
Available online at www.sciencedirect.com
ScienceDirect

Ann. I. H. Poincaré – AN 33 (2016) 119–167
www.elsevier.com/locate/anihpc

Generic properties of the spectrum of the Stokes system with 

Dirichlet boundary condition in R
3 ✩

Y. Chitour a, D. Kateb b, R. Long c

a L2S, Université Paris-Sud XI, CNRS, Supélec, 3 Rue Joliot-Curie, 91192 Gif-sur-Yvette, France
b Centre de Recherche de Royallieu, LMAC, 60020 Compiègne, France

c General Motors Company, 3300 General Motors Rd, Milford, MI 48380, USA

Received 17 May 2014; received in revised form 12 September 2014; accepted 15 September 2014

Available online 6 October 2014

Abstract

Let (SDΩ) be the Stokes operator defined in a bounded domain Ω of R3 with Dirichlet boundary conditions. We prove that, 
generically with respect to the domain Ω with C5 boundary, the spectrum of (SDΩ) satisfies a non-resonant property introduced 
by C. Foias and J.C. Saut in [17] to linearize the Navier–Stokes system in a bounded domain Ω of R3 with Dirichlet boundary 
conditions. For that purpose, we first prove that, generically with respect to the domain Ω with C5 boundary, all the eigenvalues of 
(SDΩ) are simple. That answers positively a question raised by J.H. Ortega and E. Zuazua in [27, Section 6]. The proofs of these 
results follow a standard strategy based on a contradiction argument requiring shape differentiation. One needs to shape differentiate 
at least twice the initial problem in the direction of carefully chosen domain variations. The main step of the contradiction argument 
amounts to study the evaluation of Dirichlet-to-Neumann operators associated to these domain variations.
© 2014 
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1. Introduction and main results

In this paper, we consider the eigenvalue problem for the Stokes system with Dirichlet boundary conditions defined 
in a bounded open subset Ω of R3 with C� boundary, � ≥ 4,

(SDΩ)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−�φ + ∇p = λφ in Ω,

divφ = 0 in Ω,

φ = 0 on ∂Ω,ˆ

Ω

p(x)dx = 0.
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Here we use φ ∈ R
3 and p ∈ R to denote respectively the velocity field and the pressure. It is well-known that (SDΩ)

admits an increasing sequence of positive eigenvalues (λn)n≥1 tending to infinity as n goes to infinity.
The purpose of this paper is to prove genericity results on the spectrum of (SDΩ) with respect to domains of R3. 

We start by clarifying the notion of genericity considered below. Recall that the set of bounded domains of R3 with C�

boundary denoted by D3
� can be endowed with the following topology: the base of open neighborhoods is (essentially) 

given by the sets V (Ω, ε) defined, for any domain Ω ∈ D
3
� and ε > 0 small enough, as the images of Ω by Id + u, 

with u ∈ W�+1,∞(Ω, R3) and ‖u‖W�+1,∞ < ε (cf. [20] and [33]). Then ε is chosen so that Id + u : Ω → (Id + u)(Ω)

is a diffeomorphism. As shown by A.M. Micheletti in [25] (see also [20, Appendix 2]), a neighborhood V (Ω, ε) of 
Ω ∈D

3
� as defined previously is metrizable using a Courant-type distance, denoted by d�+1, and each (V (Ω, ε), d�+1)

is complete and separable. For any domain Ω ∈D
3
� , we use D3

�(Ω) to denote the Banach manifold obtained as the set 
of images (Id + u)(Ω) by u ∈ W�+1,∞(Ω, R3), which are diffeomorphic to Ω . A property (P ) will thus be referred 
to as “being generic with respect to Ω ∈ D

3
�” if, for every Ω ∈D

3
� , the set of domains of D3

�(Ω) where (P ) holds true 
contains a countable intersection of open and dense subsets of D3

�(Ω).
The main contribution of this paper consists in proving a conjecture formulated by C. Foias and J.C. Saut in [17] on 

the generic non-resonant character of the spectrum of the Stokes operator with Dirichlet boundary conditions. They 
obtained asymptotic expansion for the Navier–Stokes systems and then derived the normal form. The non-resonance 
condition was further necessary in linearizing the Navier–Stokes systems to obtain a linear normal form (cf. [17,
12] and [13]). This situation is analogous to the classical Poincaré’s normal form theorem for ordinary differential 
equations (cf. [5, Chapter 5]) although the proof is more involved. See also [15] for a recent development in the spirit 
of [17]. As noticed in [17], non-resonance does not occur for periodic boundary conditions. However, the authors 
conjectured that non-resonance should be generic for Dirichlet boundary conditions in two and three dimensions. In 
this paper, we confirm that conjecture in three dimensions, cf. Theorem 1.1. Let us first recall the following definition 
(cf. [17, Definition 1]).

Definition 1.1. We call resonance in the spectrum of (SDΩ) a relation of the type

λk+1 =
k∑

j=1

mjλj , where mj ∈ N, 1 ≤ j ≤ k. (1)

If no resonance occurs in the spectrum of (SDΩ), then (SDΩ) will be called non-resonant.

Theorem 1.1. Generically with respect to Ω ∈D
3
5, the spectrum of the operator (SDΩ) is non-resonant.

In order to prove Theorem 1.1, we need first to establish another genericity result on the spectrum of the Stokes 
operator known as generic simplicity.

Theorem 1.2. Generically with respect to Ω ∈D
3
4, all the eigenvalues of (SDΩ) are simple.

Remark 1.1. In [27], several properties for the Stokes system with Dirichlet boundary conditions (in particular the 
simplicity of the spectrum) were proved to be generic for domains in R2. Moreover, in the same paper, the three 
dimensional case was considered in Section 6, pointing out why techniques developed in [27] could only handle the 
two dimensional case. In this regard, Theorem 1.2 answers positively the open question of Section 6 in [27].

Theorem 1.2 is of course a particular case of Theorem 1.1, but will allow us to work only with simple eigenvalues 
in the main step of Theorem 1.1’s proof. This reduction is essential in our arguments. We now describe the strategy 
of the proofs. As it is standard since [1] and also [24,26], the reasoning goes by contradiction and is based on shape 
differentiation.

We start with a description of the proof of Theorem 1.2. Fix a domain Ω0 ∈ D
3
� . For every integer k, we define Ak

as the (open) subset of D3
�(Ω0) whose elements Ω verify that the k first eigenvalues of (SDΩ) are simple. Clearly, 

by Baire’s lemma, proving Theorem 1.2 amounts to show that Ak+1 is dense in Ak for every k ≥ 0. We argue by 
contradiction and assume that there exists an integer k, a domain Ω with C� boundary in Ak and ε > 0, such that, 
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for every u ∈ W�+1,∞(Ω, R3) with ‖u‖W�+1,∞ < ε, the domain (Id + u)Ω , or simply Ω + u, belongs to Ak but not 
to Ak+1. Let m ≥ 2 be the multiplicity of λ, the value of the (k + 1)-th eigenvalue of (SDΩ) and φi , i = 1, . . . , m, 
orthonormal eigenfunctions associated to λ. Finally, let n be the outward unit normal vector field on ∂Ω . By computing 
the shape derivative of the (n + 1)-th eigenvalue of (SDΩ), J.H. Ortega and E. Zuazua obtained in [27] that, at every 
x ∈ ∂Ω , one has, for i, j = 1, . . . , m, and i 	= j ,〈

∂φi

∂n
,n

〉
= 0,

〈
∂φi

∂n
,
∂φj

∂n

〉
= 0,

∥∥∥∥∂φi

∂n

∥∥∥∥
2

=
∥∥∥∥∂φj

∂n

∥∥∥∥
2

. (2)

If m > 2, then there necessarily exists 1 ≤ i ≤ m so that ∂φi

∂n
≡ 0 on ∂Ω and one reaches a contradiction using a 

unique continuation result due to Osses (cf. [29]). However, in order to obtain generic simplicity (m = 1), it was not 
clear how to pursue the reasoning by contradiction, i.e., showing that relations in (2) do not hold true generically with 
respect to the domains of R3 if m = 2. Note that, for questions involving scalar PDEs, if one wants to prove generic 
simplicity of the spectrum of a self-adjoint operator with Dirichlet boundary conditions, then it is standard to follow 
the lines of the above mentioned contradiction argument and to reach Eq. (2). The second equation there is now a 
product of real numbers and a contradiction follows readily by unique continuation, cf. [1] and [20]. Therefore, the 
difficulty for showing the generic simplicity of the spectrum of (SDΩ) stems, at this stage of the argument, from the 
vectorial character of φi , i.e., the fact that we are dealing with a system of PDEs.

In this paper, we push further the contradiction argument by computing the shape derivative of the (k + 1)-th 
eigenvalue of (S)Ω+u at every u ∈ W�+1,∞(Ω, R3) with ‖u‖W�+1,∞ < ε small enough. The relations obtained in 
Eq. (2) for Ω are now valid for every domain Ω + u with u small enough. At this stage, we are not able to derive a 
contradiction. So we again take the shape derivative of the above relations on ∂Ω and end up with expressions of the 
type

M ′(u)(x) = −〈u,n〉(x)
∂M(0)

∂n
(x), x ∈ ∂Ω, (3)

for ‖u‖W�+1,∞ < ε and where

M(·) :=
〈
∂φi

∂n
,n

〉
,

〈
∂φi

∂n
,
∂φj

∂n

〉
, or

∥∥∥∥∂φi

∂n

∥∥∥∥
2

−
∥∥∥∥∂φj

∂n

∥∥∥∥
2

.

Taking into account the expression of M , its shape derivative M ′(u) can also be expressed in terms of Neumann 
data of the shape derivatives of the eigenfunctions whose values on ∂Ω have the regularity of 〈u, n〉. By standard 
elliptic theory, if 〈u, n〉 belongs to the Sobolev space Hs(∂Ω), M ′(u) a priori belongs to Hs−1(∂Ω). Then, the key 
observation is that a gap of regularity exists between the two sides of Eq. (3) since the right-hand side trivially belongs 
to Hs(∂Ω), for s ≤ 1 and � ≥ 4, the latter assumption needed to assert that ∂M(0)

∂n
is continuous on ∂Ω . The whole 

point now comes down to use that gap of regularity in order to reach a contradiction. In this paper, we reformulate 
the issue at hand as follows: how to extract pointwise information (i.e., for x ∈ ∂Ω) reflecting the aforementioned gap 
of regularity and thus allow us to pursue the reasoning by contradiction. This rather elementary line of attack, first 
considered in [9] and also applied in [6], consists in choosing appropriate variations u “localized” at an arbitrary point 
x ∈ ∂Ω . We note that problems treated in [9] and [6] concerned planar domains and, therefore, equations of the type (3)
were valid on closed C3 curves of R2. In that case, the localization procedure is easier to handle. Indeed, the strategy 
adopted in [9] and [6] consisted in extending M ′(u) for variations u defined on ∂Ω as continuous functions except 
at some point x ∈ ∂Ω . More particularly, u = ux can be taken as a Heaviside like function admitting a single jump 
of discontinuity at x. In order to exploit the gap of regularity, the singular part of M ′(ux)(·) at x (in the distributional 
sense) had to be computed, to eventually obtain the following expression,

M ′(ux)(σ ) = M0 p.v.

(
1

σ

)
+ R(σ),

where σ denotes the arclength (with σ = 0 corresponding to x) and R(·) belongs to H 1/2−ε(∂Ω) for every ε > 0. 
Plugging back the above expression into Eq. (3), one deduces that M0(·) ≡ 0 on ∂Ω . In [9], the previous relation 
provided additional information and allowed to conclude the contradiction argument. However, in [6], it turns out that 
M0(·) is proportional to M(0)(·) and hence is trivially equal to zero. To determine the first non-trivial term in the “sin-
gular” expansion of M ′(ux) + (ux ·n)

∂M(0) at x, in the distributional sense, a detailed study of Dirichlet-to-Neumann 

∂n
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operators associated to several Helmholtz equations was required. We believe that similar technics can handle gener-
icity issues associated with two-dimensional (SDΩ) since boundaries of planar domains can be parameterized as 
curves.

In the present paper dealing with the three-dimensional (SDΩ), the “localization” procedure, i.e., the choice of 
appropriate variations u for any arbitrary point x ∈ ∂Ω , must be performed for functions defined on a surface ∂Ω

and not anymore on a curve, as in [9] and [6]. For that purpose, after fixing an arbitrary point x ∈ ∂Ω , we will 
choose sequences of smooth functions uε,xε approximating the Dirac distribution at xε as ε tends to zero, the point 
xε ∈ ∂Ω being any point at distance ε of x. The gap of regularity between the two sides of Eq. (3) will be now 
quantified in terms of powers of 1

ε
and not anymore measured in the distributional sense. We are therefore led to an 

asymptotic analysis as 1
ε

tends to infinity and, more precisely, the right-hand side of Eq. (3) is an O( 1
ε2 ) meanwhile 

we will establish that the left-hand side of Eq. (3) is equal to wε

ε3 + O( 1
ε2 ), where wε is bounded independently of ε. 

Letting ε tend to zero, one deduces that limε→0 wε = 0 and finally one concludes the contradiction argument and 
Theorem 1.2 is established. Note that the exact characterization of wε requires, as in [6], a detailed study of certain 
Dirichlet-to-Neumann operators, but here, associated to the Stokes system. That study heavily uses many technical 
results borrowed from [20, Chap. 7], not only for handling certain weakly singular operators but also for the material 
which is necessary to evaluate integrals defined on the surface ∂Ω . It is noteworthy that, to perform the evaluation of 
the surface integrals, we choose charts based at xε ∈ ∂Ω near the fixed point x ∈ ∂Ω , but not exactly at x. This trick 
turns out to be crucial for handling the singularities in computations involving boundary layer potentials. Of an equal 
importance, it also provides two degrees of freedom, namely the distance and the angle (in local coordinates) between 
xε and x, and functions of these two variables being equal to zero give additional information to yield a contradiction.

Let us now briefly mention how the argument for Theorem 1.1 goes. Since the resonance relations of the type (1)
are clearly of countable number, we can start a contradiction argument similar to the above mentioned one. Therefore, 
there exists a resonance relation of the type (1) and denoted here by (RR), a domain Ω with C�+1 boundary, � ≥ 3
and ε > 0, such that, for every u ∈ W�+2,∞(Ω, R3) with ‖u‖W�+2,∞ < ε, the domain Ω + u verifies (RR). Moreover, 
since Theorem 1.2 holds true, one can assume that the eigenvalues involved in (RR) are all simple for Ω + u with 
‖u‖W�+2,∞ < ε. We then take the shape derivative of (RR) but we are unable to derive any contradiction. Assuming 
thus that this shape derivative is equal to zero for Ω + u with ‖u‖W�+2,∞ small enough, we again differentiate the 
shape derivative of (RR) at u = 0. We then consider the variations uε,xε introduced previously and embark into the 
characterization of the main term of the second shape derivative of (RR). After lengthy computations (where an 
extra shape derivative is performed and this justifies the extra degree of regularity of the boundary as compared with 
the argument for generic simplicity), we get a contradiction and conclude. It is interesting to notice the following 
difference between the proofs of Theorems 1.2 and 1.1 respectively. Indeed, for the first result, one uses, in the 
contradiction argument, the parameter defined by the angular part between x and xε whereas for the second result, it is 
the radial part between x and xε which plays a crucial role. Both parameters actually result from the vectorial character 
of our variations and that enables one to adequately address the fact that (SDΩ) is a system of PDEs. Therefore, one 
should emphasize the flexibility of the approach proposed in this paper, which can be applied to genericity questions 
for other systems of PDEs.

Before passing to the plan of the paper, we would like to make two remarks. The first one regards Ref. [20], 
which provides the best update for genericity questions related to PDEs, where genericity is meant with respect to 
the domain Ω . Moreover, many new genericity results are proven there and in several situations, the author (essen-
tially) arrives to the same critical issue as the one explained previously, i.e., equations of the type (3). D. Henry’s 
approach is based on transversality theory (see for instance Theorem 5.4 in [20, p. 63] instead of shape derivation). In 
his arguments, the main issue to contradict, “Ak+1 is not dense in Ak” translates into the fact that a certain operator 
acting on the space defined by 〈u, n〉 (i.e., the domain variation restricted to ∂Ω) is actually of finite rank. In the 
spirit of pseudo-differential calculus, he pursues the argument by evaluating that operator for functions 〈u, n〉 with 
rapidly oscillations of the type γ (x) cos(ωθ(x)) where ω tends to infinity (see [20, Chap. 8]). The asymptotic anal-
ysis is therefore performed in terms of the phase ω. Even though the contradiction arguments follow two different 
view points, our approach and that of Dan Henry both consider parameterized appropriate domain variations and an 
asymptotic analysis with respect to the parameters. One must however notice that the technical details to be handled in 
D. Henry’s approach (see [30,31] for other examples) are much more elaborated and complicated compared to ours.

We close this introduction with a brief scope on the present work and, more generally, on genericity problems re-
garding differential operators (not necessarily self-adjoint) admitting only a discrete spectrum. The fact that a property 
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is generic with respect to the domain translates geometrically as a transversality property but the technics presented 
in this paper only rely on real and functional analysis tools. We do believe though that they are flexible enough to 
tackle similar problems for other systems of PDEs. For simplicity, we assume that the differential operators are com-
pleted with Dirichlet boundary conditions. Assume that the following two facts hold true. Firstly, one has a result of 
unique continuation for the associated overdetermined eigenvalue problem, i.e., the zero function is the unique solu-
tion of the eigenvalue problem where both Dirichlet and Neumann boundary conditions are satisfied over the whole 
boundary. Secondly, there exists a “good” representation formula for the Dirichlet-to-Neumann operator associated to 
the original operator, i.e., one is able to compute with “good” precision the kernels of the required layer potentials. 
Since we only perform computations localized in an arbitrarily small neighborhood of any point of the boundary, one 
should (in principle) only need Taylor expansions of the appropriate kernels rather than their explicit global expres-
sion. Once these two sets of information are available (unique continuation result and “good” representation formula), 
our technics can come into play for genericity questions.

The paper is organized as follows. In Section 2, we present the necessary material on the Stokes system, shape 
differentiation and the result displayed in Eq. (2) and first established in [27]. The third section is devoted to the 
proof of Theorem 1.2 assuming that the expansion of a Dirichlet-to-Neuman operator in terms of inverse powers of 
ε is available. Then, in Section 4, the argument to achieve such an expansion is provided using technical results on 
representation formulas for Dirichlet-to-Neuman operators. The proof of Theorem 1.1 is given in Section 5. Back-
ground materials on layer potentials and integral representation formulas for the Stokes system as well as the proofs 
of computational lemmas are gathered in Appendices A and B.

2. Definitions and preliminary results

We start by defining precisely in Section 2.1 the topology for the set of domains in Rd with C� boundary, where 
d, � ≥ 2. The material is standard and borrowed from [20] and [33]. We then recall in Section 2.2 the definition 
of the Stokes operator and its spectrum. The presentation adopted in this section is inspired by [16, Chapter II], [35, 
Chapter 5] and [27]. Results on the regularity of the eigenvalues and eigenfunctions of the Stokes operator with respect 
to domain variations are derived in Section 2.3 and essentially based on [22, Chapter 7] and [2]. Section 2.4 is devoted 
to the shape differentiation for the Stokes system following the strategy of [33]. We finally recall in Section 2.5 J.H. 
Ortega and E. Zuazua’s result obtained in [27] and provide an alternative proof. This result will be the starting point 
of our proof for Theorems 1.1 and 1.2.

2.1. Topology on the domains

In this section, we provide the basic definitions needed in the paper. We work in this section in Rd , d ≥ 2, even 
though we will only be interested by the case d = 3. A domain Ω of Rd , d ≥ 2, is an open bounded subset of Rd . We 
provide now the standard topology for domains with a regular boundary. For � ≥ 2, the set of domains Ω of Rd with 
C� boundary will be denoted by Dd

� . Following [33], we can define a topology on Dd
� . Consider the Banach space 

W�+1,∞(Ω, Rd) equipped with its standard norm defined by

‖u‖l+1,∞ := supess
{∥∥Dαu(x)

∥∥; 0 ≤ α ≤ l + 1, x ∈ Ω
}
.

