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Abstract

Let Ω be a domain in Rn or a noncompact Riemannian manifold of dimension n ≥ 2, and 1 < p < ∞. Consider the functional 
Q(ϕ) := ∫

Ω(|∇ϕ|p +V |ϕ|p) dν defined on C∞
0 (Ω), and assume that Q ≥ 0. The aim of the paper is to generalize to the quasilinear 

case (p �= 2) some of the results obtained in [6] for the linear case (p = 2), and in particular, to obtain “as large as possible” 
nonnegative (optimal) Hardy-type weight W satisfying

Q(ϕ) ≥
∫
Ω

W |ϕ|p dν ∀ϕ ∈ C∞
0 (Ω).

Our main results deal with the case where V = 0, and Ω is a general punctured domain (for V �= 0 we obtain only some partial 
results). In the case 1 < p ≤ n, an optimal Hardy-weight is given by

W :=
(

p − 1

p

)p∣∣∣∣∇G

G

∣∣∣∣p,

where G is the associated positive minimal Green function with a pole at 0. On the other hand, for p > n, several cases should be 
considered, depending on the behavior of G at infinity in Ω . The results are extended to annular and exterior domains.
© 2014 
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1. Introduction

In a recent paper [6], the authors studied a general second-order linear elliptic operator P ≥ 0 in a general domain 
Ω ⊂ Rn (or a noncompact smooth manifold of dimension n), where n ≥ 2, and obtained an optimal improvement 
of the inequality P ≥ 0. The improved inequality is of the form P ≥ W , where W is “as large as possible” weight 
function, and (in the self-adjoint case) the inequality P ≥ W is meant in the quadratic form sense. The weight W
is given explicitly using a simple construction called the supersolution construction; any two linearly independent 
positive (super)solutions u0, u1 of the equation Pu = 0 give rise to a one-parameter family of Hardy-type weights 

* Corresponding author.
E-mail addresses: devyver@tx.technion.ac.il (B. Devyver), pincho@techunix.technion.ac.il (Y. Pinchover).

L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.anihpc.2014.08.005
0294-1449/© 2014 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.anihpc.2014.08.005
http://www.elsevier.com/locate/anihpc
mailto:devyver@tx.technion.ac.il
mailto:pincho@techunix.technion.ac.il
http://dx.doi.org/10.1016/j.anihpc.2014.08.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.anihpc.2014.08.005&domain=pdf


94 B. Devyver, Y. Pinchover / Ann. I. H. Poincaré – AN 33 (2016) 93–118
{Wα}{0≤α≤1} satisfying the inequality P ≥ Wα (for more details on this construction see Section 4). The optimal 
weight is obtained by a careful choice of u0, u1 and α.

In the case of a Schrödinger type operator P , the main result of [6] reads as follows.

Theorem 1.1. Consider a symmetric second-order linear elliptic operator P of the form

Pu := −div
(
A(x)∇u

) + V (x)u

which is subcritical in Ω . Let q be the associated quadratic form. Then there exists a nonzero, nonnegative weight W
satisfying the following properties:

(a) The following Hardy-type inequality holds true

q(ϕ) ≥ λ

∫
Ω

W(x)
∣∣ϕ(x)

∣∣2 dx ∀ϕ ∈ C∞
0 (Ω), (1.1)

with λ > 0. Denote by λ0 := λ0(P, W, Ω) the best constant satisfying (1.1).
(b) The operator P − λ0W is critical in Ω; that is, the inequality

q(ϕ) ≥
∫
Ω

W1(x)ϕ2(x)dx ∀ϕ ∈ C∞
0 (Ω)

is not valid for any W1 � λ0W .
(c) The constant λ0 is also the best constant for (1.1) with test functions supported in the exterior of any fixed compact 

set in Ω .
(d) The operator P − λ0W is null-critical in Ω; that is, the corresponding Rayleigh–Ritz variational problem

inf
ϕ∈D1,2

P (Ω)

{
q(ϕ)∫

Ω
W(x)|ϕ(x)|2 dx

}
(1.2)

admits no minimizer. Here D1,2
P (Ω) is the completion of C∞

0 (Ω) with respect to the norm u �→ √
q(u).

(e) If furthermore, W > 0, then the spectrum and the essential spectrum of the Friedrichs extension of the operator 
W−1P on L2(Ω, W dx) are both equal to [λ0, ∞).

In the present paper we consider the quasilinear case. Let 1 < p < ∞, and denote by �p(u) := div(|∇u|p−2∇u)

the p-Laplace operator. Throughout the paper, Ω is either a domain in Rn, or a noncompact smooth Riemannian 
manifold of dimension n, n ≥ 2, such that 0 ∈ Ω . Let V ∈ L∞

loc(Ω) be a real valued potential, and let QV be the 
quasilinear operator

QV (u) = Q(u) := −div
(|∇u|p−2∇u

) + V (x)|u|p−2u (1.3)

defined on Ω . Denote by

QV (ϕ) =Q(ϕ) :=
∫
Ω

(|∇ϕ|p + V |ϕ|p)
dν

the associated energy defined on C∞
0 (Ω). We say that Q ≥ 0 in Ω if Q(ϕ) ≥ 0 for all ϕ ∈ C∞

0 (Ω).
Let W ≥ 0 in Ω . We denote

λ0(QV ,W,Ω) := sup{λ ∈R |QV −λW ≥ 0 in Ω},
λ∞(QV ,W,Ω) := sup{λ ∈R | ∃K ⊂⊂ Ω s.t. QV −λW ≥ 0 in Ω \ K},

respectively, the best constant and best constant at infinity in the Hardy-type inequality

QV (ϕ) ≥ λ

∫
�

W |ϕ|p dν ∀ϕ ∈ C∞
0 (Ω).
Ω
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Let us mention that in the linear case (p = 2) on Ω =Rn, and if V = V (|x|), W(x) = W(|x|) are two radial functions 
on Rn, then λ∞ is the infimum of λ’s such that the ODE

−(
tn−1u′)′ + tn−1(V (r) − λW(r)

)
u = 0

is oscillatory as t → ∞.
The aim of the present article is to generalize Theorem 1.1 (obtained in the linear case), to the quasilinear case and 

to obtain “as large as possible” nonnegative (optimal) weight W satisfying

Q(ϕ) ≥ λ

∫
Ω

W(x)|ϕ|p dν ∀ϕ ∈ C∞
0 (Ω).

In particular, we answer affirmatively a problem posed by the authors in [6] (see Problem 13.12 therein).
The extension of Theorem 1.1 to the quasilinear case is not a straightforward task. First, due to the nonlinearity of 

the operator QV , the supersolution construction has to be modified, and in particular in the case p > n, the superso-
lution construction leading to optimal potentials is essentially different. In fact, we could not extend Theorem 1.1 to 
operators QV with V �= 0. Secondly, the proof of Theorem 1.1 given in [6] is mostly of linear nature, and therefore 
a new approach is needed for the quasilinear case. Moreover, the proof of Theorem 1.5 actually provides us with an 
alternative proof for parts (b) and (c) of Theorem 1.1. On the other hand, it seems that there is no analog to part (e) 
of Theorem 1.1 concerning the essential spectrum of the corresponding operator. We note that in the linear case, the 
proof of part (e) relies on a construction of a family of generalized eigenfunctions, and this construction does not 
apply to the quasilinear case.

Let us introduce first our definition of optimal Hardy-weights for QV in a punctured domain.

Definition 1.2. Suppose that QV ≥ 0 in Ω , and denote Ω� := Ω \ {0}. Assume that a nonzero nonnegative function 
W satisfies the following Hardy-type inequality

QV (ϕ) ≥ λ

∫
Ω�

W |ϕ|p dν ∀ϕ ∈ C∞
0

(
Ω�

)
, (1.4)

where λ is a positive constant. Set λ0 := λ0(QV , W, Ω�).
We say that W is an optimal Hardy-weight for the operator QV in Ω if the following conditions hold true.

(1) The functional QV −λ0W is critical in Ω�, i.e. for any W1 � λ0W , the Hardy-type inequality

QV (ϕ) ≥
∫
Ω�

W1|ϕ|p dν ∀ϕ ∈ C∞
0

(
Ω�

)
does not hold. In particular, the equation QV−λ0W(u) = 0 in Ω� admits, up to a multiplicative positive constant, 
a unique positive (super)solution v; such a v is called the Agmon ground state.

(2) λ0 is also the best constant for inequality (1.4) restricted to functions ϕ that are compactly supported either 
in a fixed punctured neighborhood of the origin, or in a fixed neighborhood of infinity in Ω . In particular, 
λ∞(QV , W, Ω�) = λ0.

(3) Suppose further that V ≥ 0. For an open set Ω̃ ⊂ Ω , let D1,p

QV
(Ω̃) be the completion of C∞

0 (Ω̃) with respect to 

the norm QV (·)1/p . Then the functional QV −λ0W is null-critical at 0 and at infinity in the following sense: for 
any pre-compact open set O containing 0, the (Agmon) ground state v of QV −λ0W in Ω� satisfies∫

O\{0}

(|∇v|p + V |v|p)
dν = ∞, and

∫
Ω\Ō

(|∇v|p + V |v|p)
dν = ∞.

In particular, the variational problem

inf
v∈D1,p

QV
(Ω�)

{ QV (ϕ)∫
Ω� |ϕ|pW dν

}
(1.5)

does not admit a minimizer.
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Remark 1.3. It is natural to ask whether all the above properties of an optimal Hardy-weight are independent. It is 
indeed the case; in fact, in [6] we gave the following example which shows that, in general, (3) is not a consequence 
of (1) and (2).

Let 0 ≤ V ∈ C∞
0 (Rn) be a potential such that the operator −� − V (x) is critical in Rn. Consider the operator 

Q := −� + 1 − V (x), and the potential W(x) := 1. Then λ0(Q, W, Rn) = λ∞(Q, W, Rn) = 1. On the other hand, 
the operator Q − W is null-critical in Rn for n ≤ 4, and positive-critical if n > 4.

