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Abstract

The notion of Kruzhkov entropy solution was extended by the first author in 2007 to conservation laws with a fractional Laplacian
diffusion term; this notion led to well-posedness for the Cauchy problem in the L∞-framework. In the present paper, we further
motivate the introduction of entropy solutions, showing that in the case of fractional diffusion of order strictly less than one,
uniqueness of a weak solution may fail.
© 2010 Elsevier Masson SAS. All rights reserved.

Résumé

La notion de solution entropique de Kruzhkov a été étendue par Alibaud en 2007 aux lois de conservation avec un terme diffusif
fractionnaire ; ceci a permis de démontrer que le prolème de Cauchy est bien posé dans le cadre L∞. Dans cet article, on montre
que si l’ordre de l’opérateur de diffusion est strictement plus petit que un, alors il peut exister plusieurs solutions faibles ; on apporte
ainsi une motivation supplémentaire à l’utilisation des solutions entropiques.
© 2010 Elsevier Masson SAS. All rights reserved.
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1. Introduction

This paper contributes to the study of the so-called fractal/fractional Burgers equation

∂tu(t, x) + ∂x

(
u2

2

)
(t, x) + Lλ[u](t, x) = 0, (t, x) ∈ R

+ × R, (1.1)

u(0, x) = u0(x), x ∈ R, (1.2)

where Lλ is the non-local operator defined for all Schwartz function ϕ ∈ S(R) through its Fourier transform by

F
(

Lλ[ϕ])(ξ) := |ξ |λF (ϕ)(ξ) with λ ∈ (0,1); (1.3)
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i.e. Lλ denotes the fractional power of order λ/2 of the Laplacian operator −� with respect to (w.r.t. for short) the
space variable.

This equation is involved in many different physical problems, such as overdriven detonation in gas [13] or anoma-
lous diffusion in semiconductor growth [29]; it appeared in a number of papers, such as [5–8,17,20,21,18,1,2,22,24,
15,26,27,11,4,16,23,10,12]. Recently, the notion of entropy solution has been introduced by Alibaud in [1] to show
the well-posedness in the L∞-framework, globally in time.

For λ > 1, the notion of weak solution (i.e. a solution in the sense of distributions; cf. Definition 2.4 below) is
sufficient to ensure the uniqueness and stability result; see the work [17] of Droniou, Gallouët and Vovelle. This result
has been generalized to the critical case λ = 1 by Kiselev, Nazarov and Shterenberg in [24], Dong, Du and Li in [15],
Miao and Wu in [27] and Chan and Czubak in [11] for a large class of initial data (periodic data, or L2 data, or data
in the critical Besov space).

In this paper, we focus on the range of exponent λ ∈ (0,1). By analogy with the purely hyperbolic equation λ = 0
(cf. Oleı̆nik [28] and Kruzhkov [25]), a natural conjecture was that a weak solution to the Cauchy problem (1.1)–(1.2)
need not be unique in this case. Indeed, it has been shown by Alibaud, Droniou and Vovelle in [2] that the assumption
λ < 1 makes the diffusion term too weak to prevent the appearance of discontinuities in solutions of (1.1); see also
Kiselev, Nazarov and Shterenberg [24] and Dong, Du and Li [15]. To the best of our knowledge, yet it was unclear
whether such discontinuities in a weak solution can violate the entropy conditions of [1].

Here we construct a stationary weak solution of (1.1)–(1.2), λ < 1, which does violate the entropy constraint
(constraint that can be expressed under the form of Oleı̆nik’s inequality, cf. [28]). Thus the main result of this paper is
the following.

Theorem 1.1. Let λ ∈ (0,1). There exists initial data u0 ∈ L∞(R) such that uniqueness of a weak solution to the
Cauchy problem (1.1)–(1.2) fails.

The paper is organized as follows. The next section presents the notations, definitions and basic results on frac-
tal conservation laws. The Oleı̆nik inequality for the fractal Burgers equation is stated and proved in Section 3. In
Section 4, we study an equation regularized by means of the viscous term ε∂2

xxu. This equation is solved in the do-
mains {±x > 0} with boundary conditions at {x = 0±} chosen in such a way that the Burgers flux is continuous but
the solution is discontinuous, moreover, the jump across the line {x = 0} is increasing (contrarily to what is needed
for the Oleı̆nik condition to hold). In Section 5, we pass to the limit as ε → 0 and show that the increasing jump
across {x = 0} is persistent; at the limit, we obtain a non-entropy stationary weak solution to (1.1). Section 6 is de-
voted to the proof of the main properties of the fractional Laplacian (see Lemma 4.1) that are used in both preceding
sections. Finally, technical proofs and results are gathered in Appendices A–B.

