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Abstract

We consider the quintic nonlinear Schrödinger equation (NLS) on the circle

i∂t u + ∂2
xu = ±ν|u|4u, ν � 1, x ∈ S1, t ∈ R.

We prove that there exist solutions corresponding to an initial datum built on four Fourier modes which form a resonant set (see
Definition 1.1), which have a nontrivial dynamic that involves periodic energy exchanges between the modes initially excited. It is
noticeable that this nonlinear phenomenon does not depend on the choice of the resonant set.

The dynamical result is obtained by calculating a resonant normal form up to order 10 of the Hamiltonian of the quintic NLS
and then by isolating an effective term of order 6. Notice that this phenomenon cannot occur in the cubic NLS case for which the
amplitudes of the Fourier modes are almost actions, i.e. they are almost constant.
© 2012

Résumé

Nous considérons l’équation de Schrödinger non linéaire (NLS) quintique sur le cercle

i∂t u + ∂2
xu = ±ν|u|4u, ν � 1, x ∈ S1, t ∈ R.

Nous montrons qu’il existe des solutions issues d’une condition initiale construite sur quatre modes de Fourier formant un ensemble
résonant (voir définition 1.1) ont une dynamique non triviale mettant en jeu des échanges périodiques d’énergie entre ces quatre
modes initialement excités. Il est remarquable que ce phénomène non linéaire soit indépendant du choix de l’ensemble résonant.

Le résultat dynamique est obtenu en mettant d’abord sous forme normale résonante jusqu’à l’ordre 10 l’Hamiltonien de NLS
quintique puis en isolant un terme effectif d’ordre 6. Il est à noter que ce phénomène ne peut pas se produire pour NLS cubique
pour lequel les amplitudes des modes de Fourier sont des presque-actions et donc ne varient quasiment pas au cours du temps.
© 2012
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1. Introduction

1.1. General introduction

Denote by S1 = R/2πZ the circle, and let ν > 0 be a small parameter. In this paper we are concerned with the
following quintic nonlinear Schrödinger equation{

i∂tu + ∂2
xu = ±ν|u|4u, (t, x) ∈ R× S1,

u(0, x) = u0(x).
(1.1)

If u0 ∈ H 1(S1), thanks to the conservation of the energy, we show that the equation admits a unique global solution
u ∈ H 1(S1). In this work we want to describe some particular examples of nonlinear dynamics which can be generated
by (1.1).

For the linear Schrödinger equation (ν = 0 in (1.1)) we can compute the solution explicitly in the Fourier basis:
Assume that u0(x) = ∑

j∈Z ξ0
j eijx , then u(t, x) = ∑

j∈Z ξj (t)eijx with ξj (t) = ξ0
j e−ij2t . In particular, for all j ∈ Z,

the quantity |ξj | remains constant. Now, let ν > 0, then a natural question is: do there exist solutions so that the |ξj |
have a nontrivial dynamic. First we review some known results.

Consider a general Hamiltonian perturbation where we add a linear term and a nonlinear term:

i∂tu + ∂2
xu + V � u = ν∂ūg(x,u, ū), x ∈ S1, t ∈R, (1.2)

where V is a smooth periodic potential and g is analytic and at least of order three. In that case the frequencies are
ωj = j2 + V̂ (j), j ∈ Z, where V̂ (j) denote the Fourier coefficients of V . Under a non-resonant condition on these
frequencies, it has been established by D. Bambusi and the first author [2] (see also [6]) that the linear actions |ξj |2,
j ∈ Z, are almost invariant during very long time, or more precisely, that for all N � 1∣∣ξj (t)

∣∣2 = ∣∣ξj (0)
∣∣2 +O(ν), for |t |� ν−N.

Therefore in this non-resonant case, the dynamics of NLS are very close to the linear dynamics. On the other hand,
assuming more restrictive non-resonant conditions on the frequencies, it is possible to develop the KAM machinery
to Eq. (1.2). Actually, for the quintic nonlinearity J. Bourgain [3] has shown the existence of invariant tori of full
dimension which are close to the invariant tori of the linear part of the equation.

Another very interesting case is the classical cubic NLS

i∂tu + ∂2
xu = ±ν|u|2u, (t, x) ∈R× S1, (1.3)

and for this equation again nothing moves:∣∣ξj (t)
∣∣2 = ∣∣ξj (0)

∣∣2 +O(ν), for all t ∈R.

This last result is a consequence of the existence of action angle variables (I, θ) for the cubic NLS equation (there
are globally defined in the defocusing case and locally defined around the origin in the focusing case, see respectively
[7,8] and [10]) and that the actions are close to the Fourier mode amplitudes to the square: Ij = |ξj |2(1 +O(ν)).

Thus, in these two examples, the linear actions |ξj |2 are almost constant in time, but for different reasons.
Notice that in both previous cases, the Sobolev norms of the solutions, (

∑
j∈Z j2s |ξj (t)|2)1/2 are almost constant

for all s � 0.
On the other hand, recently C. Villegas-Blas and the first author consider the following cubic NLS equation

i∂tu + ∂2
xu = ±ν cos 2x|u|2u, (t, x) ∈R× S1, (1.4)

and prove that this special nonlinearity generates a nonlinear effect: if u0(x) = Aeix + Āe−ix then the modes 1 and −1
exchange energy periodically (see [9]). For instance if u0(x) = cosx + sinx, a total beating is proved for |t | � ν−5/4:∣∣ξ1(t)

∣∣2 = 1 ± sin 2νt

2
+O

(
ν3/4), ∣∣ξ−1(t)

∣∣2 = 1 ∓ sin 2νt

2
+O

(
ν3/4).

Of course in (1.4) the interaction between the mode 1 and the mode −1 is induced by the cos 2x in front of the
nonlinearity.
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In the present work we consider the quintic NLS equation (1.1). Notice that Liang and You have proved in [12]
that, in the neighborhood of the origin, there exist many quasi-periodic solutions of (1.1). The basic approach is to
apply the KAM method and vary the amplitude of the solutions in order to avoid resonances in the spirit of the pioneer
work of Kuksin and Pöschel [11]. Here we want to take advantage of the resonances in the linear part of the equation
to construct solutions that exchange energy between different Fourier modes.

Formally, by the Duhamel formula

u(t) = eit∂2
x u0 − iν

t∫
0

ei(t−s)∂2
x
(|u|4u)

(s)ds,

and we deduce that |ξj |2 cannot move as long as t � ν−1. In this paper we prove that for a large class of convenient
initial data, certain of the |ξj |2 effectively move after a time of order t ∼ ν−1.

Definition 1.1. A set A of the form

A= {n,n + 3k,n + 4k,n + k}, k ∈ Z \ {0} and n ∈ Z,

is called a resonant set. In the sequel we will use the notation

a2 = n, a1 = n + 3k, b2 = n + 4k, b1 = n + k.

We are interested in these resonant sets, since they correspond to resonant monomials of order 6 in the normal form
of the Hamiltonian (1.1), namely ξ2

a1
ξa2 ξ̄

2
b1

ξ̄b2 . See Sections 2 and 3 for more details.

Example 1.2. For (n, k) = (−2,1), we obtain (a2, a1, b2, b1) = (−2,1,2,−1); for (n, k) = (−1,2), we obtain
(a2, a1, b2, b1) = (−1,5,7,1).

1.2. The main result

Our first result is the following:

Theorem 1.3. There exist T > 0, ν0 > 0 and a 2T -periodic function K� :R �→ ]0,1[ which satisfies K�(0) � 1/4
and K�(T ) � 3/4 so that if A is a resonant set and if 0 < ν < ν0, there exists a solution to (1.1) satisfying for all
0 � t � ν−3/2

u(t, x) =
∑
j∈A

uj (t)e
ijx + ν1/4q1(t, x) + ν3/2tq2(t, x),

with ∣∣ua1(t)
∣∣2 = 2

∣∣ua2(t)
∣∣2 = K�(νt),∣∣ub1(t)

∣∣2 = 2
∣∣ub2(t)

∣∣2 = 1 − K�(νt),

and where for all s ∈ R, ‖q1(t, ·)‖Hs(S1) � Cs for all t ∈R+, and ‖q2(t, ·)‖Hs(S1) � Cs for all 0 � t � ν−3/2.

Theorem 1.3 shows that there is an exchange between the two modes a1 and a2 and the two modes b1 and b2. It is
remarkable that this nonlinear effect is universal in the sense that this dynamic does not depend on the choice of the
resonant set A.

