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Abstract

For A € M>*2let S(A) = VAT A, i.e. the symmetric part of the polar decomposition of A. We consider the relation between two
quasiregular mappings whose symmetric part of gradient are close. Our main result is the following. Suppose v, u € wh2(By(0):
R?) are Q-quasiregular mappings with fBl(O) det(Du)~Pdz < C), for some p € (0,1) and fBl(O) |Du|2dz < m. There exists

constant M > 1 such that if /Bl(O) |S(Dv) — S(Du)|2dz = ¢ then

2
2 ___pr
/ |Dv — RDuldz < cC} e M2 1210Cp0)  for some R € SO(2).
B (0)
2
Taking u = Id we obtain a special case of the quantitative rigidity result of Friesecke, James and Miiller [13]. Our main result can
be considered as a first step in a new line of generalization of Theorem 1 of [13] in which /d is replaced by a mapping of non-trivial

degree.
© 2014 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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Rigidity and stability of differential inclusions is a classical subject. Reshetnyak’s monograph [23] is devoted to
proving a quantitative stability result generalizing Liouville’s classic theorem [18] that solutions of the differential
inclusion Du € CO4(n) :={AR: A > 0, R € SO(n)}, n > 3 are affine or Mobius. Korn’s inequality is an optimal
quantitative stability result for the fact that the differential inclusion Du € Skew(n x n) :={M € M"*" : MT = — M}
is satisfied only by an affine map.

This subject has received considerable impetus from the work of Friesecke, James and Miiller [13] who proved
an optimal quantitative stability result for the corollary to Liouville’s theorem that states solutions to the differential
inclusion Du € SO(n) are affine.
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Theorem 1. (See Friesecke, James and Miiller, 2002.) For every bounded open connected Lipschitz domain U C R”,
n > 2, and every q > 1, there exists a constant C = C(U, q, n) such that writing K := SO(n),

Ri'e“; IDv = Rllzaw) < C|dist(Dv, K) ||Lq(U) for everyv e W (U : R").

Previously strong partial results controlling the function (rather than the gradient) have been established by John
[16], Kohn [17].

The simplicity of the statement of Theorem | can lead to the strength of the advance that is represented by this the-
orem being overlooked. It is rare in contemporary research in analysis to prove a new and deep result about elementary
mathematical objects; Theorem 1 is exactly such a result. It has had wide application in applied analysis and is one of
the main tools used to make a rigorous and complete analysis of the multiple thin shell theories in classical elasticity
[13—15]. Beyond this it has the merit of being a statement whose significance would be clear to mathematicians of
two hundred years ago.

A number of works have extended Theorem 1 to cover various larger classes of matrices than SO(n). Faraco and
Zhong proved the corresponding result with K = ITSO(n) where IT C R \{0} is a compact set, [12]. Chaudhuri and
Miiller [5] and later DeLellis and Szekelyhidi [9] considered a set of the form K = SO(n)A U SO(n) B where A and
B are strongly incompatible in the sense of Matos [22].

In this paper, following an approach started by Ciarlet and Mardare [6] and also suggested by Miiller, we start
a different line of generalization of Theorem 1. The initial observation is that Theorem 1 is a special case of the
following question. Recall we defined S(M) =~ MT M to be the symmetric part of a matrix.

Question 1. If 2 C R” is a connected domain and u, v € W!2(£2 : R?), det(Du) > 0, det(Dv) > 0 and fg |S(Dv) —
S(Du)|2dx = € does this imply there exists R € SO(n) such that f_Q |Du — RDv|?dx < 8 where § is some small
quantity depending on €.

It turns out that the answer to Question 1 is no, even in the “absolute” version of this question where € = 0, see
Example 1 [19] or see the example in Section 4, [6]. For a positive result for the case where € = 0 it suffices to consider
the class of functions of integrable dilatation as shown in Theorem 1 [19] (or see Theorem 1 of [20] for a more general
result). Theorem 1 of [20] and the 2d version of Theorem 1 of [19] are sharp in the sense that no result of this kind is
possible outside the space of mappings of integrable dilatation.

In this paper we will provide a positive answer to Question 1 for pairs of Quasiregular mappings in two dimensions.
Note in Theorem 2 and throughout the paper a ball of radius r centred on zero will be denoted B,.

Theorem 2. Suppose v,u € W-2(By : R?) are Q-quasiregular mappings with fBl det(Du)~Pdz < C)p for some p €
(0,1) and [, |Dul?dz <. If

/|S(Dv) — S(Du)|’dz=e¢ (1
B

then there exists R € SO(2) such that
2 a

/ |Dv — RDuldz SCC;;EIO]OQS 1og(10Cp Q) ()
By
2
Theorem 2 to a certain extent shares the property that Theorem 1 has of being a new and interesting statement
about the classical objects of mathematical analysis. The credit for this however is largely due to Theorem 1 as the
methods of proof of this theorem are used in an essential way in the proof of Theorem 2. In this author’s opinion
there are a number of results in the area of classical Quasiconformal analysis that can be harvested by use of the

ideas in the proof of Theorem 1, Theorem 2 is just one of them. Note if we take u = Id hypothesis (1) is exactly
2

P
fBl d*(Dv, SO(2))dz = € and the conclusion is fBl |[Dv — R|dz < ce 00102000 for some R € SO(2). While this is
2
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much weaker than Theorem 1 it is still a result that was not known prior to the publication of [13]. In some sense the
line of generalization that this paper contributes to is the desire to replace Id by a mapping of non-trivial degree.

Ciarlet and Mardare were motivated to study Question I as part of a program to develop a theory of elasticity based
on study the “Cauchy Green” tensor Du” Du of a deformation u, [6-8]. They proved a version of Theorem 2 for C'!
mappings with the property that det(Du) > 0 everywhere in the domain and the constant ¢ in (2) depends on u. Their
method was again to apply Theorem 1, this will be sketched in the next section.

Theorem 2 is clearly suboptimal however we believe the power of € in inequality (2) is of the right form in the sense
that the power decreases as the degree of the mapping u increases or as Q increases. As the dependence on the degree
is a key issue an example showing the dependence will be presented in [21]. We give a sketch of the construction of
the example in Section 5.

1. Proof sketch
1.1. Absolute case with global invertibility

First suppose we have C! functions u, v where u is globally invertible and S(Du) = S(Dv) everywhere. By polar
decomposition we have A = R(A)S(A) for some R(A) € SO(n). Form w(z) = v(u~'(z)) and note that

Dw(x) = Dv(u™' 0))(Du(u~' (x))) "
= R(Dv(u'(x))) (R(Du(u" (x)))) " € SO)
by Liouville’s theorem it is clear there exists R € SO(n) such that Dw(z) = R for all z € B;. Thus
Dv=RDu on B 3)

and result is established.
1.2. Quantitative case with global invertibility

Now assume u, v are C! and u is globally invertible and fB1 |S(Dv) — S(Du)|2dz = ¢ and inf{det(Du(z)) :

z € B1} > 0. Apart from where |Du| ~ 0 and |Dv| ~ 0 we know [(S(Du())~! = (S(Dv()) ™| = |S(Du(z)) —
S(Dv(z))| and hence letting

E@) = (S(Du(2)) ™" = (S(Dv()))™"
we have
Dw(x) = R(Dv(u™" (x)))S(Dv(u™" ())) (S(Du(u™" 0)))) " (R(Du(u™" (x)))) "
=R(Dv(u"'(x)))S(Dv(u"(x)))((S Dv(u_l(x))))_l + E(u—l(x)))(R(Du(u—l(x))))‘1
= R(Dv(u™' () (R(Du(u™" (x)))) "'
+ R(Dv(u—l(x)))s(Du(u—l(x)))E(u—‘(x))(R(Du(u—‘(x))))*‘.

So for any compact subset /T € B; using the upper bound on det(Du) on IT we get from the fact u is C!

f dist(Dw(x), SO(2))dx < f |S(Dv(2)) || E(2)| det(Du(z))dz

w(IT) I
2 % 2 %
5c(/|Dv(z)| dz> </|E(z)| dz)
By By
<cye. “)

So applying the L! version of Theorem 1 we have that there is constant C = C(u) such that
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/ |Dw(z) — Roldz < Clog(e_l)ﬁ.
u(IT)

and unwrapping gives the estimate we seek, however with a constant depending on u.
1.3. Sketch of the general case

Our problem is that we do not have global invertibility and we would like an estimate that depends on u in a more
explicit way. Under the hypothesis that the mappings u, v are Q-quasiregular we know that u is locally invertible at all
but countably many points, but we have no estimates of the size of the of neighbourhoods of invertibility. If we wanted
to prove an estimate of the form (2) where the constant ¢ depended on u we could patch together neighbourhoods of
invertibility so long as we knew the “size” of the neighbourhoods were bounded below on all compact subdomains.
Under the hypothesis det(Du) > 0 everywhere for a C! function u this is true and this is how Ciarlet and Mardare
established their estimate [6].

For quasiregular mappings there is no way to patch together the argument shown in Subsection 1.2. The key
to making progress is to use the Stoilow decomposition to translate the information we have from the hypotheses
into information about the analytic functions of the Stoilow decomposition. Let us recall the basics of the Stoilow
decomposition, any Q-quasiregular mapping u : 2 — R? can be written as the composition of a Q-quasiconformal
homeomorphism w, : £ — R? and an analytic function ¢, : w, (£2) — R? so that

u(2) = ¢u(wu (2))- (&)

A good reference are the monographs of Astala, Iwaniec and Martin [3] Section 5.5. and Ahlfors [2].

The heart of the Stoilow decomposition is the fact that it is possible to solve Beltrami’s equation. This allows us
to find a Q-quasiconformal mapping w, that has the same Beltrami Coefficient as Du. The Beltrami Coefficient of a
matrix M is a 2 x 2 conformal matrix py (or more typically a complex number) that encodes the geometry of the
deformation of the unit ball by M, but not the orientation or the size (formally [M],Z = up[M], where [M]., [M],
are the conformal and anti-conformal parts of M and 7 is a reflection across the y-axis, see Subsection 2.1 for more
details). By solving Beltrami’s equation we can find a homeomorphism w,, with the property that

MDw,(z) = MDu(z) forae.ze By (6)

and w,(z) —z = 0(1/z), wy(z) —z = O(1/z). So for any z € B; the shape of the image of the unit ball under Du(z) is
similar to the shape of the image of the unit ball under Dw, (z). Hence the factorization represented by (5) is entirely
natural.

Now the symmetric part of a gradient encodes both the geometry and the size. So a key result that starts the proof
is a bound of the difference between Beltrami coefficients of two Q-quasiconformal matrices A, B by |S(A) — S(B)|

s — | < 4y/Qmin{det(A)~2, det(B)~2}|S(A) — S(B)|. @)

This is the contents of Lemma 2. Note as the determinants of Q-quasiconformal matrices A, B get very small their
norm gets very small so |[S(A) — S(B)| < |S(A)| 4+ |S(B)| < 40(det(A) + det(B)) ~ 0 but the geometry of the
deformation of the unit ball by A, B could be very different hence the factor of min{det(A)_% , det(B)_% } in the right
hand side (7) is to be expected.

