − f (b)
∣∣ � ∑

i∈Z
|fBi

− fBi+1 | � C
∑
i∈Z

(
R02−|i|)1− n

p

(∫
Bi

∣∣Df (x)
∣∣p dx

) 1
p

� C
∑
i∈Z

(
R02−|i|)1− n

p
(
Cγ

∣∣f (a) − f (b)
∣∣p(

R02−|i|)n−p2−|i|γ ) 1
p

� CC
1
p
γ

∣∣f (a) − f (b)
∣∣∑

i∈Z
2−|i| γ

p = CC
1
p
γ

∣∣f (a) − f (b)
∣∣.

We see that this is not possible if Cγ is chosen small enough, a contradiction. �
Proof of Theorem 1.1. To get our conclusion it is enough to show that dimH(E) < β̃ for each β̃ > β . Let us fix
β̃ > β(α,p) and assume for contradiction that dimH(E) � β̃ . By Theorem 2.3 we know that the set

F = {
x ∈ [0,1]n: x is not Lebesgue point of f

}
has Hausdorff dimension at most n−p and the same holds for its projections. From p > α we know that β̃ > β > n−p

and hence this set is negligible and dimH(E \ P(F)) � β̃ , where P is the projection on the last n − m variables. By
[4, Lemma 3.1 and Theorem 8.13] there is a compact set E0 ⊂ E \ P(F) so that 0 < Hβ̃ (E0) < ∞. By Frostman’s
lemma [4, Theorem 8.8] we can fix a measure μ supported in E0 with ‖μ‖ = M > 0, and such that

μ
(
B(a, r)

)
� rβ̃ for any a ∈ R

n−m and r > 0. (3.4)

We can fix α̃ < α such that β̃ > β(α̃,p). It follows that

Hα̃
(
f

(
(0,1)m × {y})) = ∞ for every y ∈ E0.

Now let us fix a huge constant c0 > 0 and let us select ε such that

μ(E1) >
M

2
for E1 := {

y ∈ E0: Hα̃
ε

(
f

(
(0,1)m × {y})) > c0

}
. (3.5)

Fix a point y ∈ E1 and let us estimate the size of f ((0,1)m × {y}). Let us introduce dyadic cubes on [0,1]m. We
denote by D0 = {[0,1]m} the mother cube, and Dk = {Qi}2km

i=1 where Qi are closed cubes with vertices in the points
2−k

Z
n ∩ [0,1]m and with volume 2−km. We need to show that the sum of diameters of images of these cubes is big

enough and we will discuss three cases. Let us call a point x ∈ [0,1]m ‘bad’ if diamf ((Q(x, r) ∩ (0,1)m) × {y}) > ε

for every r > 0. In the first case there are no ‘bad’ points, in the second case we assume that there are at most N ‘bad’
points and in the third case we assume that the number of bad points is infinite.

In the first case, we can find a k such that for every Qi ∈ Dk we get diamf (Qi × {y}) � ε. Let us denote εi =
diamf (Qi × {y}). From (3.5) we get

2km∑
i=1

diamα̃ f
(
Qi × {y}) =

2km∑
i=1

εα̃
i � c0

2
(3.6)

and thus we have found essentially disjoint cubes in (0,1)m × {y} where the above inequality holds. We would like to
have a similar estimate in other cases as well.

In the second case, there is a natural number N such that each Dk contains at most N cubes Qi such that
diamf (Qi × {y}) > ε. For each k we denote

IB
k = {

i ∈ {
1, . . . ,2km

}: diamf
(
Qi × {y}) > ε

}
and Sk =

⋃
i∈IB

k

Qi

the union of these cubes. We observe that S = ⋂
k Sk contains at most N points. We may find a covering of the set

[0,1]m \S by infinitely many dyadic cubes {Qi} (that are smaller close to the points of S) such that εi = diamf (Qi ×
{y})� ε. Since

Hα̃
ε

(
f

(
(0,1)m × {y})) =Hα̃

ε

(
f

([
(0,1)m \ S

] × {y}))
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we may use (3.5) again to obtain
∞∑
i=1

diamα̃ f
(
Qi × {y}) =

∞∑
i=1

εα̃
i � c0

2
. (3.7)