For Ω ∈D
d
� , u ∈ W�+1,∞(Ω, Rd), let Ω +u := (Id +u)(Ω) be the subset of points y ∈R

d such that y = x +u(x)

for some x ∈ Ω and ∂Ω + u := (Id + u)(∂Ω) its boundary. For ε > 0, let V (Ω, ε) be the set of all Ω + u with 
u ∈ W�+1,∞(Ω, Rd) and ‖u‖W�+1,∞ ≤ ε, small enough so that Id + u : Ω → (Id + u)(Ω) is a diffeomorphism. The 
topology of Dd

� is defined by taking the sets V (Ω, ε) with ε small enough as a base of open neighborhoods of Ω .
A.M. Micheletti in [25] (and also reported in [20, Appendix 2]) considered a Courant-type metric, denoted d�+1

in this paper, so that V (Ω, ε) is metrizable and each (V (Ω, ε), d�+1) is complete and separable. For any domain 
Ω ∈ D

d
� , we use Dd

� (Ω) to denote the set of images (Id + u)(Ω) by u ∈ W�+1,∞(Ω, Rd), which are diffeomorphic 
to Ω . Then Dd

� (Ω) is a Banach manifold modeled on u ∈ W�+1,∞(∂Ω, Rd) as proved in [20, Theorem A.10]. In the 
sequel, we will sometimes identify, without further notice, the neighborhoods V (Ω, ε) with the corresponding open 
balls of W�+1,∞(Ω, Rd) centered at 0.
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Definition 2.1. We say that a property (P ) is generic in Dd
� if, for every Ω ∈ D

d
� , the set of domains of Dd

� (Ω)

on which Property (P ) holds true is residual i.e., contains a countable intersection of open and dense subsets 
of Dd

� (Ω).

2.2. Spectrum of the Stokes operator with Dirichlet boundary conditions

The presentation here is inspired by [16, Chapter II], [35, Chapter 5] and [27]. Let Ω be a domain of Rd , d ≥ 1
with C1 boundary. We use D(Ω) and D′(Ω) to denote respectively the space of C∞ functions with compact support 
in Ω and the space of distributions on Ω . The duality bracket will be denoted by 〈·,·〉D′×D .

Consider the following fundamental functional spaces for the Stokes system:

V (Ω) := {
v ∈ (

H 1
0 (Ω)

)d ∣∣ divv = 0
}
,

H(Ω) := {
v ∈ (

L2(Ω)
)d ∣∣ divv = 0 in Ω, 〈v,n〉 = 0 on ∂Ω

}
.

The space V (Ω) is equipped with the scalar product of (H 1
0 (Ω))d defined by

〈u,v〉V :=
ˆ

Ω

∇u · ∇v :=
d∑

i,j=1

ˆ

Ω

∂ui

∂xj

∂vi

∂xj

dx, (4)

for u := (u1, . . . , ud) and v := (v1, . . . , vd) in V (Ω). The space H(Ω) is equipped with the scalar product of 
(L2(Ω))d which will be denoted by 〈·,·〉H . Note that V (Ω) and H(Ω) are separable Hilbert spaces as they are 
closed sub-spaces of respectively (H 1

0 (Ω))d and (L2(Ω))d . We use L2
0(Ω) to denote the subspace of L2(Ω) made of 

the functions f with zero mean, i.e. 
´
Ω

f (x)dx = 0.

Remark 2.1. If we define V(Ω) := {v ∈ (D(Ω))d | divv = 0}, one can show that V (Ω) is the closure of V in 
(H 1(Ω))d (cf. [37, Theorem 1.6, p. 18]), and H(Ω) is the closure of V(Ω) in (L2(Ω))d (cf. [37, Theorem 1.4, 
p. 15] and [18, Theorem 2.8, p. 30]).

Let f ∈ H . Since the linear form on V (Ω) defined by �(v) := ´
Ω

〈f, v〉, for v ∈ V (Ω), is continuous, by 
Lax–Milgram’s Theorem, there exists a unique w ∈ V (Ω) such that, for every v ∈ V (Ω), 〈w, v〉V = �(v) and 
‖w‖V ≤ C(Ω)‖f ‖H , where the constant C(Ω) only depends on Ω . Therefore, the linear operator L from H(Ω)

to H(Ω) defined by Lf = w is continuous. As L is also self-adjoint and compact (cf. [8, Theorem IX.16, p. 169]), 
then, by classical spectral theory (cf. [8, Theorem VI.11, p. 97]), the operator L admits a non-increasing sequence 
of positive eigenvalues (μi)i∈N tending to 0, and the corresponding eigenfunctions (φi)i∈N can be taken so that they 
constitute an orthonormal basis of H . In particular, one hasˆ

Ω

∇φi · ∇v = λi

ˆ

Ω

〈φi, v〉, ∀v ∈ V, (5)

where λi := 1
μi

. Note that (λi)i∈N is a non-decreasing sequence tending to infinity. We use m(λ) to denote the multi-
plicity of the eigenvalue λ.

For v ∈ V , Eq. (5) is equivalent to

〈�φi + λiφi, v〉D′×D = 0. (6)

Theorem 2.1 (de Rham–Lions). Let q ∈ (D′(Ω))d such that

〈q, v〉D′×D = 0, ∀v ∈ V . (7)

Then, there exists p ∈ D′(Ω) such that q = ∇p. As a consequence of Theorem 2.1, one deduces from Eq. (5) that 
there exists pi ∈ D′(Ω) such that

�φi + λiφi = ∇pi. (8)
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Remark 2.2. Note that p in Theorem 2.1 is unique up to an additive constant.

Remark 2.3. Theorem 2.1 is a consequence of a more general result due to de Rham (cf. [10, Theorem 17′, p. 95]). 
The version adopted in Theorem 2.1 is due to Lions, also stated in [37, Proposition 1.1, p. 14]. A constructive proof 
can be found in [34].

Remark 2.4. There exists an equivalent presentation of the eigenvalue problem for the Stokes system based on the 
Stokes operator TS , which is defined as the operator defined on V ∩ W 2(Ω) by TSu ∈ H being the unique element 
satisfying

�u + TSu = ∇p,

for some harmonic pressure field p, cf. [16, Chapter II]. Then, one has TS = −P� where P is the Leray projector. 
One then proceeds by standard functional analysis arguments.

The following regularity result holds for φi and pi (cf. [37, Section 2.6, p. 38]).

Theorem 2.2 (Regularity). If the domain Ω is of class C�, for an integer � ≥ 2, then, for i ∈ N, φi ∈ H�(Ω) and 
pi ∈ H�−1(Ω). If Ω is of class C∞, then, for i ∈ N, φi ∈ C∞(Ω) and pi ∈ C∞(Ω).

We now summarize some computational results related to the Stokes system. We start by providing several notions 

of “normal” derivatives used in this context. If φ = (φi)1≤i≤d , the Jacobian matrix of φ defined as ( ∂φi

∂xj
)1≤i,j≤d will 

be denoted by ∇φ. We use n to denote the outward unit normal to ∂Ω and the superscript T used below denotes the 
transpose of a matrix. The corresponding normal derivative is given by

∂φ

∂n
:= ∇φ · n, (9)

and we also have

∂φ

∂N
:= (∇φ + ∇φT

) · n. (10)

Finally, the conormal derivative ∂φ
∂ν

on ∂Ω is defined as follows

∂φ

∂ν
:= ∂φ

∂N
− pn. (11)

Moreover, we will use nx or n(x), with x ∈ ∂Ω , to denote the value of the outward normal vector at point x.

Definition 2.2. For a and b are C1 functions defined on an open neighborhood of Ω , we use ∇a : ∇b to denote the 
following function

∇a : ∇b = 1

2

(∇a + ∇T a
) · (∇b + ∇T b

)
,

where · is defined in Eq. (4) as the Hadamard product of two matrices.

We recall the following Green’s formulas (cf. [23, p. 53]).

Lemma 2.3. Assume that d = 3. The formulasˆ

∂Ω

〈
a,

∂b

∂ν

〉
=
ˆ

Ω

∇a : ∇b +
ˆ

Ω

〈a,�b − ∇q〉, (12)

and ˆ 〈
a,

∂b

∂ν

〉
−
ˆ 〈

b,
∂a

∂ν

〉
=
ˆ 〈

a, (� + η)b − ∇q
〉 − ˆ 〈

b, (� + η)a − ∇p
〉
, (13)
∂Ω ∂Ω Ω Ω
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hold for every η ∈ R and for every pairs (a, p) and (b, q) of C1 functions defined on an open neighborhood of Ω , 
taking values in R3 ×R and satisfying diva = divb = 0.

We also need the following obvious result.

Lemma 2.4. Let d ≥ 2 be an integer, a ∈ (C1(Ω))d ∩ (H 1
0 (Ω))d and Ω ⊂R

d be an open domain of class C1. Then,

∇a = ∂a

∂n
nT , on ∂Ω. (14)

2.3. Regularity of the eigenvalues and eigenfunctions with respect to the shape perturbation parameter

In this section, � −1 ≥ d ≥ 2. Let Ω be a domain in Dd
� . We consider perturbations u in the space W�+1,∞(Rd , Rd)

with its standard norm ‖ · ‖�+1,∞. To study perturbations of eigenvalues, we adopt the strategy described in [22, 
Chapter 7, Section 6.5, pp. 423–425] and also follow the developments of [2, Section 4, pp. 1541–1548].

Recall that the eigenvalue problem associated to the Stokes system on Ω with Dirichlet boundary condition is 
given by

(SDΩ)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−�φ + ∇p = λφ in Ω,

divφ = 0 in Ω,

φ = 0 on ∂Ω,ˆ

Ω

p(x)dx = 0.

Consider any smooth map t → Tt defined for t small enough so that T0 = Id and Tt is a diffeomorphism from Ω
onto its image Ωt := Tt (Ω). Let (φt , pt , λt ) be the solution of

(SDΩt )

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−�φt + ∇pt = λtφt in Ωt,

divφt = 0 in Ωt,

φt = 0 on ∂Ωt ,ˆ

Ωt

pt (y
t )dyt = 0.

By Theorem 2.2, φt ∈ (H�(Ωt ))
d ∩ (H 1

0 (Ωt ))
d and pt ∈ H�−1(Ωt ) ∩ L2

0(Ωt ).
We next turn to the variational formulation of the above eigenvalue problem.
For every (w, q) ∈ (H 1

0 (Ωt ))
d × L2

0(Ωt ), it comes

ˆ

Ωt

∇φt : ∇w dyt −
ˆ

Ωt

pt div(w)dyt +
ˆ

Ωt

Tr(∇φt )q dyt =
ˆ

Ωt

λtφtw dyt .

We set φt := φt ◦ Tt ∈ (H�(Ω))d ∩ (H 1
0 (Ω))d and pt := pt ◦ Tt ∈ H�−1(Ω) ∩ L2

0(Ω). Define the change of 
variables yt := Tt (y) and set z(y) := w(yt ) and r(y) := q(yt ). Then, one shows that (φt , pt) satisfies the following 
identity

ˆ

Ω

A(t)∇φt : ∇z −
ˆ

Ω

ptTr
(
B(t)∇z

)
γ (t) +

ˆ

Ω

Tr
(
B(t)∇φt

)
rγ (t) =

ˆ

Ω

λtφ
tzγ (t), (15)

where γ (t) = det(DTt ), A(t) = γ (t)(DT −1
t )∗(DT −1

t ) and B(t) = (DT −1
t )∗. For fixed t (small enough), all these 

functions defined on Ω are of class C�.
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It follows that (φt , pt) satisfies⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−div
(
A(t)∇φt

) + div
(
ptγ (t)B(t)∗

) = λtφ
tγ (t) in Ω,

Tr
(
B(t)∇φt

) = 0 in Ω,

φt = 0 on ∂Ω,ˆ

Ω

pt(y)γ (t)dy = 0.

(16)

Let L2
Tt

be the Hilbert space equipped with the scalar product

〈φ,ψ〉Tt =
ˆ

Ω

φ(x)ψ(x)γ (t) dx, (17)

and define L2
0,Tt

:= {v ∈ L2 : ´
Ω

v(x)γ (t)dx = 0}. We consider C(t) and D(t) the two operators on (H 1
0 (Ω))d given 

by

C(t)v = − 1

γ (t)
div

(
A(t)∇v

)
, (18)

and

D(t)v = −Tr
((

DT −1
t

)∗∇v
)
. (19)

For fixed t (small enough), the operators C(t) and D(t) have respectively coefficients of class C�−1 and of class C�. 
The following result holds true.

Theorem 2.5. (Cf. [2, Lemma 4.2].)

1. The operator C(t) is self-adjoint with respect to 〈·,·〉Tt and C(t)−1 is coercive, i.e., there exists C > 0 such that, 
for every g ∈ H−1(Ω), one has 〈g, C(t)−1g〉 ≥ C ‖ g ‖H−1 .

2. The range of D(t) is closed and the adjoint D(t)∗ of D(t) with respect to 〈·,·〉Tt is given by

D∗q(t) = 1

γ (t)
div

(
qγ (t)

)
. (20)

Moreover, the null space of D(t) is made of constant functions on Ω and its range is equal to L2
0,Tt

(Ω).

Using the operators C(t) and D(t), we rewrite System (16) as⎧⎪⎨
⎪⎩
C(t)φt +D(t)∗pt = λtφ

t , in Ω,

D(t)φt = 0 in Ω,

φt = 0 on ∂Ω.

(21)

Since the operator C(t) : (H 1
0 (Ω))d → (H−1(Ω))d is an isomorphism, we can write

φt + C(t)−1D∗(t)pt = λtC(t)−1φt , (22)

and since D(t)φt = 0, one has

D(t)C(t)−1D(t)∗pt = λtD(t)C(t)−1φt .

Thanks to the coercivity of C(t)−1, one concludes that D(t)C(t)−1D(t)∗ is continuous and one-to-one in the space 
orthogonal to the null space of D(t)∗. It follows that

pt = λt

(
D(t)C(t)−1D(t)∗

)−1D(t)C(t)−1φt .
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Finally, reporting this expression of pt into (22), we derive that

C(t)φt + λtD(t)∗
(
D(t)C(t)−1D(t)∗

)−1D(t)C(t)−1φt = λtφ
t , (23)

or equivalently

C(t)φt = λtA(t)φt , (24)

where we have set

A(t) := [
Id −D(t)∗

(
D(t)C(t)−1D(t)∗

)−1D(t)C(t)−1].
Assume now that t �→ Tt is analytic in a neighborhood of t = 0. We are therefore dealing with the analytic perturbation 
problem described in [22, Eqs. (6.42) p. 424 and (6.47) p. 426]. Indeed, (21) shows that the t -dependent operators 
A(·) and C(·) are defined on a fixed (i.e., t -independent) Hilbert space. We also have that

• the operator A(t) is a closed operator with coefficients of class C�−1.
• The operators t �→ C(t) and t �→ C(t)−1 are analytic in a neighborhood of t = 0. This shows that the mapping 

t �→ A(t) is analytic in a neighborhood of t = 0. Furthermore, A(t) is bounded when t is sufficiently small.

We next prove the following theorem.

Theorem 2.6. Let Ω ⊂ R
d be an open bounded domain of class C�. Assume that λ is an eigenvalue of multiplicity 

m(λ) = h of the Stokes system with Dirichlet boundary condition on the domain Ω . Then, there exist h real-valued 
continuous functions, u �→ λi(u) defined in a neighborhood V of 0 in W�+1,∞(Ω, Rd) such that the following prop-
erties hold,

• λi(0) = λ, for i = 1, . . . , h;
• for every open interval I ⊂ R, such that the intersection of I with the set of eigenvalues of (SDΩ) contains only 

λ, there exists a neighborhood VI ⊂ V such that, for every u ∈ UI , there exist exactly h eigenvalues counting with 
multiplicity, λi(u), 1 ≤ i ≤ h, of (SD(Id+u)Ω) contained in I ;

• for every u ∈ W�+1,∞(Ω, Rd) and 1 ≤ i ≤ h, consider the map

Ψi : J → R × (H�(Ω) ∩ H 1
0 (Ω))d × (H�−1 ∩ L2

0(Ω))

t �→ (λt
i(u), φt

i (u), pt
i (u))

with J ⊂ R an open interval containing 0, for 1 ≤ i ≤ h, φt
i (u) := φt,i(u) ◦ (Id + tu) and pt

i (u) := pt,i(u) ◦
(Id + tu), where φt,i(u) and pt,i(u) are respectively eigenfunction and eigenpressure of (SDΩ+tu). Then, for 
1 ≤ i ≤ h, Ψi is analytic in a neighborhood of t = 0. Moreover, the family (φt,1(u), . . . , φt,h(u)) is orthonormal 
in H 1

0 (Ω + tu).

Remark 2.5. This result is actually the Stokes system’s version of [28, Theorem 3]. It is important to insist on the fact 
that at t = 0 the orthonormal family(

φ0,1(u), . . . , φ0,h(u)
)
,

of eigenfunctions associated to λ does in general depend on u and continuity of the eigenfunctions with respect to the 
shape parameter u does not hold true. Therefore, only directional continuity and derivability with respect to u can be 
achieved and this is the object of the next paragraph.

Proof of Theorem 2.6. From [22, Chapter 7, Sections 6.2 and 6.5], we deduce that (λt , φt , pt) defined in (21) is 
analytic in a neighborhood J0 of t = 0. Moreover, if λ = λ(0) is an eigenvalue of multiplicity h, by applying a 
standard Lyapunov–Schmidt argument (cf. for instance [22, Chapter 7], [19] or [20]), one gets Theorem 2.6 when 
Tt = Id + tu, with u ∈ W�+1,∞(Ω, Rd), except that the maps Ψi’s take values in R × (H 1

0 (Ω))d × L2
0(Ω).

Since the boundary ∂Ω is of class C�, we now want to get that the maps t �→ (φt
i (u), pt

i (u))’s take values in 
(H�(Ω) ∩ H 1(Ω))d × (H�−1 ∩ L2(Ω)) and analytic (in a neighborhood of t = 0) in this space. It is sufficient to 
0 0
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show the result for the map t �→ φt
i (u). To see that, consider the power series φt

i (u) = ∑
k≥0 A

(k)
i (u)tk which is 

convergent in J0 as element of (H 1
0 (Ω))d . Develop all terms in Eq. (24) as power series. A trivial induction shows 

that A(k)
i (u) ∈ (H 1

0 (Ω))d verifies the equation C(0)A
(k)
i (u) = λA(0)A

(k)
i (u) + Rk where R0 = 0 and Rk involves the 

terms A(j)
i (u), 0 ≤ j ≤ k−1. By a standard argument (cf. [14, Theorem 9.19, p. 243] and [11, Theorem 5, p. 323]), one 

shows by induction that firstly A(k)
i (u) ∈ (H�(Ω))d (since the operators A(t) and C(t) of class C�−1) and secondly 

their (H�(Ω))d -norms verify the appropriate upper bounds insuring that the map t �→ ∑
k≥0 A

(k)
i (u)tk takes values in 

(H�(Ω))d and is a convergent power series in some neighborhood J of t = 0 contained in J0. �
2.4. Shape differentiation

The subsequent developments follow a standard strategy (cf. [33, Theorem 2.13] for instance) but seem to be 
new for the Stokes system with Dirichlet boundary conditions. Fix u ∈ W�+1,∞(Ω, Rd) and set Tt = Id + tu for t
small enough. In this section, we define and calculate the differential systems verified by the derivatives at t = 0 of the 
eigenfunctions (φi,t (u), pi,t (u)) defined in Theorem 2.6. For that purpose, we must first consider the derivatives of the 
maps φt

i (u) and pt
i (u). Since we perform such a computation along a fixed analytic branch (λt

i(u), φt,i (u), pt,i(u)), 
the index i is omitted for the rest of the paragraph.

According to Theorem 2.6, (φt (u), pt (u)) is analytic in a neighborhood of t = 0 and we set

φ̇(u) := dφt (u)

dt

∣∣∣∣
t=0

, ṗ(u) := dpt (u)

dt

∣∣∣∣
t=0

. (25)

We next proceed in a similar way as in [33, Theorem 2.13]. For every open set ω whose closure is included in Ω , 
we consider (φt (u))|ω and (pt (u))|ω , the restrictions of φt (u) and pt(u) respectively to ω. As compositions of two 
analytic maps in a neighborhood of t = 0, (φt (u))|ω and (pt (u))|ω are also analytic in a neighborhood of t = 0 and 
their derivatives at t = 0 are equal to (φ̇(u) − ∇φ · u)|ω and (ṗ(u) − ∇p · u)|ω respectively. It is then easy to see that 
these formulas are actually valid over the whole Ω and thus, if we use φ′(u) and p′(u) to denote the derivatives at 
t = 0 of φt and pt respectively, one finally gets that

φ′(u) = φ̇(u) − ∇φ · u, p′(u) = ṗ(u) − ∇p · u, in Ω. (26)

We refer to φ′(u) and p′(u) as the shape derivatives in the direction u of the eigenfunction and eigenpressure (φ, p)

associated to λ.
According to Theorem 2.6, φ̇(u) and ṗ(u) belong to (H�(Ω) ∩ H 1

0 (Ω))d and H�−1 ∩ L2
0(Ω) respectively. There-

fore, they admit traces on ∂Ω in H�−1/2(∂Ω) and H�−3/2(∂Ω) respectively. Since � − 3/2 > d/2, these traces are 
continuous functions on ∂Ω , which are of course equal to zero. From Eqs. (26) and (16), we deduce at once, by using 
Eq. (14) that p′(u) + div(up) ∈ L2

0(Ω) and

φ′(u) + (〈u,n〉)∂φ

∂n
= 0 on ∂Ω.