In Section 2, we will see that such a result does not hold for any set A with #A � 3. However, three modes of a
resonant set A can excite the fourth mode of A if this one was initially arbitrary small but not zero. More precisely:

Theorem 1.4. For all 0 < γ < 1/10, there exist Tγ > 0, a 2Tγ -periodic function Kγ :R �→ ]0,1[ which satisfies
Kγ (0) = γ and Kγ (Tγ ) � 1/10, and there exists ν0 > 0 so that if A is a resonant set and if 0 < ν < ν0, there exists a
solution to (1.1) satisfying for all 0 � t � ν−3/2

u(t, x) =
∑

uj (t)e
ijx + ν1/4q1(t, x) + ν3/2tq2(t, x),
j∈A
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with ∣∣ua1(t)
∣∣2 = Kγ (νt); 2

∣∣ua2(t)
∣∣2 = 7 + Kγ (νt),∣∣ub1(t)

∣∣2 = 1 − Kγ (νt); 2
∣∣ub2(t)

∣∣2 = 1 − Kγ (νt),

and where for all s ∈ R, ‖q1(t, ·)‖Hs(S1) � Cs for all t ∈ R+, and ‖q2(t, ·)‖Hs(S1) � Cs for all 0 � t � ν−3/2.

Of course the solutions satisfy the three conservation laws: the mass, the momentum and the energy are constant
quantities. Denote by Lj = |uj |2, then we have:

• Conservation of the mass:
∫ |u|2

La1 + La2 + Lb1 + Ib2 = cst. (1.5)

• Conservation of the momentum: Im
∫

u∂xu

a1La1 + a2La2 + b1Lb1 + b2Lb2 = cst. (1.6)

• Conservation of the energy:
∫ |∂xu|2 + ν

3

∫ |u|6

a2
1La1 + a2

2La2 + b2
1Lb1 + b2

2Lb2 = cst. (1.7)

On the other hand, the solutions given by Theorem 1.3 satisfy for 0 � t � ν−5/4 and s � 0∥∥u(t, ·)∥∥2
Ḣ s = K�(νt)

2

(
2|a1|2s + |a2|2s − 2|b1|2s − |b2|2s

) + |b1|2s + 1

2
|b2|2s +O

(
ν1/4). (1.8)

Remark that (1.8) for s = 0,1 is compatible with respectively (1.5) and (1.7), since, for these values of s, the coefficient
(2|a1|2s + |a2|2s − 2|b1|2s − |b2|2s) vanishes for (a1, a2, b1, b2) ∈A.

But for s � 2, this coefficient is no more zero, except for some symmetric choices of A like (−2,1,2,−1). Thus
in the other cases ‖u(t, ·)‖2

Ḣ s is not constant. Actually, a computation shows that, choosing n = −k in the definition

of A, the ratio between ‖u(T , ·)‖2
Hs and ‖u(0, ·)‖2

Hs is larger than 2 for s � 4.
Very recently, Colliander, Keel, Staffilani, Takaoka and Tao [4] have proved a very nice result on the transfer of

energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation on the 2-dimensional torus. Of
course their result is more powerful; in particular they allow a ratio between the initial Hs -norm and the Hs -norm for
long time arbitrarily large. On the contrary our result only allows transfers of energy from modes {n,n+3k} to modes
{n+4k,n+ k} and thus the possibility of growing of the Hs -norm is bounded by cs for some constant c. Nevertheless
our approach is much more simple, it applies in 1-d and it is somehow universal (the dynamics we describe are not at
all exceptional).

Remark 1.5. Consider a resonant set A, and let u be given by Theorem 1.3. Then by the scaling properties of the

equation, for all N ∈N∗, uN defined by uN(t, x) = N
1
2 u(N2t,Nx) is also a solution of (1.1) and we have

uN(t, x) = N1/2
∑
j∈A

uj

(
N2t

)
eijNx + ν1/4q1

(
N2t,Nx

) + ν3/2tq2
(
N2t,Nx

)
.

Next, for any N ∈ N∗, the set NA is also a resonant set, and thus we can apply Theorem 1.3, which gives the existence
of a solution to (1.1) which reads

ũN (t, x) =
∑
j∈A

ũj (t)e
ijNx + ν1/4q̃1(t, x) + ν3/2t q̃2(t, x).

Observe however that they are not the same.

Theorem 1.3 is obtained by calculating a resonant normal form up to order 10 of the Hamiltonian of the quintic
NLS and then by isolating an effective term of order 6. Roughly speaking we obtain in the new variables H =
N + Zi + Ze

6 + R where N + Zi depends only on the actions, Ze
6, the effective part, is a polynomial homogeneous of

order 6 which depends on one angle and R is a remainder term.
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We first prove that, reduced to the resonant set, N +Zi +Ze
6 generates the nonlinear dynamic that we expect. Then

we have to prove that adding the remainder term R and considering all the modes, this nonlinear dynamic persists
beyond the local time (here t � ν−1). In general this is a hard problem. Nevertheless in our case, the nonlinear dynamic
corresponds to a stable orbit around an elliptic equilibrium point. So we explicitly calculate the action angle variables
(K,φ) ∈R4 ×T4 for the finite-dimensional system in such a way that our nonlinear dynamics reads K̇ = 0. Then for
the complete system, we obtain K̇ = O(ν5/2) and we are essentially done.

In [9], this construction was much more simpler since the finite dimensional nonlinear dynamics was in fact linear
(after a change of variable) and linear dynamics are more stable by perturbation than nonlinear ones.

1.3. Plan of the paper

We begin in Section 2 with some arithmetical preliminaries. In Section 3 we reinterpret Eq. (1.1) as a Hamiltonian
equation and we compute a completely resonant normal form at order 6. In Section 4 we study the equation (the
model equation) obtained by the previous normal form after truncation of the error terms. In Section 5 we show that
the model equation gives a good approximation of some particular solutions of (1.1).

2. Preliminaries: Arithmetic

We are interested in sets A of small cardinality so that there exist (j1, j2, j3, �1, �2, �3) ∈ A6 satisfying the follow-
ing resonance condition{

j2
1 + j2

2 + j2
3 = �2

1 + �2
2 + �2

3,

j1 + j2 + j3 = �1 + �2 + �3,
and {j1, j2, j3} 
= {�1, �2, �3}. (2.1)

To begin with, let us recall a classical result:

Lemma 2.1. Assume that (j1, j2, j3, �1, �2, �3) ∈ Z6 satisfy (2.1). Then {j1, j2, j3} ∩ {�1, �2, �3} = ∅.

Proof. If, say j1 = �1, then we have the relation

j2 + j3 = �2 + �3 and j2
2 + j2

3 = �2
2 + �2

3,

and this implies that (j2, j3) = (l2, l3) or (j2, j3) = (l3, l2). Squaring the first equality yields (j2 + j3)
2 = (l2 + l3)

2.
To this equality we subtract j2

2 + j2
3 = �2

2 + �2
3, which implies j2j3 = �2�3. Now compute

(�2 − j2)(�2 − j3) = �2
2 + j2j3 − j2�2 − j3�2 = �2(�2 + �3 − j2 − j3) = 0,

hence the result. �
Lemma 2.2. Assume that there exist integers (j1, j2, j3, �1, �2, �3) ∈A6 which satisfy (2.1). Then the cardinal of A is
greater than or equal to 4.

Proof. Assume that #A� 3. Then by Lemma 2.1 we can assume that A= {j1, j2, �1} and that

2j1 + j2 = 3�1; 2j2
1 + j2

2 = 3�2
1.

Let k ∈ Z so that j1 = �1 + k, then from the first equation we deduce that j2 = �1 − 2k. Finally, inserting the last
relation in the second equation, we deduce that k = 0 which implies that j1 = j2 = �1. �

The next result describes the sets A of cardinal 4 and which contain nontrivial solutions to (2.1). According to
Definition 1.1, these sets are called resonant sets.

Lemma 2.3 (Description of the resonant sets). The resonance sets are

A= {n,n + 3k,n + 4k,n + k}, k ∈ Z \ {0} and n ∈ Z.
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Proof. By Lemma 2.1, we know that either {j1, j2, j3} = {�1, �2, �3} or {j1, j2, j3} ∩ {�1, �2, �3} = ∅. We consider
the second case.

• First we exclude the case j1 = j2 = j3 = j . In that case we have to solve{
3j2 = �2

1 + �2
2 + �2

3,

3j = �1 + �2 + �3.
(2.2)

We will show that (2.2) implies �1 = �2 = �3 = j . Set �1 = j + p and �2 = j + q . Then by the second line �3 =
j − p − q . Now, we plug in the first line and get p2 + q2 + pq = 0. This in turn implies that p = q = 0 thanks to the
inequality p2 + q2 � 2|pq|.