Remark 1.4. If p �= 2, the definition of D1,p

QV
(Ω) cannot be applied to the case where V � 0, since the positivity of 

the functional QV on C∞
0 (Ω) does not necessarily imply its convexity, and thus it does not give rise to a norm (see 

the discussion in [14]).

Using a modified supersolution construction, we obtain the main result of our paper:

Theorem 1.5. Let ∞̄ denote the ideal point in the one-point compactification of Ω . Suppose that −�p admits a 
positive p-harmonic function G in Ω� := Ω \ {0} satisfying one of the following conditions (1.6) and (1.7):

1 < p ≤ n, lim
x→0

G(x) = ∞, and lim
x→∞̄G(x) = 0, (1.6)

p > n, lim
x→0

G(x) = γ ≥ 0, and lim
x→∞̄G(x) =

{ ∞ if γ = 0,

0 if γ > 0.
(1.7)

Define a positive function v and a nonnegative weight W on Ω� as follows:

(1) If either (1.6) is satisfied, or (1.7) is satisfied with γ = 0, then v := G(p−1)/p , and W := (
p−1
p

)p|∇G
G |p .

(2) If (1.7) is satisfied with γ > 0, then v := [G(γ − G)](p−1)/p , and

W :=
(

p − 1

p

)p∣∣∣∣ ∇G
G(γ − G)

∣∣∣∣
p∣∣γ − 2G

∣∣p−2[2(p − 2)G(γ − G) + γ 2].
Then the following Hardy-type inequality holds in Ω�:∫

Ω�

|∇ϕ|p dν ≥
∫
Ω�

W |ϕ|p dν ∀ϕ ∈ C∞
0

(
Ω�

)
, (1.8)

and W is an optimal Hardy-weight for −�p in Ω .
Moreover, up to a multiplicative constant, v is the unique positive supersolution of the equation Q−W(w) = 0

in Ω�.

Remark 1.6. Let us discuss hypotheses (1.6) and (1.7). Suppose first that Ω is a C1,α-bounded domain with 0 < α ≤ 1. 
Let GΩ(x, 0) be the positive minimal p-Green function of the operator −�p in Ω with a pole at 0. Then G := GΩ(·, 0)

satisfies either (1.6), or (1.7) with γ > 0. This assertion follows, for example, from the results in [8,9] and is valid 
more generally for any subcritical operator QV with V ∈ L∞(Ω).

Suppose further that Ω is a C1,α-subdomain of a noncompact Riemannian manifold M (where α ∈ (0, 1]), with a 
positive p-Green function GM that satisfies

lim
x→∞̄GM(x,0) = 0.

Using a standard exhaustion argument, the monotonicity of the Green functions as a function of the domain, and the 
above remark, it follows that G := GΩ(·, 0) satisfies either (1.6), or (1.7) with γ > 0.

If Ω = Rn, Q = −�p , and 1 < p < n (resp., p > n), then G(x) := |x| p−n
p−1 satisfies assumption (1.6) (resp., as-

sumption (1.7) with γ = 0). In this case, Ω� = Rn \ {0} is the punctured space, and W(x) = (
p−1
p

)p|x|−p is the 
classical Hardy potential. We note that the criticality of the operator
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Q−W(u) = −div
(|∇u|p−2∇u

) −
(

p − 1

p

)p |u|p−2u

|x|p in Ω�

follows also from the proof of [16, Theorem 1.3] given by Poliakovsky and Shafrir.

Remark 1.7. In our study, the domain Ω� should be viewed as a manifold with two ends: the origin and ∞̄, the 
ideal point obtained by the one-point compactification of Ω . In particular, the notion of optimal Hardy-weight can be 
extended analogously to the case of any manifold with two ends (see Section 6, for an extension of Theorem 1.5 to 
annular or exterior domains).

The outline of the present paper is as follows. In Section 2 we review the theory of positive solutions for 
p-Laplacian type equations. Section 3 is devoted to a coarea formula which is a key result in our study (see Proposi-
tion 3.1). Section 4 explains the supersolution construction of Hardy-weights in various situations. Section 5 is devoted 
to the proof of Theorem 1.5. In Section 6 we present extensions of Theorem 1.5 to the case of annular and exterior 
domains. In Section 7 we present some Lp-Rellich-type inequalities and discuss the optimality of the obtained con-
stants. Finally, in Section 8 we study the supersolution construction for general operators QV of the form (1.3), where 
the obtained weight is in general not optimal.

2. Preliminaries

Let Ω be a domain in Rn (or in a noncompact Riemannian manifold of dimension n), where n ≥ 2. We equip 
Ω with the one-point compactification, and denote by ∞̄ the added ideal point which we call the infinity in Ω . So, 
xn → ∞̄ if and only if the sequence {xn}n∈N ⊂ Ω eventually exits any compact subset of Ω . For example, if Ω ⊂Rn

is bounded, then the infinity in Ω is just ∂Ω , and xn → ∞̄ if and only if dist(xn, ∂Ω) → 0, where dist(·, ∂Ω) is the 
distance function to ∂Ω .

Throughout the paper we assume that Ω is equipped with an absolutely continuous measure ν with respect to the 
Lebesgue measure in Rn (or with respect to the Riemannian measure in the case of a Riemannian manifold), and that 
the corresponding density is positive and smooth.

We write Ω1 � Ω2 if Ω2 is open, Ω1 is compact and Ω1 ⊂ Ω2. Let f, g ∈ C(D) be nonnegative functions, we 
denote f � g on D if there exists a positive constant C such that

C−1g(x) ≤ f (x) ≤ Cg(x) for all x ∈ D.

For 1 < p < ∞, we consider a quasilinear operator

QV (u) = Q(u) := −�p(u) + V |u|p−2u, (2.1)

where V ∈ L∞
loc(Ω). Here, the p-Laplacian �p is defined by

�p(u) := div
(|∇u|p−2∇u

)
,

where div is the divergence with respect to the measure ν, so, the integration by parts formula∫
Ω

−div(X)ϕ dν =
∫
Ω

X · ∇ϕ dν

holds for any smooth vector field X and function ϕ that are compactly supported in Ω . Associated to QV there is the 
energy functional

QV (ϕ) =Q(ϕ) :=
∫
Ω

(|∇ϕ|p + V |ϕ|p)
dν ϕ ∈ C∞

0 (Ω). (2.2)

We say that u ∈ W
1,p

loc (Ω) is a (weak) solution of the equation Q(u) = f in Ω if for every ϕ ∈ C∞
0 (Ω),∫ (|∇u|p−2∇u · ∇ϕ + V |u|p−2uϕ

)
dν =

∫
f ϕ dν. (2.3)
Ω Ω
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We define in a similar way the notions of subsolution and supersolution of Q(u) = f . Weak solutions of the equation 
Q(u) = 0 admit Hölder continuous first derivatives, and nonnegative solutions of the equation Q(u) = 0 satisfy the 
Harnack inequality (see for example [10,17–20]). Therefore, in the definition (2.3) with f = 0, one can equivalently 
take test functions in C1

0(Ω) instead of C∞
0 (Ω).

The notions of criticality and subcriticality of QV have been studied in this context, and we refer to [13] for an 
account on this. For completeness, we recall the essential notions and results that we need throughout the present 
paper.

The operator Q is said to be nonnegative in Ω (and we denote it by Q ≥ 0) if the equation Q(u) = 0 in Ω admits a 
positive (super)solution. As in the (selfadjoint) linear case, the following Allegretto–Piepenbrink type theorem holds:

Theorem 2.1. (See [13, Theorem 2.3].) Q ≥ 0 in Ω if and only if Q(ϕ) ≥ 0 for every ϕ ∈ C∞
0 (Ω).

Throughout the paper, we assume that Q is nonnegative in Ω . As in the linear case, there is a dichotomy for 
nonnegative operators: Q of the form (2.1) is either critical or subcritical in Ω . We note that in the case of Q = −�p

on a Riemannian manifold M equipped with its Riemannian measure, criticality (resp., subcriticality) is often called 
p-parabolicity (resp., p-hyperbolicity). Criticality/subcriticality has several equivalent definitions, which we recall 
below, but first we need to introduce some notions.

Definition 2.2. We say that a sequence {ϕk}k∈N of nonnegative functions belonging to C∞
0 (Ω) is a null-sequence for 

Q in Ω if there exists an open set B � Ω such that

lim
k→∞Q(ϕk) = lim

k→∞

∫
Ω

(|∇ϕk|p + V |ϕk|p
)

dν = 0, and
∫
B

|ϕk|p dν � 1.

Definition 2.3. Let K0 be a compact set in Ω . A positive solution u of the equation Q(w) = 0 in Ω \K0 is said to be a 
positive solution of minimal growth in a neighborhood of infinity in Ω (or u ∈ MΩ,K0 for brevity) if for any compact 
set K in Ω , with a smooth boundary, such that K0 � int(K), and any positive supersolution v ∈ C((Ω \ K) ∪ ∂K) of 
the equation Q(w) = 0 in Ω \ K , the inequality u ≤ v on ∂K implies that u ≤ v in Ω \ K .

Similarly, for x0 ∈ Ω , we define the notion of a positive solution of the equation Q(w) = 0 in a punctured neigh-
borhood of x0 of minimal growth at x0.

We have

Theorem 2.4. (See [13,8].) Suppose that Q is nonnegative in Ω , and fix x0 ∈ Ω . Then the equation Q(w) = 0 has (up 
to a multiplicative constant) a unique positive solution u ∈MΩ,{x0} of minimal growth in a neighborhood of infinity 
in Ω .

Moreover, u is either a global positive solution of Q(w) = 0 in Ω (such a solution is called Agmon’s ground state), 
or u has singularity at x0 with the following asymptotic:

u(x) ∼
x→x0

⎧⎪⎪⎨
⎪⎪⎩

|x − x0|
p−n
p−1 if 1 < p < n,

− log |x − x0| if p = n,

1 if p > n.