Now the solutions of the Beltrami equation w,, w, are essentially given by solving C(1 — up,S)~! and C(1 —
wpvS)~! where C is the Cauchy transform and S is the Beurling—Ahlfors transform. Hence it should seem reasonable
that we can prove an estimate showing Dw,,, Dw, are close in L? norm. As a consequence we establish

D
lwy — wy ”LOO(Bl) < ce 180, (8)
2

This is part of the contents of Lemma 8 and Lemma 9.

Having established a quantitative relation between w,, w, in order to prove the estimate on Du, Dv we need to
establish the relation ¢, — ¢ ¢), = 0 for some ¢ € C with |[¢| = 1. We will establish this relation by applying Theorem 1
but first we have to set up some preliminary estimates. Since w,, is a solution of the Beltrami equation we have explicit
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estimates on its LY norm and the L7 norm of its inverse in terms of Q. Hence we are able to establish the existence of
constants £ =£(Q) <y =y (Q) < u = u(Q) such that

Bzu(wu(O)) C wu(B%) and By, (wU(O)) C wv(B%). )
And
Be (wu(0)) Cwu(By) C By (wu(0)),  Be(wy(0)) Cwu(By) C B (wy(0)). (10)

This is the contents of part of Lemma 6 and Lemma 7.

Now by (10) we know wy, (B, ) C B% (wy(0)) and wy(By) C B% (wy(0)), so ¢, and ¢, are defined on both of these
sets. Since the hypotheses are that the symmetric part of gradient are close we also know the size of the gradients Du
and Dv are close. We can use this and the estimates for ¢, ¢, on B,,(w,(0)) to show that

[ il = iz < crevho, an
Wy (By)
this is the content of Lemma 10. We would like to apply Theorem 1 so a natural thing to do would be to use Cauchy’s

Theorem to find an analytic function v such that ' = g—é then establish appropriate lower bounds on |¢/,| on some
ball By, (z0) to conclude

/

/ 1= |9/ [*dz < creTihe. (12)

B (20)

The non-degeneracy condition f B, det(Du(z))"Pdz < C, allows to find such a ball centred somewhere in B¢ (w, (0)),
2

this is the contents of Lemma 11. Specifically we find some Ao = ho(Q, Cp) > 0 and some w =@ (Q, Cp) > 0 such
that for some zg € B: (w, (0)) (since recall, Bs (w,(0)) C w,(B,) by (10))
2

inf{[¢, ()] : ¥ € Buy(20)} = . (13)

Let Jf(x, y) = Re((x + iy)),Im(y(x + iy))). Reformulating (12) in matrix notation gives
~ b
/ By (20) dist?(Dyr, SO(2))dz < c2€ 00 . So we can apply Theorem 1, however for reasons we will explain later we
0
will instead use a more restricted version of it given by Proposition 2 proved in Appendix A. So we can conclude

there exists some rotation R such that
~ P
f DY — Rldz < cxe e (14)
B (z0)
Returning this into complex notation and unwrapping it using the definition of ¢ we have

)4

f [61(2) = £,(@)]dz < cye ™0 s

By (20)

We need to extend control on ¢}, — {¢/, to include an explicit neighbourhood of w,(0). We are able to do this
by the fact that we are dealing with an analytic function ¢, — {¢, and so have Taylor’s Theorem. Since we already

9
know By, (w, (0)) C wy (B : ) and zg € B (wy(0)) so we can use Taylor’s Theorem to extend control to B (z0) which
2
contains B% (w,(0)).
S0 let w(2) = ¢,(2) — £16(2). By the local Taylor Theorem we have w(2) = Yo 212 — 20 + (2 -
20)" 1wy, (z) where wy, (z) = ﬁ Jon, (0) _(;7101)121(8(;%)‘19
5

By the Coarea formula we can find g € (%0, hg) such that fan o) |w(z)|dH1 7 < 8cye 700 . So by Cauchy’s integral
formula
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w(¢)
|u)(k)(ZO)| =4 / ‘(C )k+l

— 20
3B (z0)

720Q

d¢ < ck'
q*

We can also use the upper bound [[Dull;2p,) < 7 and the upperbounds on w,, w, to get upper bounds
on ¢, and ¢, on B, (w,(0)) (this is part of the contents of Lemma 7) so can estimate the remainder term
lw, ||Loo(3% o) < 327r,u_2(%)_’”. Thus we have

- o (u\ 8r 1\
|w(z)| SZCSEnOQ — ) +— = for any z € B (z0). (16)
P 4q w\2 4

The key is to make the right choice of m. If we choose m too large then Y ;_ cs (%)k will dominate € 90 and the

upperbound will be weak. If m is too small then 87” (%)m will not be small enough. The answer is to find m that roughly
equalizes these two quantities. An essential point is that finding this m requires knowing what the constants kg, cs, ©
are. To estimate these constants we need to know c¢q, ¢2, ¢3, ¢4 and @ in (11), (12), (14), (15) and (13). For this reason
much effort will be made to track all constants in the estimates in this paper, since the methods are not close to being
sharp we do not attempt to consistently calculate the best possible constants, but we do make efforts to prevent the
constants blowing up too much throughout the paper. The reason we need the simplified version of Theorem 1 that is
given by Proposition 2 is that we need to know explicitly the constant in this inequality. This requires us to rewrite
the proof of an estimate from [13] while tracking the constants. The fact we are able to do this with the methods of
[13] is one of the reasons that Theorem 2 was not in practical terms accessible before the ideas introduced in [13]. So
making these estimates (recalling the fact zg € B% (w, (0))) we have

p2

2 510905 logt100, 0
l¢, - §¢u||L°°(Bu(wu(0)))—CSC P Q o106, ) (17

This is the contents of Lemma 12. By using the estimates on the closeness of Dw, and Dw, in LY we can then
conclude that for some constant y = y (Q) that

2
___r
IDv — RDull1 (5 ) < cCpe 10707 1060, (18)

This is the contents of Proposition 1 below. Theorem 2 follows by a straightforward covering argument that gives
estimate (2).

Proposition 1. Suppose v, u € WH2(By : R?) are a Q-quasiregular mappings with fBl det(Du)~Pdz < C,, for some
pe(0,1) ande1 |Du|?dz <. If

/|S(Dv) — S(Du)|’dz=e (19)

then there exists R € SO(2) and constant y = y(Q) > 0 such that

2
p
/ |Dv — RDul|dz < CCIZ,GZXIOQQS log(10Cp Q) (20)

B Y
Remark. We can assume without loss of generality

u(0) =0, 2y

since if not the quasiregular mapping defined by i (x) = u(x) — u(0) has this property.
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2. Preliminaries
2.1. Conformal, anti-conformal decomposition of 2 x 2 matrices

Given A € M*>*? we can decompose A into conformal and anti-conformal parts as follows

(an 6112) _1 (011 +axn —(a —alz)) 4 1 (a11 —axn aytap ) 22)

a1 axn 2\ax —app ajptaxp 2 \az1 +aix —(an —ax)

So for arbitrary matrix A let

1 _ — 1 _
(Al = = (41 +axn (a21 —ap2) and [Al, =~ (N1 T2 ax +an (23)
2\axy —app aitaxn 2 \az1 +aix —(ai1 —ax)

It will often be convenient to write this decomposition as A =aRg + BNy for o > 0, B > 0 where

R9::<COS9 —sm@) and Nv/::(cosw sin yr )

sinf  cos6 sinyy —cosy
LetZ := ((1) _01 ) Let || - || denote the operator norm and | - | be the Hilbert Schmidt norm. Note

lx]l < |x| <2|lx|| for any x € R". 24)

The Beltrami Coefficient of a matrix A that relates the conformal and anti-conformal parts of A is the conformal
matrix u4 defined by

[AleZ = palAlc. (25)

Now
(a+p)? B _0-1

All> < OdetA < < 26

Al < Qde = aZ—ﬂZ_Q = e =011 (26)
And

L\ (an au) (—azz a21>
Alal == <|A]|. 27
[[AL| 2 <a21 an) T\ an  —an =|4] @7
As BNyZ = g Ry, s0
|m|=ﬁ§ (28)

2.2. The Beltrami equation

The Beltrami equation is a linear complex PDE the relates the conformal part of the gradient to the anti-conformal,
we briefly describe the connection between the classical complex formulation and the matrix formulation we will be
using in this paper.

Take function from the complex plane to itself, f(x + iy) = u(x,y) + iv(x,y). As is standard, 3% fx,y) =
3(0x +idy) f and - f (x,3) = 33 —i9y) f-

If we take a £2 C C and a function f : £ — C then define the R? valued function f (x,y) = Re(f(x +
iy)), Im(f(x +iy))). Let CO4(2) denote the set of conformal 2 x 2 matrices. And let [-]); denote the homomor-

phism between C and CO4(2), so [a +ibly = (Z _ab)

So note
V2l|a +ib| =|la+ibly|. (29)

It is straight forward to see that
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N TN of 1 0\ _ .7
[a_Z]M—[Df]C and |:8zi|M<O _1>—[Df]a»

(recall the decomposition into conformal and anticonformal parts given by (22), (23)).

Now as in 2.9.1. [3] letting Df(z) : C — C denote the linear map that is the derivative of f at z, then we have
Df(z)h = %(z)h + %(z)h. Let [-]c be the identification of R? with C, i.e. [(Z)]C =a+ib.Let f =u+ivsowe
have ' '

1 1
Df(2)h = 5((ux + Uy) +i(vy — uy))(hl +ihy) + E(ux — vy + i(vy + uy))(hl —ihy)
| fux vy —(vr —uy) Iy + 1 (uy —vy Uy + Uty hy
T2 \ve —uy Uy + vy ha ) | 2\ v +uy —(uy —vy) hy ) |

(tp7 Irp 7 hy
= [(2[Df<x, ]+ 2[Df(x,y>]a> ( hz)lc' (30)

Given f : 2 — C one of the basic equations of Quasiregular analysis is the Beltrami equation

B 0
a—J_c(z) = u(z)—f(z). (€1}
z 9z
As above define f = (Re(f), Im(f)) then f satisfies
[Df(x. 9], Z=[nex+in], [P ], (32)

By uniqueness this implies that

(G + 0] = Bp ey (33)
The basic theorem about the solvability of the Beltrami equation (sometimes known as the measurable Riemann
mapping theorem) is the following

Theorem (Bojarski—-Morrey). Suppose that 0 < k < 1 and that | (z)| < k1p,(z), z € C. Then there is a unique
1

feW,1(C) (foreveryq € [2,1+ %)) such that
0 0
—]_C = M(Z)—f for almost every z € C, (34)
0z 0z
1
f(Z)=Z+0<z> as z — oo. (35)

We say a Quasiconformal mapping that satisfies (34) is the principle solution of the Beltrami equation if it in
addition satisfies (35).