• Then we can assume that j2 = j3 and �2 = �3, and �{j1, j2, �1, �2} = 4. Thus we have to solve{
j2

1 + 2j2
2 = �2

1 + 2�2
2,

j1 + 2j2 = �1 + 2�2.

From the first line, we infer that (j1 − �1)(j1 + �1) = 2(�2 − j2)(�2 + j2). The second gives j1 − �1 = 2(�2 − j2), thus
j1 + �1 = j2 + �2. Hence we are led to solve the system{

�1 − �2 = −j1 + j2,

�1 + 2�2 = j1 + 2j2

where the integers j1 and j2 are considered as parameters. The solutions are

�1 = 1

3
(−j1 + 4j2), �2 = 1

3
(2j1 + j2)

with the restriction, j1 ≡ j2 mod 3, in order to obtain integer solutions. Let n ∈ Z, k ∈ Z∗ so that j1 = n and j2 =
n + 3k; the solutions then reads �1 = n + 4k and �2 = n + k, as claimed. �

Define the set

R= {
(j1, j2, j3, �1, �2, �3) ∈ Z6 s.t. j1 + j2 + j3 = �1 + �2 + �3 and j2

1 + j2
2 + j2

3 = �2
1 + �2

2 + �2
3

}
.

The following result will be useful in the sequel.

Lemma 2.4. Let (j1, j2, j3, �1,p1,p2) ∈R. Assume that j1, j2, j3, �1 ∈A. Then p1,p2 ∈ A.

Proof. Let j1, j2, j3, �1 ∈ A and p1,p2 ∈N so that{
p1 + p2 = j1 + j2 + j3 − �1,

p2
1 + p2

2 = j2
1 + j2

2 + j2
3 − �2

1.
(2.3)

By Lemma 2.3, there exist n, k ∈ Z and (ms)1�s�4 with ms ∈ {0,1,3,4} so that js = n + msk and �1 = n + m4k. We
also write p1 = n + q1 and p2 = n + q2. We plug these expressions in (2.3) which gives{

q1 + q2 = (m1 + m2 + m3 − m4)k,

q2
1 + q2

2 + 2n(q1 + q2) = 2n(m1 + m2 + m3 − m4)k + (
m2

1 + m2
2 + m2

3 − m2
4

)
k2,

and is equivalent to{
q1 + q2 = (m1 + m2 + m3 − m4)k,

q2
1 + q2

2 = (
m2

1 + m2
2 + m2

3 − m2
4

)
k2.

We write q1 = r1k and q2 = r2k, then r1, r2 ∈ Q satisfy{
r1 + r2 = m1 + m2 + m3 − m4 := S,

r2
1 + r2

2 = m2
1 + m2

2 + m2
3 − m2

4 := T .
(2.4)

Next, we observe that indeed r1, r2 ∈ Z: In fact (2.4) is equivalent to

r1 + r2 = S, r1r2 = 1(
S2 − T

) := U (2.5)

2
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(U ∈ Z since S and T have the same parity) and r1, r2 are the roots of the polynomial X2 − SX + U . Thus if r = α/β

with α ∧ β = 1, we have that β|1 and then r ∈ Z.
We are finally reduced to solve (2.4) where ms ∈ {0,1,3,4}. We list all possible cases in the following array: By

symmetry we only need to consider the cases m1 � m2 � m3. We denote by m1m2m3m4 a possible choice and by
T = m2

1 + m2
2 + m2

3 − m2
4.

Value of ms Value of T Value of ms Value of T Value of ms Value of T

4440 48 4441 47 4443 39
4430 41 4431 40 = 36 + 4 4410 33
4413 24 4401 31 4403 23
4330 34 = 25 + 9 4331 33 4310 26 = 25 + 1
4301 24 4110 18 = 9 + 9 4113 9 = 9 + 0
4103 8 = 4 + 4 4001 15 4003 7
3330 27 3331 26 = 25 + 1 3334 11
3310 19 3314 3 3301 17 = 16 + 1
3304 2 3110 11 3114 −5
3104 −6 3001 8 = 4 + 4 3004 −7
1110 3 1113 −6 1114 −13

In this array, we read all the possible solutions to (2.4) which are (assuming that m1 � m2 � m3 and r1 � r2)

(r1, r2,m1,m2,m3,m4) = (3,3,4,1,1,0), (3,0,4,1,1,3), (4,1,3,3,0,1). (2.6)

Now we observe that we always have r1, r2 ∈ {0,1,3,4}, so that if we come back to (2.3), p1 = n+ r1k, p2 = n+ r2k

and p1,p2 ∈ A. �
3. The normal form

3.1. Hamiltonian formulation

From now, and until the end of the paper, we set ε = ν1/4. In the sequel, it will be more convenient to deal with
small initial conditions to (1.1), thus we make the change of unknown v = εu and we obtain{

i∂t v + ∂2
x v = |v|4v, (t, x) ∈R× S1 ,

v(0, x) = v0(x) = εu0(x).
(3.1)

Let us expand v and v̄ in Fourier modes:

v(x) =
∑
j∈Z

ξj eijx, v̄(x) =
∑
j∈Z

ηj e−ijx .

We define

P(ξ, η) = 1

3

∫
S1

∣∣v(x)
∣∣6 dx = 1

3

∑
j,�∈Z3

M(j,�)=0

ξj1ξj2ξj3η�1η�2η�3,

where M(j, �) = j1 + j2 + · · · + jp − �1 − �2 − · · · − �p denotes the momentum of the multi-index (j, l) ∈ Z2p or
equivalently the momentum of the monomial ξj1ξj2 · · · ξjpη�1η�2 · · ·η�p .

In this Fourier setting Eq. (3.1) reads as an infinite Hamiltonian system⎧⎪⎪⎨⎪⎪⎩
iξ̇j = j2ξj + ∂P

∂ηj

, j ∈ Z,

−iη̇j = j2ηj + ∂P

∂ξj

, j ∈ Z.

(3.2)

Since the regularity is not an issue in this work, we will work in the following analytic phase space (ρ � 0)

Aρ =
{
(ξ, η) ∈ �1(Z) × �1(Z)

∣∣∣ ∥∥(ξ, η)
∥∥

ρ
:=

∑
eρ|j |(|ξj | + |ηj |

)
< ∞

}

j∈Z
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which we endow with the canonical symplectic structure −i
∑

j dξj ∧ ηj . Notice that this Fourier space corresponds
to functions u(z) analytic on a strip |�z| < ρ around the real axis.

According to this symplectic structure, the Poisson bracket between two functions f and g of (ξ, η) is defined by

{f,g} = −i
∑
j∈Z

∂f

∂ξj

∂g

∂ηj

− ∂f

∂ηj

∂g

∂ξj

.

In particular, if (ξ(t), η(t)) is a solution of (3.2) and F is some regular Hamiltonian function, we have

d

dt
F

(
ξ(t), η(t)

) = {F,H }(ξ(t), η(t)
)

where

H = N + P =
∑
j∈Z

j2ξjηj + 1

3

∑
j,�∈Z3

M(j,�)=0

ξj1ξj2ξj3η�1η�2η�3

is the total Hamiltonian of the system. It is convenient to work in the symplectic polar coordinates (ξj = √
Ij eiθj , ηj =√

Ij e−iθj )j∈Z. Since we have dξ ∧ dη = idθ ∧ dI , the system (3.1) is equivalent to⎧⎪⎪⎨⎪⎪⎩
θ̇j = −∂H

∂Ij

, j ∈ Z,

İj = ∂H

∂θj

, j ∈ Z.

Finally, we define

J =
∑
j∈Z

Ij =
∑
j∈Z

ξjηj = ‖v‖2
L2(S1)

, (3.3)

which is a constant of motion for (3.1) and (3.2).

3.2. The Birkhoff normal form procedure

We denote by Bρ(r) the ball of radius r centred at the origin in Aρ . Recall the definition

R= {
(j1, j2, j3, �1, �2, �3) ∈ Z6 s.t. j1 + j2 + j3 = �1 + �2 + �3 and j2

1 + j2
2 + j2

3 = �2
1 + �2

2 + �2
3

}
and its subset

R0 =R∩ {{j1, j2, j3} = {�1, �2, �3}
}
.

We are now able to state the main result of this section, which is a normal form result at order 10 for the Hamilto-
nian H .