2. Preliminaries

In this section, we fix some notation, recall the Lévy–Khintchine formula for the fractional Laplacian and the
associated notions of generalized solutions to fractal conservation laws.

2.1. Notations

Sets. Throughout this paper, R
± denote the sets (−∞,0) and (0,+∞), respectively; the set R∗ denotes R\{0} and R

denotes {−∞} ∪ R ∪ {+∞}.

Right-differentiability. A function m : R
+ → R is said to be right-differentiable at t0 > 0 if there exists the

limit limt↓t0
m(t)−m(t0)

t−t0
in R; the limit itself is denoted by m′

r (t0).

Function spaces. Further, C∞
c = D denotes the space of infinitely differentiable compactly supported test func-

tions, S is the Schwartz space, D′ is the space of distributions and S ′ is the space of tempered distributions. The
space of k times continuously differentiable functions is denoted by Ck and Ck

b denotes the subspace of functions
with bounded derivatives up to order k (if k = 0, the superscripts are omitted); Cc denotes the subspace of C of
functions with compact support; C0 denotes the closure of Cc for the norm of the uniform convergence; Lp , L

p

loc
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and Wk,p , W
k,p

loc (if p = 2 the latter two spaces are denoted by Hk,Hk
loc, respectively) stand for the classical Lebesgue

and Sobolev spaces, respectively; BV and BVloc denote the spaces of functions of bounded variation (with globally
or locally bounded variation, respectively).

Unless the topology of a space is indicated explicitly, we mean that D′ and S ′ are endowed with their usual weak-�
topologies and the other spaces are endowed with their usual strong topologies (of Banach spaces, of Fréchet spaces,
etc.).

Weak-� topology in BV . Let ∂x : D′(R) → D′(R) denote the gradient (w.r.t x) operator in the sense of distribu-
tions. We let L1(R) ∩ (BV (R))w-� denote the linear space L1(R) ∩ BV (R) endowed with the most coarse topology
such that the inclusion L1(R) ∩ BV (R) ⊂ L1(R) and the mapping ∂x : L1(R) ∩ BV (R) → (C0(R))′ are continuous,
where L1(R) is endowed with its strong topology and (C0(R))′ with its weak-� topology. Hence, one has:

[
vk → v in L1(R) ∩ (

BV (R)
)
w-�

] ⇐⇒
{

vk → v in L1(R),

∂xvk
w-�
⇀ ∂xv in

(
C0(R)

)′.

We define in the same way the space (BVloc(R))w-� ∩ H 1
loc(R \ {0}), in which notion of convergent sequences is

the following one:

[
vk → v in

(
BVloc(R)

)
w-� ∩ H 1

loc

(
R \ {0})] ⇐⇒

{
vk → v in H 1

(
R \ [−R,R]), ∀R > 0,

∂xvk
w-�
⇀ ∂xv in

(
Cc(R)

)′
.

From the Banach–Steinhaus theorem, one sees that (vk)k is (strongly) bounded in BVloc(R) ∩ H 1
loc(R \ {0}), i.e.:

∀R > 0, sup
k∈N∗

(‖vk‖H 1(R\[−R,R]) + |vk|BV ((−R,R))

)
< +∞,

where | · |BV denotes the BV semi-norm.

Spaces of odd functions. In our construction, a key role is played by the spaces of odd functions v which are in the
Sobolev space H 1:

H 1
odd := {

v ∈ H 1
∣∣ v is odd

};
notice that v ∈ H 1

odd(R∗) can be discontinuous at zero so that v(0−) = −v(0+) in the sense of traces, whereas v(0−) =
v(0+) = 0 if v ∈ H 1

odd(R).
The space H 1

odd(R∗) and, more generally, the space H 1(R∗) can be considered as a subspace of L2(R); to avoid
confusion, ∂xv always denotes the gradient of v in D′(R), so that (∂xv)|R∗ ∈ L2(R) is the gradient in D′(R∗). One
has (∂xv)|R∗ = ∂xv almost everywhere (a.e. for short) on R if and only if (iff for short) v is continuous at zero; in

the other case, one has ∂xv /∈ L1
loc(R). When the context is clear, the products

∫
R

ϕ(∂xv)|R∗ and
∫

R
(∂xv)|R∗ (∂xψ)|R∗

with ϕ ∈ L2(R) and ψ ∈ H 1(R∗) are simply denoted by
∫

R∗ ϕ∂xv and
∫

R∗ ∂xv∂xψ , respectively.