It remains to determine the relations satisfied by the derivatives φ′(u) and p′(u) inside the domain Ω . For that end 
(see [2, Proposition 4.6] for more details), we take the derivative with respect to time evaluated at t = 0 of Eq. (15). 
For arbitrary test functions (z, r) ∈ (D(Ω))d ×D(Ω), we obtainˆ

Ω

(
A′(0)∇φ + ∇φ̇(u)

) : ∇z −
ˆ

Ω

(
ṗ(u)div(z) + p Tr

(
B ′(0)∇z

) + p div(z)γ ′(0)
)

+
ˆ

Ω

(
Tr

(
B ′(0)∇φ

) + div
(
φ̇(u)

) + div(φ)γ ′(0)
)
r =

ˆ

Ω

(
λ′(u)φ + λφ̇(u) + λφγ ′(0)

)
z. (27)

To simplify the previous equation, we use the following relations between time derivatives and shape derivatives,

γ ′(0) = div(u), A′(0) = div(u)Id − (∇u + ∇T u
)

and B ′(0) = −∇T u.

We first use the boundary conditions for φ and notice that the term multiplied by γ ′(0) in the integrand of Eq. (27) is 
the PDE satisfied by φ. Eq. (27) then reduces to
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ˆ

Ω

(∇φ′(u) + ∇(∇φ · u) − (∇u + ∇T u
)∇φ

) : ∇z −
ˆ

Ω

((
p′(u) + ∇p · u)

div(z) − pTr
(∇T u∇z

))

=
ˆ

Ω

(
λ′(u)φ + λφ′(u) + λ∇φ · u)

z,

and ˆ

Ω

(−Tr
(∇T u∇φ

) + div
(
φ′(u)

) + div(∇φ · u)
)
r = 0.

After some integrations by parts and using the boundary conditions, one deduces the two identitiesˆ

Ω

∇φ′(u) : ∇z +
ˆ

Ω

∇p′(u) · z =
ˆ

Ω

(
λ′(u)φ + λφ′(u)

)
z and

ˆ

Ω

div
(
φ′(u)

)
r = 0.

These identities hold for every (z, r) ∈ (D(Ω))d ×D(Ω), and they yield to the equations which are valid in Ω

−(� + λ)φ′(u) + ∇p′(u) = −λ′(u)φ, div
(
φ′(u)

) = 0.

In summary, the shape derivatives φ′(u) and p′(u) satisfy the following inhomogeneous Stokes system of PDEs⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−(� + λ)φ′(u) + ∇p′(u) = −λ′(u)φ in Ω,

divφ′(u) = 0 in Ω,

φ′(u) + 〈u,n〉∂φ

∂n
= 0 on ∂Ω,

p′(u) + div(up) ∈ L2
0(Ω).

(28)

2.5. Ortega–Zuazua’s result

Our argument for establishing Theorem 1.2 requires the shape differentiation of the eigenvalue problem (SDΩ). 
The first step of the contradiction argument (i.e., assuming that the simplicity of the spectrum is not generic) was 
already conducted by J.H. Ortega and E. Zuazua in [27]. We next recall precisely the main result they obtained and, 
for that purpose, we introduce the following definition.

Definition 2.3. Let �, d be two integers such that � − 1 ≥ d ≥ 2. A domain Ω ∈ D
d
� verifies Property (POZ)d if, for 

every λ eigenvalue of the Stokes operator with Dirichlet boundary conditions (SDΩ), one has m(λ) ≤ d − 1 and if 
m(λ) = d − 1, for 1 ≤ i, j ≤ d − 1 and i 	= j , the following three conditions must hold on ∂Ω ,〈

∂φi

∂n
,n

〉
= 0, (29)〈

∂φi

∂n
,
∂φj

∂n

〉
= 0, (30)∥∥∥∥∂φi

∂n

∥∥∥∥ =
∥∥∥∥∂φj

∂n

∥∥∥∥, (31)

where the φi ’s, 1 ≤ i ≤ d − 1 are orthonormal eigenfunctions associated with λ.

Then, the main result in [27] is the following.

Theorem 2.7. Let �, d be two integers such that � − 1 ≥ d and d is equal to 2 or 3. Then Property (POZ)d defined 
above holds true, generically with respect to Ω ∈D

d
� .

As an immediate corollary, it is proved in [27] that Property (Simple) holds true generically for domains in R2. 
Since we adopt a viewpoint different from [27], we provide below a complete argument. We need to provide the 
following definition, similar to that of “minimal multiplicity” in [20, p. 56].
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Definition 2.4. Let Ω ∈ D
d
� and λ an eigenvalue of (SDΩ). We use mΩ(λ) to denote the liminf over the multiplicities 

m(λn), where λn is an eigenvalue of (SDΩn) such that Ωn → Ω and λn → λ as n tends to infinity.

Several remarks are now in order with regard to Definition 2.4.

Remark 2.6. There exists a sequence of domains (Ωn) in Dd
� and a sequence (λn), where λn is an eigenvalue of (SΩn), 

such that Ωn → Ω , λn → λ as n tends to infinity and m(λn) = mΩ(λ) (and it is also equal to mΩn(λn)).

Remark 2.7. Moreover, Property (POZ)d for a domain Ω ∈ D
d
� is clearly equivalent to the fact that, for every λ

eigenvalue of (SDΩ), mΩ(λ) ≤ d − 1, with the equality case described by Eqs. (29), (30), (31).

Proof of Theorem 2.7. Fix a domain Ω0 ∈D
d
� . We define, for l ∈N, the sets

A0 := D
d
� (Ω0),

and, for l ≥ 1, consider

Al := {
Ω0 + u ∈ A0, u ∈ W�+1,∞(

Ω0,R
d
)
, mΩ0(λ) ≤ d − 1 for the first l first eigenvalues of (SDΩ0+u)

}
.

Set A := ⋂
l∈N Al . Note that

A = {
Ω0 + u ∈ A0, u ∈ W�+1,∞(

Ω0,R
d
)
,mΩ0+u(λ) ≤ d − 1 if λ is an eigenvalue of (SDΩ0+u)

}
.

The proof is based on the application of Baire’s lemma to the sequence {Al}l∈N. As Al is open in A0 for every 
l ∈N, we only need to prove that, for l ∈N, Al+1 is dense in Al .

We proceed by contradiction. Assume that Al+1 is not dense in Al . Then, there exists u ∈ Al \ Al+1 and a neigh-
borhood U of u such that U ⊂ Al \Al+1. Set Ω̃ := Ω0 +u and let λ be the (l + 1)-th eigenvalue of (SDΩ̃). For s ≥ 1, 
let λs(·) be the function which associates to Ω ∈ D

d
� the s-th eigenvalue of (SDΩ). Note that λs(·) is continuous 

and λ = λl+1(Ω̃). According to the contradiction assumption, one has m := mΩ̃(λ) ≥ d and then λl(Ω̃) < λ. As a 
consequence, if (Ωn) is the sequence in Dd

� considered in Remark 2.6 and associated to Ω̃ , then it has the following 
additional property: for n large enough, there exists εn > 0 such that, for every Ω ′ with d(Ω ′, Ωn) < εn, one has that

m
(
λl+1

(
Ω ′)) = m ≥ d.

In particular, m(λl+1(·)) is locally constant, equal to m ≥ d in an open neighborhood of Ωn, for n large enough. We 
will contradict that latter fact, i.e. the existence of a domain Ω∗ where m(λl+1(·)) is constant and equal to m ≥ d in 
an open neighborhood U∗ of Ω∗. For simplicity, λ is used to denote λl+1(Ω∗) in the remaining part of the argument. 
Once for all, fix an orthonormal family v = (v1, . . . , vm) of eigenfunctions of (SDΩ∗) associated to λ and define the 
m × m matrix

M(v) =
( ˆ

∂Ω∗

〈u,n〉
〈
∂vi

∂n
,
∂vj

∂n

〉)
1≤i,j≤m

.

Note that M(v) is real symmetric. We next perform shape differentiation with respect to the parameter u ∈ U∗. Using 
the notations of Theorem 2.6, we consider, for every u ∈ U∗, the m analytic branches t �→ (λt

i(u), φt,i (u), pt,i(u)), 
for i = 1, . . . , m, given by Theorem 2.6. We use φ(u) := (φ1(u), . . . , φm(u)) and (p1(u), . . . , pm(u)) respectively to 
denote(

φ0,1(u), . . . , φ0,m(u)
)
,

(
p0,1(u), . . . , q0,m(u)

)
,

the eigenfunctions and eigenpressures associated to λ (i.e., which correspond to the values of the φt,i(u)’s and pt,i(u)’s 
at t = 0).

Since v and φ(u) are orthonormal families of eigenfunctions associated to the same eigenvalue λ, then, for every 
1 ≤ i ≤ m, there exists S(u) ∈ SO(m) such that φ(u) = vS(u) (with the convention that the φi(u)’s and the vi ’s are 
viewed as column vectors of Rm). One clearly obtains that

M
(
φ(u)

) = S(u)M(v)S(u)T . (32)

We now need the following standard result whose proof is given in Section B.1 of Appendix B.
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Lemma 2.8. Using the notations defined above, then

diag
(
λ′

i (u)
)

1≤i≤m
= −M

(
φ(u)

)
(33)

holds for every u ∈ W�+1,∞(Ω, Rd).

We next proceed with the proof of Theorem 2.7.
The fact that m(λl+1(·)) is constant and equal to m in a neighborhood of u = 0 is equivalent to the fact that 

λt
i(u) ≡ λt

j (u), 1 ≤ i, j ≤ m, for t small enough, implying that λ′
i(u) takes only one single value μ as i runs from 1

to m. In other words, M(φ(u)) = −μ Idm and then one gets

M(v) = −μ Idm,

thanks to Eq. (32). That yields the equations

ˆ

∂Ω∗

〈u,n〉
(∥∥∥∥∂vi

∂n

∥∥∥∥
2

−
∥∥∥∥∂vj

∂n

∥∥∥∥
2)

= 0, for 1 ≤ i, j ≤ m, (34)

ˆ

∂Ω∗

〈u,n〉
〈
∂vi

∂n
,
∂vj

∂n

〉
= 0, for 1 ≤ i, j ≤ d − 1, i 	= j . (35)

The integrals in the above equations define linear maps in (u.n) and are equal to zero in an open neighborhood of 
u = 0. It thus implies that, for distinct 1 ≤ i, j ≤ m,∥∥∥∥∂vi

∂n

∥∥∥∥ −
∥∥∥∥∂vj

∂n

∥∥∥∥ ≡ 0 on ∂Ω∗, (36)〈
∂vi

∂n
,
∂vj

∂n

〉
≡ 0 on ∂Ω∗. (37)

Moreover, using Lemma 2.4, one has, for 1 ≤ i ≤ m,〈
∂vi

∂n
,n

〉
≡ 0, on ∂Ω∗. (38)

Assume now that there exists x0 ∈ ∂Ω∗ and an index i ∈ {1, . . . , m} such that ∂vi

∂n
(x0) is not zero. According to 

Eqs. (36), (37) and (38), the (m + 1) vectors given by ∂vj

∂n
(x0), 1 ≤ j ≤ m and n(x0) are all non-zero and two by two 

perpendicular. This is a contradiction because these vectors belong to a d-dimensional vector space. Therefore, ∂vi

∂n
must be identically equal to zero, for 1 ≤ i ≤ m.

Thanks to a unique continuation type of argument due to Osses (cf. [29]) and which is valid only for d equal to 2
or 3, one concludes that the vi’s must also be identically equal to zero, which is in contradiction with the facts that the 
vi ’s have L2-norm equal to one. �
Remark 2.8. This argument is an adaptation of the original proof by J.H. Albert in [1] to the Stokes system with 
Dirichlet boundary conditions, and the perturbation parameters being the domains of Rd . See also [20, Example 4.4]
for a more general situation.

3. Proof of Theorem 1.2

For the rest of the paper, domains Ω are bounded subsets of R3 with C� boundary, i.e., d = 3 and � ≥ 4. We follow 
the classical strategy initiated by J.H. Albert in [1] for the Laplace operator with Dirichlet boundary conditions. This 
strategy was in particular applied successfully in [27] for the generic simplicity of the Stokes operator in two space 
dimensions, and in [9] for other Laplacian-like operators. Fix a domain Ω0 ∈D

3
� . We define, for l ∈ N, the sets

A0 := D
3
�(Ω0),
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and, for l ≥ 1,

Al := {
Ω0 + u, u ∈ W�+1,∞(

Ω0,R
3), Ω0 + u ∈ A0 and the l first eigenvalues of (SDΩ0+u) are simple

}
.

Set A := ⋂
l∈N Al . Note that

A = {
u ∈ W�+1,∞(

Ω0,R
3), Ω0 + u ∈ A0 and the eigenvalues of (SDΩ0+u) are simple

}
.

Again, the proof of the generic simplicity of (SDΩ) is based on the application of Baire’s lemma to the sequence 
{Al}l∈N. As Al is open in D3

�(Ω0) for every l ∈ N, we only need to prove that, for l ∈ N, Al+1 is dense in Al . We 
proceed by contradiction. Assume that Al+1 is not dense in Al . Then, there exists u ∈ Al \ Al+1 and a neighborhood 
U of u such that U ⊂ Al \ Al+1. By Theorem 2.7, we can assume, without loss of generality, that there exists Ω :=
Ω0 + u0 for some u0 ∈ U verifying the following: there exists an open neighborhood V ⊂ U of 0 such that, for every 
u ∈ V , then Ω + u verifies:

(i) the first l eigenvalues λ1(u), . . . , λl(u) of (SDΩ+u) are simple;
(ii) the multiplicity of the (l + 1)-th eigenvalue λl+1(u) of (SDΩ+u) is equal to 2 and, on ∂Ω + u, one has〈

∂φi

∂nu

,nu

〉
= 0, i = 1,2, (39)〈

∂φ1

∂nu

,
∂φ2

∂nu

〉
= 0 (40)∥∥∥∥∂φ1

∂nu

∥∥∥∥ =
∥∥∥∥∂φ2

∂nu

∥∥∥∥, (41)

where nu is used to denote the outer unit normal at ∂Ω +u and (φ1, φ2) is any pair of orthonormal eigenfunctions 
associated with λl+1(u).

Remark 3.1. These conditions simply state that, for an eigenvalue λ of (SDΩ) (say the (l + 1)-th), its multiplicity is 
larger than or equal to 2 and, for every variation v in W�+1,∞(Ω +u, R3), there are two equal directionnal derivatives 
(in the direction of v) of λl+1 at u. This fact actually does not depend on the dimension d ≥ 2 of the domain Ω . In 
dimension two, the above conditions immediately yield that

∂φ1

∂nu

≡ ∂φ2

∂nu

≡ 0,

for any pair of orthonormal eigenfunctions associated with λl+1(u), and one derives at once a contradiction by the 
unique continuation result of [29], see also [27]. However, in dimension d = 3, conditions (39), (40), and (41) do not 
immediately yield a contradiction since three non-zero two-by-two orthogonal vectors may exist in dimension d = 3.

3.1. Shape derivation of Eqs. (39), (40) and (41)

We begin with the following preliminary result.

Lemma 3.1. The shape derivative φ′
i of φi in the direction V satisfies

∂φ′
i

∂n
= ∂φ′

i

∂ν
+

〈
∂φi

∂n
,n′

〉
n + Vn

∂

∂n

(
(∇φi)

T n
) + p′

in, (42)

where we use Vn to denote the normal component V · n of the direction V evaluated on ∂Ω .

Proof of Lemma 3.1. From the fact that φi vanishes on ∂Ω and satisfies div(φi) = 0, one knows that

(∇φi)
T n = 0. (43)

Taking the shape derivative of the two sides of Eq. (43), one gets(∇φ′
i

)T
n + (∇φi)

T n′ + Vn

∂ (
(∇φi)

T n
) = 0.
∂n
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Since (∇φi)
T = (

∂φi

∂n
nT )T = n(

∂φi

∂n
)T , it comes that

(∇φ′
i

)T
n +

〈
∂φi

∂n
,n′

〉
n + Vn

∂

∂n

(
(∇φi)

T n
) = 0,

hence(∇φ′
i

)T
n = −

〈
∂φi

∂n
,n′

〉
n − Vn

∂

∂n

(
(∇φi)

T n
)
.

The proof is finished once we report this expression in the definition of the co-normal derivative of φi . �
Proposition 3.2. If φi satisfies (39) and (40), then we have, for j = 1, 2,〈

∂φ′
i

∂ν
,
∂φj

∂n

〉
+

〈
∂φ′

j

∂ν
,
∂φi

∂n

〉

= −Vn

(
∂

∂n

(〈
∂φj

∂n
,
∂φi

∂n

〉)
+

〈
∂

∂n

(∇φT
i n

)
,
∂φj

∂n

〉
+

〈
∂

∂n

(∇φT
j n

)
,
∂φi

∂n

〉)
. (44)

Proof of Proposition 3.2. The shape derivative of Eq. (39) gives〈
∂φ′

i

∂n
,
∂φj

∂n

〉
+

〈
∂φi

∂n
,
∂φ′

j

∂n

〉
= −Vn

∂

∂n

(〈
∂φj

∂n
,
∂φi

∂n

〉)
. (45)

Since ∂φi

∂n
· n = 0, it comes from Lemma 3.1 that〈

∂φ′
i

∂n
,
∂φj

∂n

〉
=

〈
∂φ′

i

∂ν
,
∂φj

∂n

〉
+ Vn

〈
∂

∂n

(∇φT
i n

)
,
∂φj

∂n

〉
,

hence we deduce that〈
∂φ′

i

∂n
,
∂φj

∂n

〉
+

〈
∂φ′

j

∂n
,
∂φi

∂n

〉

=
〈
∂φ′

i

∂ν
,
∂φj

∂n

〉
+

〈
∂φ′

j

∂ν
,
∂φi

∂n

〉
+ Vn

(〈
∂

∂n

(∇φT
i n

)
,
∂φj

∂n

〉
+

〈
∂

∂n

(∇φT
j n

)
,
∂φi

∂n

〉)
.

From Eq. (45), we get after identification that〈
∂φ′

i

∂ν
,
∂φj

∂n

〉
+

〈
∂φ′

j

∂ν
,
∂φi

∂n

〉
= −Vn

(
∂

∂n

(〈
∂φj

∂n
,
∂φi

∂n

〉)
+

〈
∂

∂n

(∇φT
i n

)
,
∂φj

∂n

〉
+

〈
∂

∂n

(∇φT
j n

)
,
∂φi

∂n

〉)
,

and this ends the proof of Proposition 3.2. �
3.2. Special choice of Vn

Let x ∈ ∂Ω such that the vectors ∂φi

∂n
(x) and ∂φj

∂n
(x) span the tangent space Tx(∂Ω). Let Ux be a neighborhood of 

x in ∂Ω such that, for all y belonging to Ux , the vectors ∂φi

∂n
(y) and ∂φj

∂n
(y) span Ty(∂Ω). For y ∈ ∂Ω near x, we 

write the parametrized form of ∂Ω near x as a graph over the tangent plane at x: if η = Px(y − x) is the orthogonal 
projection of y − x onto the tangent plane Tx(∂Ω) with η sufficiently small, there exists an open neighborhood TxUx

of 0 in Tx(∂Ω) such that the map hx given by

hx : TxUx �→ Ux

η �→ y = x + η − νx(η)nx,
(46)

is well-defined and is a diffeomorphism onto its image. For y near x, we have

νx(η) = 1
ηT Kxη + O

(|η|3), as η → 0,

2
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where Kx is the symmetric matrix representing the curvature operator at x. We fix once for all δ > 0 small enough so 
that |η| ≤ 2δ implies that y = x + η − νx(η)nx belongs to Ux .

One has the following standard relations where all the vectors are embedded in R3 and 〈·〉 denotes here the standard 
scalar product in R3.