In the latter case, the appropriately normalized solution is called the positive minimal Green function of Q in Ω with 
a pole at x0, and is denoted by GΩ

Q(x, x0) = G(x).
Furthermore, any positive solution v of Q(w) = 0 in a punctured neighborhood of x0 of minimal growth at x0 has 

the following asymptotic near x0:

v(x) ∼
x→x0

⎧⎨
⎩

1 if 1 < p ≤ n,

|x − x0|
p−n
p−1 if p > n.
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Definition 2.5. Suppose that Q ≥ 0 in Ω . Then Q is said to be critical in Ω if the equation Q(u) = 0 in Ω admits a 
(Agmon) ground state, and subcritical in Ω otherwise.

Lemma 2.6. (See [13].) Suppose that Q ≥ 0 in Ω . Then the following assertions are equivalent:

(1) Q is critical in Ω .
(2) The equation Q(w) = 0 in Ω admits a unique positive supersolution (up to a multiplicative constant).
(3) The only nonnegative function W such that the inequality

Q(ϕ) ≥
∫
Ω

W(x)|ϕ|p dν

holds for every ϕ ∈ C∞
0 (Ω) is W = 0.

(4) Q admits a null sequence in Ω .

A nonnegative functional Q might contain an indefinite term (if the potential has indefinite sign). Although, by 
the Picone identity [2], such functional Q can be represented as the integral of a nonnegative Lagrangian L, this L
still contains an indefinite term. It was proved in [15] that Q is equivalent to a simplified energy containing only 
nonnegative terms, as we explain now.

Definition 2.7. Let v be a positive solution of the equation Q(u) = 0 in Ω . The simplified energy is defined for 
nonnegative functions w ∈ C∞

0 (Ω) by

Qv
sim(w) :=

{ ∫
Ω

(v2|∇w|2(v|∇w| + w|∇v|)p−2)dν if 1 < p ≤ 2,∫
Ω

(vp|∇w|p + v2|∇v|p−2wp−2|∇w|2)dν if p > 2.
(2.4)

Since the Picone identity holds also on manifolds (cf. [15, Section 2]), it follows that Lemma 2.2 in [15] is valid 
also on manifolds. Therefore, we obtain the following equivalence between the functional Q and the simplified energy 
Qv

sim:

Lemma 2.8. (See [15, Lemma 2.2].) Assume that Q = QV ≥ 0 in Ω . Let v ∈ C
1,α
loc (Ω) be a fixed positive solution of 

the equation Q(u) = 0 in Ω . Then for all w ∈ C∞
0 (Ω) we have

Q(w) �Qv
sim

(
w

v

)
.

Lemma 2.8 is a generalization of the ground state transform (see [6]) to the nonlinear case. In the nonlinear case, 
one obtains the equivalence (and not equality, as in the linear case) between Q and a functional containing only 
positive terms. As a corollary of Lemma 2.8, we state the following obvious upper estimate for the simplified energy, 
which will be of use later.

Lemma 2.9. Denote

X(w) :=
∫
Ω�

vp|∇w|p dν, Y (w) :=
∫
Ω�

|w|p|∇v|p dν.

Then there exists C > 0 such that for all w ∈ C∞
0 (Ω) we have

Qv
sim(w) ≤

{
CX(w) if 1 < p ≤ 2,

C[X(w) + (
X(w)
Y (w)

)2/pY (w)] if p > 2.
(2.5)

We conclude this section with the following useful lemma
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Lemma 2.10. Let u ∈ C
1,α
loc (Ω) for some α ∈ (0, 1), and f ∈ C2. Then the following formula holds in the weak sense:

−�p

(
f (u)

) = −∣∣f ′(u)
∣∣p−2[

(p − 1)f ′′(u)|∇u|p + f ′(u)�p(u)
]
. (2.6)

Proof. Denote g := −�p(u), and let ϕ ∈ C∞
0 (Ω). Then, by Leibniz’s product rule and the chain rule we have∫

Ω

∣∣∇f (u)
∣∣p−2∇f (u) · ∇ϕ dν

=
∫
Ω

|∇u|p−2∇u · ∇(∣∣f ′(u)
∣∣p−2

f ′(u)ϕ
)

dν −
∫
Ω

|∇u|p−2∇u · ∇(∣∣f ′(u)
∣∣p−2

f ′(u)
)
ϕ dν.

Note that for p ≥ 2, the function ψ(s) := |s|p−2s is continuously differentiable, and ψ ′(s) := (p − 1)|s|p−2. More-
over, for 1 < p < 2 the function ψ is not differentiable at zero but its derivative near zero is integrable. Recall that 
by our assumptions u ∈ C1,α(Ω). Therefore if p ≥ 2, then the function |f ′(u)|p−2f ′(u)ϕ belongs to C1

0(Ω). On the 
other hand, for 1 < p < 2, ∇(|f ′(u)|p−2f ′(u)ϕ) is integrable. Hence in both cases, |f ′(u)|p−2f ′(u)ϕ is a legitimate 
test function. Consequently,∫

Ω

|∇u|p−2∇u · ∇(∣∣f ′(u)
∣∣p−2

f ′(u)ϕ
)

dν =
∫
Ω

g
∣∣f ′(u)

∣∣p−2
f ′(u)ϕ dν.

Therefore,∫
Ω

∣∣∇f (u)
∣∣p−2∇f (u) · ∇ϕ dν

=
∫
Ω

g
∣∣f ′(u)

∣∣p−2
f ′(u)ϕ dν −

∫
Ω

|∇u|p−2∇u · ∇(∣∣f ′(u)
∣∣p−2

f ′(u)
)
ϕ dν.

Consequently, in the weak sense we have

−�p

(
f (u)

) = −|∇u|p−2∇u · ∇(∣∣f ′(u)
∣∣p−2

f ′(u)
) − �p(u)

∣∣f ′(u)
∣∣p−2

f ′(u).

But since ψ ′(s) := (p − 1)|s|p−2 for s �= 0, and ψ ′ is integrable at 0, we have that in the weak sense

|∇u|p−2∇u · ∇(∣∣f ′(u)
∣∣p−2

f ′(u)
) = (p − 1)

∣∣f ′(u)
∣∣p−2|∇u|pf ′′(u). (2.7)

This completes the proof of Lemma 2.10. �
3. The coarea formula

The present section is devoted to the proof of a coarea formula associated with the p-Laplacian. It seems that this 
key result in our study cannot be extended to the case of an operator QV of the form (1.3) with V �= 0 and p �= 2
(cf. [6, Lemma 9.2], where an analogue coarea formula is obtained for any linear symmetric operator).

Proposition 3.1. Let G be a positive p-harmonic function in Ω� := Ω \ {0}. Define v := G(p−1)/p . Then there exists 
positive constants c and c̃ such that for every real functions f and g, defined on (0, ∞) such that f (v) and g(v) have 
compact support in Ω , the following formulae hold:

∫
Ω�

f (v)|∇v|p dν = c

sup v∫
inf v

f (τ )

τ
dτ, (3.1)

and

∫
Ω�

g(G)|∇G|p dν = c̃

supG∫
infG

g(t)dt. (3.2)
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Proof. The idea is the same as in [6, Lemma 9.2]. Setting g(t) := f (t(p−1)/p) and performing the change of variable 
τ := t (p−1)/p , it follows that (3.1) is equivalent to (3.2). By the coarea formula, we have

∫
Ω�

g(G)|∇G|p dν =
supG∫

infG

( ∫
{G=t}

g(G)
|∇G|p
|∇G| dσ

)
dt

=
supG∫

infG

g(t)

( ∫
{G=t}

|∇G|p−1dσ

)
dt, (3.3)

where dσ denotes the Hausdorff measure of dimension n − 1. Indeed, G ∈ C
1,α
loc , in particular |∇G|p−1 ∈ L1

loc and the 
use of the coarea formula is licit. We claim that 

∫
{G=t} |∇G|p−1dσ does not depend on t . This essentially follows from 

Green’s formula, but since G is not smooth, we have to be careful. Let us fix t1, t2 such that infG < t1 < t2 < supG, 
and define A to be the “annulus”

A := {
x ∈ Ω� | t1 < G < t2

}
.

The boundary of A is the disjoint union of ∂− := {G = t1} and of ∂+ := {G = t2}. We claim that A has finite perimeter, 
i.e., χA, the characteristic function of A, has bounded variation. Indeed,

χA = χ(t1,t2) ◦ G,

therefore,

∇χA = (
χ ′

(t1,t2)
(G)

)∇G = (δG=t1 − δG=t2)∇G.

Since ∇G is continuous, we obtain that χA ∈ BV , hence A has finite perimeter. Since |∇G|p−2∇G is continuous, 
and has divergence which vanishes in A in the weak sense, Theorems 5.2 and 7.2 in [4] imply that the Gauss–Green 
formula is valid on A:

0 = −
∫
A

div
(|∇G|p−2∇G

)
dν =

∫
∂�+

|∇G|p−2∇G · n dσ +
∫
∂�−

|∇G|p−2∇G · n dσ, (3.4)

where ∂�+ and ∂�− are the reduced boundaries (see [4]), n is the measure theoretic exterior unit normal, and σ is the 
(n − 1)-dimensional Hausdorff measure. If x ∈ ∂+ (resp., x ∈ ∂−) is such that |∇G(x)| �= 0, then the boundary of A is 
C1 in a neighborhood of x, and the vector field ∇G/|∇G| is well-defined near x; it is equal to n (resp., −n) around x. 
Furthermore, we can write around x

|∇G|p−1 = |∇G|p−2|∇G| = ±|∇G|p−2∇G · n if x ∈ ∂±. (3.5)

Since G is C1,α , we may use a generalization of Sard’s theorem due to Bojarski, Hajłasz and Strzelecki [3] to infer 
that for almost every t ∈ (0, ∞)

σ
({G = t} ∩ Crit(G)

) = 0,

where Crit(G) is the set of critical points of G. This implies that for almost all t , (3.5) holds σ -almost everywhere 
on {G = t}, and that for almost all t1 and t2, the reduced boundaries ∂�+ and ∂�− coincide with ∂+ = {G = t2} and 
∂− = {G = t1}, respectively, up to a set of zero measure for σ . Since |∇G|p−1 and |∇G|p−2∇G are continuous, we 
obtain that for almost all t1 and t2 we have∫

∂�+

|∇G|p−2∇G · n dσ +
∫
∂�−

|∇G|p−2∇G · n dσ

=
∫

|∇G|p−1dσ −
∫

|∇G|p−1dσ,
∂+ ∂−
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and therefore by (3.4),∫
{G=t2}

|∇G|p−1 dσ =
∫

{G=t1}
|∇G|p−1 dσ.