Definition 1. Given a Q-quasiregular mapping u we say the pair wy, : B] — R2, ¢u : wy, (B1) = u(By) are the Stoilow
decomposition of u iff

u(z) = ¢y (wy(z)) forallz e By (36)
where function w,, is the principle solution of the Beltrami equation
[Dw,(2)],Z = u(z)[Dwy(2)], (37)
for
_ | IDu@1.Z[Du(z)17! forz e B 3
u(z): {0 for + & By. (38)

Note that (37), (38) are just the reformulation of the standard Beltrami equation and Beltrami coefficient in matrix
notation as explained in Subsection 2.1 (25) and Egs. (32), (33) of this subsection.

As explained in the introduction, a consequence of (36), (37) we have that D¢, € CO+(2) ={AR: A >0,R €
SO(2)}. So considered as a complex valued function of a complex variable, function ¢, is holomorphic. We will often
consider ¢, as a holomorphic function of a complex variable without relabelling it.
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2.3. The Beltrami coefficient of gradient whose symmetric parts agree
We require Lemma 1 from [20]. It is stated below

Lemma 1. Ler A € M>*?, det(A) > 0. Let the Beltrami coefficient of A be defined by (25). The Beltrami coefficient of
A and A~ are related in the following way

nalAlel = —py—1 Z[A]c. (39)
Notice as a consequence of (39) we have
a1l = lpeal. (40)
3. Lemmas for Theorem 2

Lemma 2. Suppose A, B € M?>*? with det(A) > 0 and det(B) > 0 and ||A||*> < Q det(A), || B||> < Q det(B) then

4./
lua —ppl < Q
max{+/det(A), /det(B)}

Proof of Lemma 2. Note by Cauchy Schwartz inequality the Hilbert Schmidt norm is submultiplicative, i.e. |AB| <
|A||B|. Recall also since |A| = Trace(AT A) we can easily see that the Hilbert Schmidt norm is invariant under
compositions with rotations.

Now note also R(A)S(A)S(B)"'R(B)"! = AB~' =[AB~ '], + [AB~!].. Thus

|S(A) — S(B)|. (41)

S(A)SB)~' =R(A)'[AB"] R(B)+ R(A)"'[AB'] _R(B) (42)
as the decomposition into conformal and anti-conformal parts are unique, so
[scsB '), 2 R(A)[AB'] R(B). (43)
Note |[ADJ(B)| = | B| (254) 2||B|l <2/ 0+/det(B). Let § = |S(A) — S(B)|, so
|ADJ(B)|
det(B)
28 — S(B)|IVO
- J/det(B)
- LY
~ J/det(B)’

|S(A)S(B)~! — Id| < |S(A) — S(B)|

(44)
Now
(a5, < [[sas@) ],
= |[SA)sB)~" —1d],|

@ 1
< |S()s®B) - 1|
@ 280
~ J/det(B)

Thus as we know from (39) Lemma 1 applied to B! that

s [B71], 2= 7]

. (45)

(46)

c’

SO
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[AB71], = [((Al + (A1) ([B~']. + [B7'])L,

= [Al[B~'], +1AL[B],

= uAlAVI[BT'), + [Aleng1[B7] 2

= palalZ[B7), — Al Z[B7],

= (ua — up)[ALZ[B™],.. (47)
For any matrix A let [7(A) :=inf{|Av| : |v| = 1}. Note that [T(AB) > I1(A)I1(B). Thus

m(an)) < [an]) < 2L

- Jdet(B)’

Now IT([A].) = +/(det([A].)) > +/det(A). And IT([B~'].) > /det(B~1) = W So putting these things together
we have that

1N}

(47)

M(ua —pp)I([A)I([B7']) < (48)

“/det(A)H( )(48) 28,0
Jdew By ATHE = e B)

So IT(ua — up) < % By definition of IT for any € > 0 we can find w € S! such that |(ua — pup)w| <

% + €. Since ug — pup is conformal so |(ug — upler] < & 4+ € and |[(ug — uplez| < «/ﬁ + € and

thus |ua — up| < %. Now since the hypotheses on A, B are the same this implies |g — up| < jjet—\/(:w and

hence we have established (41). O

3.1. Estimates on Beltrami equations

3.1.1. Estimates of the Holder norm of solutions of the Beltrami equation
We need bounds on the Holder norm of solutions of the Beltrami equation.

The first is a well known lemma whose constant we explicitly estimate.

Lemma 3. Suppose g > 2 and u € W9 (B, (¢)), then for any x, y with

x — y| < %min{dist(x, dB,(0)), dist(y, 9Bu(0))) (49)
1
WU)—u@ﬂ<8<q )x—y|q< L/ |Dm%u>f (50)
Bajx—y|(x)

Proof of Lemma 3. We will use the following Poincare type inequality (see page 267 [11])

2
/|u(x)—u(z)|dz§%/ 1Du@ ;. (51)

|z — x|
B, (x) By (x)

Let W = B, (x) N B, (y) with r = |x — y|. Note by (49), By, (x) C By (). Let ¢’ denote the Holder conjugate of g. So

lu(x) —u@y)|

IA

][|u(x) — u(z)|dz + ][|u(y) - u(z)|dz
w w

2\ —1
<n<g>> </ |u(x)—u(z)|dz+ / |M(J’)_”(Z)|dz>
B

r (X (Y

51 2 D 2 D
Pz / I M(Z)Id“__ / | M(Z)IdZ
7T |x —z| b ly —zl

By (x) B (y)

IA
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2(f ([ )

=
By (x) By (x)
) 1 1
q / /
+;</ |Du|q) (/ |y—z|qdz)”. (52)
B (y) B (y)
Now
1 / 1 g-—1
A\ 77 2—q - —1\ 7 g2
/Iy—zl_q " <om( 2 oo (L2) T
2—q’ q-—2
B (y)
Putting this together with (52) we have
1 q=1 ) 1 1 q=1 ) 1
— q q—z q — q q—z q
|u(x)—u(y)|§4<q—) r'a (/ |Du|‘1> +4<q—) ra (/ |Du|‘1>
q—2 q—2
Br(y) By (x)
1 q-1 5 1
<(5) (] ey
qg—2
By (x)

and hence we have established (50). O

Lemma 4. Suppose 0 < k < 1 and p : R? — C is measurable and for some xo € R%, |u(z)| < k1B, (xp)(2) for all
z € R? and f is a principle solution of the Beltrami equation

of _ %
8—2(2) = u(z) 22 (2).

Letg e [2,2+ 13_—KK). For any x € R2, r > 0 we have

1
q 12 4(143(g —2) 2
(f |Df|‘1dz) <mir +1_K(1+2(q_2))r . (53)

By (x)
In addition letting S denote the Beurling transform
1

H (Id — uS)! ”m(@)—mq(@ = 1—x(1+3(q—2) (4
Proof of Lemma 4. Let S, denote the L, norm of the Beurling transform &. Consider the operator

(Id — uS)~' =1d + nS + uSuS + uSuSus....
Note that if ¢ € L? then

IuSus ... uSollrac) < kS)"dllLac)- (55)

So we require «S; < 1 in order for (Id — uS)~! to be well defined. By inequality (4.89) Section 4.5.2 [3] we have
Sq <1+4+3(g —2). (56)

Thus it is sufficient for « (1 + 3(¢ — 2)) < 1 which is equivalent to g < 13_—KK + 2. If this inequality is satisfied then

(55),(56) ad m
[td =19 0] ey = D143 — )" Illa) <

m=0

ey o (57)
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Thus (54) is established. So defining o = C((Id — [LS)_l,u) where C is the Cauchy transform. As in the proof of
Theorem 5.1.1. [3] we know that

do d _ _
— == (C(Ud = u& ")) = Ud — uS) ' (58)
7 0z
and
do 0 _ _
= a(c((zd —uS)'n)) =S(Ud - puS)"'n). (59)
Thus
12
‘ 8_? (57%58) Tata )
and
12 12
‘8_0 (59%(57)Sq TITa <5§ﬁ> (1+3(q—2))7rqrf1. 1)
9z L4(C) 1—x(14+3(@—-2)) 1 —«(14+3(@—2))
Hence
2
©061) 4(143(q —2))T4
IDo o) = 1 (62)

1—k(1+3(q@—-2)
Now as in the proof of Theorem 5.1.2 [3] we see that f(z) = z + o(z) is the principle solution of the Beltrami
equation, i.e. the function that satisfies

%(z) = u(z)%(z) for a.e. z
0z 9z

and f(z) =z+ (’)(%) as z — 0o. So note that for any x € R? we have that

1 1
q 1 2 q
( / |Df|qdz) anr‘l—i—( / |D0|qdz> .

By (x) By (x)
Putting this together with (62) we have (53). O

Lemma 5. Suppose 0 <k <1 and u,v : R2 — C is measurable and ()| < klp, (2), V()| < «klp, (2) for all
z € R?. Suppose f, g are the a principle solutions of the Beltrami equation

0 0 0 0
B—J_c(z) =M(z)—f(z), —‘gj(z) = V(z)—g(z) fora.e.z. (63)
Z 0z 0z 0z

Then for q € 2,2 + 13;;(1() and s > 1 such that sq <2 + 13;K" we have that

af  og 2 -2
H 5 a2l =6@9’ (1= k(1435 =) e vl (64)
L4(C)
and
3f Bg 2 -2
- - = <18 1—«(14+3 -2 — s . 65
H dz 0z Li(C) = 18@s) ( K( s ))) e v”Lqu((C) (63)

Proof of Lemma 5. This is essentially a very minor strengthening of Lemma 5.3.1 [3], the main difference is that we
estimate the constants and control the difference of the conformal part of the gradient.
Now from (5.8) p. 165 [3] we know that % = + uS(4L) and so

z—jj =(ld — pS) . (66)
Z
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Now from the first inequality of the proof of Lemma 5.3.1 page 168 [3] and from Lemma 4 we know

%, w1+ (5))
0z

q
= ” (Id — VS)il ”(zq((C)—mq((C)

L4(C) L4(C)
(54),(66)
V1 —k(1+30-2)) - VI o oy |28+ 8 (U = 1) 1) s . (67)
Now by Lemma 4 (recalling that sq <2 + 3KK)
(54) _
[td = 197 1] yor ey = (1= &(1+3(gs =) el zoscoy
< 2(1—x(1+3(@gs —2))"" (68)
(67),(56) _
H——— (1= (143 = 2) e = vl
L4(C)
1
x (w3 + (14 3(qs =) |Ud = nS) " 1] s )
(68 —
< (=143 =2)) i = vl e
x (2+2(1+3(qs —2)) (1 = (1+3(gs —2))) )
< 6gs(1—x(1+3(gs —2)) 7l = vll g - (69)

Now the Beurling transform S of the anti-conformal part of the gradient of the L? function gives the conformal part
of the gradient, see (4.18) Chapter 4 [3]. So

0 0
S(B_Z(f_g)> = B_Z(f_g)'