Lemma 3.3. Let n′
x(η) = ∂

∂η
nx(η) ∈ Tx(∂Ω). We have

i) ny = ν′
x(η) + nx√

1 + |ν′
x(η)|2 ,

ii) 〈nx, y − x〉 = −1

2
ηT Kxη + O

(|η|3) as η → 0,

iii) 〈nx,ny〉 = 1√
1 + |ν′

x(η)|2 = 1 − 1

2
|Kxη|2 + O

(|η|3) as η → 0. (47)

Proof of Lemma 3.3. These equations are easily obtained by standard facts from the theory of surfaces (cf. [7, 
Chapter 10]) and are explicitly given in [20, p. 146]. �
Remark 3.2. We note that the inverse of the Jacobian of the change of variables h−1

x : y → η = h−1
x (y) from a 

neighborhood of x on ∂Ω to a neighborhood of 0 in R2 is equal to 〈nx, ny〉.

We are now ready to define Vn. Let ε � δ be a positive real number. For η0 ∈ Bε(0) ⊂ Tx(∂Ω), consider the points 
x0 ∈ Ux which can be written as

x0 = x + η0 − νx(η0)nx,

and set

η0 = r0(cos θ0, sin θ0)
T ,

where θ0 ∈ S1 and 0 < r0 ≤ ε.
Our choice for Vn will be

Vn(y) := (αε,η0βδ) ◦ h−1
x (y), (48)

where, for η ∈R
2 (identified with Tx(∂Ω)),

αε,η0(η) := 1

ε2
exp

[
−| η − η0 |2

ε2

]
,

and βδ(·) is a smooth cut-off function equal to 1 on B(0, 3δ/2) and 0 on R2 \ B(0, 2δ).

Lemma 3.4. If y = hx(η) with η ∈ B(0, δ), then we have

∇Vn(y) = W(η) − 〈
W(η), ν′

x(η)
〉
nx, (49)

where ∇Vn(y) is used to denote the tangential gradient of Vn along ∂Ω and W(η) ∈ Tx(∂Ω) is given by

W(η) = ∇αε,η0(η) − 〈∇αε,η0(η), ν′
x(η)〉

1 + |ν′
x(η)|2 ν′

x(η). (50)

Proof of Lemma 3.4. By definition of Vn, one has, for every tangent vector w ∈ Ty(∂Ω) with ξ = dh−1
x (y)w ∈

Tx(∂Ω)〈∇Vn(y),w
〉 = dVn(y)w = d

(
αε,η0 ◦ h−1

x

)
(y)w = dαε,η0(η)dh−1

x (y)w

= dαε,η0(η)ξ = 〈∇αε,η0(η), ξ
〉
, (51)
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where dαε,η0 denotes the differential of the scalar function αε,η0 . From Eq. (46), one gets that w = ξ − 〈ν′
x(η), ξ 〉nx . 

By a simple computation, one deduces that

ξ = w + 〈
ν′
x(η),w

〉
nx,

where the latter inner product is taken in R3. According to the orthogonal sum R3 = Tx(∂Ω) 
⊥⊕ Rnx , one has 

∇Vn(y) = W(η) + 〈Vn(y), nx〉nx for some vector W(η) ∈ Tx(∂Ω). Since ∇Vn(y) ∈ Ty(∂Ω), one gets after taking 
the inner product of the decomposition of ∇Vn(y) with ny and using Eq. (47) that〈

Vn(y), nx

〉 = −〈
W(η), ν′

x(η)
〉
.

Plugging the two previous displayed equations into Eq. (51), one deduces that

W(η) + 〈
W(η), ν′

x(η)
〉
ν′
x(η) = ∇αε,η0(η),

which in turns yields Eq. (50) and hence Eq. (49). �
Convention For the ease of notation, the gradient of a scalar function will be considered in the following as a line
vector instead of a column vector. This convention will allow us to use the notation ∇ for both scalar and vector-valued 
functions in a consistent way.

3.3. End of the proof of Theorem 1.2

The main technical result of the paper is summarized in the following proposition. The proof is provided in Sec-
tion 4.

Proposition 3.5. Let x ∈ ∂Ω such that the vectors ∂φi

∂n
(x) and ∂φj

∂n
(x) span the tangent space Tx(∂Ω). Use Px to 

denote the orthogonal projection onto Tx(∂Ω). Then, for ε small enough, one has, for every η0 ∈ Bε ⊂ Tx(∂Ω) and 
the corresponding variation Vn defined in Eq. (48), that, for j = 1, 2,

Px

(
∂φ′

j

∂ν
(x)

)
= 2

e−r̄2
0

ε3

(
M

A1
2 (r̄0) + M

A1
5 (r̄0) − r̄2

0 M
A1
3 (r̄0)

)∂φj

∂n
(x)

+ 2
e−r̄2

0

ε3
M

A1
4 (r̄0)

〈
η̄0,

∂φj

∂n
(x)

〉
η̄0 + O

(
1

ε2

)
, (52)

where r̄0 = ‖η0‖
ε

, η̄0 = η0‖η0‖ =: (cos(θ0), sin(θ0))
T and MA1

k (·), 2 ≤ k ≤ 5, are nonzero entire function defined in 
Eqs. (81), (82), (184) and (183) respectively.

We can now conclude the proof of Theorem 1.2. By conditions (29) and (30), and Proposition 3.5, we have〈
∂φ′

1

∂ν
(x),

∂φ2

∂n
(x)

〉
+

〈
∂φ′

2

∂ν
(x),

∂φ1

∂n
(x)

〉

= −e−r̄2
0

ε3
M

A1
4 (r̄0)

〈
η̄0,

∂φ1

∂n
(x)

〉〈
η̄0,

∂φ2

∂n
(x)

〉
+ O

(
1

ε2

)

= −e−r̄2
0

ε3
M

A1
4 (r̄0)r

2
φ cos(θ1 − θ0) cos(θ2 − θ0) + O

(
1

ε2

)
,

with ∂φj

∂n
(x) = rφ(cos θj , sin θj )

T , for j = 1, 2.
However, Proposition 3.2 implies that〈

∂φ′
1 (x),

∂φ2
(x)

〉
+

〈
∂φ′

2 (x),
∂φ1

(x)

〉
= O

(
1
2

)
.

∂ν ∂n ∂ν ∂n ε
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Therefore, if we now fix r̄0 ≤ 1 such that MA1
4 (r̄0) 	= 0 and recall that rφ > 0, we have, for every θ0 ∈ S1,

cos(θ1 − θ0) cos(θ2 − θ0) = O(ε). (53)

By letting ε tend to zero, we deduce that cos(θ1 − θ0) cos(θ2 − θ0) = 0, since θ0 does not depend on ε. Again, by 
conditions (29) and (30), one has |θ1 − θ2| = π/2. Then, by replacing the arbitrary angle θ0 by θ0 − θ1 in Eq. (53), one 
derives that sin 2θ0 = 0, holding for an arbitrary angle θ0 ∈ S1. This yields the final contradiction and Theorem 1.2 is 
established.

4. Proof of Proposition 3.5

This section is devoted to the proof of Proposition 3.5. The argument starts by applying (160) to C = −2(Kλ
Ω)∗

and φλ = φ′
j , j = 1, 2, solution of (163)–(166). The four terms of the right-hand side of (160) correspond to four 

terms Wj
i , 1 ≤ i ≤ 4 respectively. Since φ′

j = −Vn
∂φj

∂n
on ∂Ω , it comes that

∂φ′
j

∂ν
(x) = W

j

1 (x) + W
j

2 (x) + W
j

3 (x) + W
j

4 (x), (54)

where we have in coordinates, for 1 ≤ s ≤ 3, and φj = (φm
j )1≤m≤3,

[
W

j

1 (x)
]
s
= −2 p.v.

ˆ

∂Ω

∂2Γ 0
sm(x − y)

∂N(x)∂N(y)
Vn(y)

∂φm
j

∂n
(y) dσ (y), (55)

[
W

j

2 (x)
]
s
= −

(
N∑

k=1

[
(−2)

(
Kλ

Ω

)∗]k)[
−2 p.v.

ˆ

∂Ω

∂2Γ 0
sm(x − y)

∂N(x)∂N(y)
Vn(y)

∂φm
j

∂n
(y) dσ (y)(x)

]

= −
([

N∑
k=1

[
(−2)

(
Kλ

Ω

)∗]k]
W

j

1

)
(x), (56)

[
W

j

3 (x)
]
s
= −

(
N∑

k=0

[
(−2)

(
Kλ

Ω

)∗]k) ˆ

∂Ω

∂2�λ
sm(x − y)

∂N(x)∂N(y)
Vn(y)

∂φm
j

∂n
(y) dσ (y), (57)

and

[
W

j

4 (x)
]
s
= −

[
R −

(
N∑

k=1

[
(−2)

(
Kλ

Ω

)∗]k)][
p.v.

ˆ

∂Ω

∂2Γ 0
sm(x − y)

∂N(x)∂N(y)
Vn(y)

∂φm
j

∂n
(y) dσ (y)

]

−
[
R −

(
N∑

k=1

[
(−2)

(
Kλ

Ω

)∗]k)] ˆ

∂Ω

∂2�λ
sm(x − y)

∂N(x)∂N(y)
Vn(y)

∂φm
j

∂n
(y) dσ (y). (58)

We take Vn(y) = 1
ε2 exp[− |h−1

x (y)−h−1
x (x0)|2

ε2 ] and tackle the asymptotic expansion of each term appearing in the right 
hand side of the equation quoted above. Our strategy is simple: we show that the main term of the expansion is 
contained in Wj

1 , where appears the effect of the hyper-singular operator. Next, we prove that all other terms Wj
i (x), 

i = 2, 3, 4 are actually remainder terms. These are the contents of Proposition 4.1 and Proposition 4.11 respectively 
given in the next subsections.

4.1. Expansion of Wj

1

The goal of this subsection is to provide the main term in the expansion of Wj

1 (x) defined in Eq. (55). More 
precisely, we prove the following.
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Proposition 4.1. With the notations of Proposition 3.5, we have, for ε > 0 small enough and j = 1, 2,

Px

(
W

j

1 (x)
) = 2

e−r̄2
0

ε3

(
M

A1
2 (r̄0) + M

A1
5 (r̄0) − r̄2

0 M
A1
3 (r̄0)

)∂φj

∂n
(x)

+ 2
e−r̄2

0

ε3
M

A1
4 (r̄0)

〈
η̄0,

∂φj

∂n
(x)

〉
η̄0 + O

(
1

ε2

)
. (59)

4.1.1. Computational lemmas
We begin by studying the term Wj

1 (x) defined in Eq. (55). We start with the following lemma whose proof is 
deferred in Appendix B. For u = (um)1≤m≤3 : ∂Ω �→ R

3, we will use E(u)(x) to denote the value at x ∈ ∂Ω of the 
hypersingular operator

[
E(u)(x)

]
s
= p.v.

ˆ

∂Ω

∂2Γ 0
sm(x − y)

∂N(x)∂N(y)
um(y)dσy, 1 ≤ s ≤ 3. (60)

Lemma 4.2. Let α : ∂Ω �→R and ψ : ∂Ω �→ R
3 be C1 functions. One has

4πE(αψ)(x) =
5∑

i=1

Ai(α,ψ)(x), (61)

where

A1(α,ψ)(x) = p.v.

ˆ

∂Ω

〈nx,ny〉
|x − y|3

(〈
ψ(y), x − y

〉∇T α(y) + (∇α(y)(x − y)
)
ψ(y)

)
dσy, (62)

A2(α,ψ)(x) = p.v.

ˆ

∂Ω

α(y)〈nx,ny〉
|x − y|3

(∇ψ(y) + ∇T ψ(y)
)
(x − y)dσy, (63)

A3(α,ψ)(x) = p.v.

ˆ

∂Ω

〈nx,ψ(y)〉∇α(y)(x − y) − 〈ψ(y), x − y〉∇α(y)nx

|x − y|3 nydσy, (64)

A4(α,ψ)(x) = p.v.

ˆ

∂Ω

α(y)〈nx, (∇ψ(y) − ∇T ψ(y))(x − y)〉
|x − y|3 nydσy, (65)

A5(α,ψ)(x) =
ˆ

∂Ω

l(x, y)
[∇(αψ)(y)

]
dσy, (66)

where l(·,·) is a weakly singular operator of class C3∗(1) (see Appendix A.2 for a definition).

Lemma 4.2 will be applied with α = Vn and ψ = ∂φj

∂n
, j = 1, 2. We will consider the change of variables introduced 

in Section 3.2 and, using these notations, we set

η := r

(
cos θ

sin θ

)
, η0 := r0

(
cos θ0
sin θ0

)
, ψ(x) := rψ

(
cos θψ

sin θψ

)
, η̄0 := η0

ε
, r̄0 := r0

ε
.

Recall that, with the conventions of Subsection 3.2, one has r̄0 ≤ 1. In the sequel, we will provide an asymptotic 
expansion for each of the Ai , 1 ≤ i ≤ 5, using powers in the variable 1

ε
. We will have two types of terms, one of 

the type e
−r̄2

0

εmi
Xi (or 1

εmi
Xi ) and the other one of the type e

− δ2

4ε2

εmi
Yi , where mi is an integer and Xi , Yi are vectors 

with bounded norms. For each Ai , 1 ≤ i ≤ 5, we will identify the term of the first type (i.e., e
−r̄2

0

εmi
Xi or 1

εmi
Xi ) with 

the largest value of mi , then gather them and consider all the others terms as a rest. For that purpose, we will use 
repeatedly the following two lemmas whose proofs are deferred in Sections B.3 and B.4 in Appendix B.
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Lemma 4.3. With the notations above and for any non-negative integer m, one hasˆ

B(0,δ)

αε,η0(η)

|η|1−m
dη ≤ C(m)

ε1−m
, (67)

with C(m) a positive constant only depending on m.

Lemma 4.4. With the notations above,

p.v.

ˆ

R2

αε,η0(η)η

|η|3 dη = e−r̄2
0

ε2
M

A1
3 (r̄0)η̄0, (68)

where MA1
3 (·) is a nonzero entire function defined in (180) or (181) below.

We will provide detailed computations for A1(α, ψ)(x) in the expansion of Wj

1 (x) and will only sketch the main 
steps for the other terms. In these computations, we will systematically refer to the following procedures.

(P1) The first one consists of decomposing a C1 vector-valued function F(y) in two parts as F(y) = F(x) +
G(x)(y − x), where G is a continuous matrix-valued function.

(P2) The second procedure consists of cutting an integral 
´
∂Ω

· · ·dσy as
ˆ

∂Ω

· · ·dσy =
ˆ

B(0,2δ)

· · ·dη =
ˆ

B(0,δ)

· · ·dη +
ˆ

B(0,2δ)\B(0,δ)

· · ·dη,

and majorizing the second one by Ci
e
− δ2

4ε2

εmi
for appropriate constant Ci and integer mi . Finally, note that 

〈ψ(x), nx〉 = 0.
(P3) In certain integrals of the type ́

∂Ω
· · ·dσy = ´

B(0,2δ)
· · ·dη, the term ∇Vn(y) will be expressed after changing 

variables as

∇αε,η0(η) + G(η)∇αε,η0(η) + H(η)nx, (69)

where G(η) denotes the non-positive symmetric matrix − ν′
x(η)ν′

x(η)T

1+|ν′
x(η)|2 and H(η) is a real-valued function. Note 

first that, for η small enough, one has that |G(η)| ≤ C|η|2 for some universal positive constant C. Thus the 

contribution arising from G(η)∇αε,η0(η) in the expression of 
∂φ′

j

∂ν
(x) will be shown below to be trivially an

O( 1
ε
). Moreover, in the integrals above mentionned, only their contributions tangent to Tx(Ω) are relevant, 

thanks to Eqs. (29) and (44). In conclusion, it is enough to only estimate the contribution of ∇αε,η0(η) in Eq. 
(69).

4.1.2. Asymptotic expansion of A1
We give in this paragraph the asymptotic expansion of A1(α, ψ)(x) with respect to ε. Recall that

A1(α,ψ)(x) = p.v.

ˆ

∂Ω

〈nx,ny〉
|x − y|3

(〈
ψ(y), x − y

〉∇T α(y) + (∇α(y)(x − y)
)
ψ(y)

)
dσy.

Proposition 4.5. For ε > 0 small enough, one has

Px

(
A1(α,ψ)(x)

) = 2
e−r̄2

0

ε3

(
M

A1
2 (r̄0) + M

A1
5 (r̄0) − r̄2

0 M
A1
3 (r̄0)

)
ψ(x)

+ 2
e−r̄2

0

ε3
M

A1
4 (r̄0)

〈
η̄0,ψ(x)

〉
η̄0 + O

(
1

ε2

)
. (70)
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For the sake of clarity, we set A1(α, ψ)(x) := A1,1(α, ψ)(x) + A1,2(α, ψ)(x) with

A1,1(α,ψ)(x) := p.v.

ˆ

∂Ω

〈nx,ny〉
|x − y|3

〈
ψ(y), x − y

〉∇T α(y)dσy, (71)

A1,2(α,ψ)(x) := p.v.

ˆ

∂Ω

〈nx,ny〉
|x − y|3

(∇α(y)(x − y)
)
ψ(y)dσy. (72)

We will establish separately estimates of these two terms in Lemmas 4.6 and 4.8.

Lemma 4.6. For ε > 0 small enough, one has

Px

(
A1,1(α,ψ)(x)

) = 2
e−r̄2

0

ε3

(
M

A1
4 (r̄0)

〈
η̄0,ψ(x)

〉
η̄0 + M

A1
2 (r̄0)ψ(x)

) + O

(
1

ε2

)
, (73)

where MA1
2 (·) and MA1

4 (·) are non-zero entire functions defined by (81) and (83) respectively.

Proof of Lemma 4.6. Using the change of variables introduced in Subsection 3.2 and taking into account Lemma 3.4
and Remark 3.2, we have

Px

(
A1,1(α,ψ)(x)

) = 2

ε2
p.v.

ˆ

B(0,2δ)

αε,η0(η)〈η − νx(η)nx,ψ(y)〉
(|η|2 + |νx(η)|2) 3

2

(
Id2 + G(η)

)
(η − η0)dη.

Then, by taking into account Procedures (P 1) and (P 3),

Px

(
A1,1(α,ψ)(x)

) = IA1,1(α,ψ)(x) + JA1,1(α,ψ)(x) + RA1,1(α,ψ),

with

IA1,1(α,ψ) := 2

ε2
p.v.

ˆ

B(0,δ)

αε,η0(η)〈η,ψ(x)〉
|η|3 (η − η0)dη, (74)

JA1,1(α,ψ)(x) := 2

ε2

ˆ

B(0,δ)

αε,η0(η)O(|η|2)
|η|3 (η − η0)dη, (75)

RA1,1(α,ψ)(x) :=
ˆ

B(0,2δ)\B(0,δ)

· · · , (76)

where, in RA1,1(α, ψ)(x), one has the same integrand (in local coordinates) as in A1(α, ψ)(x). Clearly, there exists a 
positive constant Cδ only depending on δ such that, for ε small enough with respect to δ, one has

∥∥RA1,1(α,ψ)(x)
∥∥ ≤ Cδ

e
− δ2

ε2

ε4
. (77)

Moreover, one can apply Lemma 4.3 to JA1,1(α, ψ)(x), one gets that

∥∥JA1,1(α,ψ)(x)
∥∥ ≤ 2

ε2

(
C(1) + C(0)r0

ε

)
,

and since r0
ε

= O(1), one finally deduces that there exists a positive constant C∗ such that

∥∥JA1,1(α,ψ)(x)
∥∥ ≤ C∗

ε2
. (78)

Note that, for ε small enough the upper bound of (78) is larger than that of (77).
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It remains to estimate IA1,1(α, ψ)(x). First of all, notice that the norm of

2

ε2

ˆ

R2\B(0,δ)

αε,η0(η)〈η,ψ(x)〉
|η|3 (η − η0)dη,

is clearly less than or equal to Cδe
− δ2

4ε2

ε4 for some positive constant Cδ only dependent on δ and ε small enough with 
respect to δ.

We can therefore estimate, instead of IA1,1(α, ψ)(x), the quantity Ĩ A1,1(α, ψ)(x) defined by

Ĩ A1,1(α,ψ)(x) := 2

ε2
p.v.

ˆ

R2

αε,η0(η)〈η,ψ(x)〉
|η|3 (η − η0)dη. (79)

By using polar coordinates, one gets

Ĩ A1,1(α,ψ)(x)

= 2
e−r̄2

0

ε4
rψ

∞̂

0

exp

(
− r2

ε2

)
dr

2πˆ

0

cos(θ − θψ) exp

(
2
r

ε
r̄0 cos(θ − θ0)

)(
cos θ

sin θ

)
dθ

− 2
e−r̄2

0

ε3
rψ

(
cos θ0
sin θ0

)
r̄0 p.v.