Thus, 
∫
{G=t} |∇G|p−1 dσ is equal (almost everywhere) to a constant independent of t . �

4. The supersolution construction for the p-Laplacian

In this section, we show how to extend the supersolution construction, which was a primary tool in the study of the 
linear case in [6], to the p-Laplace operator. As in the linear case, in some cases this construction will give us optimal
Hardy weights. We postpone the study of the supersolution construction for QV with V �= 0 to Section 8, and here we 
present two particular supersolution constructions which apply to the p-Laplace operator. These constructions will 
lead us to the optimal weights of Theorems 1.5.

For completeness, we recall the supersolution construction for linear (not necessarily symmetric) elliptic operators:

Lemma 4.1. (See [12, Theorem 3.1] and [6, Remark 5.4].) Let P be a second-order linear elliptic operator with real 
coefficients defined in Ω . For j = 0, 1, let Vj be real valued potentials, and suppose that vj are positive (super)solu-
tions of the equations (P + Vj )u = 0 in Ω . Then for 0 ≤ α ≤ 1 the function

vα := (v1)
α(v0)

1−α

is a positive (super)solution of the linear equation[
P + (1 − α)V0 + αV1 − α(1 − α)W

]
u = 0 in Ω, (4.1)

where

W :=
∣∣∣∣∇ log

(
v0

v1

)∣∣∣∣
2

A

, (4.2)

A = A(x) is the nonnegative definite matrix associated with the principal part of the operator P , and for ξ ∈ Rn, 
|ξ |2A := ξ · Aξ .

We notice that since the proof of Lemma 4.1 is purely local and algebraic, we obtain in fact the following pointwise
result.

Corollary 4.2. Let P be a second-order linear elliptic operator with real coefficients defined in Ω . For j = 0, 1, let 
Vj be real valued potentials, and suppose that vj are positive functions satisfying the differential (in)equality

(P + Vj )vj
=

(≥)
0 at x0 ∈ Ω.

Then for 0 ≤ α ≤ 1 the function vα = (v1)
α(v0)

1−α satisfies the differential (in)equality[
P + (1 − α)V0 + αV1 − α(1 − α)W

]
u

=
(≥)

0 at x0 ∈ Ω, (4.3)

where W is the function defined by (4.2).

A related – but weaker – convexity result is known in the case of p-Laplacian type equations:

Lemma 4.3. (See [13, Proposition 4.3].) Let V0, V1 ∈ L∞
loc(Ω), V0 �= V1. For α ∈ [0, 1] we denote

Qα(u) := Q(1−α)V0+αV1(u) = (1 − α)QV0(u) + αQV1(u), (4.4)

and suppose that QVi
≥ 0 in Ω for i = 0, 1.

Then Qα ≥ 0 in Ω for all α ∈ [0, 1]. Moreover, Qα is subcritical in Ω for all α ∈ (0, 1).
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Remark 4.4. Lemma 4.3 does not provide us with an explicit nonzero Hardy-weight Wα for Qα , although the sub-
criticality of Qα ensures the existence of a strictly positive weight.

The supersolution construction has been extended to the p-Laplacian itself by several authors, with vα :=
(v1)

α(v0)
1−α , in the particular case where v0 is a positive p-harmonic function, and v1 = 1 (see for exam-

ple [1,5,6] and references therein). In particular, the following Caccioppoli-type inequality has been obtained 
in [6]:

Proposition 4.5. (See [6, Proposition 13.11].) Assume that G is a positive supersolution (resp., solution) of the 
equation −�p(w) = 0 in Ω . Then for α ∈ (0, 1), Gα is a positive supersolution (resp., solution) of the equation 
Q−Wα(w) = 0 in Ω , where

Wα := αp−1(1 − α)(p − 1)

∣∣∣∣∇G
G

∣∣∣∣
p

.

In particular, by taking the optimal value α = p−1
p

we obtain the following logarithmic Caccioppoli inequality:

∫
Ω

|∇ϕ|p dν ≥
(

p − 1

p

)p ∫
Ω

∣∣∣∣∇v

v

∣∣∣∣
p

|ϕ|p dν ∀ϕ ∈ C∞
0 (Ω), (4.5)

where v is any positive p-superharmonic function in Ω .

Proof. The first assertion of the proposition follows from Lemma 2.10 and in particular from (2.6) with f (s) := sα . 
Hence using the Allegretto–Piepenbrink Theorem 2.1, we obtain (4.5). �
Remark 4.6. Inequality (4.5) has been independently proved in [5] by L. D’Ambrosio and S. Dipierro, using a differ-
ent approach.

Example 4.7. Consider Proposition 4.5 in the particular case Ω = Rn \ {0}, p �= n, and G(x) = |x| p−n
p−1 . Then (4.5)

clearly implies the classical Hardy inequality (with the best constant):∫
Rn\{0}

|∇ϕ|p dx ≥
∣∣∣∣p − n

p

∣∣∣∣
p ∫
Rn\{0}

|ϕ(x)|p
|x|p dx ∀ϕ ∈ C∞

0 (Ω). (4.6)

We will see later that Proposition 4.5 yields an optimal Hardy weight if G further satisfies either assumption (1.6)
or (1.7) with γ = 0 (see Theorem 1.5). However, as we shall see in Section 8, this supersolution construction does 
not provide us with an optimal Hardy weight if Ω is a bounded, C1,α-domain if G satisfies (1.7) with γ > 0. In this 
case and also in other cases (see Section 6), an optimal Hardy weight will be obtained using a different supersolution 
construction given by the following proposition.

Proposition 4.8. Suppose that G is a C1,β -positive supersolution (resp., solution) of −�pw = 0 in Ω satisfying 
0 ≤ m < G < M < ∞ in Ω , where 0 < β ≤ 1.

Set vα := [(G − m)(M − G)]α , and define

Wα := (p − 1)αp−1
∣∣∣∣∇G

v1

∣∣∣∣
p

|m + M − 2G|p−2[2(2α − 1)v1 + (1 − α)(M − m)2] ≥ 0. (4.7)

Then for α satisfying

α ∈
{ [1/2,1] if m > 0,

[0,1] if m = 0,

the function vα is a positive supersolution (resp., solution) of the equation Q−Wα(w) = 0 in Ω .
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In particular, let α = (p − 1)/p, and assume that either α = (p − 1)/p ≥ 1/2, or m = 0. Define

W := Wp−1
p

=
(

p − 1

p

)p∣∣∣∣∇G
v1

∣∣∣∣
p

|m + M − 2G|p−2[2(p − 2)v1 + (M − m)2]. (4.8)

Then

v := vp−1
p

= [
(G − m)(M − G)

] p−1
p

is a positive solution (resp., supersolution) of Q−W(w) = 0 in Ω , and the following Lp-Hardy type inequality holds:∫
Ω

|∇ϕ|p dν ≥
∫
Ω

W |ϕ|p dν ∀ϕ ∈ C∞
0 (Ω). (4.9)

Proof. Let 0 ≤ α ≤ 1. By our assumption, G ∈ C
1,β

loc (Ω) for some β ∈ (0, 1]. Moreover, the function f (s) =
[(s − m)(M − s)]α belongs to C2((0, γ )). Consequently, one may apply Lemma 2.10 with G and f to obtain that 
in the weak sense,

−�p(vα)
=

(≥)
− (p − 1)

∣∣f ′(G)
∣∣p−2|∇G|pf ′′(G) = Wαvp−1

α in Ω.

Therefore, vα = f (G) is a positive (super)solution of the equation Q−Wα(w) = 0 in Ω , and the Allegretto–Piepenbrink 
type theorem (Theorem 2.1) implies∫

Ω

|∇ϕ|p dν ≥
∫
Ω

Wα|ϕ|p dν ∀ϕ ∈ C∞
0 (Ω).

In particular, for α = (p − 1)/p we have (4.9). �
Remark 4.9. Let Ω1 � Ω2 ⊂ Rn be two open sets. Suppose that Ω := Ω2 \ Ω1 is a C1,β -bounded annular-type 
domain such that ∂Ω is the union of Γ1 = ∂Ω1, and Γ2 = ∂Ω2. Let G be the solution of the Dirichlet problem⎧⎪⎪⎨

⎪⎪⎩
−�p(u) = 0 in Ω,

u = m on Γ1,

u = M on Γ2,

where 0 ≤ m < M . Then G satisfies the assumptions of Proposition 4.8.
Moreover, if p > n, Ω is a C1,β -bounded domain with 0 < β ≤ 1, and G := GΩ(·, 0) is the positive minimal 

p-Green function of the operator −�p in Ω with a pole at 0. Then G satisfies the assumptions of Proposition 4.8
in Ω�, with m := limx→∂Ω G(x) = 0, and M := limx→0 G(x).

Remark 4.10. If in Proposition 4.8 the supersolution G is unbounded and satisfies G > m in Ω , then one should simply 
consider the supersolution construction with vα := (G − m)α with 0 ≤ α ≤ 1 to obtain the Hardy-type inequality∫

Ω

|∇ϕ|p dν ≥
(

p − 1

p

)p ∫
Ω

∣∣∣∣ ∇G
G − m

∣∣∣∣
p

|ϕ|p dν ∀ϕ ∈ C∞
0 (Ω) (4.10)

(cf. Proposition 4.5).