Proposition 3.1. There exists a canonical change of variable τ from Bρ(ε) into Bρ(2ε) with ε small enough such that

H := H ◦ τ = N + Z6 + R10, (3.4)

where

(i) N is the term N(I) = ∑
j∈Z j2Ij ;

(ii) Z6 is the homogeneous polynomial of degree 6

Z6 =
∑
R

ξj1ξj2ξj3η�1η�2η�3;

(iii) R10 is the remainder of order 10, i.e. a Hamiltonian satisfying ‖XR10(z)‖ρ � C‖z‖9
ρ for z = (ξ, η) ∈ Bρ(ε);

(iv) τ is close to the identity: there exists a constant Cρ such that ‖τ(z) − z‖ρ � Cρ‖z‖2
ρ for all z ∈ Bρ(ε).



B. Grébert, L. Thomann / Ann. I. H. Poincaré – AN 29 (2012) 455–477 463
By abuse of notation, in the proposition and in the sequel, the new variables (ξ ′, η′) = τ−1(ξ, η) are still denoted
by (ξ, η).

Proof of Proposition 3.1. For convenience of the reader, we briefly recall the Birkhoff normal form method. Let us
search τ as time one flow of χ a polynomial Hamiltonian of order 6,

χ =
∑

j,�∈Z3

M(j,�)=0

aj,�ξj1ξj2ξj3η�1η�2η�3 .

For any smooth function F , the Taylor expansion of F ◦ Φt
χ between t = 0 and t = 1 gives

F ◦ τ = F + {F,χ} + 1

2

1∫
0

(1 − t)
{{F,χ}, χ} ◦ Φt

χ dt.

Applying this formula to H = N + P we get

H ◦ τ = N + P + {N,χ} + {P,χ} + 1

2

1∫
0

(1 − t)
{{H,χ}, χ} ◦ Φt

χ dt.

Therefore in order to obtain H ◦ τ = N + Z6 + R10 we define

Z6 = P + {N,χ} (3.5)

and

R10 = {P,χ} + 1

2

1∫
0

(1 − t)
{{H,χ}, χ} ◦ Φt

χ dt. (3.6)

For j, � ∈ Z3 we define the associated divisor by

Ω(j, �) = j2
1 + j2

2 + j2
3 − �2

1 − �2
2 − �2

3.

The homological equation (3.5) is solved by defining

χ :=
∑

j,�∈Z3

M(j,�)=0,Ω(j,�)
=0

1

iΩ(j, �)
ξj1ξj2ξj3η�1η�2η�3

and thus

Z6 =
∑

j,�∈Z3

M(j,�)=0,Ω(j,�)=0

ξj1ξj2ξj3η�1η�2η�3 .

At this stage we define the class Pp of formal polynomial

Q =
∑

j,l∈Zp

M(j,�)=0

aj,�ξj1ξj2 · · · ξjpη�1η�2 · · ·η�p

where the aj� form a bounded family and we define [Q] = supj,� |aj�|. We recall the following result from [5].

Lemma 3.2. Let P ∈ Pp . Then:

(i) P is well defined and continuous (and thus analytic) on Aρ and∣∣P(ξ, η)
∣∣ � [P ]∥∥(ξ, η)

∥∥2p

0 � [P ]∥∥(ξ, η)
∥∥2p

ρ
.
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(ii) The associated vector field XP is bounded (and thus smooth) from Aρ to Aρ and∥∥XP (ξ, η)
∥∥

ρ
� 2p[P ]∥∥(ξ, η)

∥∥2p−1
ρ

.

(iii) Let Q ∈ Pq then {P,Q} ∈Pp+q−2 and[{P,Q}] � 2qp[P ][Q].

For convenience of the reader the proof of this lemma is recalled in Appendix A.
By using this lemma and since there are no small divisors in this resonant case, Z6 and χ have analytic vector fields

on Aρ . On the other hand, since χ is homogeneous of order 6, for ε sufficiently small, the time one flow generated by
χ maps the ball Bρ(ε) into the ball Bρ(2ε) and is close to the identity in the sense of assertion (iv).

Concerning R10, by construction it is a Hamiltonian function which is of order at least 10. To obtain assertion (iii)
it remains to prove that the vector field XR10 is smooth from Bρ(ε) into Aρ in such a way we can Taylor expand
XR10 at the origin. This is clear for the first term of (3.6): {P,χ} have a smooth vector field as a consequence of
Lemma 3.2 assertions (ii) and (iii). For the second term, notice that {H,χ} = Z6 − P + {P,χ} which is a polynomial
on Aρ having bounded coefficients and the same is true for Q = {{H,χ}, χ}. Therefore, in view of Lemma 3.2, XQ is
smooth. Now, since for ε small enough Φt

χ maps smoothly the ball Bρ(ε) into the ball Bρ(2ε) for all 0 � t � 1, we

conclude that
∫ 1

0 (1 − t){{H,χ}, χ} ◦ Φt
χ dt has a smooth vector field. �

3.3. Description of the resonant normal form

In this subsection we study the resonant part of the normal form given by Proposition 3.1

Z6 =
∑
R

ξj1ξj2ξj3η�1η�2η�3 .

We have

Proposition 3.3. The polynomial Z6 reads

Z6 = Zi
6 + Ze

6 + Z6,2 + Z6,3, (3.7)

where

(i) Zi
6 is a homogeneous polynomial of degree 6 which only depends on the actions (recall the definition (3.3) of J ):

Zi
6(I ) =

∑
R0

ξj1ξj2ξj3η�1η�2η�3 = 6J 3 − 9J
∑
k∈Z

I 2
k + 4

∑
k∈Z

I 3
k ;

(ii) Ze
6 is the effective Hamiltonian, it is a homogeneous polynomial of degree 6 which involves only modes in the

resonant set A:

Ze
6(ξ, η) = 9

(
ξa2ξ

2
a1

ηb2η
2
b1

+ ξb2ξ
2
b1

ηa2η
2
a1

);
(iii) Z6,2 is a homogeneous polynomial of degree 6 which contains all the terms involving exactly two modes which

are not in A;
(iv) Z6,3 is a homogeneous polynomial of degree 6 which contains all the terms involving at least three modes which

are not in A.

Example 3.4. Assume that A= {−2,1,2,−1}. Then we have Ze
6(ξ, η) = 9(ξ−2ξ

2
1 η2η

2−1 + ξ2ξ
2−1η−2η

2
1), and we can

compute (see Example B.1)

Z6,2(ξ, η) = 36(ξ3ξ−2ξ−1η−3η2η1 + ξ−3ξ2ξ1η3η−2η−1) + 9
(
ξ4ξ

2−2η−4η
2
2 + ξ−4ξ

2
2 η4η

2−2

)
.

If A= {−1,5,7,1}, the term Z6,2 is much more complicated (see Example B.1).



B. Grébert, L. Thomann / Ann. I. H. Poincaré – AN 29 (2012) 455–477 465
Proof of Proposition 3.3. A priori, in (3.7) there should also be a polynomial Z6,1 composed of the terms involving
exactly one mode which is not in A. An important fact of Proposition 3.3 is that Z6,1 = 0, and this is a consequence
of Lemma 2.4.

The specific form of the effective Hamiltonian announced in (ii) follows from the proof of Lemma 2.3.
It remains to compute Zi

6. This is done in the two following lemmas.
Denote by

Q= {
(j1, j2, �1, �2) ∈ Z4 s.t. j1 + j2 = �1 + �2 and j2

1 + j2
2 = �2

1 + �2
2

}
.

Observe that if (j1, j2, �1, �2) ∈Q, then {j1, j2} = {�1, �2} (see the proof of Lemma 2.1). Next, we can state

Lemma 3.5. The two following identities hold true

Z4(I ) :=
∑

(j1,j2,�1,�2)∈Q
ξj1ξj2η�1η�2 = 2J 2 −

∑
j∈Z

I 2
j , (3.8)

W
(k)
4 (I ) :=

∑
(j1,�2,�3)∈Ω(k)

ξkξj1η�2η�3 = 2Ik(J − Ik), (3.9)

where Ω(k) = {(j1, �2, �3) ∈ Z3 s.t. (k, j1, �2, �3) ∈ Q and j1 
= k}.