∞̂

0

exp (− r2

ε2 )

r
dr

2πˆ

0

cos(θ − θψ) exp

(
2
r

ε
r̄0 cos(θ − θ0)

)
dθ

= 2
e−r̄2

0

ε3
rψ

(
M

A1
1 (r̄0) cos(θ0 − θψ) cos θ0 + M

A1
2 (r̄0) sin(θ0 − θψ) sin θ0

M
A1
1 (r̄0) cos(θ0 − θψ) sin θ0 − M

A1
2 (r̄0) sin(θ0 − θψ) cos θ0

)

− 2
e−r̄2

0

ε3
rψ cos(θ0 − θψ)

(
cos θ0
sin θ0

)
r̄2

0 M
A1

1
3 (r̄0)

= 2
e−r̄2

0

ε3
rψ

(
[MA1

1 (r̄0) − r̄2
0 M

A1
1

3 (r̄0)] cos(θ0 − θψ) cos θ0 + M
A1
2 (r̄0) sin(θ0 − θψ) sin θ0

[MA1
1 (r̄0) − r̄2

0 M
A1

1
3 (r̄0)] cos(θ0 − θψ) sin θ0 − M

A1
2 (r̄0) sin(θ0 − θψ) cos θ0

)
,

where

M
A1
1 (r̄0) :=

∞̂

0

exp
(−r2)dr

2πˆ

0

cos2 θ exp(2rr̄0 cos θ)dθ, (80)

M
A1
2 (r̄0) :=

∞̂

0

exp
(−r2)dr

2πˆ

0

sin2 θ exp(2rr̄0 cos θ)dθ, (81)

M
A1
3 (r̄0) := 1

r̄0
p.v.

∞̂

0

exp(−r2)

r
dr

2πˆ

0

cos θ exp(2rr̄0 cos θ)dθ. (82)

The needed information about the functions MA1
i (·), i = 1, 2, 3, is gathered in the following lemma, whose proof 

is given in Section B.5 in Appendix B.

Lemma 4.7. For i = 1, 2, MA1
i (·) are entire functions. Moreover, the function MA1

4 (·) defined by the relation

M
A1
4 (z) := 1

z2

(
M

A1
1 (z) − z2M

A1
3 (z) − M

A1
2 (z)

)
(83)

is a nonzero entire function.
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Using Lemma 4.7, we further simplify Ĩ
A1,1
1 as follows.

Ĩ
A1,1
1 (α,ψ)

= 2
e−r̄2

0

ε3
rψ

( [MA1
1 (r̄0) − r̄2

0 M
A1
3 (r̄0)] cos(θ0 − θψ) cos θ0 + M

A1
2 (r̄0) sin(θ0 − θψ) sin θ0

[MA1
1 (r̄0) − r̄2

0 M
A1
3 (r̄0)] cos(θ0 − θψ) sin θ0 − M

A1
2 (r̄0) sin(θ0 − θψ) cos θ0

)

= 2
e−r̄2

0

ε3
rψ r̄0M

A1
4 (r̄0) cos(θ0 − θψ)

(
cos θ0
sin θ0

)
+ 2

e−r̄2
0

ε3
rψM

A1
2

(
r̄2

0

)(
cos θψ

sin θψ

)

= 2
e−r̄2

0

ε3
M

A1
4 (r̄0)

〈
η̄0,ψ(x)

〉
η̄0 + 2

e−r̄2
0

ε3
M

A1
2 (r̄0)ψ(x). (84)

This ends the proof of Proposition 4.5. �
Lemma 4.8. With the above notations, for ε > 0 small enough, one has

Px

(
A1,2(α,ψ)(x)

) = 2e−r̄2
0

ε3

(
M

A1
5 (r̄0) − r̄2

0M
A1
3 (r̄0)

)
ψ(x) + O

(
1

ε2

)
, (85)

where MA1
5 (·) is the non-zero entire function defined as MA1

1 (·) + M
A1
2 (·).

Proof of Lemma 4.8. We proceed similarly as in the proof of Lemma 4.6. Besides remainder terms, one must estimate 
the principal term given by

IA1,2(α,ψ)(x) = p.v.
2

ε2

ˆ

R2

αε,η0(η)〈η,η − η0〉
|η|3 dηψ(x).

Using polar coordinates, one gets

IA1,2(α,ψ)(x)

=
(

2

ε2

ˆ

R2

αε,η0(η)

|η| dη − 2

ε2
p.v.

ˆ

R2

αε,η0(η)〈η,η0〉
|η|3 dη

)
ψ(x)

=
(

2e−r̄2
0

ε3

∞̂

r=0

2πˆ

0

e−r2
e2rr̄0 cos θ dθ dr − 2e−r̄2

0

ε3
r̄0 p.v.

∞̂

r=0

2πˆ

0

e−r2
e2rr̄0 cos θ cos θ dθ

dr

r

)
ψ(x)

= 2e−r̄2
0

ε3

(
M

A1
5 (r̄0) − r̄2

0 M
A1
3 (r̄0)

)
ψ(x),

where MA1
3 (r̄0) and MA1

5 (r̄0) are given respectively by (180) and (183). �
4.1.3. Asymptotic expansion of Ai for 2 ≤ i ≤ 5

We establish the following proposition for the asymptotic expansion of Ai with i = 2, . . . , 5.

Proposition 4.9. For i = 2, . . . , 5 and ε > 0 small enough, one has

Px

(
Ai(α,ψ)(x)

) = O

(
1

ε2

)
. (86)

Proof of Proposition 4.9. We proceed similarly as in the proof of Lemma 4.6.

For A2(α, ψ)(x), we only need to estimate the following term:

RA2(α,ψ)(x) := (∇ψ(x) + ∇T ψ(x)
)

p.v.

ˆ

2

αε,η0(η)

|η|3 ηdη.
R
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By Lemma 4.4, one gets

RA2(α,ψ)(x) = e−r̄2
0

ε2
M

A1
1

3 (r̄0)
(∇ψ(x) + ∇T ψ(x)

)
η̄0 = O

(
1

ε2

)
. (87)

For A3(α, ψ)(x), we first note that ∇α(y)nx = 0, and〈
nx,ψ(y)

〉 = 〈
nx,ψ

(
x + η − nx(η)nx

)〉 = 〈
nx,ψ(x) + ∇ψ(x)η + O

(|η|2)〉
= 〈∇ψ(x)T nx, η

〉 + O
(|η|2).

Thus, we need to estimate the following integral,

RA3(α,ψ)(x) := 2

ε2

ˆ

R2

αε,η0(η)
〈∇ψ(x)T nx, η〉

|η|3 〈η − η0, η〉dη nx.

One can clearly apply Lemma 4.3 to RA3
1 (α, ψ)(x) with m = 0, 1 and one gets,

∥∥RA3(α,ψ)(x)
∥∥ ≤ 2

ε2

(
C(1) + C(0)r0

ε

)
,

and since r0
ε

= O(1), one finally deduces that

RA3(α,ψ)(x) = O

(
1

ε2

)
. (88)

For A4(α, ψ)(x), we only need to estimate the following term:

RA4(α,ψ)(x) :=
〈

p.v.

ˆ

R2

αε,η0(η)

|η|3 ηdη,
(∇ψ − ∇T ψ(x)

)
nx

〉
nx.

Using Lemma 4.4, one gets

RA4(α,ψ)(x) = e−r̄2
0

ε2
M

A1
3 (r̄0)

〈(∇ψ − ∇T ψ(x)
)
η̄0, nx

〉
nx = O

(
1

ε2

)
. (89)

For A5(α, ψ)(x), one gets the estimate

RA5(α,ψ)(x) = O

(
1

ε2

)
, (90)

as a consequence of Lemma 4.10.

In summary, for i = 2, . . . , 5, Px(Ai(α, ψ)(x)) = O(
1

ε2
), which ends the proof of Proposition 4.9. �

Lemma 4.10. With the notations above, consider the function defined for x ∈ ∂Ω

R(x) =
ˆ

∂Ω

r(x, y) · ∇(αψ)(y)dσ (y),

where r(·,·) is a C3∗(1) weakly singular kernel and · stands for a linear action of r on the coefficients of ∇(αψ)(·). 
Then, there exists a positive constant CR such that, for ε > 0 small enough and x ∈ ∂Ω , one gets∥∥Px

(
R(x)

)∥∥ ≤ CR

ε2
. (91)

Proof of Lemma 4.10. As done for estimating A1, we use the change of variables introduced in Subsection 3.2 and 
taking into account Lemma 3.4 and Remark 3.2, it is easy to see that the most “singular” part corresponds to majorizingˆ

B(0,δ)

∇αε(η)

|η| dη.

Thus Eq. (91) follows readily from Lemma 4.3. �
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4.2. Estimates of the remainder terms Wj
i , i = 2, 3, 4 and j = 1, 2

In this subsection, we estimate from above the remainder terms Px(W
j
i (x)), i = 2, 3, 4 and j = 1, 2, defined 

respectively in Eqs. (56), (57) and (56). More precisely, we prove that

Proposition 4.11. With the notations above, we have, for ε > 0 small enough, j = 1, 2 and i = 2, 3, 4,

Px

(
W

j
i (x)

) = O

(
1

ε2

)
. (92)

Remark 4.1. One must stress the similarity of our computations with those performed by D. Henry in [20]. More 
precisely, the terms A1 and A2 in Wj

1 (·), which are (essentially) the most “singular” part in the hypersingular operator 
E defined in Eq. (61), correspond to the operator J (·) defined in Theorem 7.4.1 of [20, p. 135], with the specific choice 
of Q(x, y, y−x

|y−x| ) = Vn(y)
y−x
|y−x| and n = 3. Also notice that our Lemma 4.4 corresponds to an explicit computation of 

the polynomial q(·) (cf. Theorem 7.4.1 of [20]) and follows the same lines as the strategy proposed in page 137 in 
[20]. In particular, one gets from Theorem 7.4.1 of [20] that Wj

1 (·) extends uniquely to a continuous operator on ∂Ω .

Proof of Proposition 4.11. All the estimates to be established are consequences of (171)–(174) obtained in Corol-
lary B.2. We rewrite it as follows. For u of class C2 and x ∈ ∂Ω , one writes 4πEu(x) as the sum of two operators,

4πEu(x) = Fu(x) + Lu(x) = p.v.

ˆ

∂Ω

f (x, y) · ∇u(y)dσ(y) +
ˆ

∂Ω

l(x, y) · ∇u(y)dσ (y), (93)

where “·” stands for an action of the respective kernels which is linear with respect to ∇u(·), l(·,·) is a C3∗(1) kernel 
(of appropriate matrix size) defined in Appendix A.2 and the kernel f (·,·) defining the singular operator F together 
with its action is given by

f (x, y) · M(y) := [
M(y) + MT (y)

] x − y

|x − y|3 + nxn
T
x

[
M(y) − MT (y)

] x − y

|x − y|3 , (94)

for x 	= y, points on ∂Ω and M is C1 matrix-valued function defined on ∂Ω . We are then only interested in the first 
term of the above sum.

In order to handle the remainder terms Px(W
j
i )’s, i = 2, 3, 4, one must handle the evaluation at Vn

∂φj

∂n
of the 

operators obtained as the composition of Kλ
Ω defined in (155) and its iterations with Wj

1 . In fact, we will show 

next that all remainder terms Px(W
j
i )’s, i = 2, 3, 4 are O( 1

ε2 ) and to proceed, we will be only interested in the 

contribution of the “most” singular part in each term Wj
i ’s, i = 2, 3, 4. For that purpose, we will perform several (and 

standard) reductions. The first one consists in considering the operator K0
Ω instead of Kλ

Ω since Kλ
Ω − K0

Ω admits a 

C1 kernel. Lemma 4.10 already handles the term Wj

3 . Next, recall K0
Ω is a weakly singular operator of class C3∗(1)

(see Appendix A.2 for a definition). To handle the terms Wj

2 and Wj

4 , we first need the following result.

Lemma 4.12. The operator defined on C1(∂Ω) as the composition of K0
Ω and F is a weakly singular operator of 

class C3∗(1).

Thanks to the above lemma, the first term in the summation (56) is controlled as O( 1
ε2 ). For the other terms, it 

is now enough to see that they correspond to compositions of iterates of K0
Ω with K0

Ω ◦ F and thus we can apply 
Theorem A.4 given below on the composition of weakly singular operators of class C3∗(γ ) with γ > 0. We deduce 
at once that every term appearing in the summation (56) corresponds to the evaluation at ∇(Vn

dφj

dn
)(·) of a weakly 

singular operator of class C3∗(γ ), with γ ≥ 1, and is therefore controlled as O( 1
ε2 ). The term Wj

3 is handled in a 
similar way and Proposition 4.11 is established. �

We now give the proof of Lemma 4.12.



Y. Chitour et al. / Ann. I. H. Poincaré – AN 33 (2016) 119–167 145
Proof of Lemma 4.12. The argument given below is already contained in Section 7.6 of [20], which considers a more 
general situation (see, more particularly, the proof of Theorem 7.6.3, p. 147, [20]). For sake of clarity, we reproduce 
the main lines. Let M be a C1 matrix-valued function defined on ∂Ω . Then, the composition (K0

Ω ◦ F)[M](·) is 
defined, for x ∈ ∂Ω , as the sum(

K0
Ω ◦ F

)[M](x) = R1(x) + R2(x),

where

R1(x) = 3

4π
p.v.

ˆˆ

∂Ω×∂Ω

〈x − z,n(z)〉
|z − x|5 (x − z)(x − z)T

[
M(y) + MT (y)

] z − y

|z − y|3 dσy dσz, (95)

and

R2(x) = 3

4π
p.v.

ˆˆ

∂Ω×∂Ω

〈x − z,n(z)〉2

|z − x|4
(x − z)

|z − x|
〈n(z), [M(y) − MT (y)](z − y)〉

|z − y|3 dσy dσz. (96)

Thanks to (158), the operator R2 is clearly more regular than R1. In the sequel, we only provide details for R1 and 
only give the estimate for R2.

We next develop in coordinates the above expressions and obtain that, for i = 1, 2, 3,

(
R1(x)

)
i
= 3

4π

3∑
k,l=1

p.v.

ˆ

∂Ω

(
M(y)

)
kl

dσy

ˆ

∂Ω

[ 〈x − z,n(z)〉(x − z)i(x − z)k

|z − x|5
(z − y)l

|z − y|3

+ 〈x − z,n(z)〉(x − z)i(x − z)l

| z − x |5
(z − y)k

|z − y|3
]

dσz. (97)

The integrand of (97) shows that R1 is the contraction of M(·) and a tensor field of order (2, 1) defined (in coordinates) 
by the interior integral in (97). In order to describe R1 as a convolution, we prefer to rewrite (97) in a more elementary 
way, as follows,(

R1(x)
)
i
= 3

4π
p.v.

ˆ

∂Ω

Tr
(
M(y)ci(x, y)

)
dσy,

where the kernel ci(x, y) is defined for x 	= y and 1 ≤ i ≤ 3, as

ci(x, y) := p.v.

ˆ

∂Ω

〈x − z,n(z)〉(x − z)i

|z − x|5
[

(x − z)(z − y)T

|z − y|3 + (z − y)(x − z)T

|z − y|3
]

dσz. (98)

Let (ei)1≤i≤3 be the canonical basis of R3. Then one has ci(x, y) = di(x, y) + di(x, y)T , where

di(x, y) := p.v.

ˆ

∂Ω

k0(x, z)
[
gi(z, y)

]
dσz, (99)

i.e., di(x, y) is the kernel corresponding to the convolution of K0
Ω with kernel k0(·,·) given by

k0(x, y) := 1

|x − y|
〈x − y,n(y)〉

|x − y|2
(x − y)

|x − y|
(x − y)T

|x − y| ,

and the singular operator Gi with kernel gi(·,·) given by

gi(x, y) := ei(x − y)T

|x − y|3 .

To perform that analysis, one writes (99) in the chart hx defined in (46) and only considers the most “singular” 
term of the composition, which is given by

p.v.

ˆ
ηT Kxη

|η|5 ηηT ẽi(η − ηy)
T

|η − ηy |3 dη. (100)
B(0,δ)
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Here, ẽi is the orthogonal projection of ei onto Tx∂Ω . In (100), one clearly recognizes the convolution between 

the kernels ηT Kxη

|η|5 ηηT and ẽiη
T

|η|3 . The first kernel can also be written as 1
|η|Q(

η
|η| ) where the components of Q are 

homogeneous polynomials of degree four defined on S1. According to [20, Th. 7.3.1, p. 128] (which refers to [36] for 
more complete computations), the Fourier transforms of these kernels are respectively equal to

F.T .

(
ηT Kxη

|η|5 ηηT

)
(ξ) = 1

|ξ |Q̃
(

ξ

|ξ |
)

,

and

F.T .

(
η

|η|3
)

(ξ) = γ1
ξ

|ξ | ,

where γ1 is a positive constant and the components of Q̃ are homogeneous polynomials of degree four. We get that the 
Fourier transform of the operator whose kernel is given by (100) is equal to the product of the two Fourier transforms 
written previously and, as a consequence, that operator is weakly singular of class C3∗(1). The same conclusion holds 
true as well for R1. A similar line of reasoning shows that R2 is weakly singular of class C3∗(2) and Lemma 4.10 is 
finally proved. �
5. Proof of Theorem 1.1

In this section, we establish in full generality the Foias–Saut conjecture in 3D as stated in [17]. First of all, notice 
that there is a countable number of resonance relations as defined in Definition 1.1. To see that, simply remark that, 
for every positive integer N , there exists a finite number of resonance relations of the type λk = ∑l

j=1 mjλj , with 

λ1 ≤ · · · ≤ λl ≤ λk , so that k + ∑l
j=1 mj ≤ N . We use (RR)n, n ≥ 1, to denote these resonances relations.

Fix a domain Ω0 ∈D
3
� with � ≥ 5. We define, for n ∈N, the sets

A0 := D
3
�(Ω0),

and, for n ≥ 1,

An := {
Ω0 + u, u ∈ W�,∞(

Ω0,R
3), Ω0 + u ∈ A0

and the n first resonance relations (RR)j , 1 ≤ j ≤ n, are not satisfied
}
.

Set A := ⋂
l∈N An. Note that

A = {
Ω0 + u, u ∈ W�,∞(

Ω0,R
3), Ω0 + u ∈ A0 (SDΩ0+u) is not resonant

}
.