Remark 4.11. A new phenomenon appears in Proposition 4.8: if p �= 2, then the weight Wα necessarily vanishes in 
Ω . Indeed, Wα = 0 on the set{

x ∈ Ω

∣∣∣G(x) = m + M

2

}
.
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5. Proof of Theorem 1.5

The present section is devoted to the proof of the main result of the paper, namely Theorem 1.5, that deals with 
the case V = 0, and claims the optimality of the supersolution construction for the p-Laplacian in Ω�. We divide the 
proofs into three parts: the criticality of Q−W , the optimality of the constant near infinity and zero, and finally the 
null-criticality of Q−W .

5.1. Criticality

In the present subsection, we prove the criticality of Q−W . We divide the proof into two parts, according to which 
of the assumptions (1.6), (1.7) is satisfied. We start by showing the criticality of Q−W if either (1.6) or (1.7) with 
γ = 0 is satisfied. This is a consequence of the following proposition:

Proposition 5.1. Assume that in Theorem 1.5 the positive p-harmonic function G satisfies

⎧⎨
⎩

lim
x→0

G = ∞ and lim
x→∞̄G = 0 if 1 < p ≤ n,

lim
x→0

G = 0 and lim
x→∞̄G = ∞ if p > n.

(5.1)

Then the functional Q−W is critical in Ω�.

Proof. Let v := G
p−1
p . Proposition 4.5 implies that v is a positive solution of the equation −�p(w) −W |w|p−2w = 0

in Ω�. We construct a null-sequence for the functional Q−W in a similar fashion as in the proof of [16, Theorem 1.3]. 
Let

ϕn(t) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 ≤ t ≤ 1
n2 ,

2 + log t
log n

1
n2 ≤ t ≤ 1

n
,

1 1
n

≤ t ≤ n,

2 − log t
log n

n ≤ t ≤ n2,

0 t ≥ n2.

Set wn := ϕn(v), and consider the sequence {vwn}n∈N.

Claim. {vwn} is a null-sequence for the functional Q−W .

Set B := {x ∈ Ω� | 1 < v < 2}, then B̄ is compact in Ω�. By Lemma 2.8 we have

Q−W(vw) �Qv
sim(w),

where Qv
sim is the simplified energy for the functional Q−W , associated to v (see (2.4)). Thus, we need to prove that

lim
n→∞

Qv
sim(wn)∫

B
(vwn)p dν

= 0. (5.2)

Set

Xn := X(wn) =
∫
Ω�

vp|∇wn|p dν, and Yn := Y(wn) =
∫
Ω�

w
p
n |∇v|p dν.



106 B. Devyver, Y. Pinchover / Ann. I. H. Poincaré – AN 33 (2016) 93–118
Using the coarea formula (3.1), we obtain

Xn = c1

∫
Ω�

vp
∣∣ϕ′

n(v)
∣∣p|∇v|p dν = c

∞∫
0

(
t
∣∣ϕ′

n(t)
∣∣)p dt

t

= c

(
1

logn

)p
( 1

n∫
1
n2

dt

t
+

n2∫
n

dt

t

)
= 2c

(
1

logn

)p−1

.

Using again (3.1), we get

Yn =
∫
Ω�

w
p
n |∇v|p dν = c

∞∫
0

∣∣ϕn(t)
∣∣p dt

t
�

n∫
1
n

dt

t
� logn.

On the other hand, we clearly have∫
B

(vwn)
p dν � 1.

Recall that by (2.5), the simplified energy can be estimated from above by

Qv
sim(wn) ≤ C

{
Xn if 1 < p ≤ 2,

Xn + (Xn

Yn
)2/pYn if p > 2.

Therefore, limn→∞ Qv
sim(wn) = 0, and (5.2) is proved. Thus, {vwn : n ∈ N} is a null-sequence for the functional 

Q−W , and Q−W is critical in Ω�. �
Next, we prove the criticality of Q−W if assumption (1.7) with γ > 0 is satisfied:

Proposition 5.2. Assume that in Theorem 1.5 p > n, and the positive p-harmonic function G satisfies

lim
x→0

G = γ > 0 and lim
x→∞̄G = 0. (5.3)

Then the functional Q−W is critical in Ω�.

Proof. The proof follows closely the proof of Proposition 5.1. Assume for simplicity that γ = G(0) = 1. Recall that 

v := [G(1 − G)] p−1
p . Proposition 4.8 implies that v is a positive solution of the equation −�p(w) − W |w|p−2w = 0

in Ω�. We construct a null-sequence for the functional Q−W . This time, let

ϕn(t) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 0 ≤ t ≤ 1
n2 ,

2 + log t
log n

1
n2 ≤ t ≤ 1

n
,

1 1
n

≤ t,

and consider the sequence {wn = ϕn(v)}n∈N. By hypothesis, v(0) = 0 and limx→∞̄ v(x) = 0. Therefore, for every 
n ∈N, wn is compactly supported in Ω�.

Claim. The sequence {vwn}n∈N is a null-sequence for the functional Q−W .

Set B := {x ∈ Ω� | 1
4 < v < 3

4 }, then B̄ is compact in Ω�. As in the proof of Proposition 5.1, we set

Xn := X(wn) =
∫

�

vp|∇wn|p dν, and Yn := Y(wn) =
∫

�

w
p
n |∇v|p dν.
Ω Ω



B. Devyver, Y. Pinchover / Ann. I. H. Poincaré – AN 33 (2016) 93–118 107
Let f (s) := [s(1 − s)] p−1
p . Using the coarea formula (3.2), we obtain

Xn =
∫
Ω�

vp|∇v|p∣∣ϕ′
n(v)

∣∣p dν

= C

∫
Ω�

[
G(1 − G)

]p−2|1 − 2G|p∣∣ϕ′
n ◦ f (G)

∣∣p|∇G|p dν

= C

(logn)p

∫
f (t)∈[1/n2,1/n]

|1 − 2t |p
t (1 − t)

dt � 1

(logn)p−1
.

Using again the coarea formula (3.2), we get

Yn =
∫
Ω�

(
ϕn(v)

)p|∇v|p dν =
1∫

0

ϕn

(
f (t)

)p |1 − 2t |p
t (1 − t)

dt � logn.

In light of (2.5) we have limn→∞ Qv
sim(wn) = 0. On the other hand, we clearly have∫

B

(vwn)
p dν � 1.

Hence, {vwn}n∈N is a null-sequence for the functional Q−W . �
5.2. Optimality of the constant near infinity and zero

In the present subsection we prove the optimality of the constant Cp := (
p−1
p

)p near the ends of Ω�. As in the 
previous subsection, we split the proof into two parts.

Proposition 5.3. Assume that in Theorem 1.5 the positive p-harmonic function G satisfies⎧⎨
⎩

lim
x→0

G = ∞ and lim
x→∞̄G = 0 if 1 < p ≤ n,

lim
x→0

G = 0 and lim
x→∞̄G = ∞ if p > n.

(5.4)

Then the constant λ = Cp in the Hardy inequality∫
Ω�

|∇ϕ|p dν ≥ λ

∫
Ω�

∣∣∣∣∇G
G

∣∣∣∣
p

|ϕ|p dν (5.5)

is also the best constant for functions ϕ compactly supported either in a fixed punctured neighborhood of the origin, 
or in a fixed neighborhood of infinity in Ω .

Proof. We assume that 1 < p ≤ n, and present the proof of the optimality at infinity, the other cases being proved 
similarly. We proceed by contradiction.

Suppose that there exists a positive constant λ and a compact set K � Ω containing zero such that∫
Ω\K

(|∇ψ |p − W |ψ |p)
dν ≥ λ

∫
Ω\K

W |ψ |p dν ∀ψ ∈ C∞
0 (Ω \ K). (5.6)

We apply inequality (5.6) to ψ = vϕ, where v := G(p−1)/p is a positive solution of Q−W(w) = 0, and ϕ ∈ C∞
0 (Ω \K). 

Now, use Lemmas 2.8 and 2.9, and (5.6) to obtain that for some positive constant β we have

βY(ϕ) ≤
⎧⎨
⎩

X(ϕ) if 1 < p ≤ 2,

X(ϕ) + (
X(ϕ)

)
2
p Y (ϕ) if p > 2,

∀ϕ ∈ C∞
0 (Ω \ K), (5.7)
Y(ϕ)
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where we recall that X(ϕ) := ∫
Ω� vp|∇ϕ|p dν and Y(ϕ) := ∫

Ω� ϕp|∇v|p dν = ∫
Ω� vpϕpW dν. In the case p > 2, 

using the fact that for every ε > 0, there is a constant C > 0 such that for every t > 0, t + t2/p ≤ Ct + ε, we have 
that

X(ϕ) +
(

X(ϕ)

Y (ϕ)

) 2
p

Y (ϕ) ≤ CX(ϕ) + εY (ϕ).

Taking ε < β , we get by (5.7) that for any 1 < p < ∞, there is a constant C > 0 such that

CY(ϕ) ≤ X(ϕ) ∀ϕ ∈ C∞
0 (Ω \ K). (5.8)

Assume without loss of generality that {v ≤ 1} ⊂ Ω \K . Using the coarea formula (3.1), and applying inequality (5.8)
to ϕ = φ(v), where φ ∈ C∞

0 ((0, 1)) we get that

1∫
0

∣∣φ(t)
∣∣p dt

t
≤ C

1∫
0

(
t
∣∣φ′(t)

∣∣)p dt

t
∀φ ∈ C∞

0

(
(0,1)

)
. (5.9)

But by [11, Theorem 1 of Sec. 1.3.2], this inequality cannot hold.
Alternatively, an easy way to see that (5.9) does not hold is to define a sequence {φε} of compactly supported 

Lipschitz continuous functions in (0, 1) of the form

φε(t) :=

⎧⎪⎪⎨
⎪⎪⎩

t
ε| log ε|γ t ∈ (0, ε),

1
| log t |γ t ∈ (ε, 1

2 ),

ψ(t) t ∈ ( 1
2 ,1),

where ψ is a smooth function, independent of ε such that ψ(1) = 0, and γ > 0 will be determined later. Apply 
inequality (5.9) to φε to get

1
2∫

ε

∣∣φε(t)
∣∣p dt

t
≤ C

(
1

ε| log ε|γ
ε∫

0

tp
dt

t
+

1∫
ε

(
t
∣∣φ′

ε(t)
∣∣)p dt

t

)
. (5.10)

Since p > 1,

lim
ε→0

1

ε| log ε|γ
ε∫

0

tp
dt

t
= lim

ε→0

εp−1

| log ε|γ = 0,

therefore, letting ε → 0 in (5.10), we get

1
2∫

0

(
1

| log t |γ
)p dt

t
≤ C

( 1
2∫

0

(
1

| log t |γ+1

)p dt

t
+

1∫
1
2

(
tψ ′(t)

)p dt

t

)
.