Proof. First we prove (3.8). Thanks to the previous remark and the fact that ξjηj = Ij , we have

Z4(I ) =
∑

Q, j1=�1

ξj1ξj2η�1η�2 +
∑

Q, j1 
=�1

ξj1ξj2η�1η�2

=
∑

(j1,j2)∈Z2

Ij1Ij2 +
∑

(j1,j2)∈Z2

j1 
=j2

Ij1Ij2

= 2

(∑
j∈Z

Ij

)2

−
∑
j∈Z

I 2
j = 2J 2 −

∑
j∈Z

I 2
j ,

which was the claim.
We now turn to (3.9). Again we split the sum in two

W
(k)
4 (I ) =

∑
(j1,�2,�3)∈Ω(k)

j1=�2

ξkξj1η�2η�3 +
∑

(j1,�2,�3)∈Ω(k)

j1 
=�2

ξkξj1η�2η�3

= Ik

∑
j1∈Z\{k}

Ij1 + Ik

∑
j1∈Z\{k}

Ij1

= 2Ik(J − Ik),

hence the result. �
Lemma 3.6. The following identity holds true

Zi
6(I ) :=

∑
R0

ξj1ξj2ξj3η�1η�2η�3 = 6J 3 − 9J
∑
k∈Z

I 2
k + 4

∑
k∈Z

I 3
k .

Proof. First we split the sum into three parts

Zi
6(I ) =

∑
R0, j1=�1

ξj1ξj2ξj3η�1η�2η�3 +
∑

R0, j1 
=�1, j2=�1

ξj1ξj2ξj3η�1η�2η�3

+
∑

R0, j1 
=�1

ξj1ξj2ξj3η�1η�2η�3 := Σ1 + Σ2 + Σ3.
j2 
=�1, j3=�1
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For the first sum, we use (3.8) to write

Σ1 =
∑

(j2,j3,�2,�3)∈Q
j1∈Z

Ij1ξj2ξj3η�2η�3 = JZ4(I ) = 2J 3 − J
∑
k∈Z

I 2
k . (3.10)

Now we deal with the sum Σ3. Denote by

Q(k) = {
(j1, j2, �1, �2) ∈ (

Z \ {k})4
s.t. j1 + j2 = �1 + �2 and j2

1 + j2
2 = �2

1 + �2
2

}
,

then from (3.8) we deduce that

Z
(k)
4 (I ) :=

∑
(j1,j2,�1,�2)∈Q(k)

ξj1ξj2η�1η�2 = 2(J − Ik)
2 −

∑
j∈Z

I 2
j + I 2

k .

Therefore by the previous equality

Σ3 =
∑

(j1,j2,�2,�3)∈Q(�1)

�1∈Z

I�1ξj1ξj2η�2η�3 =
∑
k∈Z

IkZ
(k)
4 (I )

=
∑
k∈Z

Ik

(
2J 2 − 4JIk + 2I 2

k −
∑
j∈Z

I 2
j + I 2

k

)
= 2J 3 − 5J

∑
k∈Z

I 2
k + 3

∑
k∈Z

I 3
k . (3.11)

Now we consider Σ2. By (3.9) and (3.11)

Σ2 =
∑

R0, j1 
=j2

Ij2ξj1ξj3η�2η�3

=
∑

R0, j1 
=j2, j3 
=j2

Ij2ξj1ξj3η�2η�3 +
∑

R0, j1 
=j2, j3=j2

Ij2ξj1ξj2η�2η�3

= Σ3 +
∑
j2∈Z

Ij2W
j2(I )

= 2J 3 − 5J
∑
k∈Z

I 2
k + 3

∑
k∈Z

I 3
k + 2J

∑
k∈Z

I 2
k − 2

∑
k∈Z

I 3
k

= 2J 3 − 3J
∑
k∈Z

I 2
k +

∑
k∈Z

I 3
k . (3.12)

Finally, (3.10), (3.11) and (3.12) yield the result. �
4. The model equation

We want to describe the dynamic of a solution to (3.2) so that ξ0
j = η0

j = 0 when j /∈ A. In view of the result of
Propositions 3.1 and 3.3 we hope that such a solution will be close to the solution (with the same initial condition) of
the Hamiltonian flow of N + Zi

6 + Ze
6 reduced to the four modes of the resonant set, i.e.

Ĥ =
∑
j∈A

j2Ij + 6J 3 − 9J
∑
k∈A

I 2
k + 4

∑
k∈A

I 3
k + 18I

1/2
a2 I

1/2
b2

Ia1Ib1 cos(2φ0), (4.1)

with φ0 = θa1 − θb1 + 1θa2 − 1θb2 .
2 2
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The Hamiltonian system associated to Ĥ is defined on the phase space T4 ×R4 � (θa1 , θa2, θa3, θa4; Ia1, Ia2 , Ia3, Ia4)

by ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ̇aj
= − ∂Ĥ

∂Iaj

, j = 1,2,

İaj
= ∂Ĥ

∂θaj

, j = 1,2,

θ̇bj
= − ∂Ĥ

∂Ibj

, j = 1,2,

İbj
= ∂Ĥ

∂θbj

, j = 1,2.

(4.2)

This finite-dimensional system turns out to be completely integrable.

Lemma 4.1. The system (4.2) is completely integrable.

Proof. It is straightforward to check that

K1 = Ia1 + Ib1 , K2 = Ia2 + Ib2 and K1/2 = Ib2 + 1

2
Ia1

are constants of motion. Furthermore we verify

{K1, Ĥ } = {K2, Ĥ } = {K1/2, Ĥ } = 0,

as well as

{K1,K2} = {K2,K1/2} = {K1/2,K1} = 0.

Moreover the previous quantities are independent. So Ĥ admits four integrals of motions that are independent and in
involution and thus Ĥ is completely integrable. �
4.1. Action angle variables for Ĥ

In this section we construct action angle variables for Ĥ in two particular regimes corresponding to two particular
sets of initial data.

We begin with a partial construction common to both cases. The previous considerations suggest that we make the
following symplectic change of variables: Denote by

θ = t (θa1, θb1 , θb2, θa2), I = t (Ia1 , Ib1, Ib2 , Ia2).

Then we define the new variables

φ = t (φ0, φ1, φ2, φ1/2), K = t (K0,K1,K2,K1/2)

by the linear transform(
φ

K

)
=

(
tB−1 0

0 B

)(
θ

I

)
, (4.3)

where the matrix B is given by

B =
⎛⎜⎝

1 0 0 0
1 1 0 0
0 0 1 1
1

⎞⎟⎠ and thus tB−1 =
⎛⎜⎝

1 −1 − 1
2

1
2

0 1 0 0
0 0 0 1

⎞⎟⎠ .
2 0 1 0 0 0 1 −1
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In the new variables (4.2) reads⎧⎪⎪⎨⎪⎪⎩
φ̇0 = − ∂Ĥ

∂K0
,

K̇0 = ∂Ĥ

∂φ0
,

⎧⎪⎨⎪⎩ φ̇j = − ∂Ĥ

∂Kj

,

K̇j = 0,

for j = 1,2,3. (4.4)

In the sequel, we will need the explicit expression of Ĥ in these new coordinates. Observe that for j = 1,2 we
have

I 2
aj

+ I 2
bj

= K2
j − 2Iaj

Ibj
and I 3

aj
+ I 3

bj
= Kj

(
K2

j − 3Iaj
Ibj

)
,

then if we introduce the notation

F(K1,K2) = K1 + 4K2 + (K1 + K2)
(
K2

1 + K2
2 + 8K1K2

)
,

the Hamiltonian Ĥ reads

Ĥ = Ĥ (φ0,K0,K1,K2,K1/2)

= F(K1,K2) + 6
[
(K1 + 3K2)Ia1Ib1 + (K2 + 3K1)Ia2Ib2 + 3I

1
2
a2I

1
2
b2

Ia1Ib1 cos(2φ0)
]
, (4.5)

where

Ia1 = K0, Ib1 = K1 − K0, Ib2 = K1/2 − 1

2
K0, Ia2 = K2 − K1/2 + 1

2
K0.

We now want to exhibit some particular trajectories (φ0,K0), actually periodic orbits around stable equilibrium. For
that we particularise the coefficients Kj for j 
= 0.

Let A � 1/2. We set K1 = ε2, K2 = Aε2 and K1/2 = 1
2ε2, and we denote by

Ĥ0(φ0,K0) := Ĥ

(
φ0,K0, ε

2,Aε2,
1

2
ε2

)
.

The evolution of (φ0,K0) is given by⎧⎪⎪⎨⎪⎪⎩
φ̇0 = −∂Ĥ0

∂K0
,

K̇0 = ∂Ĥ0

∂φ0
.

Then, we make the change of unknown

φ0(t) = φ
(
ε4t

)
and K0(t) = ε2K

(
ε4t

)
.