For n ≥ 0, each set An is open and one must show that An+1 is dense in An. Reasoning by contradiction, assume 
that there exists n ∈ N so that An+1 is not dense in An and fix (RR)n+1 to be equal to λk = ∑l

j=1 mjλj , for some 
integers k, l, m1 · · · , ml . With no loss of generality, we assume that there exists Ω ∈ D

3
� and ε > 0 so that, for u ∈ W�,∞

with ‖u‖�,∞ < ε, we have

(i) the k first eigenvalues λ1(u), . . . , λk(u) of (SDΩ+u) are simple;
(ii) the resonance condition holds true:

λk(u) =
l∑

j=1

mjλj (u). (101)

By Condition (i) and Eq. (33), one has, for u ∈ W�,∞ with ‖u‖�,∞ < ε and 1 ≤ j ≤ k,

λ′
j (u) = −

ˆ

∂Ω

〈u,n〉
∥∥∥∥∂φj

∂n

∥∥∥∥
2

, (102)

where φj is the orthonormal eigenfunction associated to the eigenvalue λj of (SDΩ).
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Taking the shape derivative of Eq. (101), we have

ˆ

∂Ω

〈u,n〉
∥∥∥∥∂φk

∂n

∥∥∥∥
2

=
ˆ

∂Ω

〈u,n〉
l∑

j=1

mj

∥∥∥∥∂φj

∂n

∥∥∥∥
2

. (103)

Since Eq. (103) holds true for all u small enough, we obtain

∥∥∥∥∂φk

∂n

∥∥∥∥
2

−
l∑

j=1

mj

∥∥∥∥∂φj

∂n

∥∥∥∥
2

= 0 on ∂Ω. (104)

Continuing the argument by contradiction, we assume that Eq. (104) holds true in a neighborhood of Ω and take 
again the shape derivative. By Proposition 3.2, we have, on ∂Ω ,

〈
∂φ′

k

∂ν
,
∂φk

∂n

〉
−

l∑
j=1

mj

〈
∂φ′

j

∂ν
,
∂φj

∂n

〉
= −〈u,n〉

[〈
∂

∂n

∂φk

∂N
,
∂φk

∂n

〉
−

l∑
j=1

mj

〈
∂

∂n

∂φj

∂N
,
∂φj

∂n

〉]
. (105)

We choose a variation u such that 〈u, n〉 = Vn with Vn defined in Section 3.2. Using Proposition 3.5 together with 
Eq. (104), since η̄0 is an arbitrary unitary vector of R2, we obtain, on ∂Ω ,

∂φk

∂n

(
∂φk

∂n

)T

−
l∑

j=1

mj

∂φj

∂n

(
∂φj

∂n

)T

= 0. (106)

From now on, fix x ∈ ∂Ω such that ∂φk

∂n
(x) 	= 0. Recall that such an x exists by the result of Osses in [29]. According 

to Eq. (106), there exists an open neighborhood Ox of x on ∂Ω such that, for 1 ≤ j ≤ l, there is a C2 function μj

such that

∂φj

∂n
= μj

∂φk

∂n
, on Ox. (107)

In addition, one has,

1 −
l∑

j=1

mjμ
2
j = 0, on Ox. (108)

It is clear that all the equations from (102) to (108) were obtain by assuming that Eq. (101) holds true in an open 
neighborhood of u = 0. As a consequence, these equations must also hold true in an open neighborhood of u = 0
and thus, one can take the shape derivatives of Eqs. (106) at u = 0 along any variation. We will perform such a shape 
derivation along the variations Vn defined in Section 3.2, with this time the real number δ > 0 chosen so that the 
support of Vn is contained in Ox . Using Lemma 3.1, the shape derivative of Eq. (106) is equal to

∂φ′
k

∂ν

(
∂φk

∂n

)T

+ ∂φk

∂n

(
∂φ′

k

∂ν

)T

−
l∑

j=1

mj

[
∂φ′

j

∂ν

(
∂φj

∂n

)T

+ ∂φj

∂n

(
∂φ′

j

∂ν

)T ]

+
(

p′
k +

〈
∂φk

∂n
,n′

〉)[
n

(
∂φk

∂n

)T

+ ∂φk

∂n
nT

]
−

l∑
j=1

mj

(
p′

j +
〈
∂φj

∂n
,n′

〉)[
n

(
∂φj

∂n

)T

+ ∂φj

∂n
nT

]

= −Vn

(
∂

∂n

∂φk

∂N

(
∂φk

∂n

)T

+ ∂φk

∂n

(
∂

∂n

∂φk

∂N

)T

−
l∑

j=1

mjμj

[
∂

∂n

∂φj

∂N

(
∂φk

∂n

)T

+ ∂φk

∂n

(
∂

∂n

∂φj

∂N

)T ])
, (109)

where the above equation holds on ∂Ω .
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Moreover, on Ox , one deduces that

∂

∂n

∂φj

∂n
= ∇(

μj (∇φkn)
)
n = ∂μj

∂n

∂φk

∂n
+ μj∇2φk(n,n),

∂

∂n
∇T φjn = ∇(

μj

(∇T φkn
))

n = ∂μj

∂n
∇T φkn + μj∇

(∇T φkn
)
n = μj∇

(∇T φkn
)
n.

This implies that, on Ox ,

∂

∂n

∂φj

∂N
= ∂μj

∂n

∂φk

∂n
+ μjvk, (110)

with vk := ∇2φk(n, n) + ∇(∇T φkn)n. Therefore, one has on Ox ,

∂

∂n

∂φk

∂N

(
∂φk

∂n

)T

+ ∂φk

∂n

(
∂

∂n

∂φk

∂N

)T

−
l∑

j=1

mjμj

[
∂

∂n

∂φj

∂N

(
∂φk

∂n

)T

+ ∂φk

∂n

(
∂

∂n

∂φj

∂N

)T ]

=
(

1 −
l∑

j=1

mjμ
2
j

)[
vk

(
∂φk

∂n

)T

+ ∂φk

∂n
vT
k

]
− 2

l∑
j=1

mjμj

∂μj

∂n

∂φk

∂n

(
∂φk

∂n

)T

= −2
l∑

j=1

mjμj

∂μj

∂n

∂φk

∂n

(
∂φk

∂n

)T

. (111)

Plugging Eqs. (107), (108), and (111) into Eq. (109), we obtain on Ox that

∂φ′
k

∂ν

(
∂φk

∂n

)T

+ ∂φk

∂n

(
∂φ′

k

∂ν

)T

−
l∑

j=1

mjμj

[
∂φ′

j

∂ν

(
∂φk

∂n

)T

+ ∂φk

∂n

(
∂φ′

j

∂ν

)T ]

+
(

p′
k −

l∑
j=1

mjμjp
′
j

)[
n

(
∂φk

∂n

)T

+ ∂φk

∂n
nT

]

= 2Vn

l∑
j=1

mjμj

∂μj

∂n

∂φk

∂n

(
∂φk

∂n

)T

. (112)

On Ox , set

dk :=
l∑

j=1

mjμj

(
μj

∂φ′
k

∂ν
− ∂φ′

j

∂ν

)
. (113)

The main part of the rest of the argument consists in deriving the main term of the asymptotic expansion of Px(dk)

at x, in terms of the powers of 1
ε
. The first step will be to establish that Px(dk(x)) = O( 1

ε
) and, in the second step, we 

will compute precisely the coefficient d1 defined as

Px

(
dk(x)

) = d1

ε
+ O(1),

where the coefficient d1 will depend on the parameters involved in the special variation Vn. Once this is performed, 
we will resume the contradiction argument using the information contained in d1.

To prepare these computations, we first rewrite Eq. (112) using again Eq. (108) as

dk

(
∂φk

∂n

)T

+ ∂φk

∂n
dT
k +

(
p′

k −
l∑

j=1

mjμjp
′
j

)[
n

(
∂φk

∂n

)T

+ ∂φk

∂n
nT

]

= 2

[
l∑

mjμj

∂μj

∂n

]
Vn

∂φk

∂n

(
∂φk

∂n

)T

. (114)

j=1
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Multiplying Eq. (114) from the left by ( ∂φk

∂n
)T and from the right by ∂φk

∂n
, we obtain the following scalar equation 

which will be used to achieve a contradiction.

〈
∂φk

∂n
, dk

〉
=

[
l∑

j=1

mjμj

∂μj

∂n

]
Vn. (115)

We now prove the following lemma.

Lemma 5.1. With the notations above, one has Px(dk(x)) = O( 1
ε
).

Proof of Lemma 5.1. Set ψ := ∂φk

∂n
and, for y ∈ Ox ,

β(y) :=
l∑

j=1

mjμj (x)
(
μj (y) − μj (x)

)
. (116)

Then, one has β(y) = O(|x − y|2). More precisely, if we use the parameterization defined in Eq. (46), we obtain (in 
local coordinates)

β(y) = 1

2

(
∂β

∂n
(x)ηT Kxη + ηT Hxη

)
+ O

(|η|3) := 1

2
ηT Fxη + O

(|η|3), (117)

where Hx denotes the Hessian matrix of β at x. Note that by taking twice tangent derivatives of Eq. (108), we know 
that Hx is a negative semi-definite matrix.

Consider now the representation formula of dk as described in Eq. (160). Note that, in Px(dk), two contributions 
give rise to the term of order of O( 1

ε
), namely these coming from b(0) and e(λ) respectively.

The term corresponding to b(0) in that equation is equal to

Px

(
E

(
βVn

∂φk

∂n

)
(x)

)
. (118)

Thanks to the estimate of β in (117), it is clear, by proceeding as in Subsection 4.2, that all the other terms of the 
representation formula of Px(dk) are indeed of the type O( 1

ε
). Therefore, one has only to determine the asymptotic 

expansion of the term given in Eq. (118). According to Lemma 4.2, it amounts now to estimate the five terms Px(Ai), 
1 ≤ i ≤ 5, and after elementary or standard computations using systematically Eq. (117), we obtain

Px

(
A1(α,βψ)(x)

) = 1

4πε2

ˆ

R2

αε(η)

|η|3 ηT Fxη
(〈
ψ(x), η

〉
(η − η0) + 〈η − η0, η〉ψ(x)

)
dη + O(1), (119)

Px

(
A2(α,βψ)(x)

) = − 1

4π

ˆ

R2

αε(η)

|η|3
(
ψ(x)ηT Fxη + 〈

ψ(x), η
〉
Fxη

)
dη + O(1), (120)

and, for 3 ≤ j ≤ 5, Aj(α, βψ)(x) = O(1).
Let us now treat the terms given by e(λ). Note that the presence of these terms reflects the fact that φj and φk

correspond to different eigenvalues of the Stokes operator. Using Lemma A.1, we define the operator �λ(α, ψ) as 
follows

�λ(α,ψ)(x) := − λ

8π

ˆ

R2

αε(η)〈ψ(x), η/|η|〉
|η|

η

|η|dη. (121)

It is clear that

�λ(α,ψ)(x) = O

(
1
)

.

ε
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Therefore, with above notations, we have

Px

(
dk(x)

) = A1(α,ψ)(x) + A2(α,ψ)(x) +
l∑

j=1

mjμj

(
μj�

λk (α,ψ)(x) − �λj (α,μjψ)(x)
) + O(1)

= O

(
1

ε

)
. (122)

This ends the proof of Lemma 5.1. �
Let us now pursue the proof of Theorem 1.1. Since the value of the right-hand side of Eq. (115) at x is given by 

the following expression[
l∑

j=1

mjμj (x)
∂μj

∂n
(x)

]
e−r̄2

0

ε2
= O

(
1

ε2

)
,

we conclude that

l∑
j=1

mjμj (x)
∂μj

∂n
(x) = 0, i.e.,

∂β

∂n
(x) = 0, (123)

which implies that〈
∂φk

∂n
(x), dk(x)

〉
= 0. (124)

In order to get additional information from Eq. (124), we compute explicitly the numerical coefficient in front of 1
ε

in the asymptotic expansion of Px(dk(x)). It is enough to have a closer look at the representation formula of Px(dk)

as described in Eq. (160). From Eq. (122), we have

Px

(
dk(x)

) = a1 + a2 + ρa3 + O(1). (125)

where

a1 := 1

4πε2

ˆ

R2

αε(η)

|η|3 ηT Fxη
(〈
ψ(x), η

〉
(η − η0) + 〈η − η0, η〉ψ(x)

)
dη, (126)

a2 := − 1

4π

ˆ

R2

αε(η)

|η|3
(
ψ(x)ηT Fxη + 〈

ψ(x), η
〉
Fxη

)
dη, (127)

a3 := − 1

8π

ˆ

R2

αε(η)〈ψ(x), η/|η|〉
|η|

η

|η|dη, (128)

ρ :=
l∑

j=1

mjμ
2
j (λk − λj ). (129)

Notice that ρ > 0 since λk > λj for 1 ≤ j ≤ l and at least one of the integers mj is positive.
We now compute the coefficients ai , 1 ≤ i ≤ 3. For θ0 ∈ S1, we set

Rθ0 :=
(

cos θ0 − sin θ0
sin θ0 cos θ0

)
, Fθ0 := RT

θ0
FxRθ0 := (

F
ij
θ0

)
i,j=1,2.

For 6 ≤ i ≤ 10, we define the functions Mi as follows.

M6(z) :=
∞̂

e−r2
r2dr

2πˆ
e2rz cos θ dθ, (130)
0 0
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M7(z) :=
∞̂

0

e−r2
r2dr

2πˆ

0

e2rz cos θ cos2 θdθ, (131)

M8(z) :=
∞̂

0

e−r2
r2dr

2πˆ

0

e2rz cos θ cos4 θdθ, (132)

M9(z) :=
∞̂

0

e−r2
rdr

2πˆ

0

e2rz cos θ cos θdθ, (133)

M10(z) :=
∞̂

0

e−r2
rdr

2πˆ

0

e2rz cos θ cos3 θdθ. (134)

The expressions of a1, a2, and a3 are summarized in the following lemma whose proof is postponed in Section B.6 of 
Appendix B.

Lemma 5.2. We have

a1 = 1

4π

e−r̄2
0

ε

([
2F 22

θ0
M6(r̄0) + (

2F 11
θ0

− 3F 22
θ0

)
M7(r̄0) − (

F 11
θ0

− F 22
θ0

)(
M8(r̄0) + M10(r̄0)

) − F 22
θ0

M9(r̄0)
]
ψ(x)

− [(
F 22

θ0
M9(r̄0) + (

F 11
θ0

− F 22
θ0

)(
M10(r̄0) − 2M8(r̄0)

) + (
F 11

θ0
− 3F 22

θ0

)
M7(r̄0)

+ F 22
θ0

M6(r̄0)
)〈

ψ(x), η̄0
〉 + 2F 12

θ0

(
M9(r̄0) − M10(r̄0)

)〈
ψ(x), η̄⊥

0

〉]
η̄0

− 2F 12
θ0

(
M7(r̄0) − M8(r̄0)

)
ψ(x)⊥ + 4F 12

θ0

(
M7(r̄0) − M8(r̄0)

)〈
ψ(x), η̄0

〉
η̄⊥

0

)
, (135)

a2 = − 1

4π

e−r̄2
0

ε

{[
F 22

θ0
M

A1
5 (r̄0) + (

F 11
θ0

− F 22
θ0

)
M

A1
1 (r̄0)

]
ψ(x)

+ Fx

((
M

A1
5 (r̄0) − M

A1
1 (r̄0)

)
ψ(x) + (

2M
A1
1 (r̄0) − M

A1
5 (r̄0)

)〈
ψ(x), η̄0

〉
η̄0

)}
, (136)

a3 = − 1

8π

e−r̄2
0

ε

[(
M

A1
5 (r̄0) − M

A1
1 (r̄0)

)
ψ(x) + (

2M
A1
1 (r̄0) − M

A1
5 (r̄0)

)〈
ψ(x), η̄0

〉
η̄0

]
. (137)

Let us now finish the proof of Theorem 1.1. We choose η̄0 ⊥ ψ(x). Without loss of generality, we also assume that 
η̄0 = (1, 0)T and ψ(x)/|ψ(x)| = (0, 1)T . Recall that we have chosen x such that ψ(x) 	= 0. Then, we deduce from 
Eq. (125) and Lemma 5.2 that

dk(x) = e−r̄2
0

4πε

(
α1ψ(x) + α2ψ(x)⊥ + α3Fxψ(x)

)
, (138)

where,

α1 := 2F 22
x M6(r̄0) + (

2F 11
x − 3F 22

x

)
M7(r̄0) − (

F 11
x − F 22

x

)(
M8(r̄0) + M10(r̄0)

) − F 22
x M9(r̄0)

−
((

F 22
x + ρ

2

)
M

A1
5 (r̄0) +

(
F 11

x − F 22
x − ρ

2

)
M

A1
1 (r̄0)

)
,

α2 := 2F 12
x

(
M9(r̄0) + M8(r̄0) − M10(r̄0) − M7(r̄0)

)
,

α3 := −(
M

A1
5 (r̄0) − M

A1
1 (r̄0)

)
.

Plugging Eq. (138) into Eq. (124), we obtain

α1 + F 22
x α3 = 0. (139)
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The final contradiction will be obtained by showing that the two non-zero entire functions of r̄0 given by α1 and 
α2 cannot satisfy Eq. (139). For that purpose, we need to get more explicit expressions. Eq. (139) writes

0 = 2F 22
x M6(r̄0) + (

2F 11
x − 3F 22

x

)
M7(r̄0) − (

F 11
x − F 22

x

)(
M8(r̄0) + M10(r̄0)

) − F 22
x M9(r̄0)

−
((

2F 22
x + ρ

2

)
M

A1
5 (r̄0) +

(
F 11

x − 2F 22
x − ρ

2

)
M

A1
1 (r̄0)

)

= F 11
x

(
2M7(r̄0) − M8(r̄0) − M10(r̄0) − M

A1
1 (r̄0)

)
+ F 22

x

(
2M6(r̄0) − 3M7(r̄0) + M8(r̄0) + M10(r̄0) − M9(r̄0) − 2M

A1
5 (r̄0) + 2M

A1
1 (r̄0)

)
+ ρ

2

(
M

A1
1 (r̄0) − M

A1
5 (r̄0)

)
. (140)

Since the right-hand side of Eq. (140) is an entire function, we deduce that all the coefficients in its power series 
expansion are equal to zero. We need the following lemma whose proof is deferred in Section B.7 of Appendix B.

Lemma 5.3. The entire functions involved in Eq. (140) have the following power series expansions

2M7(z) − M8(z) − M10(z) − M
A1
1 (z)

=
∞∑

p=0

22p+1

(2p)! Γ

(
p + 1

2

)
I2p+2

2p2 + 4p − 3
2

2p + 3
z2p −

∞∑
p=0

22p+2

(2p + 1)!Γ
(

p + 3

2

)
I2p+4z

2p+1,

2M6(z) − 3M7(z) + M8(z) + M10(z) − M9(z) − 2M
A1
5 (z) + 2M

A1
1 (z)

=
∞∑

p=0

22p+1

(2p)! Γ

(
p + 1

2

)
I2p

6p2 + 16p + 7
2

(2p + 2)(2p + 4)
z2p −

∞∑
p=0

22p+2

(2p + 1)!Γ
(

p + 3

2

)
I2p+2

1

2p + 4
z2p+1.

Using Lemma 5.3 and considering the coefficients of the odd powers of z in the power series expansion of the 
right-hand side of Eq. (140), we deduce that

F 11
x (2p + 3) + F 22

x = 0, for all p ∈N. (141)

This implies that

F 11
x = F 22

x = 0. (142)

Therefore, using Eq. (140), we have
ρ

2

(
M

A1
1 (r̄0) − M

A1
5 (r̄0)

) = 0. (143)

Recall that MA1
5 (z) − M

A1
1 (z) is equal to MA1

2 (z), then not identically equal to zero. Then Eq. (143) yields that

ρ = 0,

which is in contradiction with the fact that

ρ =
l∑

j=1

mjμ
2
j (λk − λj ) > 0.

Theorem 1.1 is finally proved.
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Appendix A. Layer potentials and representation formulas

Most of the material presented here is borrowed from [4,3,23,20]. Let λ be a non-negative real number. Consider 
φ and p satisfying the eigenvalue problem associated to the following Stokes system⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(� + λ)φ − ∇p = h in Ω

divφ = 0 in Ω

φ = g on ∂Ωˆ

Ω

p = 0,

under the compatibility conditionˆ

Γ

〈φ,n〉ds = 0, (144)

where n is the outward unit normal to ∂Ω . Recall that, for such a pair of fields, the conormal derivative denoted by 
∂φ
∂ν

was defined in (11).

A.1. Layer potentials

We denote by ∂i the operator ∂
∂xi

and by 
√−λ the complex number i

√
λ. In this section, we adopt the Einstein 

summation convention which omits the summation sign for the indices appearing twice.

Fundamental tensors We define the fundamental tensors Γ λ = (Γ λ
ij )

3
i,j=1 and F = (Fi)

3
i=1 as⎧⎪⎪⎨

⎪⎪⎩
Γ λ

i,j = −δij e
√−λ|x|

4π |x| − 1

4πλ
∂i∂j

e
√−λ|x| − 1

|x| ,

Fi(x) = − xi

4π |x|3 .

(145)

In the sense of distributions, straightforward computations of the fundamental solution of Helmholtz operator � + λ

allow to get

(� + λ)Γ λ
ij − ∂jFi = δij δ(x), and ∂iΓ

λ
ij = 0,

where we use δ(x) to denote the delta distribution based at x ∈ R
3. The tensor Γ 0, which is the fundamental tensor 

for the standard Stokes system, is defined as

Γ 0
ij (x) := − 1

8π

(
δij

|x| + xixj

|x|3
)

,

and one has, uniformly on compact subsets of R3,

Γ λ
ij (x) = Γ 0

ij (x) − δij

√−λ

6π
+ O(λ). (146)

Denoting that

�λ
ij (x) := Γ λ

ij (x) − Γ 0
ij (x), (147)

we have

�λ
ij (x) = −δij

√−λ

6π
− λ

32π
�ij (x) + O

(|x|2), (148)

where �ij (·) is defined by

�ij (x) := 3δij |x| − xixj

|x| . (149)

After simple computations, one gets the following useful result.
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Lemma A.1. We have

∂2�λ(x − y)

∂N(x)∂N(y)
= − λ

8π

[ 〈nx,ny〉
|x − y|

(x − y)(x − y)T

|x − y|2 + nyn
T
x

|x − y|
]

+ Tλ, (150)

where Tλ is a kernel of class C1.