The right-hand side is finite for every positive value of γ , since p(γ + 1) > 1. The left-hand side, on the contrary, is 
finite if and only if pγ > 1. Thus, taking γ such that pγ ≤ 1, we get a contradiction. As a consequence, inequality 
(5.9) cannot hold. �

Next, we prove the optimality of the constant Cp = (
p−1
p

)p near the ends of Ω� if assumption (1.7) with γ > 0 is 
satisfied:

Proposition 5.4. Assume that in Theorem 1.5 p > n, and the positive p-harmonic function G satisfies

lim G = γ > 0 and lim G = 0. (5.11)

x→0 x→∞̄
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Denote

V :=
∣∣∣∣ ∇G
G(γ − G)

∣∣∣∣
p

|γ − 2G|p−2[2(p − 2)G(γ − G) + γ 2].
Then in the Hardy inequality∫

Ω�

|∇ϕ|p dν ≥ λ

∫
Ω�

V |ϕ|p dν (5.12)

the constant λ = Cp is also the best constant for functions compactly supported either in a fixed punctured neighbor-
hood of the origin, or in a fixed neighborhood of infinity in Ω .

Proof. We prove the optimality of the constant Cp at infinity, the proof of the optimality at zero being similar (by 
replacing G with (γ −G)). Note that W = CpV . Assume by contradiction that Cp is not optimal at infinity, then there 
is a positive constant λ and a compact subset K of Ω containing 0, such that∫

Ω\K

(|∇ψ |p − W |ψ |p)
dν ≥ λ

∫
Ω\K

W |ψ |p dν ∀ψ ∈ C∞
0 (Ω \ K). (5.13)

Since by our assumption limx→∞̄ G(x) = 0, we have

W ∼
x→∞̄

(
p − 1

p

)p∣∣∣∣∇G
G

∣∣∣∣
p

.

Therefore, by enlarging K , we may assume that the following inequality is satisfied, for some μ > 0:∫
Ω\K

(|∇ψ |p − W |ψ |p)
dν ≥ μ

∫
Ω\K

∣∣∣∣∇G
G

∣∣∣∣
p

|ψ |p dν ∀ψ ∈ C∞
0 (Ω \ K). (5.14)

We apply this inequality to ψ = ϕv, where v = [G(γ − G)] p−1
p is a positive solution of Q−W(w) = 0, and ϕ ∈

C∞
0 (Ω \ K). Define ṽ := G

p−1
p , and notice that at infinity,

v ∼
x→∞̄ ṽ,

and ∣∣∣∣∇v

v

∣∣∣∣
p

∼
x→∞̄

(
p − 1

p

)p∣∣∣∣∇G
G

∣∣∣∣
p

=
∣∣∣∣∇ṽ

ṽ

∣∣∣∣
p

.

Therefore, from Lemma 2.8, (2.5) with p > 2, and (5.14), one gets that for some positive constant β ,

βỸ (ϕ) ≤ X̃(ϕ) +
(

X̃(ϕ)

Ỹ (ϕ)

) 2
p

Ỹ (ϕ) ∀ϕ ∈ C∞
0 (Ω \ K), (5.15)

where X̃(ϕ) := ∫
Ω� ṽp|∇ϕ|p dν and Ỹ (ϕ) := ∫

Ω� ϕp|∇ṽ|p dν. We are back to inequality (5.7) of the proof of Propo-
sition 5.3, where we have shown that such an inequality cannot hold. Consequently, (5.13) does not hold, and the 
constant (p−1

p
)p in (5.12) is optimal at infinity. �

5.3. Null-criticality

The null-criticality of the operators Q−W in Ω� follows from our coarea formula (3.1). First, we have:

Proposition 5.5. Assume that in Theorem 1.5 the positive p-harmonic function G satisfies
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⎧⎨
⎩

lim
x→0

G = ∞ and lim
x→∞̄G = 0 if 1 < p ≤ n,

lim
x→0

G = 0 and lim
x→∞̄G = ∞ if p > n.

(5.16)

Then the functional Q−W is null-critical at 0 and at infinity in Ω .

Proof. Let v := G
p−1
p , and denote also u := G. A minimizer of the variational problem (1.5) is necessarily a positive 

solution of the equation Q−W = 0 in Ω∗. Since Q−W is critical, a minimizer in D1,p(Ω) should be the ground state v. 
We claim that for any neighborhood O of 0, the ground state v satisfies∫

O\{0}
|∇v|p dν = ∞, and

∫
Ω\Ō

|∇v|p dν = ∞.

Indeed, the coarea formula (3.1) implies that

∫
{t−<u(x)<t+}

|∇v|p dν = c1

t+∫
t−

dt

t
−→

t±→ε±
∞,

with ε+ = ∞ and ε− = 0. Thus, the claim is proved. �
The corresponding result, under assumption (1.7) with γ > 0, reads as follows

Proposition 5.6. Assume that in Theorem 1.5 p > n, and the positive p-harmonic function G satisfies

lim
x→0

G = γ > 0 and lim
x→∞̄G = 0. (5.17)

Then the functional Q−W is null-critical at 0 and at infinity in Ω .

Proof. The proof is similar to the proof of Proposition 5.5. Indeed, recall that v := [G(γ − G)] p−1
p . Let ε+ = γ and 

ε− = 0. It is enough to prove that

lim
t±→ε±

∫
{t−<G<t+}

|∇v|p dν = ∞.

We prove it when t− → 0, the other case is similar, (replace G with (γ − G)). Define ṽ = G
p−1
p . At infinity in Ω , we 

have

v ∼
x→∞̄ ṽ,

and ∣∣∣∣∇v

v

∣∣∣∣
p

∼
x→∞̄

(
p − 1

p

)p∣∣∣∣∇G
G

∣∣∣∣
p

=
∣∣∣∣∇ṽ

ṽ

∣∣∣∣
p

.

Therefore, by the coarea formula (3.1), one has as t− → 0,

∫
{t−<G<γ/2}

|∇v|p dν ∼
∫

{t−<G<γ/2}
|∇ṽ|p dν =

γ
2∫

t−

dt

t
,

and consequently,

lim
t−→ε−

∫
|∇v|p dν = ∞. �
{t−<G<γ/2}
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We conclude the present section with a corollary concerning Caccioppoli inequality. Recall the logarithmic Cac-
cioppoli inequality (4.5) which holds in particular in Ω�:∫

Ω�

|∇ϕ|p dν ≥ μ

∫
Ω�

∣∣∣∣∇v

v

∣∣∣∣
p

|ϕ|p dν ∀ϕ ∈ C∞
0

(
Ω�

)
, (5.18)

where v is any positive p-superharmonic functions in Ω�, and μ ≥ CP = (
p−1
p

)p . By the results of [6] it follows that 
in the linear case (where p = 2) the constant C2 = 1/4 in (5.18) is optimal.

Now, Theorem 1.5 clearly implies the optimality of the constant Cp also for any 1 < p ≤ n. More precisely, we 
have.

Corollary 5.7. Assume that 1 < p ≤ n, and suppose that Ω is a C1,α-domain of a noncompact Riemannian mani-
fold M (where α ∈ (0, 1]), and −�p is subcritical in M . Let GM be the positive minimal Green function, and assume 
that limx→∞̄ GM(x, 0) = 0.

Then the best constant in the logarithmic Caccioppoli inequality (5.18) equals to (p−1
p

)p .

6. Optimal weights for annular and exterior domains

In the present section we extend our main result (Theorem 1.5), obtained for punctured domains, to two additional 
types of domains: annular-type domains and exterior-type domains. As in the case of punctured domains, we view 
these two types of domains as manifolds with two ends. In particular, Definition 1.2 of optimal Hardy-type weight 
(which was given for a punctured domain) is extended naturally to handle annular-type and exterior-type domains.

We assume that the given positive p-harmonic function admits limits at the two ends (one limit might be infinity). 
We use the supersolution constructions obtained in Propositions 4.5 and 4.8, and the techniques used in the proof of 
Theorem 1.5 to obtain optimal Hardy-weights for these cases. We omit the proofs since they differ only slightly from 
the proof of Theorem 1.5.

Theorem 6.1. Let Ω be a C1,α domain for some α > 0. Let U � Ω be an open C1,α subdomain of Ω , and consider 
Ω̃ := Ω \ U . Denote by ∞̄ the infinity in Ω , and assume that −�p admits a positive p-harmonic function G in Ω̃
satisfying the following conditions

lim
x→∂U

G(x) = γ1, lim
x→∞̄G(x) = γ2, (6.1)

where γ1 �= γ2, and 0 ≤ γ1, γ2 ≤ ∞. Denote

m := min{γ1, γ2}, M := max{γ1, γ2}.
Define positive functions v1 and v, and a nonnegative weight W on Ω̃ as follows:

(a) If M < ∞, assume further that either m = 0 or p ≥ 2, and let

v1 := (G − m)(M − G), v := v
(p−1)/p

1 = [
(G − m)(M − G)

](p−1)/p
,

and

W :=
(

p − 1

p

)p∣∣∣∣∇G
v1

∣∣∣∣
p

|m + M − 2G|p−2[2(p − 2)v1 + (M − m)2]. (6.2)

(b) If M = ∞, define

v1 := (G − m), v := v
(p−1)/p

1 = (G − m)(p−1)/p,

and

W :=
(

p − 1

p

)p∣∣∣∣∇G
v1

∣∣∣∣
p

. (6.3)
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Then the following Hardy-type inequality holds true∫
Ω̃

|∇ϕ|p dν ≥
∫
Ω̃

W |ϕ|p dν ∀ϕ ∈ C∞
0 (Ω̃), (6.4)

and W is an optimal Hardy-weight for −�p in Ω̃ .
Moreover, up to a multiplicative constant, v is the unique positive supersolution of the equation Q−W(w) = 0

in Ω̃ .