In the third case, each Dk contains Nk cubes Qi such that diamf (Qi × {y}) > ε, and lim supk→∞ Nk = ∞.
Therefore for k big enough we get that Nk is big enough and hence

2km∑
i=1

diamα̃ f
(
Qi × {y})� ∑

i∈IB
k

εα̃ = Nkε
α̃ � c0

2
. (3.8)

Now, for each y ∈ E1 we are in one of the cases (3.6), (3.7) or (3.8) and we may select a finite number Ky such
that for the sequences of cubes Qy,i and εy,i = diamf (Qy,i × {y}) defined as in those inequalities we get

Ky∑
i=1

εα̃
y,i �

c0

4
. (3.9)

Let γ > 0 be a fixed constant whose value we will specify later. For any Qy,i we can find a, b ∈ Qy,i such that
2|f (a) − f (b)| � εy,i and hence we can use Lemma 3.1 on each of the cubes Qy,i , i ∈ {1, . . . ,Ky}, to obtain a
sequence of balls B

y
i = B(c

y
i ,R

y
i ) such that∫

B
y
i

∣∣Df (x)
∣∣p dx � CCγ |εy,i |p

(
R

y
i

)n−p
(

R
y
i

diam(Qy,i)

)γ

. (3.10)

For y ∈ E1 we take a ball By = B(y, r) where r = mini∈{1,...,Ky }Ry
i . The balls By cover the set E1 and we can use

Besicovitch covering Theorem to select a disjoint subset B = {Byj
} from them such that

μ

( ⋃
Byj

∈B
Byj

)
� CM. (3.11)

Now for each Byj
we denote by B

j
i = B(c

yj

i ,R
yj

i ) and R
j
i = R

yj

i the related balls and their dimensions and ε
j
i the

related oscillations. We define the index families

Rk = {
(i, j): 2−k−1 < R

j
i � 2−k

}
.

Now we observe that there is Dγ > 0 small enough such that for each yj we can find k such that∑
i: (i,j)∈Rk

(
ε
j
i

)α̃ =
∑

i: 2−k−1<R
j
i �2−k

(
ε
j
i

)α̃ � Dγ 2−γ k. (3.12)

Otherwise we would obtain
Kyj∑
i=1

(
ε
j
i

)α̃
<

∞∑
k=1

Dγ 2−γ k = Dγ C,

which contradicts (3.9). Next we claim that there is a constant Aγ > 0 such that we can find k with

μ(Fk) � Aγ 2−γ k where Fk =
⋃{

Byj
:

∑
i: (i,j)∈Rk

(
ε
j
i

)α̃ � Dγ 2−γ k

}

because otherwise we would get a contradiction with (3.11). The constant Dγ depends on γ and the original con-
stant c0 and the dependence of Dγ on c0 may be chosen as linear, while Aγ depends on γ and n. It follows that for a
huge c0 we can get a huge number Dγ .

We cover the set Fk by open balls of the diameter 2−k+3 centered in each point of Fk and use Besicovitch covering
Theorem to select a disjoint subcovering U such that μ(

⋃
U) � CAγ 2−γ k . By (3.4), U contains at least N balls,

where
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N � 2β̃kCAγ 2−γ k. (3.13)

For a fixed ball U in U , we take the j such that yj ∈ U . Such j exists, since diameters of the balls Byj
are smaller

than 2−k . Using (3.10) we compute∫
Rm×U

∣∣Df (x)
∣∣p dx � C

∑
i: (i,j)∈Rk

Cγ

(
ε
j
i

)p2−k(n−p)2−kγ . (3.14)

Note that for a fixed j at most Ln,m balls B
j
i may intersect, where Ln,m is a dimensional constant. To verify this, one

observes that the diameters of the balls are all comparable to 2−k and that their centers are in disjoint dyadic cubes of
diameter at least 2−k−10. The balls with different j are disjoint.