Single and double boundary layers In the sequel, we use the Einstein convention for summation signs, i.e., we omit 
them for indices appearing twice. Let φ = (φ1, φ2, φ3) ∈ L2(∂Ω)3. The single-layer potential pair (Sλ

Ω, FΩ) with 
density φ is defined, for x ∈ Ω , as⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Sλ
Ω [φ]i (x) =

ˆ

∂Ω

Γ λ
ij (x − y)φj (y) dσy, 1 ≤ i ≤ 3,

FΩ [φ](x) =
ˆ

∂Ω

Fj (x − y)φj (y) dσy,

(151)

while the double hydrodynamic potential pair (Dλ
Ω, VΩ) with density φ is defined by⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dλ
Ω [φ]i (x) =

ˆ

∂Ω

(
∂Γ λ

ij

∂N(y)
(x − y) + Fi(x − y)nj (y)

)
φj (y) dσy, 1 ≤ i ≤ 3,

VΩ [φ](x) = −2
ˆ

∂Ω

∂Fj

∂xl

(x − y)φj (y)nl(y) dσy.

(152)

We quote from [23] that

∂Γ λ
ij

∂N(y)
(x − y) =

(
∂Γ λ

ij (x − y)

∂yl

+ ∂Γ λ
il (x − y)

∂yj

)
nl(y).

Some background results about the layer potential representations From [4], we quote the following integral 
equations satisfied by φλ and the associated pressure pλ. First, we have the following representation formulas,⎧⎪⎪⎪⎨

⎪⎪⎪⎩
φλ(x) = −Sλ

Ω

[
∂φλ

∂ν

]
(x) + Dλ

Ω

[
φλ

]
(x), x ∈ Ω,

pλ(x) = −FΩ

[
∂φλ

∂ν

]
(x) + VΩ

[
φλ

]
(x), x ∈ Ω.

(153)

Applying the trace stress operators and taking into account the single layer potential as well as the jump relations for 
the double layer potential across the boundary, we get for φ belonging to L2(∂Ω)3 the following relations,⎧⎪⎪⎨

⎪⎪⎩
Dλ

Ω [φ](x) =
(

1

2
I + Kλ

Ω

)
[φ](x), a.e. on ∂Ω,

∂

∂ν
Sλ

Ω [φ](x) =
(

−1

2
I + (

Kλ
Ω

)∗
)

[φ](x), a.e. on ∂Ω,

(154)

where the kernel Kλ
Ω [φ] is defined a.e. on ∂Ω by its components,

Kλ
Ω [φ]i (x) := p.v.

ˆ

∂Ω

∂Γ λ
ij

∂N(y)
(x − y)φj (y) dσy + p.v.

ˆ

∂Ω

Fi(x − y)φj (y)nj (y) dσy. (155)

Here, the notation “p.v.” indicates the Cauchy principal value when the integrand is singular at x, more precisely

p.v.

ˆ

Γ

. . . = lim
ε→0

ˆ
. . .
Ω\B(x,ε)
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where B(x, ε) is the ball centered at x of radius ε. The adjoint operator Kλ
Ω

∗
of Kλ

Ω is defined similarly a.e. on ∂Ω

by its components

Kλ
Ω

∗[φ]i (x) = p.v.

ˆ

∂Ω

∂Γ λ
ij

∂N(x)
(x − y)φj (y) dσy − p.v.

ˆ

∂Ω

Fi(x − y)φj (y)nj (x) dσy, (156)

for all functions φ belonging to L2(∂Ω)3. Let us recall that in the case of the standard Stokes system (λ = 0), we have

K0
Ω [φ](x) = − 3

4π

ˆ

∂Ω

(x − y)
〈x − y,n(y)〉〈x − y,φ(y)〉

|x − y|5 dσy. (157)

An important fact is that the single and double layer potentials Sλ
Ω and Dλ

Ω are compact perturbations of the single 
and double layer potentials corresponding to the standard Stokes problem.

From the C� regularity of the boundary Γ with � ≥ 4, it comes that∣∣〈x − y,φ(y)
〉∣∣ ≤ C|x − y|2, (158)

hence, we deduce (cf. [23]) that the mapping Kλ
Ω [φ] : Cα(∂Ω) �→ Cα+1(∂Ω) is in fact continuous. That shows that 

Kλ
Ω [φ] has a weakly singular kernel and then that it is a compact operator on L2(∂Ω)3. According to (146), the 

operators Sλ
Ω − S0

Ω and Dλ
Ω − D0

Ω are smoothing operators.
Thanks to the integral representations provided in the preceding paragraph, we can use the trace and the stress 

operators to deduce the second boundary integral equation satisfied by the conormal derivative. Indeed, by using the 
same arguments of jump relations and the integral equations satisfied by φλ, we get(

1

2
I + (

Kλ
Ω

)∗
)[

∂φ

∂ν

]
i

(x) =
[
∂Dλ

Ω [φ]
∂ν

(x)

]
i

= p.v.

ˆ

∂Ω

∂2Γ λ
ij (x − y)

∂N(x)∂N(y)
φj (y) dσy

= p.v.

ˆ

∂Ω

∂2Γ 0
ij (x − y)

∂N(x)∂N(y)
φj (y) dσy +

ˆ

∂Ω

∂2�λ
ij (x − y)

∂N(x)∂N(y)
φj (y) dσy. (159)

We cannot deduce directly the Neumann data (conormal derivative) since the operator ( 1
2I + (Kλ

Ω)∗) is not invertible. 
We give, in the next paragraph, the recipes to get the solution of the system by using the projector methods.

A.2. Weakly singular integral operators of exponent α > 0

The rest of the paragraph follows Section 7.2 of [20]. Recall that the conormal derivative is solution of T x = f

where T = I + 2(Kλ
Ω)∗ is a Fredholm operator with a nontrivial kernel. We use R(T ) to denote its closed image 

and N (T ) its finite dimensional null space. We can therefore find projections P and Q of finite rank such that there 
exists a unique operator S satisfying T S = I − Q and PS = 0. Hence, the equation T x = f has a solution if and 
only if Qf = 0. In our context, we have T = I − C with C = −2(Kλ

Ω)∗, which is a compact operator. To proceed, 
we need some regularity assumptions on the operator T . For that purpose, we recall the following definition [20, 
Definition 7.1.1, p. 117].

Definition A.1. Let A be an open set in R3. A function K(x, y) defined for x 	= y in A × A is a kernel of class Cr∗(α)

in A (r non-negative integer, and α > 0) if it is Cr for x 	= y and for any δ > 0 and |i| + |j | + |k| ≤ r , one has

∂i
x∂

j
y (∂x + ∂y)

kK(x, y) = O
(
1 + |x − y|α−m−|i|−|j |−δ

)
,

uniformly for x 	= y in compact subsets of A. If α > m + |i| + |j |, we require ∂i
x∂

j
y (∂x + ∂y)

kK(x, y) to extend 
continuously to {x = y}.
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Assume now that T = I − C is an integral operator where C has a kernel belonging to Cr∗(α) for some α > 0. We 
may choose the projections P and Q to be integral operators with Cr kernels so that, if S is the operator such that

T S = I − Q,

S = I + R,

PS = 0,

then the resolvent kernel R is an integral operator with Cr∗(α) kernel. In fact, R − (C + C2 + · · · + Cj ) has kernel of 
class Cr∗((j + 1)α) for each j ≥ 1. Hence, for N sufficiently large, the operator R − ∑N

k=1 Cj has a smooth kernel of 
class Cr [32, Chapter III, pp. 79–94]. In summary, one has the following result.

Theorem A.2. (See Theorem 7.2.3, p. 125 in [20].) We suppose Ω regular of class Cr+1, for some r > 0. If C a 
kernel of class Cr∗(α), then we may choose the kernels P and Q of the projections to be of class Cr and such that the 
resolvent kernel R belongs to Cr∗(α). Furthermore, the kernel of R − (C + C2 + · · · + CN) is of class Cr for N large 
enough.

We return to the study of Eq. (159). We introduce the vectors b(0)(x) = (b
(0)
i (x))i and e(λ)(x) = (e

(λ)
i (x)) where

b
(0)
i (x) =

ˆ

∂Ω

∂2Γ 0
ij (x − y)

∂N(x)∂N(y)
φλ

j (y) dσy,

and where

e
(λ)
i (x) =

ˆ

∂Ω

∂2�λ
ij (x − y)

∂N(x)∂N(y)
φλ

j (y) dσy.

Hence it comes that[
∂φλ

∂ν

]
= b(0) +

(
N∑

k=1

Ck

)
b(0) +

(
N∑

k=0

Ck

)
e(λ) +

(
R −

N∑
k=1

Ck

)(
b(0) + e(λ)

)
. (160)

With our specific choice of Dirichlet data, we will show that N = 1 is sufficient in our context and that all the other 
terms in the sum will be absorbed by the remainder.

A.3. Composition of weakly singular kernels

For applications to our result on generic perturbation of the boundary, we need to give an explicit representation of 
the conormal derivative or at least, of its principal and subprincipal parts as it is treated in the case of the Laplacian 
(for more details in the Laplacian case, one can refer to [38]). Some preliminaries are required in order to study the 
resolvent kernels and their regularity. We begin by recalling some results due to D. Henry (cf. [20]). It concerns kernels 
K(x, y) of the form

K(x,y) := |x − y|α−2Q

(
x, y,

x − y

|x − y|
)

(161)

where Q(x, y, s) is of class Cr (r > 0) on R2. We will denote by K(r, α) the set of such kernels, which is a subclass 
of Cr∗(α).

These kernels are in fact smoothing operators and we recall the main result of [20].

Theorem A.3. (See Theorem 7.1.2 in [20].) Given a kernel K belonging to the class K(α, r), α, r > 0, we denote by 
K̃ the corresponding integral operator

K̃u(x) =
ˆ

R2

K(x,y)u(y) dσy.

Then we have
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• K̃ : Wj,p �→ Wk,p is a compact operator if j − m
p
α > k − m

q
;

• K̃ : Cj,σ �→ Ck,τ is a compact operator if j + σ + α > k + τ , k < r and k < j + α.

As it was mentioned in [20], the above result can be summarized by the fact the operator K̃ is smoothing of order α. 
We will also need a result on the composition of certain weakly singular operators. For that purpose, we first define 
the composition of corresponding kernels as follows.

Definition A.2. Let K and L be kernels belonging to K(α, r) and K(β, r) respectively with α, β, r > 0. Then K ◦ L

is defined by

(K ◦ L)(x, y) =
ˆ

R2

K(x, z)L(x, z) dz. (162)

Then, one has the following property.

Theorem A.4. (See Theorem 7.1.3, p. 119 in [20].) Let K and L be kernels belonging to K(α, r) and K(β, r) re-
spectively, with α, β, r > 0. Then K ◦ L is kernel of compact support belonging to K(α + β, r). Furthermore, if 
α + β > r + 2, then K ◦ L is of class Cr .

To these kernels, are associated integral operators u �→ ´
∂Ω

K(x, y) dS(y) where dS is the surface area measure 
on ∂Ω . In a first step, we begin to work in R2. To transfer all the results to ∂Ω (in particular, those provided above), 
one has to follow the classical steps: construct a partition of unity and then define the integral by a local change of 
variables as it is precisely performed in [20, Section 7.1].

Appendix B. Proofs of computational lemmas

B.1. Proof of Lemma 2.8

From Eq. (28), we get the following system

−(� + λ)φ′
i (u) + ∇p′

i (u) = λ′
i (u)φi(u) in Ω, (163)

divφ′
i (u) = 0 in Ω, (164)

φ′
i (u) + (〈u,n〉)∂φi(u)

∂n
= 0 on ∂Ω, (165)

p′
i (u) + div

(
upi(u)

) ∈ L2
0(Ω). (166)

Multiplying (163) by φk(u) with 1 ≤ k ≤ m, integrating over Ω and using Corollary 2.3, we have

λ′
i (u)δik = −

ˆ

Ω

φk(u)
[
(� + λ)φ′

i (u) − ∇p′
i (u)

] =
ˆ

∂Ω

φ′
i (u)

∂φk(u)

∂ν
.

Hence, it comes that

λ′
i (v)δik = −

ˆ

∂Ω

(〈u,n〉)∂φi(u)

∂n
· ∂φk(u)

∂ν
. (167)

Moreover, by Lemma 2.4, we have〈
∂φi(u)

∂n
,
∂φk(u)

∂ν

〉
=

〈
∂φi(u)

∂n
,

(
∂φk(u)

∂n
+ ∇T φk(u)n − pk(u)n

)〉

=
〈
∂φi(u)

∂n
,
∂φk(u)

∂n

〉
+

〈
∂φi(u)

∂n
,

(
∂φk(u)

∂n
nT

)T

n

〉
=

〈
∂φi(u)

∂n
,
∂φk(u)

∂n

〉
.

Therefore, we immediately get Eq. (33).
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B.2. Proof of Lemma 4.2

Lemma 4.2 is derived from [21, Lemma 2.2.3, Formula (2.2.34) and Lemma 2.3.1] by straightforward computa-
tions. For the reader’s convenience, we first summarize these results in the following lemma and then give the proof 
of Lemma 4.2.

Lemma B.1. Let ∂Ω be of class C1 and u = (u�)�=1,2,3 be a Hölder continuously differentiable function. Then the 
operator E defined in (60) can be expressed as follows

Eu(x) = − 1

4π

〈
nx × ∇x,

ˆ

∂Ω

1

|x − y| (ny × ∇y)u(y)dσ (y)

〉
(168)

− 1

2π
M(∂x, nx)

ˆ

∂Ω

(x − y)(x − y)T

|x − y|3 M(∂y, ny)u(y)dσ (y) (169)

+ 1

4π

(
3∑

l,k=1

mlk(∂x, nx)

ˆ

∂Ω

1

|x − y|
(
mkj (∂y, ny)u

�
)
(y)dσ (y)

)
j=1,2,3

, (170)

where the �th-column of the matrix (ny × ∇y)u(y) is given by the vector ny × ∇yu
�(y), and the Günter derivatives 

M is given by the following matrix of differential operators

M(∂x, nx) = (
mjk(∂x, nx)

)
j,k=1,2,3 := (nx,k∂xj

− nx,j ∂xk
)j,k=1,2,3,

with nx = (nx,j )j=1,2,3.

Corollary B.2. Under the assumptions of Lemma B.1, we have

4πEu(x) = p.v.

ˆ

∂Ω

〈nx,ny〉
|x − y|3

(∇u(y) + ∇T u(y)
)
(x − y)dσy (171)

+ p.v.

ˆ

∂Ω

〈nx, (∇u(y) − ∇T u(y))(x − y)〉
|x − y|3 nydσy (172)

−
ˆ

∂Ω

〈x − y,ny〉
|x − y|3

(∇u(y) + ∇T u(y)
)
nxdσy (173)

+
ˆ

∂Ω

〈x − y,ny〉
|x − y|3

(
I − 3

(x − y)(x − y)T

|x − y|2
)
M(∂y, ny)u(y)dσy. (174)

Proof of Corollary B.2. For (168), we get〈
nx × ∇x,

ˆ

∂Ω

1

|x − y|
(
ny × ∇yu

�(y)
)
dσ(y)

〉
= p.v.

ˆ

∂Ω

〈
nx × ∇x

1

|x − y| , ny × ∇yu
�(y)dσ (y)

〉
.

For x 	= y, one has〈
nx × ∇x

1

|x − y| , ny × ∇yu
�(y)

〉

= (
nT

x ny

)(∇x

1

|x − y|∇
T
y u�(y)

)
− (∇yu

�(y)nx

)(∇x

1

|x − y|ny

)

= − nT
x ny

3
∇yu

�(y)(x − y) + (x − y)T ny

3
∇yu

�(y)nx.
|x − y| |x − y|
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Therefore, we have〈
nx × ∇x,

ˆ

∂Ω

1

|x − y| (ny × ∇y)u(y)dσ (y)

〉

= −p.v.

ˆ

∂Ω

〈nx,ny〉
|x − y|3 ∇yu(y)(x − y)dσy + p.v.

ˆ

∂Ω

〈x − y,ny〉
|x − y|3 ∇yu(y)nxdσy. (175)

We compute now the second piece of (169) and obtain for x 	= y

M(nx, ∂x)
(x − y)(x − y)T

|x − y|3 =
(

3∑
k=1

mik(ny, ∂y)
(xk − yk)(xj − yj )

|x − y|3
)

i,j=1,2,3

=
(

3∑
k=1

(nx,k∂xi
− nx,i∂xk

)
(xk − yk)(xj − yj )

|x − y|3
)

i,j=1,2,3

=
(

3∑
k=1

nx,k

[
−3

(xi − yi)(xk − yk)(xj − yj )

|x − y|3 + δik(xj − yj )

|x − y|3 + δij (xk − yk)

|x − y|3
]

− nx,i

[
−3

(xk − yk)
2(xj − yj )

|x − y|3 + (xj − yj )

|x − y|3 + δkj (xk − yk)

|x − y|3
])

i,j=1,2,3

= −3
〈nx, x − y〉
|x − y|5 (x − y)(x − y)T + nx(x − y)T

|x − y|3 + 〈nx, x − y〉
|x − y|3 I3

+ 3
nx(x − y)T

|x − y|3 − 3
nx(x − y)T

|x − y|3 − nx(x − y)T

|x − y|3

= 〈nx, x − y〉
|x − y|3

(
I3 − 3

(x − y)(x − y)T

|x − y|2
)

.

Therefore, we have

M(∂x, nx)

ˆ

∂Ω

(x − y)(x − y)T

|x − y|3 M(∂y, ny)u(y)dσ (y)

= p.v.

ˆ

∂Ω

〈nx, x − y〉
|x − y|3

(
I3 − 3

(x − y)(x − y)T

|x − y|2
)
M(∂y, ny)u(y)dσy, (176)

keeping in mind that there is no principal value if one uses (158).
We finally turn to (170). One has, for x 	= y,(

3∑
�,k=1

(
mlk(∂x, nx)

1

|x − y|
)(

mkj (∂y, ny)u
�(y)

))
j=1,2,3

=
(

3∑
�,k=1

(
−nx,k

x� − y�

|x − y|3 + nx,l

xk − yk

|x − y|3
)(

ny,j ∂yk
u�(y) − ny,k∂yj

u�(y)
))

j=1,2,3

= 〈nx, (∇u(y) − ∇T u(y))(x − y)〉
|x − y|3 ny − 〈x − y,ny〉

|x − y|3 ∇T u(y)nx

+ 〈nx,ny〉
3
∇T u(y)(x − y).
|x − y|
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Therefore, we have(
3∑

�,k=1

mlk(∂x, nx)

ˆ

∂Ω

1

|x − y|
(
mkj (∂y, ny)u

�
)
(y)dσ (y)

)
j=1,2,3

= p.v.

ˆ

∂Ω

〈nx, (∇u(y) − ∇T u(y))(x − y)〉
|x − y|3 nydσy − p.v.

ˆ

∂Ω

〈x − y,ny〉
|x − y|3 ∇T u(y)nxdσy

+ p.v.

ˆ

∂Ω

〈nx,ny〉
|x − y|3 ∇T u(y)(x − y)dσy. (177)

Gathering (175), (176), and (177), Corollary B.2 is proved. �
Proof of Lemma 4.2. Recall that u = αψ with α : ∂Ω �→R and ψ : ∂Ω �→ R

3. We note that

∇(αψ) = α∇ψ + ψ∇α, (178)

and

M(∂y, ny)(αψ)(y) =
(

3∑
k=1

mik(ny, ∂y)
(
α(y)ψk(y)

))
i=1,2,3

= α(y)M(∂y, ny)ψ(y) +
(

3∑
k=1

(
ny,k∂yi

α(y) − ny,i∂yk
α(y)

)
ψk(y)

)
i=1,2,3

= α(y)M(∂y, ny)ψ(y) + 〈
ny,ψ(y)

〉∇T α(y) − (∇α(y)ψ(y)
)
ny

= α(y)M(∂y, ny)ψ(y) − (∇α(y)ψ(y)
)
ny. (179)

Then, the expressions of Ai , 1 ≤ i ≤ 4, simply result from developping ∇u in (171) and (172) of Corollary B.2 and 
A5 collects (173) and (174) as a weakly singular operator of class C3∗(1). Hence Lemma 4.2 follows. �
B.3. Proof of Lemma 4.3

Using polar coordinates, we have

ˆ

B(0,δ)

αε,η0(η)

|η|1−m
dη = 1

ε2

ˆ

B(0,δ)

e
− |η−η0|2

ε2

|η|1−m
dη = e−r̄2

0

ε2

δˆ

0

2πˆ

0

exp

(
− r2

ε2
+ 2

r

ε
r̄0 cos θ

)
rmdrdθ

= e−r̄2
0

ε1−m

δ/εˆ

0

2πˆ

0

exp
(−r2 + 2rr̄0 cos θ

)
rmdrdθ

≤ e−r̄2
0

ε1−m

∞̂

0

2πˆ

0

exp
(−r2 + 2rr̄0 cos θ

)
rmdrdθ ≤ 2π

ε1−m

∞̂

−r̄0

(r + r̄0)
m exp

(−r2)dr.