An elementary computation shows that, the evolution of (φ,K) is given by⎧⎪⎪⎨⎪⎪⎩
φ̇ = −∂H�

∂K
,

K̇ = ∂H�

∂φ
,

where

H� = H�(φ,K) = 3

2
(1 − K)

[
(A + 3)(2A − 1) + (7 + 13A)K + 6(1 − K)

1
2 (2A − 1 + K)

1
2 K cos(2φ)

]
. (4.6)

4.1.1. First regime: A = 1/2
In that case we have

H� = H�(φ,K) = 9
K(1 − K)

[
9 + 4K

1
2 (1 − K)

1
2 cos(2φ)

]
,

4
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Fig. 1. The phase portrait of system (4.7).

Fig. 2. An example of trajectory (φ�,K�).

and the evolution of (φ,K) is given by⎧⎨⎩ φ̇ = −27

4
(1 − 2K)

[
3 + 2K

1
2 (1 − K)

1
2 cos(2φ)

]
,

K̇ = −18K
3
2 (1 − K)

3
2 sin(2φ).

(4.7)

The dynamical system (4.7) is of pendulum type. Let us define

κ� = 1

2
− 1

8

[
2(7

√
105 − 69)

]1/2 ≈ 0.208 . . . . (4.8)

We have:

Proposition 4.2. Let κ� be given by (4.8). If κ� < K(0) < 1 − κ� and φ(0) = 0, then there is T > 0 so that (φ,K) is
a 2T -periodic solution of (4.7) and

K(0) + K(T ) = 1.

We denote by (φ�,K�) such a trajectory.

Proof of Proposition 4.2. The lines K = 0 and K = 1 are barriers and the phase portrait is π -periodic in ϕ, so we
restrict our study to the region −π

2 � φ � π
2 , 0 < K < 1. In this domain, there are exactly three equilibrium points:

ω0 = (0,1/2) which is a centre and ω1 = (−π/2,1/2) and ω2 = (π/2,1/2) which are saddle points. The level set
H�(φ,K) = H�(ω1) = H�(ω2) = 63/16, which corresponds to the equation

K(1 − K)
(
9 + 4K

1
2 (1 − K)

1
2 cos(2φ)

) = 7

4
,

defines two heteroclinic orbits which link the points ω1 and ω2: C1 in the region {K < 1/2} and C2 in the region
{K > 1/2} (see the dashed curves in Figs. 1 and 2). Moreover, we can explicitly compute the intersection (0, κ�) of
the curve C1 with the K-axis, and we obtain (4.8).
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Let Ũ ⊂ ]−π/2,π/2[ × ]κ�,1 − κ�[ \ {ω0} be the open domain delimited by the curves C1 and C2 minus the
point ω0. Any solution issued from a point inside Ũ is periodic and turns around the centre ω0. Furthermore, letting
2T be the period, by symmetry we have (φ(T ),K(T )) = (0,1 − K(0)). �

By applying the Arnold–Liouville theorem (see e.g. [1]) inside Ũ we obtain

Lemma 4.3. Let U � Ũ , then there exists a symplectic change of variables Φ :U � (K,φ) �→ (L,α) ∈ R>0 × S1

which defines action angle coordinates for (4.7), i.e., (4.7) is equivalent to the system

L̇ = −∂H�

∂α
= 0, α̇ = ∂H�

∂L
.

Moreover Φ is a C1-diffeomorphism, and there exists C > 0 depending on U so that

‖dΦ‖� C,
∥∥dΦ−1

∥∥ � C.

4.1.2. Second regime: A = 4
In that case we obtain

H� = 3

2
(1 − K)

[
49 + 59K + 6(1 − K)

1
2 (7 + K)

1
2 K cos(2φ)

]
,

and the evolution of (φ,K) is given by{
φ̇ = 3

[
59K − 5 − 3(K + 7)−

1
2 (1 − K)

1
2
(−3K2 − 16K + 7

)
cos(2φ)

]
,

K̇ = −18(1 − K)
3
2 (7 + K)

1
2 K sin(2φ).

(4.9)

Proposition 4.4. Let γ > 0 be arbitrary small, and set (φ(0),K(0)) = (0, γ ). Then there is Tγ > 0 so that (φ,K) is
2Tγ -periodic and

K(Tγ ) >
1

10
.

We denote by (φ�,K�) such a trajectory.

Proof of Proposition 4.4. We restrict our study to the region 0 � φ � π
2 , 0 < K < 1. First, we study the sign of φ̇.

To begin with, observe that φ̇ has exactly the sign of f (K) − cos(2φ) where

f (K) = 1

3
(59K − 5)(K + 7)

1
2 (1 − K)−

1
2
(−3K2 − 16K + 7

)−1
.

We verify that there exists 1/10 < κ0 < 1/5 so that the function f is increasing and one-to-one f : [0, κ0] →
[−5

√
7/21,1]. Thus, the curve C0 := {φ̇ = 0} can be expressed as a decreasing function K(φ) = f −1(cos(2φ)).

Thanks to this study, and the expression of K̇ , we deduce that the phase portrait has exactly three equilibrium points:
ω0 = (0, κ0) which is a centre and ω1 = (−φ0,0) and ω2 = (φ0,0) which are saddle points (here 0 < φ0 < π/2 is
defined by the equation f (0) = −5

√
7/21 = cos(2φ0)). The level set H�(φ,K) = H�(ω1) = H�(ω2) = 3

2 · 49, which
is defined by the equation

10 − 59K + 6(1 − K)
3
2 (7 + K)

1
2 cos(2φ) = 0,

defines two heteroclinic orbits C1 := {K = 0} and C2 that link the two saddle points (see the dashed curves in Figs. 3
and 4).

Let Ũ2 ⊂ ]−π/2,π/2[ × ]0,1[ \ {ω0} be the open domain delimited by the curves C1 and C2 minus the point ω0.
Any solution issued from a point inside Ũ2 is periodic and turns around the centre ω0. Furthermore, letting 2T be the
period, by symmetry we have φ(T ) = 0 and K(T ) > κ0. �
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Fig. 3. The phase portrait of system (4.9).

Fig. 4. An example of trajectory (φ�,K�).

As in the first case, applying the Arnold–Liouville theorem inside Ũ we obtain

Lemma 4.5. Let U � Ũ2. Then there exists a symplectic change of variables Φ :U � (K,φ) �→ (L,α) ∈ R>0 × S1

which defines action angle coordinates for (4.9), i.e., (4.9) is equivalent to the system

L̇ = −∂H�

∂α
= 0, α̇ = ∂H�

∂L
.

Moreover Φ is a C1-diffeomorphism, and there exists C > 0 depending on U so that

‖dΦ‖� C,
∥∥dΦ−1

∥∥ � C.

4.1.3. On the other cases
More generally, we can consider the case K1 = ε2, K2 = Aε2 and K1/2 = Bε2, where the constants A,B > 0

satisfy the natural conditions A � B and B � 1/2. Roughly speaking, the mechanism is the following. Consider the
curve C0 = {φ̇ = 0}. If C0 has no intersection with {K = 0} and {K = 1}, then the dynamic is essentially the one
of A = 1/2, B = 1/2. On the contrary, if C0 has two intersections with {K = 0} or {K = 1}, then the dynamic is
essentially the one of A = 4, B = 1/2.

5. Proof of Theorems 1.3 and 1.4

Consider the Hamiltonian H given by (3.4), which is a function of (ξj , ηj )j∈Z. We make the linear change of
variables given by (4.3) (the variables ξj , ηj remain unchanged for j /∈ A). In the sequel, the Hamiltonian in the new
variables is still denoted by H . Then H induces the system⎧⎪⎪⎪⎨⎪⎪⎪⎩

φ̇j = − ∂H

∂Kj

,

K̇j = ∂H

∂φ
,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
iξ̇p = ∂H

∂ηp

,

iη̇p = − ∂H

∂ξ
,

p /∈A. (5.1)
j p



472 B. Grébert, L. Thomann / Ann. I. H. Poincaré – AN 29 (2012) 455–477
Next, we take some initial conditions to (5.1) which will be close to the initial conditions chosen for (4.4).
Observe that the Kj ’s aren’t constants of motion of (5.1). However, they are almost preserved, and this is the result

of the next lemma. Recall that A= {a2, a1, b2, b1},
K1 = Ia1 + Ib1, K2 = Ia2 + Ib2, and K1/2 = Ib2 + 1

2
Ia1 ,

and recall the notations of Proposition 3.3.