For each fixed yj we get at most C2km balls in (0,1)m ×{yj } of size 2−k . Therefore we can use Hölder’s inequality
to obtain

∑
i: (i,j)∈Rk

(
ε
j
i

)α̃ �
( ∑

i: (i,j)∈Rk

(
ε
j
i

)p
) α̃

p (
C2km

)1− α̃
p . (3.15)

Now we can use (3.14), (3.15), (3.12) and (3.13) to obtain∫
Rn

∣∣Df (x)
∣∣p dx �

∑
U∈U

∫
Rm×U

∣∣Df (x)
∣∣p dx

�
∑
U∈U

C
∑

i:(i,jU )∈Rk

Cγ

(
ε
jU

i

)p2−k(n−p)2−kγ

� NC2−k(n−p)2−kγ
(
Dγ 2−γ k

)p/α̃2−km
p−α̃

α̃

� C(Dγ )p/α̃2−k(−β̃+n−p+m
p−α̃

α̃
)2−kγ C̃ .

Since β̃ > n−m−p + pm
α̃

we may take γ so small that the cumulative exponent above becomes bounded from below
by a constant independent of k. Since the constant Dγ may be chosen arbitrarily large if c0 was chosen large at the
beginning of the proof, we get that f is not in W 1,p , a contradiction. �
4. Counterexample in the degenerate case

In this section we prove Theorem 1.3. We use the approach that was developed in [1, Theorem 1.4] and [3, Theo-
rem 3]. For the convenience of the reader we include the details.

In contrast with the construction in Theorem 1.2 from [1] we do not put some basic function into each subcube that
intersects our set but only into some of them. In the proof it is necessary to construct a measure on the image of m-
dimensional hyperplanes and then use the definition of capacitary dimension which equals the Hausdorff dimension.
In [1] it was enough to use the push-forward of the m-dimensional Hausdorff measure on the hyperplane but we need
to use the push-forward of the natural measure on the Cantor type set that is created as the intersection of the subcubes
from our construction.

Proof of Theorem 1.3. Let us denote the orthogonal splitting of Rn by

V =R
m × {0}n−m and V ⊥ = {0}m ×R

n−m

and for a ∈ R
n we denote Va = V + a. We assume that our set E satisfies

N(E, r)� Cr−β̃ . (4.1)

We will construct a map f ∈ W 1,p(Rn,Rk) that satisfies

Hα′(
fξ

(
Va ∩ [0,1]n)) = ∞ (4.2)

for Hβ̃ almost every a ∈ E and almost surely in ξ , for each α′ < α.
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Let us introduce the sets that will serve as a set of indices in our construction. Denote W = {1, . . . ,2n} and let Wj

be the set of (ordered) j -tuples of elements of W and let

W ∗ =
⋃
j�0

Wj .

We say that w = (w1, . . . ,wk) is a subword of v = (v1, . . . , vj ) if j � k and vi = wi for i = 1, . . . , k. The length of
a word w ∈ Wj is equal to j and we denote it as |w|. We use the set W ∗ to index the cubes in the standard dyadic
decomposition

D = {Qw}w∈W ∗

of Q = [0,1]n. It follows that the side length of Qw is equal to 2−j if w ∈ Wj and that Qv ⊂ Qw if w is a subword
of v. We project these cubes into the subspaces V and V ⊥ and we denote

QV ⊥
w = PV ⊥(Qw) and QV

w = PV (Qw)

where PV and PV ⊥ are the corresponding projections. Analogously to the definition of Wj we can define a system of
2jm dyadic cubes in [0,1]m and we denote this system as W̃ j .

In Wj we have 2jn = 2jm × 2j (n−m) cubes and we would like to define W
j
G ⊂ Wj with 2[√j ]m × 2j (n−m) cubes

Qw for w ∈ W
j
G. We first choose 2[√j ]m cubes from W̃ j and then we choose all cubes Qw , w ∈ Wj , such that QV

w

lies in this system W̃ j . Our only requirements for the position of these cubes are that

a) for each w ∈ W
j
G there is v ∈ W

j−1
G such that Qw ⊂ Qv ,

b) for each w ∈ W
j
G there are at most 2m pairwise essentially disjoint cubes Qui

∈ W
j+1
G such that Qui

⊂ Qw ,

c) number of different cubes in {QV ⊥
, w ∈ W

j
G} is 2j (n−m).