As r̄0 ≤ 1, there exists a constant C(m) > 0 depending only on m such that (67) holds true.

B.4. Proof of Lemma 4.4

We use polar coordinates and get
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p.v.

ˆ

R2

αε,η0(η)η

| η |3 dη = e−r̄2
0

ε2
p.v.

∞̂

0

e−r2

r
dr

2πˆ

0

exp
(
2rr̄0 cos(θ − θ0)

)(
cos θ

sin θ

)
dθ

= e−r̄2
0

ε2
p.v.

∞̂

0

e−r2

r
dr

2πˆ

0

cos θ exp(2rr̄0 cos θ)dθ

(
cos θ0
sin θ0

)

= e−r̄2
0

ε2
M

A1
1

3 (r̄0)η̄0,

where we recall that η̄0 = r̄0

(
cos θ0
sin θ0

)
and where we have set

M
A1
3 (z) := 1

z
p.v.

∞̂

0

e−r2

r
dr

2πˆ

0

cos θ exp(2rz cos θ)dθ. (180)

Standard computations yield that

M
A1
3 (z) = 1

z
p.v.

∞̂

0

e−r2

r
dr

∞∑
k=0

(2r)kzk

k!
2πˆ

0

cosk+1 θdθ

= 4

z
p.v.

∞̂

0

e−r2

r
dr

∞∑
p=0

(2r)2p+1z2p+1

(2p + 1)! I2p+2

= 2
∞∑

p=0

22p+1

(2p + 1)!I2p+2Γ

(
p + 1

2

)
z2p,

where Ik := ´ π/2
0 cosk θdθ is the Wallis integral and Γ (s) := ´∞

0 t s−1e−t dt is the Gamma function. Using the fact 

that I2p = (2p)!
22p(p!)2

π
2 , we have

M
A1
3 (z) = π

∞∑
p=0

Γ (p + 1
2 )

p!(p + 1)!z
2p. (181)

The radius of convergence of MA1
3 is clearly infinite, since

lim
p→∞

Γ (p + 1
2 )(p + 1)!(p + 2)!

Γ (p + 3
2 )p!(p + 1)! = (p + 1)(p + 2)

p + 1
2

= ∞,

where we have used the standard fact that Γ (z + 1) = zΓ (z) for �(z) > 0. Lemma 4.4 is thus established.

B.5. Proof of Lemma 4.7

One has

M
A1
1 (z) =

∞̂

0

e−r2
dr

2πˆ

0

cos2 θ exp(2rz cos θ)dθ =
∞̂

0

e−r2
dr

2πˆ

0

cos2 θ

∞∑
k=0

(2r)kzk

k! cosk θdθ

=
∞̂

0

e−r2
dr

∞∑
k=0

(2r)kzk

k!
2πˆ

0

cosk+2 θdθ =
∞∑

p=0

22pz2p

(2p)! I2p+2

∞̂

0

e−r2
r2pdr

=
∞∑ 22p+1

(2p)! I2p+2Γ

(
p + 1

2

)
z2p.
p=0
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Using the fact that I2p = (2p)!
22p(p!)2

π
2 , we have

M
A1
1 (z) = π

4

∞∑
p=0

(2p + 2)(2p + 1)

((p + 1)!)2
Γ

(
p + 1

2

)
z2p. (182)

The radius of convergence of MA1
1 is infinite since

lim
p→+∞

(2p + 2)(2p + 1)

(2p + 4)(2p + 3)

((p + 2)!)2

((p + 1)!)2

Γ (p + 1
2 )

Γ (p + 1
2 + 1)

= +∞.

Let MA1
5 (z) be defined by

M
A1
5 (z) :=

∞̂

0

exp
(−r2)dr

2πˆ

0

exp(2rz cos θ)dθ. (183)

We have

M
A1
5 (z) =

∞̂

0

exp
(−r2)dr

2πˆ

0

exp(2rz cos θ)dθ =
∞̂

0

e−r2
dr

∞∑
k=0

(2r)kzk

k!
2πˆ

0

cosk θdθ

=
∞∑

p=0

22p+1

(2p)! I2pΓ

(
p + 1

2

)
z2p = π

∞∑
p=0

Γ (p + 1
2 )

(p!)2
z2p.

It is clear that the radius of convergence of MA1
5 (·) is infinite. Since MA1

2 (z) = M
A1
5 (z) − M

A1
1 (z), the radius of 

convergence of MA1
2 (z) is also infinite.

We now prove that z �→ M
A1
4 (z) is well-defined and not identically equal to zero. Indeed,

M
A1
1 (z) − z2M

A1
1

3 (z) − M
A1

1
2 (z)

= 2M
A1
1 (z) − π

∞∑
p=0

Γ (p + 1
2 )

(p!)2
z2p − z2M

A1
1

3 (z)

= π

∞∑
p=0

[
(p + 1)(2p + 1)

((p + 1)!)2
− 1

(p!)2

]
Γ

(
p + 1

2

)
z2p − π

∞∑
p=1

p

(p!)2
Γ

(
p − 1

2

)
z2p

= −3π

2

∞∑
p=1

pΓ (p − 1
2 )

(p + 1)(p!)2
z2p.

Then, the function z �→ M
A1
4 (z) is defined by

M
A1
4 (z) = −3π

2

∞∑
p=0

(p + 1)Γ (p + 1
2 )

(p + 2)((p + 1)!)2
z2p, (184)

which is clearly a non-zero entire function.

B.6. Proof of Lemma 5.2

We give in this section explicit expressions of a1, a2, and a3 defined respectively in Eqs. (126), (127), and (128). 
The computations are lengthy but straightforward.
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We start by computing a1.ˆ

R2

αε(η)

|η|3 ηT Fxη
〈
ψ(x), η

〉
ηdη

= εe−r̄2
0 Rθ0

∞̂

0

e−r2
r2dr

2πˆ

0

e2rr̄0 cos θ
(
F 11

θ0
cos2 θ + 2F 12

θ0
cos θ sin θ + F 22

θ0

(
1 − cos2 θ

))

×
(

cos2 θ sin θ cos θ

sin θ cos θ 1 − cos2 θ

)
dθ RT

θ0
ψ(x)

= εe−r̄2
0 Rθ0

∞̂

0

e−r2
r2dr

2πˆ

0

e2rr̄0 cos θ

×
(

F 22
θ0

cos2 θ + (F 11
θ0

− F 22
θ0

) cos4 θ, 2F 12
θ0

cos2 θ(1 − cos2 θ)

2F 12
θ0

cos2 θ(1 − cos2 θ), F 22
θ0

+ (F 11
θ0

− 2F 22
θ0

) cos2 θ − (F 11
θ0

− F 22
θ0

) cos4 θ

)
dθRT

θ0
ψ(x).

The functions M6(·), M7(·), and M8(·) were defined in Eqs. (130), (131) and (132) respectively. Then, we haveˆ

R2

αε(η)

|η|3 ηT Fxη
〈
ψ(x), η

〉
ηdη = εe−r̄2

0 Rθ0M(r̄0)R
T
θ0

ψ(x), (185)

with

M(r̄0) :=
(

F 22
θ0

M7(r̄0) + (F 11
θ0

− F 22
θ0

)M8(r̄0), 2F 12
θ0

(M7(r̄0) − M8(r̄0))

2F 12
θ0

(M7(r̄0) − M8(r̄0)), F 22
θ0

M6(r̄0) + (F 11
θ0

− 2F 22
θ0

)M7(r̄0) − (F 11
θ0

− F 22
θ0

)M8(r̄0)

)
.

Then,

Rθ0M(r̄0)R
T
θ0

= M11 +M22

2
I2 + M11 −M22

2

(
cos 2θ0 sin 2θ0
sin 2θ0 − cos 2θ0

)

+M12

(− sin 2θ0 cos 2θ0
cos 2θ0 sin 2θ0

)
,

with

M11 +M22

2
= 1

2

(
F 22

θ0
M6(r̄0) + (

F 11
θ0

− F 22
θ0

)
M7(r̄0)

)
,

M11 −M22

2
= 1

2

(
2
(
F 11

θ0
− F 22

θ0

)
M8(r̄0) − (

F 11
θ0

− 3F 22
θ0

)
M7(r̄0) − F 22

θ0
M6(r̄0)

)
,

M12 = 2F 12
θ0

(
M7(r̄0) − M8(r̄0)

)
.

We also note that

η̄0η̄
T
0 = 1

2
I2 + 1

2

(
cos 2θ0 sin 2θ0
sin 2θ0 − cos 2θ0

)
,

η̄⊥
0 η̄T

0 = 1

2

(
0 −1
1 0

)
+ 1

2

(− sin 2θ0 cos 2θ0
cos 2θ0 sin 2θ0

)
.

We get Rθ0M(r̄0)R
T
θ0

=M22I2 + (M11 −M22)η̄0η̄
T
0 −M12

(
0 −1
1 0

)
+ 2M12η̄

⊥
0 η̄T

0 , which implies that

ˆ

R2

αε(η)

|η|3 ηT Fxη
〈
ψ(x), η

〉
ηdη

= εe−r̄2
0
(
M22ψ(x) + (M11 −M22)

〈
ψ(x), η̄0

〉
η̄0 −M12ψ(x)⊥ + 2M12

〈
ψ(x), η̄0

〉
η̄⊥

0

)
. (186)

On the other hand, one has
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ˆ

R2

αε(η)

|η|3 ηT Fxη
〈
ψ(x), η

〉
dη

= e−r̄2
0 ψT (x)Rθ0

∞̂

0

e−r2
rdr

2πˆ

0

e2rr̄0 cos θ

(
F 22

θ0
cos θ + (F 11

θ0
− F 22

θ0
) cos3 θ

2F 12
θ0

cos θ(1 − cos2 θ)

)
dθ.

The functions M9(·) and M10(·) were defined in Eqs. (133) and (134) respectively. Then, we haveˆ

R2

αε(η)

|η|3 ηT Fxη
〈
ψ(x), η

〉
dη = e−r̄2

0 ψT (x)Rθ0

(
F 22

θ0
M9(r̄0) + (F 11

θ0
− F 22

θ0
)M10(r̄0)

2F 12
θ0

(M9(r̄0) − M10(r̄0))

)
.

Since ψT (x)Rθ0 = (〈ψ(x), η̄0〉, 〈ψ(x), η̄⊥
0 〉), we obtainˆ

R2

αε(η)

|η|3 ηT Fxη
〈
ψ(x), η

〉
dη = e−r̄2

0
([

F 22
θ0

M9(r̄0) + (
F 11

θ0
− F 22

θ0

)
M10(r̄0)

]〈
ψ(x), η̄0

〉

+ 2F 12
θ0

(
M9(r̄0) − M10(r̄0)

)〈
ψ(x), η̄⊥

0

〉)
. (187)

One also gets

ˆ

R2

αε(η)

|η| ηT Fxηdη = εe−r̄2
0

∞̂

0

e−r2
r2dr

2πˆ

0

e2rr̄0 cos θ
(
F 11

θ0
cos2 θ + F 22

θ0
sin2 θ

)
dθ

= εe−r̄2
0

∞̂

0

e−r2
r2dr

2πˆ

0

e2rr̄0 cos θ
(
F 22

θ + (
F 11

θ0
− F 22

θ

)
cos2 θ

)
dθ

= εe−r̄2
0
(
F 22

θ0
M6(r̄0) + (

F 11
θ0

− F 22
θ0

)
M7(r̄0)

)
.

Finally, one derives

ˆ

R2

αε(η)

|η|3
(
ηT Fxη

)
ηdη = e−r̄2

0 Rθ0

∞̂

0

e−r2
rdr

2πˆ

0

e2rr̄0 cos θ

(
F 22

θ0
cos θ + (F 11

θ0
− F 22

θ0
) cos3 θ

2F 12
θ0

(cos θ − cos3 θ)

)
dθ

= e−r̄2
0 Rθ0

(
F 22

θ0
M9(r̄0) + (F 11

θ0
− F 22

θ0
)M10(r̄0)

2F 12
θ0

(M9(r̄0) − M10(r̄0))

)
.

Since η̄T
0 Rθ0 = (1, 0), we haveˆ

R2

αε(η)

|η|3
(
ηT Fxη

)〈η0, η〉dη = εe−r̄2
0
(
F 22

θ0
M9(r̄0) + (

F 11
θ0

− F 22
θ0

)
M10(r̄0)

)
. (188)

In summary, we get

a1 = 1

4π

e−r̄2
0

ε

(
M22ψ(x) + (M11 −M22)

〈
ψ(x), η̄0

〉
η̄0 −M12ψ(x)⊥ + 2M12

〈
ψ(x), η̄0

〉
η̄⊥

0

− [(
F 22

θ0
M9(r̄0) + (

F 11
θ0

− F 22
θ0

)
M10(r̄0)

)〈
ψ(x), η̄0

〉 + 2F 12
θ0

(
M9(r̄0) − M10(r̄0)

)〈
ψ(x), η̄⊥

0

〉]
η̄0

+ (
F 22

θ0

(
M6(r̄0) − M9(r̄0)

) + (
F 11

θ0
− F 22

θ0

)(
M7(r̄0) − M10(r̄0)

)
ψ(x)

))
= 1

4π

e−r̄2
0

ε

([
2F 22

θ0
M6(r̄0) + (

2F 11
θ0

− 3F 22
θ0

)
M7(r̄0) − (

F 11
θ0

− F 22
θ0

)(
M8(r̄0) + M10(r̄0)

) − F 22
θ0

M9(r̄0)
]
ψ(x)

− [(
F 22

θ0
M9(r̄0) + (

F 11
θ0

− F 22
θ0

)(
M10(r̄0) − 2M8(r̄0)

) + (
F 11

θ0
− 3F 22

θ0

)
M7(r̄0)

+ F 22
θ0

M6(r̄0)
)〈

ψ(x), η̄0
〉 + 2F 12

θ0

(
M9(r̄0) − M10(r̄0)

)〈
ψ(x), η̄⊥

0

〉]
η̄0

− 2F 12
θ

(
M7(r̄0) − M8(r̄0)

)
ψ(x)⊥ + 4F 12

θ

(
M7(r̄0) − M8(r̄0)

)〈
ψ(x), η̄0

〉
η̄⊥

0

)
.

0 0
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Let us now compute a2. Using the computations performed for the term a1, one has

ˆ

R2

αε(η)

|η|3 ηT Fxηdη = e−r̄2
0

ε

∞̂

0

e−r2
dr

2πˆ

0

e2rr̄0 cos θ
(
F 11

θ0
cos2 θ + F 22

θ0

(
1 − cos2 θ

))
dθ

= e−r̄2
0

ε

[
F 22

θ0
M

A1
5 (r̄0) + (

F 11
θ0

− F 22
θ0

)
M

A1
1 (r̄0)

]
.

The other contribution in a2 is given by the following expression.ˆ

R2

αε(η)

|η|3
〈
ψ(x), η

〉
Fxηdη

= FxRθ0

e−r̄2
0

ε

∞̂

0

e−r2
dr

2πˆ

0

e2rr̄0 cos θ

(
cos2 θ sin θ cos θ

sin θ cos θ 1 − cos2 θ

)
dθ RT

θ0
ψ(x)

= e−r̄2
0

ε
FxRθ0

(
M

A1
1 (r̄0) 0

0 M
A1
5 (r̄0) − M

A1
1 (r̄0)

)
RT

θ0
ψ(x)

= e−r̄2
0

ε
Fx

(
1

2
M

A1
5 (r̄0)I2 +

(
M

A1
1 (r̄0) − 1

2
M

A1
5 (r̄0)

)(
cos 2θ0 sin 2θ0
sin 2θ0 − cos 2θ0

))
ψ(x)

= e−r̄2
0

ε
Fx

((
M

A1
5 (r̄0) − M

A1
1 (r̄0)

)
I2 + (

2M
A1
1 (r̄0) − M

A1
5 (r̄0)

)
η̄0η̄

T
0

)
ψ(x).

Therefore, we have

a2 = − 1

4π

e−r̄2
0

ε

{[
F 22

θ0
M

A1
5 (r̄0) + (

F 11
θ0

− F 22
θ0

)
M

A1
1 (r̄0)

]
ψ(x)

+ Fx

((
M

A1
5 (r̄0) − M

A1
1 (r̄0)

)
ψ(x) + (

2M
A1
1 (r̄0) − M

A1
5 (r̄0)

)〈
ψ(x), η̄0

〉
η̄0

)}
.

Finally, a3 is computed as follows.

a3 = − 1

8π

ˆ

R2

αε(η)〈ψ(x), η/|η|〉
|η|

η

|η|dη

= − 1

8π

e−r̄2
0

ε
Rθ0

∞̂

0

e−r2
dr

2πˆ

0

e2rr̄0 cos θ

(
cos2 θ sin θ cos θ

sin θ cos θ (1 − cos2 θ)

)
dθRT

θ0
ψ(x)

= − 1

8π

e−r̄2
0

ε
Rθ0

(
M

A1
1 (r̄0) 0

0 M
A1
5 (r̄0) − M

A1
1 (r̄0)

)
RT

θ0
ψ(x)

= − 1

8π

e−r̄2
0

ε

[(
M

A1
5 (r̄0) − M

A1
1 (r̄0)

)
ψ(x) + (

2M
A1
1 (r̄0) − M

A1
5 (r̄0)

)〈
ψ(x), η̄0

〉
η̄0

]
.

This ends the proof of Lemma 5.2.

B.7. Proof of Lemma 5.3

Recall that

2πˆ

0

cos2p θdθ = 4I2p,

∞̂

0

e−r2
r2pdr = 1

2
Γ

(
p + 1

2

)
.

Then, one gets
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M6(z) =
∞̂

0

e−r2
r2dr

2πˆ

0

e2rz cos θ dθ =
∞∑

k=0

2k

k!

[ ∞̂

0

e−r2
rk+2dr

2πˆ

0

cosk θdθ

]
zk

=
∞∑

p=0

22p+1

(2p)! Γ

(
p + 3

2

)
I2pz2p,

M7(z) =
∞̂

0

e−r2
r2dr

2πˆ

0

e2rz cos θ cos2 θdθ =
∞∑

k=0

2k

k!

[ ∞̂

0

e−r2
rk+2dr

2πˆ

0

cosk+2 θdθ

]
zk

=
∞∑

p=0

22p+1

(2p)! Γ

(
p + 3

2

)
I2p+2z

2p,

M8(z) =
∞̂

0

e−r2
r2dr

2πˆ

0

e2rz cos θ cos4 θdθ =
∞∑

k=0

2k

k!

[ ∞̂

0

e−r2
rk+2dr

2πˆ

0

cosk+4 θdθ

]
zk

=
∞∑

p=0

22p+1

(2p)! Γ

(
p + 3

2

)
I2p+4z

2p,

M9(z) =
∞̂

0

e−r2
rdr

2πˆ

0

e2rz cos θ cos θdθ =
∞∑

k=0

2k

k!

[ ∞̂

0

e−r2
rk+1dr

2πˆ

0

cosk+1 θdθ

]
zk

=
∞∑

p=0

22p+2

(2p + 1)!Γ
(

p + 3

2

)
I2p+2z

2p+1,

and finally

M10(z) :=
∞̂

0

e−r2
rdr

2πˆ

0

e2rz cos θ cos3 θdθ =
∞∑

k=0

2k

k!

[ ∞̂

0

e−r2
rk+1dr

2πˆ

0

cosk+3 θdθ

]
zk

=
∞∑

p=0

22p+2

(2p + 1)!Γ
(

p + 3

2

)
I2p+4z

2p+1.

Therefore, we obtain

2M7(z) − M8(z) − M10(z) − M
A1
1 (z)

=
∞∑

p=0

22p+1

(2p)! Γ

(
p + 1

2

)
I2p+2

2p2 + 4p − 3
2

2p + 3
z2p −

∞∑
p=0

22p+2

(2p + 1)!Γ
(

p + 3

2

)
I2p+4z

2p+1,

2M6(z) − 3M7(z) + M8(z) + M10(z) − M9(z) − 2M
A1
5 (z) + 2M

A1
1 (z)

=
∞∑

p=0

22p+1

(2p)! Γ

(
p + 1

2

)
I2p

6p2 + 16p + 7
2

(2p + 2)(2p + 4)
z2p −

∞∑
p=0

22p+2

(2p + 1)!Γ
(

p + 3

2

)
I2p+2

1

2p + 4
z2p+1.
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