Using the fact that f and g are holomorphic outside Bj (see (38)) for the last inequality

%5t = [5() -5()
L4(C) 0z 07

L1(C)
Pt3g-o)|L %
a0z 97 L2(C)

) _
6(1+3(g —2)gs(1 — (1 +3(g5 —2)) e —vll 4o
< 18(¢9)2(1 =, (1+3(gs = 2))) lli = vll v - (70)
So (69) gives (64) and (70) gives (65). O

Lemma 6. Suppose 0 < k < 1 and p : R* — C is measurable and |u(z)| < klp, (2) forall z € R2. Let f :R* - C
be the principle solution of the Beltrami equation

% (2) = n(2) %(z) forae. z
07 0z

and let h : C — C be the global inverse of f. Let g € (2,2 + 13;KK). Then

92 -1 1+3(@—-2
|f(Zl)— (Z2)|<48|Zl—12|‘7 (Z—2><1—K—(+_1—£612(q—)2))> forany z1,25 € By. (71)

And

q—1> ( 1+3(qg —2)

2
|h(Zl)—h(Z2)|SZ4OOIZ1—zzIT<q_2 1_K(1+z(q—z))> foranyz1.z2 € f(By). (72)
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As a consequence for any B,(z0) C B

B s, ik 2 (f(z0)) C f(Br(z0)- (73)

43x1010

In addition for any a > 0 such that B

( )2) 12k (ZO) C B]

F(B a2 12 @)  Balf <zo>) (74)
3456

Proof of Lemma 6. Step 1. We will establish (71).
Proof of Step 1. By Lemma 4 we have that

1
)7 443 —2) )
(/ |Df| dz) §8+1_K(1+2(q_2)) for any zg € R”. (75)

B4 (z0)

So by Lemma 3 we know that (using the fact 0 < 1 —« (1 +2(g — 2)) < % for the last inequality)

—1 42 7
|f(11)—f(Zz)| < 8( )IZl—Zzl a ( / IDfI"dz>

32\21722\()5)

s w2 fg—1 4(1+3(q - 2))
< 8|z1 — 22| ¢ <q_2><8+ 1_K(1+2(q—2))>

o2 (qg—1 (143(q —2))
< 48|71 — 22| ¢ <q_2)<1_K(1+2(q—2))) "

so estimate (71) holds true.

Step 2. We will establish (72).

Proof of Step 2. Now if we consider the Beltrami equation of f we have that (Df (x))sZ = upy)(Df (X)),
so if z = f(x) then Dh(z) = (Df(h(z)))~' = (Df(x))~'. Now the Beltrami equation for % is (Dh(z)),I =
UDh(z)(Dh(z))c. By (40) we have that

lph)| = proy-11=Drol- (77
Now if z ¢ f(By), since Dh(z) = (Df(h(z)))~" and since h(z) ¢ B, Df (h(z)) € CO4(2) so Dh(z) € COL(2) thus
MDh(z) = 0.
Let
-1 1+3(g-—-2
Ag=4s<" )( D), (78)
q—2 1—xk(1+4+2(@q—-2)
1
Note that for any z € By, | £ (2) — F(0)]'= A% so
F(B)) C Bag (£(0)). (79)
So returning to complex notation we have %(w) =y (w) % (w) where
m) a7
Yl = «lp o

By Lemma 4 (53) we know

1

7 1 . % 4(143(¢g —2)) K %
( / |Dh|qdz> < mi(447) +<1—K(1+2(q—2))>(Aq)

B‘“‘Z(y')
2
78) 300( 1)( 14+3(g—2) > . (80)
2 J\1=kad+2(¢-2)
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Now for any z1,z2 € f(B1) by (79) we know z; € B2A§ (y1) so by Lemma 3

(80),(50) g—1 2 q—2< 14+3(g—2) )2
h —h < 2400 —— 1 — 22| ¢ 81
|h(z1) —h(z2)| = (q—2) 21 — 22| I~ k(420 -2) 8D
and hence (72) is established.
Step 3. Let
. 1—«
q:mln{2+—,3}. (82)
6K
We will establish
A < 36 (83)
q — (1 —K)2
and
—2 1-
o<1 L. (84)
q 12
Proof of Step 3. If g < 3 then
<q—1>2( 14+3(g—2) )2<x<z>< 12 )2( 4 )2
q-2) \1—x(1+2(¢-2)) ~ \1-«) \1—k1+2(%)
(72)?
= ) 85
T (85)

Ifq—?)then2+1 £ >3, 1—K>6KSOO<K< . So

g—1 143(g—2) 2< 200
(q—2> (1—K(1+2(q—2))) T (-0t

So for any g we have that

g—1)\? 1+3(g—2) 2< (72)2 56)
(q—2) (1—K(1+2(q—2))> T (l—x)? (

) 14+3(g—2
and so 4 (q 2)(1 Jlg(qzz)))_ = )2 Thus (83) is established.

Now if g € (2, 3) then by (82) we know 241 W < 3 and so 7 <k < 1. Thus

q—Z(E)l—K(g) 1—« _ 1—« 1—«

= = —— = > (87)
q 6gK 6(2+ W)K 11k +1 12
and
qg—2 1- _4= 2 1
— — 88
q 12 = ¢ 2 (88)
So (87 (88) together establishes (84) for the case g € (2, 3). And if g = 3 since k¥ < % we have =2 = % > 11;’( and

0<4 T — 11—2 < 3 < 1. Thus in all cases we have established (84).

Proof of Lemma completed. Let w € f (9B, (zp)) be such that
| — f(z0)| =inf{| f(2) = f(z0)| : 2 € 3B, (z0) }.

= qg—1 1+3(g—2) @) 4, L2
| — f(zo)|<48r (_2)<1_K(1+2(q_2)))—Aqr . (89)

So

Hence as
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q=2 Lk q=2_1-«
o —fo)| > = |w—f(zo)|”” @ — f(zo)| &
(84),(89)
e — o)™ A, (90)
thus
r = |h@)—h(f(z0)]
(81) (86) 90y 2400 x (72)2Aq
R 12
< = | — £ (z0)|
(83) 43><1010
< - I2 .
S 0Toe | = fzo)|
Thus S0 < Jor — f(z0)|' s0 (LA ™50 < o — hich implies (73). Now finall
us ;==om <@ — 20)| SO(43x1010) <|@ — f(z0)| which implies (73). Now finally
angas) . q=2
|fzo) — fz)| = Aglzo—z1l 9
(8)<4) 3456 | ||1;2K for any | | <1
0 — 2 —z1l < 1.
S qoephe-a ylz0 — 21

Thus for any z; € B RER (z0) we have | f(z0) — f(z1)| < @ which implies (74). O

Ot K 2
Uo? ) 1=
3.2. Estimates on Stoilow decompositions of Quasiregular mappings u, v satisfying the hypotheses of Theorem 2
In this section we will prove several lemmas that provide quantitative estimates on the functions that make up the

Stoilow decompositions of the Quasiregular mappings u, v that satisfy the hypotheses of Theorem 2. Specifically our
hypotheses are

u,v e Wh?(By : R?) are Q-quasiregular, 1)
/ |Dul’dz <7, 92)
By
/det(Du)*pdz <Cp, 93)
B

and
| S(Du) = S(DV) [ 2, = €. 94)

As described in Definition 1 the functions ¢,, w, provide the Stoilow decomposition of u and ¢,, w, provide the
Stoilow decomposition of v. Formally

u=¢,ow, and v=¢,ow, onB; 95)
and the Beltrami coefficients of w,, u and w,, v agree, i.e.
[Dw,].Z[Dw,], =[Dul,Z[Du], and [Dwy],Z[Dwyl. =[Dv],Z[Dv], a.e.on Bj. (96)

Lemma 7. Let u, v satisfy (91), (92) and (94) and let ¢,,, w, and ¢, w, be defined by (95), (96). We will show that
for constants

6(0+1) 6(0+1)
B 10 6\~-6(Q+1) Y =
W= (2 x10°7(Q+ 1) ) ) Y= (8000(Q T 1)2) and &= <1010(Q + 1)6) o7

we have

By, (wu (0)) Cwy (B%)» By, (wv (0)) Cwy (B%) 93)
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and
B (wy,(0)) Cwy(By) C By (wu (0)), B: (wy(0)) Cwy(By) C By (wy(0)). (99)

In addition

Pull oo (B, (w (0))) = 272, Pvll Lo (B, (w, (0)) < 27 (100)
A 4r
% ”L°°(B,L(wu(0))) = o (28 HLOO(BM(UJU(O))) = m (10D
and
p 8 ” 8
||¢u HLOC(BH(wu(O))) = ﬁ ||¢v ||L°°(Bu(w,)(0))) = ﬁ (102)

Proof of Lemma 7. We will argue the estimate for u, ¢,. The estimates for v, ¢, follow by exactly the same argu-
ments.
Now recall from (26), (28) we can take k = 2-1 Now

o+
:Q—i-l—(Q—l)_ 2

1—x = . (103)
0+1 0+1
Thus
r 6(Q+1) - 64 r 6(Q+1)
— — X —
1010(Q + )6 = \10 10100 + 1)®
12
(03) (r(1 = K)O\ T
- 1011
ro(1—k)® \ T
< (z——— .
~— \24.3x1010
So by Lemma 6
(73) 104
B(m)wgm(u}u(@) C wu(By(2)) (104)

(104)
so defining ;1 = (2 x 101°(Q + 1)6)~6(@+D ‘since 214 < (101°(Q + 1)6)7(@+D we do indeed have By, (w,(0)) C
wy (B%) and so (98) is established.
Note we have

(103)
B__u 2)6(Q+l)(0) C B(47M)6(Q+1) 0) =B y 12 (0).
8000(Q+1) 8x3456(0+1)2 3156 ) ¢

So by (74) we have w, (B(__«___js0+1(0)) C B L (w, (0)) which establishes half of (99). Finally by (104) we have

8000(Q+1)2
that B__r e+ (wy (0)) C wy, (By) which establishes the other half of (99).
1010(Q+1)0 2

Recall from the hypothesis (92). As fBl |Duldz < m wecan find h € (%, 1) such that fth |DuldH'z < 27 Since

u is open du(By) C u(dBy) so H' (du(By)) < 2m.
So

u(By) Cu(Bn) C Bax (u(0)). (105)

Now by (98) since w,, is a homeomorphism w;l (B2 (wy, (0))) C B% soas ¢, =uo wu’l we have

u(Bay (0 (0))) '€ B (1) L By (0).
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So
B0 ll o0 (B, (wi 0))) =< 277 (109
Thus for any z € By, (w,(0))

N 164(0)]
9] = 5 / el

332;1 (wy (0))
-1 1 (106) 477
<(@2m) sup [y —ld¢| = —.
By (w3, (0)) ¢ —z] 7

9By (wy (0))
In the same way for any z € B;, (w, (0))

1 (106) 87
| (z)|<— sup [l ——ldt] < —. O
T By (w, (0)) ¢ —z| "
0By, (wy (0))