Let us briefly sketch how to construct such a system of cubes by induction. Set W̃ 0
G = W̃ 0. Assume that W̃

j
G ⊂ W̃ j

is defined and contains 2[√j ]m cubes. If [j + 1] = [j ] then for each w ∈ W̃
j
G we choose one v ∈ W̃ j+1 such that

w is a subword of v and we put this v into W̃
j+1
G . In this way we obtain a system of 2[√j ]m = 2[√j+1 ]m cubes

W̃
j+1
G ⊂ W̃ j+1. If [j + 1] = [j ] + 1 then for each w ∈ W̃

j
G there are 2m words v ∈ W̃ j+1 such that w is a subword of

v and we put all those v into W̃
j+1
G . In this way we obtain a system of 2[√j+1 ]m = 2m2[√j ]m cubes W̃

j+1
G ⊂ W̃ j+1. In

both cases we can easily check analogy of properties a) and b). Now we can define W
j
G = {w ∈ Wj : QV

w ∈ W̃
j
G} and

it is not difficult to check properties a), b) and c). In this way we obviously obtain 2[√j ]m × 2j (n−m) cubes from Wj .
To simplify the notation we write

W
j
G(E) = {

w ∈ W
j
G: QV ⊥

w ∩ E 	= ∅}
.

The cubes from W
j
G naturally form a Cantor type set in R

m

G :=
∞⋂

j=1

⋃
w∈W

j
G

QV
w. (4.3)

For each w ∈ W ∗, let ψw be a function in C∞
0 (Rn) such that

(i) 0 � ψw � 1,
(ii) ψw ≡ 1 on Qw ,

(iii) ψw ≡ 0 on the complement of 2Qw ,
(iv) |∇ψw| � C2|w|.
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Set W ∗
G = ⋃

j�0 W
j
G. Let ξ = {ξw}w∈W ∗

G
be a countable sequence of elements from the unit ball in R

k . For each j � 1
we define

fξ,j =
∑

w∈W
j
G(E)

2− m[√j ]
α ψw(a, x)ξw, for x ∈ V, a ∈ V ⊥

and finally we set

fξ =
∞∑

j=1

fξ,j .

Since

‖fξ,j‖L∞ � C2− m[√j ]
α

it is easy to see that fξ is continuous.

We have 2[√j ]m × 2j (n−m) cubes Qw for w ∈ W
j
G and we have to estimate the number of such a cubes whose

projection intersects E. From the construction of W
j
G c) we know that the number of cubes projected to V ⊥ is

2j (n−m), that is all dyadic cubes are available for our covering. By (4.1) we know that we can cover E by C2j β̃ balls
of radius 2−(j+1) and each of these balls can be covered by at most 2n−m dyadic cubes of side length 2−j . It follows
that the number of cubes Qw for w ∈ W

j
G(E) can be estimated from above by

C2[√j ]m × 2j β̃ .

The cubes 2Qw have bounded overlap and thus we may estimate∫
Rn

|∇fξ,j |p � C

∫
Rn

∑
w∈W

j
G(E)

2− m[√j ]
α

p
∣∣∇ψw(x)

∣∣p dx

� C
∑

w∈W
j
G(E)

2− m[√j ]
α

p2−jn2jp

� C2[√j ]m2j (β̃−n+p)2− m[√j ]
α

p.

Since β̃ < n − p it is easy to see that( ∫
Rn

|∇fξ |p
) 1

p

�
∑
j

( ∫
Rn

|∇fξ,j |p
) 1

p

� C
∑
j

2j
(β̃−n+p)

p 2−[√j ]m(
p
α
−1) 1

p < ∞.

Since fξ,j are uniformly bounded we obtain that fξ ∈ W 1,p(Rn,Rk).
In the remaining part of the proof we would like to show that for a generic choice of ξ we obtain a map fξ with

the desired property (4.2). Let us view ξ = {ξw}w∈W ∗
G

as a sequence of independent random variables, identically

distributed according to the uniform probability distribution on the unit ball B in R
k . Instead of the conclusion (4.2)

we will even show that

Hα′(
fξ

(
Ga ∩ [0,1]n)) = ∞ (4.4)

where Ga is a Cantor type set in Va constructed as in (4.3). Since Hausdorff and capacitary dimension coincide (see
Section 2) it is now enough to show that for each α′ < α we can find a measure μ on fξ (Ga ∩ [0,1]n) with finite
α′-energy.