7. Optimal Lp Rellich-type inequalities

Throughout the present section we consider a linear operator P . In [6] we proved the following L2-Rellich-type 
inequality.

Lemma 7.1. (See [6, Corollary 10.3].) Assume that P is a subcritical linear Schrödinger-type operator in Ω of the 
form

P := −div
(
A(x)∇·) + V (x),

and let v0 and v1 be two linearly independent positive solutions of the equation Pu = 0 in Ω . Let W := 1
4 |∇ log(

v0
v1

)|2A
be the Hardy-weight obtained by the supersolution construction with a pair (v0, v1) (see (4.2)). Suppose that W is 
strictly positive, and fix 0 ≤ λ ≤ 1. Then

(a) For a fixed 0 ≤ α < 1 and all ϕ ∈ C∞
0 (Ω) the following Rellich-type inequality holds true∫

Ω

|Pϕ|2
W(x)

(
v0

v1

)α

dν ≥ λ
(
1 − α2)2

∫
Ω

|ϕ|2W(x)

(
v0

v1

)α

dν. (7.1)

(b) If P − W is critical in Ω , then λ = 1 is the best constant in (7.1).

We are interested in generalizing the L2-Rellich-type inequalities (7.1) to Lp-Rellich-type inequalities for the 
operator P . Our result hinges on the following Lp-Rellich-type inequality of E.B. Davies and A.M. Hinz:

Theorem 7.2. (See [7, Theorem 4].) Let Ω be a domain in a Riemannian manifold of dimension n ≥ 2, and let 
1 ≤ p < ∞. If 0 < v ∈ C(Ω) with −�v > 0 and −�(vδ) ≥ 0 for some δ > 1, then∫

Ω

vp

|�v|p−1
|�ϕ|p dν ≥ [(p − 1)δ + 1]p

p2p

∫
Ω

|�v||ϕ|p dν ∀ϕ ∈ C∞
0 (Ω).

If P = − div(A(x)∇·) (i.e., V = 0), Theorem 7.2 implies the following Lp-Rellich-type inequality:

Theorem 7.3. Let P := − div(A∇·) be a subcritical operator in Ω , and let v0 be a positive (super)solution of the 
equation Pu = 0 in Ω and v1 := 1. Let W := 1

4 |∇ logv0|2A be the Hardy-weight obtained by the supersolution con-
struction with a pair (v0, v1), and suppose that W > 0. Then for every α ∈ (0, 1) and 1 ≤ p < ∞ the following 
Rellich-type inequality holds:∫

Ω

|Pϕ|p
Wp−1

(v0)
α dν ≥ 4p(1 − α)p(p − 1 + α)p

p2p

∫
Ω

|ϕ|pW(v0)
α dν ∀ϕ ∈ C∞

0 (Ω). (7.2)

Proof. Apply Theorem 7.2, with v := (v0)
α , and δ = 1/α. Since −�v ≥ 4α(1 − α)Wv > 0, and −�vδ ≥ 0, we 

obtain (7.2). �
Using the ground state transform with a positive solution v1, Theorem 7.3 implies:
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Theorem 7.4. Let P := − div(A∇·) +V be a subcritical linear Schrödinger-type operator in Ω , and let v0 and, v1 be 
two positive solutions of the equation Pu = 0 in Ω . Let W := 1

4 |∇ log(v0/v1)|2A be the Hardy-weight obtained by the 
supersolution construction with a pair (v0, v1), and suppose that W > 0. Then for every α ∈ (0, 1) and 1 ≤ p < ∞
the following Lp-Rellich-type inequality holds:∫

Ω

|Pϕ|p
Wp−1

(
v0

v1

)α

v
2−p

1 dν ≥ 4p(1 − α)p(p − 1 + α)p

p2p

∫
Ω

|ϕ|pW

(
v0

v1

)α

v
2−p

1 dν (7.3)

for all ϕ ∈ C∞
0 (Ω).

Remark 7.5. In the case p = 2, we recover the best constant (1 − α2)2 obtained in Lemma 7.1. We note that for 
p �= 2, the constant of the Lp-Rellich-type inequalities (7.2) and (7.3) is optimal at least in the classical case, where 
Ω = Rn \ {0}, P = −�, v0 = |x|2−n and v1 = 1. The optimality of the constant in this case follows from the remark 
in [7, page 521].

8. The supersolution construction for QV

In the present section we study the supersolution construction for operators QV of the form (1.3) under the as-
sumption that (roughly speaking) the supersolutions vj have the same level sets. In Appendix A we present a proof of 
the particular case of radially symmetric potentials.

The following result generalizes Lemma 4.1 for p �= 2.

Theorem 8.1. Let vj , j = 0, 1, be two positive, linearly independent, C2-(super)solutions of the equation QVj
(u) = 0

in Ω . Assume that ∇v0 does not vanish in Ω , and that v1 = ϕ1(v0) for some C2-function ϕ1 such that ϕ′
1(u) �= 0. For 

0 ≤ α ≤ 1, define the function

vα := vα
1 v1−α

0 ,

and let

Vα := (
(1 − α)V0|∇ logv0|2−p + αV1|∇ logv1|2−p

)|∇ logvα|p−2,

Wα := α(1 − α)(p − 1)

∣∣∣∣∇ log

(
v0

v1

)∣∣∣∣
2

|∇ logvα|p−2.

Then vα is a positive (super)solution of the equation

QVα−Wα(u) = 0 in Ω, (8.1)

and the following improved inequality holds

QVα (ϕ) ≥
∫
Ω

Wα|ϕ|p dν ∀ϕ ∈ C∞
0 (Ω).

Remark 8.2. If both v0 and v1 do not admit critical points, then the condition v1 = ϕ1(v0) is equivalent to the fact 
that ∇v0 and ∇v1 are collinear at every point, and also to the fact that the level sets of v0 and v1 coincide, that is, for 
every t0 > 0, there is t1 > 0 such that{

x ∈ Ω | v0(x) = t0
} = {

x ∈ Ω | v1(x) = t1
}
,

and vice versa. A particular case appears when vj are radially symmetric positive supersolutions (see Appendix A).

Proof. Fix x ∈ Ω and set u := v0(x). By Lemma 2.10 we have

QV1(v1) = −�p

(
ϕ1(v0)

) + V1
(
ϕ1(v0)

)p−1

= ∣∣ϕ′
1(u)

∣∣p−2|∇v0|p
(

−(p − 1)ϕ′′
1 (u) − �p(v0)

p
ϕ′

1(u) + V1
|(logϕ1)

′(u)|2−p

p
ϕ1(u)

)
(8.2)
|∇v0| |∇v0|
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in the weak sense. On the other hand, with the identity map ϕ0(t) := t on R+ we have at x

QV0(v0) = −�p

(
ϕ0(v0)

) + V0
(
ϕ0(v0)

)p−1

= ∣∣ϕ′
0(u)

∣∣p−2|∇v0|p
(

−(p − 1)ϕ′′
0 (u) − �p(v0)

|∇v0|p ϕ′
0(u) + V0

|(logϕ0)
′(u)|2−p

|∇v0|p ϕ0(u)

)
. (8.3)

Therefore, for j = 0, 1, ϕj (u) satisfies at the point u the following linear ordinary differential inequality

−(p − 1)ϕ′′
j (u) − �p(v0)

|∇v0|p ϕ′
j (u) + Vj

|(logϕj )
′(u)|2−p

|∇v0|p ϕj (u)
=

(≥)
0.

Denote ϕα(u) := ϕ0(u)1−αϕ1(u)α , and apply the one-dimensional version of Corollary 4.2. We obtain the following 
linear differential inequality at u

−(p − 1)ϕ′′
α(u) − �p(v0)

|∇v0|p ϕ′
α(u) + (1 − α)V0

|(logϕ0)
′(u)|2−p

|∇v0|p ϕα(u)

+ αV1
|(logϕ1)

′(u)|2−p

|∇v0|p ϕα(u) − (p − 1)α(1 − α)

∣∣∣∣
[

log

(
ϕ0(u)

ϕ1(u)

)]′∣∣∣∣
2

ϕα(u)
=

(≥)
0. (8.4)

In view of Lemma 2.10 we have

−�p(ϕα) = ∣∣ϕ′
α

∣∣p−2|∇v0|p
(

−(p − 1)ϕ′′
α − �p(v0)

|∇v0|p ϕ′
α

)
.

On the other hand,∣∣(logϕj )
′∣∣2−p∣∣(logϕα)′

∣∣p−2 = |∇ logvj |2−p|∇ logvα|p−2 j = 0,1,∣∣∣∣
[

log

(
ϕ0

ϕ1

)]′∣∣∣∣
2∣∣(logϕα)′

∣∣p−2|∇v0|p =
∣∣∣∣∇ log

(
v0

v1

)∣∣∣∣
2

|∇ logvα|p−2.

Hence, (8.4) implies the result of the theorem. �
Remark 8.3. In particular, let V = 0 and v0 = G be the p-Laplacian’s Green function with a pole at 0 ∈ Ω , and 
v1 = 1. Then Vα = 0, and a computation shows that Wα = (p − 1)αp−1(1 − α)|∇G

G
|p (cf. Proposition 4.5).

Corollary 8.4. Assume that p > n, V = 0, and −�p is subcritical in Ω . Let G be (up to a constant) the p-Green 
function with a pole at 0 ∈ Ω . Suppose that

lim
x→0

G(x) = γ > 0 and lim
x→∞̄G(x) = 0.