Lemma 5.1. Assume that

ξj (0), ηj (0) =O(ε), ∀j ∈A and ξp(0), ηp(0) =O
(
ε3), ∀p /∈A. (5.2)

Then for all 0 � t � Cε−6,

Ip(t) =O
(
ε6) when p /∈A, (5.3)

and

K1(t) = K1(0) +O
(
ε10)t, (5.4)

K2(t) = K2(0) +O
(
ε10)t, (5.5)

K1/2(t) = K1/2(0) +O
(
ε10)t. (5.6)

Proof. We first remark that by the preservation of the L2-norm in the NLS equation, we have∑
p∈Z

Ip(t) =
∑
p∈Z

Ip(0) for all t ∈R,

and therefore by using (5.2)

Ip(t) =O
(
ε2) for all p ∈ Z and for all t.

On the other hand, by Propositions 3.1 and 3.3, we have for p ∈ Z

İp = {Ip,H } = {
Ip,Ze

6

} + {Ip,Z6,2} + {Ip,Z6,3} + {Ip,R10}. (5.7)

• To prove (5.3), we first verify that for p /∈A, {Ip,Ze
6} = 0. Then, we remark that, as a consequence of Lemma 2.4,

all the monomials appearing in Z6,2 have the form

ξj1ξj2ξp1η�1η�2ηp2 or ξ�1ξ�2ξp2ηj1ηj2ηp1

where (j1, j2,p1, �1, �2,p2) ∈ R, j1, j2, �1, �2 ∈A and p1,p2 /∈A. Furthermore, by straightforward computation,

{Ip1 + Ip2, ξj1ξj2ξp1η�1η�2ηp2} = {Ip1 + Ip2, ξ�1ξ�2ξp2ηj1ηj2ηp1} = 0. (5.8)

Then we define an equivalence relation: Let p, p̃ /∈ A. We say that p and p̃ are linked and write p ↔ p̃ if there exist
k ∈N∗, a sequence (q(i))1�i�k /∈A so that q(1) = p, q(k) = p̃ and j

(i)
1 , j

(i)
2 , �

(i)
1 , �

(i)
2 ∈A satisfying(

j
(i)
1 , j

(i)
2 , q(i), �

(i)
1 , �

(i)
2 , q(i+1)

) ∈R, for all 1 � i � k − 1.

For p /∈ A, we define Jp = ∑
q↔p Iq (the sum over all indices q which are linked to p). We observe that Jp is a sum

of positive quantities, one of them being Ip . So the control of Jp induces the control of Ip .
In view of (5.8) we have

{Jp,Z6,2} = 0

and thus

J̇p = {Jp,Z6,3} + {Jp,R10}, when p /∈ A.

Furthermore all the monomials appearing in {Jp,R10} are of order 10 and contain at least one mode out of A. There-
fore as soon as (5.3) remains valid, we have

J̇p(t) =O
(
ε3+3×3) +O

(
ε9+3)
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and thus∣∣Jp(t)
∣∣ =O

(
ε6) + tO

(
ε12).

We then conclude by a classical bootstrap argument that (5.3) holds true for t � Cε−6.
• It remains to prove (5.4)–(5.6). Again this is proved by a bootstrap argument. To begin with, we verify by direct

calculation that for all p ∈ {1/2,1,2},{
Kp,Ze

6

} = 0.

Therefore, by using (5.7) we deduce that for all p ∈ {1/2,1,2}
K̇p = {Kp,Z6,2} + {Kp,Z6,3} + {Kp,R10}. (5.9)

Then we use that each monomial of Z6,2 contains at least two terms with indices p′ /∈ A (see Proposition 3.3).
Therefore, as soon as (5.2) holds, we have |{Kp,Z6,2}| � Cε10. Furthermore |{Kp,R10}|� Cε10. Therefore, by (5.9),

Kp(t) = Kp(0) + tO
(
ε10).

Finally, to recover the bounds (5.2), we have to demand that t is so that 0 � t � ε−6, which was the claim. �
From now on, we fix the initial conditions

K1(0) = ε2, K2(0) = Aε2, K1/2(0) = ε2/2, and
∣∣ξj (0)

∣∣, ∣∣ηj (0)
∣∣� Cε3 for j /∈ A. (5.10)

Let H be given by (3.4). Then according to the result of Lemma 5.1 which says that for a suitable long time we
remain close to the regime of Section 4, we hope that we can write H = Ĥ0 + R, where R is an error term which
remains small for times 0 � t � ε−6.

We focus on the motion of (φ0,K0) and as in the previous section, we make the change of unknown

φ0(t) = φ
(
ε4t

)
and K0(t) = ε2K

(
ε4t

)
, (5.11)

and we work with the scaled time variable τ = ε4t . Then we can state

Proposition 5.2. Consider the solution (5.1) with the initial conditions (5.10). Then (φ,K) defined by (5.11) satisfies
for 0 � τ � ε−2⎧⎪⎪⎨⎪⎪⎩

φ̇ = −∂H�

∂K
+O

(
ε2),

K̇ = ∂H�

∂φ
+O

(
ε2), (5.12)

where H� is the Hamiltonian (4.6)

H� = 3

2
(1 − K)

[
(A + 3)(2A − 1) + (7 + 13A)K + 6(1 − K)

1
2 (2A − 1 + K)

1
2 K cos(2φ)

]
.

Proof. First recall that Ĥ = Ĥ (φ0,K0,K1,K2,K1/2) is the reduced Hamiltonian given by (4.5). By Propositions 3.1
and 3.3 we have

H = Ĥ + RI + Z6,2 + Z6,3 + R10, (5.13)

where RI is the polynomial function of the actions Ij defined by (recall that J = ∑
k∈N Kp)

RI = 6
(
J 3 − (K1 + K2)

3) − 9J
∑
k∈Z

I 2
k + 9(K1 + K2)

∑
k∈A

I 2
k +

∑
j /∈A

j2Ij + 4
∑
k /∈A

I 3
k .

Notice that RI vanishes when Ik = 0 for all k /∈ A since RI is in fact the part of N + Zi
6 that does not depend only on

the internal variables (Ik)k∈A.
Thanks to the Taylor formula there is Q so that

Ĥ (φ0,K0,K1,K2,K1/2) = Ĥ
(
φ0,K0, ε

2,Aε2, ε2/2
) + Q = Ĥ0 + Q. (5.14)
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Thus, by (5.13) and (5.14) we have H = Ĥ0 + R with

R = Q + RI + Z6,2 + Z6,3 + R10.

By (5.1), (φ0,K0) satisfies the system⎧⎪⎪⎨⎪⎪⎩
φ̇0(t) = − ∂H

∂K0

(
φ0(t),K0(t), . . .

)
,

K̇0(t) = ∂H

∂φ0

(
φ0(t),K0(t), . . .

)
,

where the dots stand for the dependence of the Hamiltonian on the other coordinates. Then, after the change of
variables (5.11) we obtain⎧⎪⎪⎨⎪⎪⎩

φ̇(τ ) = − 1

ε6

∂H

∂K

(
φ(τ), ε2K(τ), . . .

)
,

K̇(τ ) = 1

ε6

∂H

∂φ

(
φ(τ), ε2K(τ), . . .

)
.

Now write H = Ĥ0 + R and observe that Ĥ0(φ, ε2K) = Cε + ε6H�(φ,K). As a consequence, (φ,K) satisfies⎧⎪⎪⎨⎪⎪⎩
φ̇ = −∂H�

∂K
− 1

ε6

∂R(φ, ε2K, . . .)

∂K
,

K̇ = ∂H�

∂φ
+ 1

ε6

∂R(φ, ε2K, . . .)

∂φ
.

Thus it remains to estimate ∂φR(φ, ε2K, . . .) and ∂KR(φ, ε2K, . . .). Remark that φ and K are dimensionless variables.
Thus, if P is a polynomial involving p internal modes, (ξj , ηj )j∈A, and q external modes, (ξj , ηj )j /∈A, we have by
using Lemma 5.1

∂φP
(
φ, ε2K, . . .

) =O
(
εp+3q

)
, ∂KP

(
φ, ε2K, . . .

) =O
(
εp+3q

)
.

Then notice that RI contains only monomials involving at least one external action (Ik)k /∈A. Therefore we get

∂φRI

(
φ, ε2K, . . .

) =O
(
ε10), ∂KRI

(
φ, ε2K, . . .

) =O
(
ε10),

∂φZ6,2
(
φ, ε2K, . . .

) =O
(
ε10), ∂KZ6,2

(
φ, ε2K, . . .

) =O
(
ε10),

∂φZ6,3
(
φ, ε2K, . . .

) =O
(
ε12), ∂KZ6,3

(
φ, ε2K, . . .

) =O
(
ε12),

∂φR10
(
φ, ε2K, . . .

) =O
(
ε10), ∂KR10

(
φ, ε2K, . . .

) =O
(
ε10).