On the Cantor type set Ga there is a natural measure HGa such that

HGa (Qw) = 1

#W
j

= 2−m[√j ] for each w ∈ W
j
G. (4.5)
G
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Indeed, consider a sequence of Radon measures μj whose density with respect to the Lebesgue measure is

2−m[√j ] ∑
w∈W

j
G

χQw(x), i.e. μj (A) = 2−m[√j ] ∑
w∈W

j
G

|Qw ∩ A|.

It is easy to see that μj ([0,1]n) = 1 and hence there is a subsequence which converges to some Radon measure in
the weak star topology. We call this limit measure HGa . For each fixed continuous function h ∈ C([0,1]n) it is not
difficult to see that the sequence

∫
[0,1]n hdμj is Cauchy in R and hence its limit must be

∫
[0,1]n hdHGa . This holds

for each continuous function h and hence this Radon measure is uniquely defined. By choosing proper continuous
functions such that h ≡ 1 on a fixed Qw , w ∈ W

j
G, we may obtain (4.5).

For each a ∈ E consider the measure (fξ )#(HGa ), i.e. the push-forward of the HGa -measure on Ga via the map fξ .
This measure is nonzero, because the set Ga is nonempty. We claim that the expectation

Eξ

(∫
E

Iα′
(
(fξ )#(HGa )

)
dHβ̃ (a)

)
(4.6)

is finite for each α′ < α. It follows that almost surely with respect to ξ we obtain that

Iα′
(
(fξ )#(HGa )

)
is finite for Hβ̃ a.e. a ∈ E

and our conclusion follows once we prove the claim (4.6).
Using Fubini theorem we may transform the integral from (4.6) to∫

[0,1]m

∫
[0,1]m

∫
E

Eξ

(∣∣fξ (a, x) − fξ (a, y)
∣∣−α′)

dHβ̃ (a) dHGa (x) dHGa (y).

We write

fξ (a, x) − fξ (a, y) =
∑

w∈W ∗
G(E)

cw(a, x, y)ξw (4.7)

where the coefficients are given by

cw(a, x, y) = 2− m[√|w| ]
α

(
ψw(a, x) − ψw(a, y)

)
. (4.8)

Let us fix a ∈ E and y ∈ Ga . The sequence of the coefficients c clearly belongs to �∞ and thus we may use
Lemma 2.1 and our task is reduced to the proof of∫

[0,1]m
ρ
(
c(a, x, y)

)−α′
dHGa (x) � C < ∞.

where the constant C is independent of a and y. For x ∈ Ga let us denote by j (x) the largest integer such that
both x and y lie in the same Qw � x, y for w ∈ W

j(x)
G . It follows that they lie in different Qu1 � x and Qu2 � y

for u1, u2 ∈ W
j(x)+1
G . It follows that most terms in (4.7) and (4.8) cancel and the first nonzero term corresponds to

j (x)+1. Since ψw(a, x) = 1 on Qu1 and ψw(a, x) = 0 on the complement of 2Qu2 it is easy to see that the supremum
norm of the difference of these two functions is 1. We can do similar observation for the term j (x) + 2 which must
be again nonzero and hence we obtain∥∥c(a, x, y)

∥∥∞ = 2− m[√j (x)+1 ]
α and ρ

(
c(a, x, y)

) = 2− m[√j (x)+2 ]
α .

From the construction of W
j
G part b) we know that for each j = j (x) we have a fixed cube Qu2 � y and we can find

at most 2m − 1 cubes Qu1 such that x ∈ Qu1 and hence

HGa

({
x ∈ Ga : j (x) = j

}) = (
2m − 1

)
HGa (Qu2) = (

2m − 1
)
2−m[√j+1 ].
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Now we can estimate∫
[0,1]m

ρ
(
c(a, x, y)

)−α′
dHGa (x) �

∞∑
j=0

(
2m − 1

)
2−m[√j+1 ]2m[√j+2 ] α′

α .

Since α′ < α it is easy to see that the series converges which finishes our proof. �
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