Lemma 8. Let u, v satisfy (91), (92) and (94) and let ¢y, wy, and ¢, wy be defined by (95), (96). We will show

IDw, — Dwy 25, < 1272800%Cpe 70, (107)

Proof of Lemma 8. Recall from (26), (28) we can take k = % Note

Hav o) cap ol py
2 3k ) 6k 3(0-1)

So define
1 4
pp= |t s foro=s (108)
3 for Q0 < 4

Nowwerequiressuchthats(Z—i—l;")<2+13_—K".So
2+10,<_2+10(Q+]) 120 -8
1+ 11« 1+11(Q+1) 12Q—1O
Now define
120-9 4
_{12Q10 for 0 >3
s =

7 4
5 for O < 3.

s <

(109)

Now for Pg and 5o defined in this way we need to estimate Various exponents and constants in Lemma 5. To begin

with note since %(3(58:;)) = (S—EQ)Z so we know 36(8:1) > 1 forall Q > %. Thus
30-1) 1 1 4
so=1_|%0smo9=me fro=3 (110)
Poso Ixl=1L for Q < %
3 X770 3
Step 1. We will establish
(50P)*(1 — k(1+3(Pgsp —2))) > < 7840°. (111)
Proof of Step 1.1f Q > 5 define
1 —1
@ = zigiz(s)‘ (112)

It is a calculation to see that
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60 —5120-9 20
—-2-— = (113)
30-3120-10 3(0-1)
-k L@ L
So note as — =07 T0-1= 0=
(108),(109) 60 =5 120 =9 (13 2a a(l —«)
P, = =2 =2 ) 114
0%0 30 -3120-10 30— T3 (114
Thus
2114
(1 — K(l +3(Pgsg — 2))) ((1 —a)(1 — K)) (115)
and
2 6 5 3 1
g 0075 o 25" (116)
240 — 20 240 — 20 80
_ 2
Thus finally as 1 —K =557
(1= (1 +3Pgsg ) " (S2) L (117)
“ ete = \o+1) 307~ 640
If O €1, %) noting in this case Py (% 3,50 ) % we have
1—«(143(Pgsp —2)) = : <Q+1 —1(Q—1)>
e 0+1
3-9
2(Q+1)( @
1
> —. 118
=40 (118)
Now for any value of Q since %(11225:190) . s Q)2 from (109) we see sg < ¢ for all Q. And from (108) we have
Po <3so0
5 _p (1ID),(118) (] 2 3
(soP) (1 —k(1+3(Pgsp —2))) < 3 640" (119)

which establishes (111).
Proof of Lemma 8 completed. Let B = {z € By : det(Du(z)) < 4/€}. So

Cp> f det(Du(z)) Pdz = e |Bl.
By
Thus
IB] < Cpe®. (120

Now for any z € B;\B by Lemma 2 we have

“h) 40
|4 Dwa(z) — KDwy(2)| = | Du(z) — HDvz)| < 7|S(D u(z)) — S(Dv(2))]. (121)
And note
|UDv(z) — MDu(zy| <3 forany z € By. (122)

Hence
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(122),(121) 4
/|MDwu(Z) — Wpw,ldz = 3|B|+%/|S(DM(Z)) — S(Dv(2))|dz
B

B
(94),(120)
3Cpe§ + 4\/6\/;6
< TC,VTV Qe (123)
Now by Lemma 5 and using interpolation of L? norms (see Section B2, (h) of the Appendix of [10])
| Dwy — Dwy||Lr(c) = |(Dwi)e = [Dwy e ”LP(C) + || [Dwula — [Dwola ”LP((C)
(64),(65).(111) 3
< 2 x (6 x 784+ 18 x 784) O° | pw, — MDw, Il Pgsp
L .S‘Q—l
(122) 3 oL
< 3x376320%(ltpw, — mow,llL1(8,) 722
(123) 3 P
< 1128960°%(7C,/7\/Qe?)Foe
(110 L
< 1210770%(Cpet)wo
< 121077Q*Cpe™o. (124)

Now in the case O < % in the same way as before, using Lemma 5.3.1 [3] and interpolation of L? norms, from the
third line of (124) we have

(64),(65),(111),(123),(110) 1
IDw, — DwyllLrs) < 11289603 (7C, /7 /Qet) D
< 1272800%C e . (125)

Putting (125) and (124) together we have (107). O

Lemma 9. Let u, v satisfy (91), (92) and (94) and let ¢y, wy, and ¢, w, be defined by (95), (96). We will show
||Du)u||L2(Bl) 5267TQ and ||Dwv||L2(Bl) 5267TQ (]26)

Let w =min{3,2 + m},

| DwyllL=(8,) <260, | Dwyll L= (8,) <260. (127)
And
lwy — wollLos,) < 8.6 x 1080°C e ™02 . (128)
2
Proof of Lemma 9. As before we will take x = Q—jr{,so
. 1 —« . 1—«
@ =miny3,2 4+ —— sow —2=minq 1, . (129)
6k (Vs
Note that
(129) 1—« 2 (103) 4
1—k(1+2(w—2) > 1—«|1 =—(1- = — 130
k(1420 -2) = "(+3K> 3079°= 307D (130)
And note
1— 1 1 2 1
c_lex - (131)
6K 6\0—-1/\0+1 30-1)
and thus

(129) 2 1 1
1 > w—z“”é““”min{l,—} pa— (132)
3(0-1) 30
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So from Lemma 4 (53) (and recalling (129))

%(53),(13()),(132) 1
/IDwulwdz < mwi+12(0+1)

By
=< 260. (133)

In the same way || Dwy||L= () < 26Q, thus (127) is established. By Holder if we let r = % and r’ > 0 be such that
% + % =1 and so

1
/|Dwu|2dz < n</|Dwu|wdz)

B B

(127) o
< m(260) "
< 26°7 Q.

So [[Dwy|l12(p,) <267 Q and in the same way || Dwy || ;2(p,) < 267 Q. So (126) is established.
Let

o 24w
=1l4+—=—=—. 134
r=1+5 > (134)
Since by (129),2 < w < 3,s0r € (2, w) and thus % < % < % and thus there exists 0 € (0, 1) such that
1 6 1-6
-—=—+—". (135)
r 2 w

By interpolation of L? norms we know

6 1-6
”Dwu_DwU”Lr(Bl) =< ”Dwu_DwU”LZ(Bl)”DwM_DwU”Lm(BI)

(107),(127) p
(127280CPQ4675’Q)9(52Q)1—9. (136)
Now since r = 2+Tw SO 2_‘_% - % (];5)9(% - %). So
w—2 1 1 2 1 w —2
o(Z -2\ zp(i LYo 2 _1__=—2 (137)
2w 2 w 24w w w4+ w)
So again since by (129) 2 < & < 3, thus % <6 (2 (wa) < % Thus
(136) 6 sy 1—6 4 1ho 704 T
| Dw, — Dwy|lrrp,) < 1272807(52) "C,Q"e®0 <2 x 10’ Q"C,e 102, (138)

Now from the proof of Lemma 4.28 of [1] letting O, (¢) denote the square of side length r centred on ¢, we have
that for any zg € Q 1 (0),
V2

2
1\'"7
< K(—) |Dw, — DwyllLr(B)) (139)

‘(wu —wy)(z0) —2 f (wy — wy)(2)dz \/5

01 0

S

where

1
=f2<2+—w) / i(zﬁ—_‘z)d; =«/§(2+—w) I 5 vm0. (140)
0
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So by (138), (139), (140) we have that

P

(W — wy)(20) — 2 f (wy — wy)(2)dz| < 15v/20 x 2 x 107 Q*C e ™
01
V2

8 A5 _P
<43 x10°Q°Cpe™0,
Thus
| (W — W) (20) — (W, — wy)(21)] <8.6 x 1050°C,e ™2 forany 21,2, € 0.1 (0).
2

This establishes (128). O

Lemma 10. Let u, v satisfy (91), (92) and (94) and let ¢,,, w,, and ¢y, wy be defined by (95), (96). We will show that

for all small enough € > 0

f || |* = |60]*|dz <2.25 x 106 Q7 3¢ e 02,

wu(By)
Proof of Lemma 10. Note Du(z) = D¢, (w,(z)) Dw,(z), so

Du(2)" Du(z) = Dw,(2)" Dy (w4 (2))" Depu(wi(2)) Dwi(2) = | Dy (w1 (2)) | Dwie(2)T D (2).
We know

¢,(2) =Re(¢u(2)), +ilm(¢y(2)), =Im($y(2)), — iRe(¢u(2)),-
So to simplify notation let

143)

M) = [Deu " =2[¢,@|" and o) = |Dg@|" =20} ).
Thus from (142), (144)

Du(2)" Du(z) = A(wy(2)) Dwu(2)" Dw,(z) and  Dv(z) Dv(z) = 0(wy(2)) Dwy ()" Dwy (2).
Note since the Hilbert Schmidt norm is invariant under rotation |S(Du)| < |Du|, so

19)

(
&) = 27

|SDW] 125, =7 and [ SDV)|
Thus

/|S(Du)2 — S(Dv)?|dz
By
< /\S(Du)(S(Du) — S(Dv)) |+ |(S(Du) — S(Dv))S(Dv)|dz
By
= “S(D”)“LZ(Bl) ”S(D”) - S(DU)”LZ

(146)

< 3m./e.

Recall constant p = (2 x 10'°(Q + 1)%)76(@+D and y = (

+ HS(DU) ”LZ(BI)”S(DM) - S(DU)HLZ

(B1) (B1)

S
8000(Q+1

99)
2)%@+D. Note wy(By) C Bu(wi(0)) C

(141)

(142)

(143)

(144)

(145)

(146)

(147)

(128)

(98
By, (wy(0)) C) Wy (B%) for all small enough €. Thus p o w, is defined on B,,. Now since S(Du)? = Du” Du and

S(Dv)2 = DvT Dv
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20\/EH%7) /|Tr(DuTDu) — Tr(DvTDv)|dz
BV
(145) /|A(wu)Tr(Dw,4Tlel) — Q(wv)Tr(DvaDwdez
BJ/
> /‘)L(wu)Tr(DquDwu) — Q(wu)Tr(DquDwu)‘dz

By

—/‘Q(wu)Tr(DquDwu) — Q(wv)Tr(DwUTDwUHdz.