On the other hand, by construction Q reads P1�K1 + P2�K2 + P1/2�1/2 where P1, P2 and P1/2 are polynomials
of order 2 in K0, K1, K2, K1/2 and ε2 while �Kj denotes the variation of Kj : �Kj = Kj − Kj(0). Using again
Lemma 5.1, we check that for 0 � τ � ε−2

∂φQ =O
(
ε8), ∂KQ =O

(
ε8),

hence the result. �
Now we choose some precise initial conditions for (φ,K). We take φ(0) = 0 and κ� < K(0) < 1 − κ� as in

Theorem 1.3 or K(0) = γ � 1 as in Theorem 1.4. We also consider the solution (φ�,K�) to (4.7) with initial condition
(φ�,K�)(0) = (φ,K)(0). Then

Lemma 5.3. For all 0 � τ � ε−2 we have

(φ,K)(τ) = (φ�,K�)(τ ) +O
(
ε2)τ.

Proof. Consider the system (5.12), and apply the change of variable (L,α) = Φ(K,φ) defined in Lemma 4.3. Using
(5.12) and the fact that dΦ is bounded (cf. Lemma 4.3), we obtain that for 0 � τ � ε−2
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d

dτ
(L,α) = d

dτ
Φ(K,φ) = dΦ(K,φ).(K̇, φ̇)

= dΦ(K,φ).

(
∂H�

∂φ
,−∂H�

∂K

)
+O

(
ε2)

=
(

∂H�

∂α
,−∂H�

∂L

)
+O

(
ε2)

=
(

0,−∂H�

∂L

)
+O

(
ε2).

Therefore there exists L� ∈ R so that L(τ) = L� + O(ε2)τ and if we define ω� = − ∂H�

∂L
(L�), we obtain α(τ) =

ω�τ +O(ε2)τ . Next, as dΦ−1 is bounded, we get

(φ,K)(τ) = Φ−1(L(τ),α(τ)
) = Φ−1(L�,ω�τ) +O

(
ε2)τ = (φ�,K�)(τ ) +O

(
ε2)τ,

where (φ�,K�)(τ ) is the solution of (4.7) so that (φ�,K�)(0) = (φ,K)(0). �
Proof of Theorems 1.3 and 1.4. As a consequence of Lemma 5.3, the solution of (5.1) satisfies for 0 � t � ε−6

K0(t) = ε2K�

(
ε4t

) +O
(
ε8)t,

φ0(t) = φ�

(
ε4t

) +O
(
ε6)t.

This completes the proof of the main results: The error term q1 comes from the normal form reduction (see Proposi-
tion 3.1), and the error term q2 comes from the O(ε6) above (recall that ν = ε4). �
Appendix A

We prove Lemma 3.2.
The first assertion is trivial. Concerning the second one we have∥∥XP (ξ, η)

∥∥
ρ

=
∑
k∈Z

eρ|k|
(∣∣∣∣∂Q

∂ξk

∣∣∣∣ +
∣∣∣∣ ∂Q

∂ηk

∣∣∣∣)
� p[P ]

∑
k∈Z

eρ|k| ∑
j1,...,jp−1,�1,...,�p∈Z

M(j1,...,jp−1,k;�1,...,�p)=0

|ξj1 · · · ξjp−1η�1 · · ·η�p | + |ξ�1 · · · ξ�pηj1 · · ·ηjp−1 |

� p[P ]
∑

j1,...,jp−1,�1,...,�p∈Z

∣∣ξj1eρ|j1| · · · ξjp−1eρ|jp−1|η�1eρ|�1| · · ·η�p eρ|�p |∣∣
+ p[P ]

∑
j1,...,jp−1,�1,...,�p∈Z

∣∣ξ�1eρ|�1| · · · ξ�p eρ|�p |ηj1eρ|j1| · · ·ηjp−1eρ|jp−1|∣∣
� 2p[P ]∥∥(ξ, η)

∥∥2p−1
ρ

,

where we used

M(j1, . . . , jp−1, k;�1, . . . , �p) = 0 ⇒ |k| � |j1| + · · · + |jp−1| + |�1| + · · · + |�p|.
Assume now that P ∈ Pp and Q ∈ Pq with coefficients aj� and bj�. It is clear that {P,Q} is a monomial of degree
2p + 2q − 2 satisfying the zero momentum condition. Furthermore write

{P,Q}(ξ, η) =
∑

(j,�)∈Z2p+2q−2

cj�ξj1 · · · ξjp+q−1η�1 · · ·η�p+q−1 ,

where cj� is expressed as a sum of coefficients aikbnm for which there exists s ∈ Z such that

i ∪ n \ {s} = j and k ∪ m \ {s} = �.
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For instance if s = i1 = m1 then necessarily j = (i2, . . . , ip, n1, . . . , nq) and � = k1, . . . , kp,m2, . . . ,mq . Thus for
fixed (j, �), you just have to choose which of the indices i you excise and which of indices m you excise or, symmet-
rically, which of the indices n you excise and which of indices k you excise. Note that the value of s is automatically
fixed by the zero momentum condition on (i, k) and on (n,m). So

|cj�|� 2pq[P ][Q].

Appendix B

We give here a method to compute the terms which appear in Z6,2 (see Proposition 3.3). Let A be a resonant set.
Let (j1, j2, j3, �1,p1,p2) ∈ R. Assume that j1, j2, j3, �1 ∈ A. Then by Lemma 2.4, we deduce that p1,p2 ∈ A.

As a consequence, the only terms which will give a nontrivial contribution to Z6,2 are of the form
(j1, j2,p1, j3, j4,p2) ∈R, with j1, j2, j3, j4 ∈ A and p1,p2 /∈A.

Let j1, j2, �1, �2 ∈A and p1,p2 ∈N so that{
p2 − p1 = j1 + j2 − �1 − �2,

p2
2 − p2

1 = j2
1 + j2

2 − �2
1 − �2

2.
(B.1)

By Lemma 2.3, there exist k ∈ Z∗ and n ∈ N so that A = {n,n + 3k,n + 4k,n + k}. Hence, there exist n, k ∈ Z and
(ms)1�j�4 with ms ∈ {0,1,3,4} so that js = n + msk and �1 = n + m3k, �2 = n + m4k. We then define q1, q2 ∈ Q

by p1 = n + q1k and p2 = n + q2k. We plug these expressions in (B.1) which gives{
q2 − q1 = m1 + m2 − m3 − m4 := U,

q2
2 − q2

1 = m2
1 + m2

2 − m2
3 − m2

4 := V.

When U 
= 0, we can solve this latter equation and we obtain

q2 = 1

2

(
V

U
+ U

)
, q1 = 1

2

(
V

U
− U

)
.

By symmetry, we can assume that m1 � m2, m3 �m4. We also observe that (m1,m2,p1,m3,m4,p2) is a solution iff
(m3,m4,p2,m1,m2,p1) is a solution.

Value of ms Value of V Value of U Value of q2 Value of q1

4400 32 8 6 −2
4401 31 7 40/7 −9/7
4411 30 6 11/2 −1/2
4431 22 4 19/4 3/4
4430 23 5 24/5 −1/5
4433 14 2 9/2 5/2
4300 25 7 37/7 −12/7
4301 24 6 5 −1
4311 23 5 24/5 −1/5
4100 17 5 21/5 −4/5
4103 8 2 3 1
4133 −1 −1 0 1
4011 14 2 9/2 5/2
4031 6 0 × ×
4033 −2 −2 −1/2 3/2
3300 18 6 9/2 −3/2
3301 17 5 21/5 −4/5
3311 16 4 4 0
3100 10 4 13/4 −3/4
3011 7 1 3 4
1100 2 2 3/2 −1/2

Example B.1. Assume that A = {−2,1,2,−1}. Then n = −2 and k = 1, so that p1 = −2 + q1 and p2 = −2 + q2.
We only look at the integer values in the two last columns, and we find (up to permutation)

4400: (2,2,−4,2,2,4), 4301: (2,1,−3,−2,−1,3).
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Assume that A = {−1,5,7,1}. Then n = −1 and k = 2, so that p1 = −1 + 2q1 and p2 = −1 + 2q2. In this case, we
look at the half-integer values in the two last columns, and we find (up to permutation)

4400: (7,7,−5,−1,−1,11), 4411: (7,7,−2,1,1,10),

4433: (7,7,4,5,5,8), 4301: (7,5,−3,−1,1,9),

4011: (7,−1,4,1,1,8), 4033: (7,−1,2,5,5,−2),

3300: (5,5,−4,−1,−1,8), 1100: (1,1,−2,−1,−1,2).
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