For 0 ≤ α ≤ 1, let

vα := G1−α(γ − G)α, Wα := α(1 − α)(p − 1)
∣∣γ (1 − α) − G

∣∣p−2
∣∣∣∣ ∇G

G(γ − G)

∣∣∣∣
p

. (8.5)

Then the following improved Hardy inequality holds in Ω�:∫
Ω�

|∇ϕ|p dν ≥
∫
Ω�

Wα|ϕ|p dν ∀ϕ ∈ C∞
0

(
Ω�

)
. (8.6)

Moreover, for any 0 ≤ α ≤ 1 the operator Q−Wα is subcritical in Ω .

Proof. By our assumption, γ − G is a positive p-harmonic function in Ω�. Apply Theorem 8.1 with v0 = G and 
v1 = γ − G to obtain (8.6).

Assume to the contrary that Q−Wα is critical in Ω�. Two cases should be considered: either α < (p − 1)/p, or 
1 − α < (p − 1)/p.
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Let us assume for example α < (p − 1)/p, the other case being similar (exchanging the roles of zero and infinity). 
Then vp−1

p

is a positive supersolution of Q−Wα in a neighborhood of zero, and vα is a positive solution of Q−Wα

of minimal growth in Ω�. Therefore, there exists C > 0 such that vα ≤ Cvp−1
p

in a neighborhood of zero. But since 

α < (p − 1)/p, this is impossible, and we get a contradiction. �
Remark 8.5. A priori it is clear that for Wα (given by (8.5)) to be optimal at the origin, it is needed that α = (p−1)/p, 
but for the constant to be optimal at ∞̄, we must choose α = 1/p, and thus vα cannot be a ground state (if p �= 2). 
Thus, in the nontrivial cases (vj �= constant), the supersolution construction of the form vα = vα

1 v1−α
0 , does not provide 

us with an optimal Hardy weight. On the other hand, let ψ(G) := [G(γ − G)](p−1)/p and

W := −�p(ψ(G))

ψ(G)p−1

=
(

p − 1

p

)p∣∣∣∣ ∇G

G(γ − G)

∣∣∣∣
p

|γ − 2G|p−2[2(p − 2)G(γ − G) + γ 2] ≥ 0. (8.7)

Then under the conditions of Theorem 1.5, W is an optimal Hardy-weight for −�p, and ψ(G) is the ground state of 
the critical operator Q−W in Ω�. Note that nevertheless, W = 0 on the set {x ∈ Ω� | G(x) = γ /2}.

It turns out that if Vj both have the same definite sign, then one can find potentials Vα ≥ Vα (with the same 
definite sign) which does not depend on vj , such that the corresponding Hardy inequality is satisfied with the same 
Hardy-weight Wα . We have

Corollary 8.6. Let Ω , Vj , vj (where j = 0, 1), vα , and Wα be as in Theorem 8.1 (or as in Theorem A.1). Suppose 
further that Vj ≥ 0 if 1 < p ≤ 2 (resp., Vj ≤ 0 if p ≥ 2), where j = 0, 1. Define

Vα := ±(
(1 − α)|V0|1/(p−1) + α|V1|1/(p−1)

)p−1
,

where one should take the minus sign if Vj ≤ 0. Then vα is a positive supersolution of the equation

QVα−Wα
(u) = 0 in Ω, (8.8)

and the following improved inequality holds

QVα
(ϕ) ≥

∫
Ω

Wα|ϕ|p dν ∀ϕ ∈ C∞
0 (Ω).

Moreover, if p �= 2, and |V0| + |V1| �= 0, then the functional QVα−Wα
is subcritical in Ω .

Proof. Assume that the conditions of Theorem 8.1 are satisfied. Then vα is a positive (super)solution of the equation 
QVα−Wα(u) = 0.

We claim that the function (ξ, η) �→ f (ξ, η) := ξp−1η2−p on R2+ is convex (resp., concave) if p ≥ 2 (resp., p ≤ 2). 
Indeed,

Hess(f ) = (p − 1)(p − 2)ξp−1η2−p

⎡
⎣ 1

ξ2 − 1
ξη

− 1
ξη

1
η2

⎤
⎦ ,

and it can be easily checked that Hess(f ) is nonnegative (resp., nonpositive) on R2+ if and only if (p − 1)(p − 2) ≥ 0
(resp., (p − 1)(p − 2) ≤ 0). Hence,[

(1 − α)|V0|
p−1
p−1 |∇ logv0|2−p + α|V1|

p−1
p−1 |∇ logv1|2−p

]
≥

(respect. ≤)

(
(1 − α)|V0|1/(p−1) + α|V1|1/(p−1))p−1∣∣(1 − α)∇ logv0 + α∇ logv1

∣∣2−p.

So, Vα ≥ Vα , and hence vα is a positive supersolution of the equation

QVα−Wα
(u) = 0 in Ω,
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and we have

QVα
(ϕ) ≥

∫
Ω

Wα|ϕ|p dν ∀ϕ ∈ C∞
0 (Ω).

If and |V0| + |V1| �= 0, and p �= 2, then the strict convexity (resp., concavity) of f implies that vα is a positive 
supersolution of QVα−Wα

(u) = 0 which is not a solution, and therefore by Lemma 2.6, the corresponding improved 
functional QVα−Wα

is subcritical in Ω . �
Remark 8.7. 1. Suppose that V0 = V1 �= 0 and V0 has a definite sign, then Vα = V0. By Corollary 8.6, the operator 
QV0−Wα is subcritical in Ω if p �= 2. This is in contrast with the linear case where p = 2. Indeed, if v0 is the Green 
function of the operator Pu := − div(A(x)∇·) + V (x) in Ω with a pole 0, and if v1 is a positive solution satisfying 
limx→∞̄ v0(x)

v1(x)
= 0, then P − W1/2 = P − 1

4 |∇ log(
v0
v1

)|2 is critical in Ω� (see [6, Theorem 2.2]).
2. In general, it is not clear how to optimize in α the potentials Wα in the case V0 = V1 �= 0, and V0 has a definite 

sign (so, Vα = V0). But if we take v0 = 1 (so, V ≥ 0 and 1 < p ≤ 2), and v1 = v is a positive supersolution of the 
equation QV0(u) = 0, then

Wα = αp−1(1 − α)(p − 1)

∣∣∣∣∇v

v

∣∣∣∣
p

,

and by optimizing α one obtains

QV (ϕ) ≥
(

p − 1

p

)p ∫
Ω

( |∇v|
v

)p

|ϕ|p dν ∀ϕ ∈ C∞
0 (Ω), (8.9)

which in particular reproves (2.12) in [1] if A is the identity matrix.
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Appendix A. Radially symmetric potentials

In this Appendix we present a proof of a particular case of Theorem 8.1, where the two positive supersolutions are 
radially symmetric functions, and in particular, have the same level sets.

Theorem A.1. Assume that for j = 0, 1

QVj
(ϕ) :=

∫
Ω

(|∇ϕ|p + Vj |ϕ|p)
dν ≥ 0 ϕ ∈ C∞

0 (Ω), (A.1)

where Ω is a domain in Rn not containing the origin, and the potentials Vj are two radially symmetric potentials. Let 
vj , j = 0, 1, be two positive, linearly independent, radially symmetric, C2-supersolutions of the equation QVj

(u) = 0
in Ω . For 0 ≤ α ≤ 1, define the function

vα(r) := (
v1(r)

)α(
v0(r)

)1−α
,

where r := |x|. Assume further that (v0)
′, (v1)

′, and (vα)′ do not vanish, and let
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Vα(r) := (
(1 − α)V0(r)

∣∣(logv0(r)
)′∣∣2−p + αV1(r)

∣∣(logv1(r)
)′∣∣2−p)∣∣(logvα(r)

)′∣∣p−2
,

Wα(r) := α(1 − α)(p − 1)

∣∣∣∣
[

log

(
v0(r)

v1(r)

)]′∣∣∣∣
2∣∣(logvα(r)

)′∣∣p−2
.

Then vα is a positive supersolution of the equation

QVα(|x|)−Wα(|x|)(u) = 0 in Ω, (A.2)

and the following improved inequality holds

QVα (ϕ) ≥
∫
Ω

Wα|ϕ|p dν ∀ϕ ∈ C∞
0 (Ω).

Proof. Assume that v is a radially symmetric C2-function, and denote r := |x|, v′ := dv/dr . Then by Lemma 2.10
the p-Laplacian of v satisfies

−�p(v) = − 1

rn−1

(
rn−1|v′|p−2v′)′ = −|v′|p−2

[
(p − 1)v′′ + n − 1

r
v′

]
(A.3)

in the weak sense. Denote the linear operator

Pu := −(p − 1)u′′ − n − 1

r
u′.

By our assumptions, vj are positive radial (super)solutions of the equation QVj
(u) = 0 in Ω , where j = 0, 1. Hence,

Pvj + (
Vj

∣∣(logvj )
′∣∣2−p)

vj
=

(≥)
0 j = 0,1.

Therefore, by Lemma 4.1, vα is a positive (super)solution of the linear equation[
P + (1 − α)V0

∣∣(logv0)
′∣∣2−p + αV1

∣∣(logv1)
′∣∣2−p

− (p − 1)α(1 − α)

∣∣∣∣
[

log

(
v0

v1

)]′∣∣∣∣
2]

u
=

(≥)
0. (A.4)

Hence, vα satisfies the quasilinear differential (in)equality

−�p(vα) + (
(1 − α)V0

∣∣(logv0)
′∣∣2−p + αV1

∣∣(logv1)
′∣∣2−p)∣∣(logvα)′

∣∣p−2
vp−1
α

− (p − 1)α(1 − α)

∣∣∣∣
[

log

(
v0

v1

)]′∣∣∣∣
2∣∣(logvα)′

∣∣p−2
vp−1
α = QVα−Wα(vα)

=
(≥)

0. � (A.5)

Remark A.2. If 0 ∈ Ω , Ω is a radially symmetric domain, V0 = V1 is a radially symmetric potential, and QV0 is 
subcritical in Ω , then one can apply Theorem A.1 in Ω� = Ω \ {0} with v0 equals to the corresponding (unique) 
p-Green function of QV0 with a pole at the origin, and v1 a global radial positive supersolution of the equation 
QV0(u) = 0 in Ω .
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