BV
Now note
99) (144),(101) 47\> 3272
sup{|o(wu(2))|:x € By} < sup{lo@)|:z€Bu(wu(®)} = 2x o) =
Now from (143) as
¢Z =Re(py)xx +ilm(Py)xx = Im(¢v)xy - iRe(¢v)xy = _Re(¢v)yy - iIm(‘pv)yy‘
Thus we have
1Dy (2)| < 4]0 (2)].
And we can estimate the first and second partial derivatives of ¢ by
(144) 5
lox@| = 2|D’¢y(2)||Dgu(2)]
(150),(144)
< 16[¢)()||¢, ()]
(101),(102) 512772
< T forany z € B, (w,(0)) fork =1,2.
n
Thus
102472
|Do(z)| < 3 for any z € By, (w,(0)).
Hence
(99).(128),(151) 102472
sup{|o(wu(2)) — o(wy(2))| : z € By} < pE sup{|wy (2) — wy(2)| :z € By }
2
2 89x10"g5c, e,
nw
Thus

f|g(wu)Tr(Dwngu) — Q(wU)Tr(DvaDwv) |dz
BV
= / |lo(w)Tr(Dw, Dw,) — o(w,)Tr(Dw, Dw,)|dz
BV
+ |(Q(wu) - Q(wv))Tr(DwUTDwU) |dZ
(149),(152) 6472
< T
112

v

[N

2
T _ T 11 5T b5 2
|Dw,, Dw, — Dw} Dw,|dz+8.9 x 10''C, 0> —¢™0 [ |Dw,|*dz.
n
B B

45

(148)

(149)

(150)

(151)

(152)

(153)
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Now

/|DwMTDwu — Dwngv|dz < f|Dw,4T(Dwu — Dw,)|dz + /|(DwMT — Dwg)DwU|dz
By B By

(126)
< 527 Q|| Dwy — Dwyll 125,

(107) 5 2
< 66185607 C,Q%€¢™2. (154)
So applying (154) and (126) to (153)

/|Q(wu)Tr(DquDwu) — Q(wv)Tr(DwUTDwvﬂdz
By

(126),(153),(154) 6472
= 2
"

2
x 6618560 C, Q%€ ™0 + 8.9 x 10“C,,Q5%eﬁ x 25272 0>

<542 x 10,3 Q7Cpe™0 .

Putting this together with (148) we have that

v

5.5 x 106,307 e 00 /|(A(wu) — o(w,))Tr(Dw} Dw,)|dz

BV
/ 10 (w) — 0(wy)|det(Dw, )dz
BV

W2 [ el - loifle: o

wy (By)

v

Lemma 11. Let ., y, & be as defined by (97). Recall that Bs (w, (0)) C w,(By). Fix constant

2 £380 %
ho = (155)
167 \ 3C,,(5408)180 0400
We can find zog € B (w,(0)) such that
2
. / 1 £380 %
inf{ |}, (z)| : 2 € Bhy(z0)} = 5(3C,,(5408)18QQ40Q> ) (156)

Proof of Lemma 11. Note

Cp > /det(Du(z))fpdz
B
= /det(Dzbu(wu(z)))_p det(Dwy (2)) "dz
B
e / det(Dy (wu(2))) " det(Dwy (2)) det(Dwu(z))fpfldz

wi ! (B (wi (0)))
_ f det(Depu (w0 () det(Dwy (wy (wa(2)))) " det(Duw, (2))dz

wy ' (B (wu (0)))
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= f det(D¢u(z))_pdet(Dwu(wu_l(z)))_p_ldz. (157)
Bp.(wu 0))

Let ¢ > 40 be some constant we decide on later D = {z € By : det(Dw,(z)) > ¢}. Thus by Theorem 13.1.4 [3]

Qn(&)@ zfdet(Dwu(z))dz > ¢IDl.

bid
D§

So [P<l > (é)Q|D§|Q and thus |D§|Q—1 < %. Hence as ¢ > 40

T

[

|Dg|§ﬂ<%>ﬁiﬂ(%>. (158)
In particular
D] < 1. (159)

Now let ¢ =min{3, 1 + WI_D}.Notegoz 1+ é.
¢o—1 1 1

— > (160)
@ 609 ~ 90
Now note 2¢ = @ where @ is the constant from the statement of Lemma 9. Note
/ det(Dw,)dz < / |Dw, |*dz
D§ D§
e
< </|Dwu| “’dz> |D ¢
D§
#\2 1
= <</|Dwu|wdz> ) |D|¥
Ds‘
(127) 2 o1
< (260)°|D| ¥
(159),(160) 1
< (260)*|Dg|%
1
(158) 90
< (26Q)2n(2) ) (161)
S
Now let
¢ = (5408)°C QU180 (162)
1 1 1
50 ¢90 = 5408090 T2£~2 and &2 :5408Q2(§)@ hence
1
90
n§28—1=(26Q)2n<9) ) (163)
S

So note by (161) we have that

6 2 L
|Be (wu (0))\wu (D) <1g>n% B (26Q)2n<§) 90

163) £2
“© n%. (164)
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Thus
(157) —p 1 —p—1
Cp, > det(DqSu (z)) det(Dwu (wu (z))) dz
B%(wu(o))\wu (Dg)
S / det(Dep (2)) "dz (165)
B% (wu(o))\wu(Dg)
(164) . —p N =
> inf{det(D¢y(z)) " :z € B% (wu () \wy (D)} g™ T (166)
1
So there must exist zg € B% (wy (0))\wy, (D) such that det(D¢y (z0)) ™7 < ?’C’;# Note
(162)
¢? < (5408)'8C #0000, (167)
thus (recalling p € (0, 1))
2 2 1
£ EP (67 £380 »
det(Dey(z0)) > : > 1 > . (168)
1 L 1 1 3C,(5408)18C Q400
3PCs 7 3P Ch g pl )PEe
So if z1 € By (z0) then
s -dieol = [ ooz
[z0.21]
(102) 8w
= OF
(155 1 g380 ﬁ
=5 180 0400 | (169)
2\3C,(5408)13¢ 0
Hence
, (169),(168) 1 §3SQ ﬁ ;
9.2 = 3 3C,(5408)15C o100 or any z € By (20)- O
Lemma 12. We will show there exists ¢ € C such that
1’2
sup{|¢; (z) — {¢;(z)| 1z € B% (wu (0))} < C;Clezx'(’ng loe10CpO)  for all small enough € > 0. (170)

Proof of Lemma 12. Let i be the constant defined by (155) of Lemma 11 and let zg € Bt (w,(0)) be the point
2

(155
from Lemma 11 that satisfies (156). Note since zg € B: (w,(0)) for all small enough € > 0 and kg <
2

(98),(128)
Bpy(z0) C B (wy(0)) C  wy (B%) and so ¢, is defined on this set.

Now

‘e _
7§7thus

p (141

2.25 % 101097 3¢ e = f 6L )7 = |6, [ |dy

B (z0)

_ f||¢;<y)|—l¢;(y>||||¢;<y);+l¢;(y>||dy

B (z0)
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(156) 1 g380 % , )
= §<3C (5408)18QQ40Q> / Hd’u(y)‘ - ‘(pv(y)de'
g B (z0)

Thus

3C,,(5408) 182 0400 77 -
/ H¢;<y>y—y¢;<y>udys( e )p4.5><1016Q7M_3Cpe'809.

B (20)

By Cauchy’s theorem we can find an analytic function ¥ such that

lﬂ/(Z) = 27—8 forz € Bho (z0).
So
/ - |y'@)|dz = / 16,2 7 ||eL )] — |0, (2| |Pdz
By (z0) By (20)
(156),(101) 3277 £330 - / /
= 7<3cp(5408)189Q4og) / |64 = |6,(2)] |dz
Bho(z())
SN E, 5 vk

1)
< 144 x 1016< 90

(29)

Now since [¥/(2)]y € COL(2), V2|1 — [ ()| 2 dist(Dy (2), SO(2)). So

., 288 x 1010 /3C,(5408)82 Q400N % .
dist® (D (2), SO(2))dz < P £3%0 Q74 e ™0
0
Bho(ZO)
180 H400 \ 2
el (16n)2<3c”(54g§§Q ¢ )” 288 x 101071 ~8C e T2
0/ 0 w0,
30 P = 4
< ((167)5 x 3 x (5408)'8 x (288)F x 10%) % (?) C} €T
0/ 0 w10,
2L 14 -
< (27 x 1077 <E) C} T
Let £(z) = ¥ (z0 + hoz)hy . Thus
30 Q 1070 4
oY p —=
/distz(Dg“(z),SO(Z))dz <7(2.7x107) 7 (E) CJ e,

By

Thus by applying Proposition 2 we have that there exists R € SO(2) such that

270
2 St
/|D§(Z) — R|dz <157 x (2.7 x 107%) 7 (g) 3 c;e—vzﬁg,
By
4

By rescaling we obtain that there exists R such that

-5 1
][ |Dw(z)—R|dz5240><(2.7x1076)%(—) ! Cpe™a,

B, (z0)
=z

49

(171)

(172)

(173)
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Returning to complex notation for some ¢y € CN{z: |z| = 1} we have

270
/ |¢’(Z) - §‘1|dz < 157Th(2) X (2.7 % 1076)]—Q,<Q) P c

1 P
E 5 €700, (174)
By (z0)
p)
Now by the Co-area formula we know
ho
74
/ [¥'(2) — t1|dH'x ds < |V (2) — ¢1]dz (175)
ho 9B (z20) By (z0)
8 3
So we must be able to find
ho ho
qe(?’?) (176)
such that
/ 1 8 /
W/ () —ti|ldH'z < e V' (2) = &dz
9B, (z0) BhTO (zo0)
(174) 2/Q 72
4 0 p - P
< 12071h0x(2.7x1076)P<E> Cj em00 (177)
So
2
[ 1o -aselan’z 2 [ (e -a)eold':
0B, (z0) 9B, (z0)
(101) 4w
< — W' (@) —a|dH'z
9By (20)
(177) 2 /Q S
g P = P
< 4807%hg x (2.7 x 1070) <E) Cp T
810 B0
o107 (£) 7 7 e (178)
0 g p
Let
810 (' Q S
L
@ =107 (?) C! and B ﬁ. (179)
Note
210 _Mcfzip
155 P »
'S 512 G (180)
1677 (3(5408)18Q) 2
Now let

w(z) = ¢, (2) — L19,(2).

(181)
Hence by Cauchy’s integral formula we have that



[w® (z0)]
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_ /' w(¢)
B (C—zo)k+1

6Bq(10)
k!
m / }w(§)|d§
9Bq (z0)
(179),(178) k!
" B
< 271qk+‘wh0€
(176 2kl eP
= k
q

By the local Taylor Theorem we have

w(2) =Z

k=0

where wy, (z) =

|wim (2)]

Lf _w@
2mi 33%(10) (C—z0)"1(¢—2)

w® (z0)
k!

(z—20)" + (2 — 200" wn(2)

w(¢)

1 w(@)|
< — d
= / T 2o —

9By (z0)
2

(181),(101) 4 1
= = Kym+1 1
M (7)'” Y

By (z0)
2

w —m
< 32w‘2<5) )

So for any z € B% (z0) we have

(18%)(134) w® (zo - —m
w(@)| ZM|Z—ZO|k+|Z—Zo|m+1327ﬂL 2<ﬁ)

k!
k=0

m k m
(182) 8 1
< 22 weﬂ(ﬂ> +—n<—) .
— 4q w\2

Let
1
_hoas w §ne 2_
T 16w\ 3C,(5408)180 0400
200 200
> S ! > S '

= 200 360 °

Q 200
(167 x 3 x (5408))7C,Q0 7  C,Q 7 107

Now note that ¢ € (5, ap), (ﬁ)k < (%)k. So note as

(186)
200 < 1.

Hence

2 () <

1 ym+1 +1
(%)’n - L m .
% 1 ~ 2«

d¢ forany z € B% (z0). Hence for z € B% (z0)

51

(182)

(183)

(184)

(185)

(186)

(187)

(188)
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Thus

m k (188) 1 m+1
Bee(e) meBl8) 2 ()

So

(185)(189) 1\ 8r/1\™
|w z | 2wef | — + S for z € Bu(zp). (190)
20 2 4

Let m be the smallest integer such that

wef’<l)m >n(l)m (191)
2] T \2)

So
1
1 m m m
> 1(20:)'"(—) = <<£> a) . (192)
o 2 o
(179) (187)
Thus as w > rranda < 1. So|10g(e’3)| |10g(( )ma)’”|—m|log(( )ma)| Hence
log(ef
g( 1) < (193)
log((Z)ma)
So
8_”<1> 2 8”( )log«”)ma) = S_ﬂ(el(’g(%))log((%>%a) = 8_”(6/3)10«;«%)%). (194)
no\2 T ou\2 2 1z
ing the fact that @ = T and th T)i > X Thus we have 1 > (Z)mo > 12
Using the factthat o > 7 so 1> = and thus 1 > () > =. Thus we have 1 > (Z)ma > 2=, 50
1
T\m b4
log<<—> a> < 1og<—°‘). (195)
o o
So we have
ﬂlog( ) i
8_”<1) 114) il 1g<<”>ma> 2 S_nezlogﬂ%"‘), (196)
no\2 u s
Since m is the smallest integer such that (191) holds true we have
1\"! 1\ ! 1\ %) — —=B__
2w —)  Lon(s)  =dn < 4T (197)
20 2 2
(186) 409
Thus as a2 > ﬁ,so
C%Q P 10°P
1 m—+1 1 1 m—1
wef [ — = —wef—
2« 402 2a
(]27) L X 47T6@
- 8a?
20 400
4 x 10 » C%Q » ﬁ’?m)
= 300 €2lels
Er
—7»“”0‘
< CpCoe? ), (198)

where Cyp = Co(p, Q).
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So putting (198) and (196) together with (190) we have

2 etot 87'[ f’;m
|w(z)| < 2C2Coe e F) 4 Lo F,
"

—B
< CpC1e?°F)  forallz € B (20).

Hence

(199),(181) b Lo

o ’ 2 2log(ZZ) _ 2 2log(£7)

| §1¢v”L°°(B&(zO)) = Cher™o) = O 0 e
7

Now
200
o (186) Er
= - 200 360
@ @C,Q 7 1077
And note
y(9>7) " 6(Q+1)
~ \2x1010(Q +1)®
<9>7) 1 1
T (2% 101970 + 1)©)OQHD (2 % 1010(Q + 1)6)36(Q+D*
And so
97 y6(Q+l)
& >
= 2% 1010(Q + 1)0)8(0+D
(202) 1
>
T (2 x 1010(Q + 1)6)6(2+D+36(Q+1)7+216(Q+1)?
1
(27 x 1010Q)1884Q3 ’
Now
200 480
Er (179) &
T %0 S g wo 2
@wCpQ7 1077 107 Q7 C)
(203) 1
=
1170 480 ot
10 » Qo C (1013Q)9()432
1
B 57332
(10C,,Q)H7 7332
So
B o1,a79) p 204) p?
—_— > > .
2log(Z) coX 0% T 2x10°0%10g(10C, Q)
e 1440Q log(Ze 2 10 ")
EP
Thus
2

. , (200),(205)
||¢u — e, ”LOO(B%(ZO)) =

;Cl €2x 10905 log(10C), Q) )

Since zo € Be (w,(0)) by (97) this implies (170). O
2

53

(199)

(200)

201)

(202)

(203)

(204)

(205)
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3.3. Proof of Proposition 1 completed

Now

Du(z) = D¢u(wu(2)) Dwu(z) and  Du(z) = Dy (wy(2)) Dwy (2).

So
f|Du(z) — RDv(z)|dz = /|D¢u(wu(z))Dwu(z) — RD¢y(wy(2)) Dwy(2)|dz
B, B,
< [1(00.(0 @) ~ RD (w,(2))) D )|
BV

+ f | D¢y (wu (2)) (Dwy () — Dwy(2))|dz

BV
+ / |(Du(wa (@) — Do (wy(2))) Dwy ()] dz.
BV

So to deal with the last term

f (Do (wa(2)) — Do(wo(2))) Dwa(2)]dz

V
(102)(99)(150) 327

< / |wu(2) — wy(2)|| Dwy (2)|dz

By
1

(178) 32 2
< 27 8.6 x 10805C 6180@f</|Dwu(z)|2dz>
/vL 5,
126
(_)Cchelg
And
(101),(107) 877 5
/|D¢v(wu(2))(Dwu(Z) - Dwv(z))| = 7 x 1272800" Cpe™e
BV
< CGC,0% 7. (206)
So

1

/|Du — RDvldz ﬁ(/lbm(wu(z)) - RD¢>v(wu<z>)|2|Dwu(z>|2dz>2 +C2Cpe ™0 + C3Cpe e

By By

1
c@</|D¢u (wu(2)) — RDy (w,(2))]” det(Dw, (2)) dz)z +(Cr +C3)Cpe™

14

IA

1
Q”( / |D¢u(Z) - RD¢U(2)|2dz> i + (C2 + C3)Cpe T80
Bt (wu(0))

99)
<

2
(170) P

< 2 P F G0, o (207)



A. Lorent / Ann. 1. H. Poincaré — AN 33 (2016) 23-65

4. Proof of Theorem 2

Let ii(z) = “2 and §(z) = %2 So

T
Duldz < —
/| ildz <

By

and

/det(Dﬁ)fpdz = 16p/det(Du)7sz =167C).
By By

Note also from (1)

/|S(Dﬁ(z)) — $(Di@)|}dz <e.

Step 1. For any set S C By with |S| > 0 we will show

_1
/det(Dﬁ(Z))dz >167'c,”|s)'"
S
Proof of Step 1. Note

S| = fdet(Du(z))% (Dﬁ(z))_%dz

1

s
(2%% (/ det(Dﬁ(z))pdz> ’ 165‘/Cp.
S

P _ 1

(2 2) p
det Du(z) dz
16 2

N
1

( det(Du(z) ”"dz> |S|$

S
= </d Du(z) dz> |17,
S

So1677C,, 1|S|‘+1’ f det(Du(z))dz)?. Thus so we have established (211).

Step 2. Let {BZ (xx) :k=1,2,... N} be collection such that

N
Y b, <5
=1

and

N
iC=

By (xk).

We will order these balls so that B% (xx) N B% (xk+1) #Ofork=1,2,...N — 1.

“—7 = 7= So using Holder’s inequality for the second inequality

55

(208)

(209)

(210)

@211)

212)

(213)

(214)

(215)
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Let uy(z) = 2ii(xx + %) and vx(z) = 20(xx + 5). Note

/|Duk(2)|dz=/’Dﬁ<xk + %)
B B

. (208)
dz <4 / }Du(z)}dz < m.

B (xk)
2
And
. z\\ ” . \—p, (09

/ det| Dit( xx + 3 dz <4 / det(Dii(z)) "dz < 64C,. (216)

B By
Note also

2 z 2\\|?
/|S(Duk) — S(Dvp)|"dz < f}S(Dﬁ(xk - 5)) - S(Dﬁ(xk + 5)) dz
By By
< 4/|S(D12(z)) — 5(Di(2)) | dz
By
(210)
< 4e. 217)
So we can apply Proposition 1 and for some Ry € SO(2) we have
p2

/ |Dvi () — RiDup(z)|dz < C4C e 210707 el10Cp0)

B}/
We will show that

41 2 #
IRy — Ri| <cy " rCj 0000060 fork =1,2,...N — 1. (218)

Proof of Step 2. The existence of a collection {B% (x1), B% (x2), ... B% (xn)} satisfying (214), (215) follows by the
5r covering theorem. Rescaling v and u; we have

2
I
|Di(2) — ReDii(2)]dz < C4Che 1707 ka106,0), (219)

By (xx)
2
So

2

Y
|(Ri = Ris ) Di(2)|dz < CaChe 1707 a0, 01, (220)

By (xi)NBy (xXg+1)
2 2
Let

Bi = {z:|Di(z)| > 8y %} (221)

Q08) .2 2
So |Bi| = %5 . Since By (xx) N By (xk41) # 0 for k =1,2,...N — 1. So [By (x) N By (xeq1)| = A= fork =

1,2,...N — 1. Thus

2
|By () N By (es)\By | = % fork=1,2,...N —1. (222)

Now
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det(Ry — Ri+1) det(Dﬁ(Z))dZ
B%(Xk)nB%(xk+l)\Bl

= / det((Ri — Ry+1)Dii(2))dz
By (xi)NBy (xk+1)\Bi
2 2
~ 2
< / (R — Risr) Di(2)2dz
By (xi)NBy (xk+1)\By
2 2
<2 / |Dii(2)||(Rk — Res1) Dii(2)|dz
By (xi)NBy (xk+1)\Bi
2 2
(221) D) .
< 16y |(Rk — Rk4+1)Dii(z)|dz

B% (Xk)ﬂB% (o D\B1

2
Q00 5 0 T 0100, 0)
< ¢y~ Cpeleo 07 10g(10Cp Q) _

(223)
Hence
—3 242 (22 -1 141
det(Ri — Rer1)Cp "y ™7 < cdet(Ri — Rer1)Cp " |By (xi) N By (e D\B1 |7
@11) .
< / det(R — Ry41) det(Dii(z))dz
B%(Xk)ﬂB%(Xk-H)\BI
(223) %
< Cy—zcieleo 0°10g(10Cp Q)
Thus
PRI S
det(Ry — Ry1) <cy 7 Clé’GZXIOgQS log(10Cp Q) (224)

Note that if Ry = (Snie) o)), Ry = (Snih) contsy ) then det(Ry — Rg) =2(1 = cos(e — B)) thus from (224)

we have
2

T 2 rr
|Ri — Rip1| <cy 27 Cle005e0000)  fork=1,2,...N — 1. (225)
So we have established (218).
Proof of Theorem 2 completed.

/|Df)(z)—R1Dﬁ(z)|dz < f|Df)(z)—RkDﬁ(z>|dz+|(Rk—R1)Dﬁ(z)|dz

By (xx) By (xk)
2 2
2 2
(219),(218) 2 % % 10;!)7 -
< C4Cp6 2x10905 10g(10Cp 0) - CSCp € 101005 log(10C 0) |Diildz.
By (xx)
2
Thus
2 2
. L (14),215), N o2 e ~ 2 SO a0
Dv — R{Duld < c C P 101907 10g(10C 0) Diildz + cC2 231070 10g(10C, 0)
1 Z = P Z p
B k=1

1 By (x¢)
2 2

2
214),(208 z o
( ! )Ccﬁemlogﬁcguocpg)_

(226)
Rescaling gives (2) and this completes the proof of Theorem 2. O
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5. Examples

We can show that any estimate has to lose at least a root power.

k1 k42 .. . . .
Example 1. Let f(z) = iﬁ’ g(z)= ﬁ So rewriting these functions as vector valued functions of two variables we

have

Df(x.y)=[Z"],, and Dg(x.y) =[], (227)
Now

kK1 .k [ cos(kArg(z)) —sin(kArg(z))

[Z ]M_|Z| (sin(kArg(z)) cos(kArg(z))> (228)
and

k+17 o k+1 [ cos((k + 1Arg(z))  —sin((k + 1)Arg(z))

[ ] =l (sin(<k+1)Arg(z>) cos((k+1)Arg(z)>) (229)
Thus

Sym(Df(x,y))z(xMyz)%Id and Sym(Dg(x,y)):(xz_i_)@)%Id.

So note

1
/ [Sym(D f) — Sym(Dg)|dz = / / I — P dH zdr
By 0 9B,
2
Tkt Dk+2)
A slightly longer calculation shows that

for any 6 € (0, 2r].

Pani Y

/|Df— ReDgldz >
B

Conjecture 1. There exists a sequence of positive numbers €, — 0 and a sequence of pairs of Q-Quasiregular maps
up: By — R2 vy : By — R? with fBl |Duy|2dz < 1 such that

/|S(Duk) — S(Dv)[*dz=e;
B

and

/ |Duy — RyDvgldz > 1 forall Ry € SO(2).

B
2

Sketch of proof of Conjecture 1. Let k be a large integer. Let w,, = ¢“%" . A natural approach is to define function

k

B k
0@:=]] <p(lz - wml)f’ﬂ) . (230)

m=1 Z_wm|

If p(x) = x this is just a holomorphic function with order k zero at {wy, wy, ... wg}. The idea is to create a function
whose gradient close to an annulus of radius 1 is very small. And whose gradient in the inside of the annulus and the
outside of the annulus is large.
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Specifically we want estimates of the form

/ |Doldz=0(1) and f |Doldz = 0(1). 231)
By B2(0\Bi+n

And fore < h

|Doldz <e. (232)
Biyn\Bi—n

Let R be a rotation and [ the affine map with [z (0) =0, DIg = R. Now defining

0@ — fop_,0dH'x forz € By_y,
lro0(z) — fop,lroodH'x forze By\Biy
We can interpolate across Bji,\Bj—p to create a function w with the property that
-~ .| Do forz € B
Dw(z) == {RDQ(Z) for z € By (234)

and || DW|| oo (B, ,\Bi_p) < c€. If h could be showed to be Quasiregular then we can use the method of [4] “project” w
onto the space of Quasiregular mappings to obtain a Quasiregular mappings with the properties required. So the main
obstacle is to obtain a Quasiregular mapping that has properties (231), (232).

Let

k
G@ o= [ (p(1z = wal))" = e et F oxtoti=m), (235)

m=1

Take z = 1. Then

:\/2(1 _cos<2”7’")). (236)

f " log(o (11 ~ un)) = i_zfnk’g(”(/z(l _(27:%))))

So

m=1 m=1
2
—>/10g(,0( 2(1—cos(x))))dx
0
2
= /10 ( (r)) 4 dr
I R
=:A,. (237)

Since 1 is a typical point on d By by symmetry of z1, 22, ... 2, S0 we have
2

inf  G(z) <cer. (238)
7€9B1(0)

Let & (x) = X _, klog(p(1z — wml)). So
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f|G(Z)|dz = /el"g(lc(Z)I)dZ

B, B

235 / eow(2)dz

By

Since e* is convex by Jensen’s inequality we know

s @@4dD) < /eow(z)dz.

By
Let
2
D, =/2rcos <%>log(p(r))dr
0
And note
k
[m@dz = 3k [ 1oelo(lz - wal))dz
B m=1p,

— szlog(,0(|z—(—1’0)‘))‘1Z

(241),(240),(239) 12
/|G(z)|dz > ek P

B

B
2

K2 / 2r cos™! <g> log(p (r))dr
0

(239)

(240)

(241)

(242)

Thus a counter example can be constructed by finding an increasing function p that satisfies the following two in-

equalities

2
Dp:/2r005_1<%) log(,o(r))dr >0 and A,
0

(243)

and for which function G defined (235) forms a quasiregular mapping. These things will be addressed in forthcoming

preprint [21].
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Appendix A
We will prove an estimate from [13] where we track the constants explicitly. All the arguments are from [13].

Proposition 2. Suppose u € WL2(B; : R?) with fBl distz(Du, SO2))dz < 1 then there exists R € SO(2) such that

1
7
f |Du — R|dz < 15( f dist*(Du, S0(2))dz> ) (244)
Bl B

1

Step 1. We will show

|cof(M) — M| < 2dist(M,SO(2)) forany M € M**2. (245)

Proof of Step 1. Let Ry € SO(2) be such that |M — Rys| = dist(M, SO(2)). Note |cof (M) — Rys| = dist(M, SO(2)).
So [cof (M) — M| < |cof (M) — Ryr| + | Ry — M| = 2dist(M, SO(2)). Which establishes (245).
Step 2. For any ¥ € W1-2(B; : R?) we will show

/||Dl/f|2 —2|dx < </ distz(Dw,S0(2))dx>i(||Dw||Lz(Bl) +27). (246)
B By

And in particular function u that satisfies the hypotheses of Proposition 2 has the property that

| Dullz2p,) < 27. (247)
Proof of Step 2. For any x € By let R, € SO(2) be such that | Dy (x) — R,| = dist(Dy¥(x), SO(2)). So

Jllpwel ~2ldx= [(Dvw] = IR (|Dwe]| +V2) ax

B By
1 1
< (/|D¢(x) - Rx|2dx>2 (/(|D1p(x)| + ﬁ)%u) i
B 1
< (f dist2(D1p(x),SO(2))dx>7(||D1//||L2(Bl) ++/27) (248)
By

which establishes (246).
We will now establish (247) for function u. Suppose || Dul|;2(g ) > 27, then

1
(246) 2
f|lDu|2—2|dx = (/distz(Du(x),SOQ))dx) (I Dull 2,y + ~/2)
By B
S 2”D””L2(Bl)

So '/Bl |Du|?dx < 2| Dullp2p,y + 2 < 3| Dull;2(p,)- Thus || Dull;2(p,y <3 which contradicts the assumption that
| Dull2(p,y = 27. Thus (247) is established.

Proof of Proposition completed. Let ¢ : B — R? be the solution of
At = —div(cof(Du) — Du), ¢=0o0ndB;.

So testing the equation with z itself we have
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f|D§|2dx = f(cof(Du)—Du):ngx
B

B
1 1
2 2 ) 2
< </|cof(Du) — Du| dx) </|D;| dx)
B By
(245) .9 %
<2 fdlst (Du,SO(2))dx ) ID¢|12(5,)-
By
So
/ |D¢Pdx <4 / dist*(Du, SO(2))dx. (249)
By B
Let
w=u-—2{¢. (250)

Now using the identity

1 2 2 12 : 2

EA(|Df| )=Df - ADf +|D*f|" for any scalar valued function f € C>.
As w is a vector valued function both of whose co-ordinates are harmonic we have

1

EA(|Dw|2—2)=|1)2wyz. (251)
Let n € Co(B7) be such that =1 on B; and ||D277||LOO(31) <8.So

2

/|D2w|2ndz 2 /%A(|Dw|2—2)ndx
B B

= / %(|Dw|2—2)Andx
B

1
< —sup|An|/||Dw|2—2|dx
2
By
(250) » 5
< 4/\|Du| —2Du: D¢ + |D¢|* —2|dx
By
7 3
< 4</||Du|2—2|dx+/|D§|2dx+2</|D§|2dx> </|Du|2dx> )
By B B By
1
246),(249) 2
s 4(f distz(Du(x),SO(Z))dx> (1Dull 25, + ~2)
By
3
+ 16/dist2(Du(x),SO(2))dx+ lé(f distz(Du(x),SO(2))dx) 1Dull 25,
B B,
(247 %
247)
< (407 +4v271 + 16) ( / distz(Du(x),SO(Z))dx> . (252)

B
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So
1 1
2.2 . .2 4
|D*w|"dx ) <13( [ dist*(Du(x),50(2))dx | . (253)
Bl B
2
2 2,000 5 b g 23D L2 1
Note fBl | D wldx < (fBl |D“w| dx)z\/; < l?a(fB1 dist“(Du(x), SO2))dx)%. Let y € B%, by the Mean Value
Theorem2 ’

D*w(y) = ][ D*w(x)dx.
B (y)
4

So
T\ !
|D*w(y)| < (B) |D2w(x)|dx
B1(y)
1
= ;—6 x 13( / dis®(Du(x), SO(Z))dx)_
By
1
< 67( f distZ(Du(x),SO(z))dx) (254)
By
So
ID*w)| ) = 67 ( / dist*(Du(x), SO(2))dx> ' (255)
By

Let zg € B%. Thus
1

(255 4
sup{|Dw(x) — Dw(z)| : x € B%} {34(/ distZ(Du(x),SO(Z))dx> ) (256)
By
Now
1 1
2 (249 2
/|D;|dx5< |D;|2dx> ? S)Tn(/dist2(Du,SO(2))dx) . (257)
B B B,
1 4
And
f|Du(x) — Dw(z())|dx < /|Du(x) — Dw(x)’dx + / |Dw(x) — Dw(zg)|dx
By By By
i i i
(250) T
= | [Pz)dx + £ Dw = Dw (o) e s,
Bl 4
1
1
256 34 7
(5)/|Dz(x)|dx+l—g(/distQ(Du,SO(Z))dx)
By

B
i
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= (3;‘_; + g) ( / dise(Du, SO(2))dx> " (258)

By

Recall w =u — z. So

L 1
( f dist2(Dw,S0(2))dx)2 < ( / distZ(Du,SO(z))dx)2 D¢ g,

B By
(249) 2
< 3( / distz(Du,SO(Z))dx) ) (259)
B

Hence [, dist(Dw, SO(2))dx < \/% ([, dist*(Dw, SO(2))dx)* . Thus
I

1
/ dist(Dw, SO(Z))dx (2%9) ¥ (/ distz(Du, SO(2))dx) 2.

1 By
4
So there must exist zo € B 1 such that
. 12 ([ . 5 2
dist(Dw(z9), SO(2)) < Ix / dist®(Du, SO(2))dx | . (260)
b
B

Let R € SO(2) be such that | Dw(zgp) — R| = dist(Dw(zp), SO(2)). By (258), (260) we have that

f|Du(x) — Rldx < 15(/ distz(Du,SO(Z))dx> . (261)
B B
1
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