Identity and Fourier operators. By Id we denote the identity function. The Fourier transform F on S ′(R) is denoted
by F ; for explicit computations, we use the following definition on L1(R):

F (v)(ξ) :=
∫
R

e−2iπxξ v(x) dx.

Entropy-flux pairs. By η, we denote a convex function on R; following Kruzhkov [25], we call it an entropy and
q :u �→ ∫ u

0 s dη(s) is the associated entropy flux.

Truncation functions. The sign function is defined by:

u �→ signu :=
{±1 if ±u > 0,
0 if u = 0.
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In the proofs, we will need to regularize the truncation function u �→ min{|u|, n} signu, where n ∈ N∗ will be fixed;
thus Tn denotes a function on R satisfying⎧⎨⎩

Tn ∈ C∞
b (R) is odd,

Tn = Id on [−n + 1, n − 1],
|Tn| � n.

(2.1)

2.2. Lévy–Khintchine’s formula

Let λ ∈ (0,1). For all ϕ ∈ S(R) and x ∈ R, we have

Lλ[ϕ](x) = −Gλ

∫
R

ϕ(x + z) − ϕ(x)

|z|1+λ
dz, (2.2)

where Gλ = λΓ ( 1+λ
2 )

2π
1
2 +λ

Γ (1− λ
2 )

> 0 and Γ is Euler’s function, see e.g. [9,19] or [18, Theorem 2.1].

2.3. Entropy and weak solutions

Formula (2.2) motivates the following notion of entropy solution introduced in [1].

Definition 2.1 (Entropy solutions). Let λ ∈ (0,1) and u0 ∈ L∞(R). A function u ∈ L∞(R+ × R) is said to be an
entropy solution to (1.1)–(1.2) if for all non-negative test function ϕ ∈ C∞

c ([0,+∞) × R), all entropy η ∈ C1(R) and
all r > 0,∫

R

η(u0)ϕ(0) +
∫

R+

∫
R

(
η(u)∂tϕ + q(u)∂xϕ

) + Gλ

∫
R+

∫
R

∫
|z|>r

η′(u(t, x)
)u(t, x + z) − u(t, x)

|z|1+λ
ϕ(t, x) dt dx dz

+ Gλ

∫
R+

∫
R

∫
|z|�r

η
(
u(t, x)

)ϕ(t, x + z) − ϕ(t, x)

|z|1+λ
dt dx dz � 0. (2.3)

Remark 2.2. In the above definition, r plays the role of a cut-off parameter; taking r > 0 in (2.3), one avoids the
technical difficulty while treating the singularity in the Lévy–Khintchine formula (by doing this, one looses some
information; the information is recovered at the limit r → 0). Let us refer to the recent paper of Karlsen and Ulu-
soy [23] for a different definition of the entropy solution, equivalent to the above one; note that the framework of [23]
encompasses Lévy mixed hyperbolic/parabolic equations.

The notion of entropy solutions provides a well-posedness theory for the Cauchy problem for the fractional con-
servation law (1.1); the results are very similar to the ones for the classical Burgers equation (cf. e.g. [28,25]).

Theorem 2.3. (See [1].) For all u0 ∈ L∞(R), there exists one and only one entropy solution u ∈ L∞(R+ × R)

to (1.1)–(1.2). Moreover, u ∈ C([0,+∞);L1
loc(R)) (so that u(0) = u0), and the solution depends continuously in

C([0,+∞);L1(R)) on the initial data in L1(R) ∩ L∞(R).

As explained in the introduction, the purpose of this paper is to prove that the weaker solution notion below would
not ensure uniqueness.

Definition 2.4 (Weak solutions). Let u0 ∈ L∞(R). A function u ∈ L∞(R+ × R) is said to be a weak solution to (1.1)–
(1.2) if for all ϕ ∈ C∞

c ([0,+∞) × R),∫
R+

∫
R

(
u∂tϕ + u2

2
∂xϕ − uLλ[ϕ]

)
+

∫
R

u0ϕ(0) = 0. (2.4)
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3. The Oleı̆nik inequality

Notice that it can be easily shown that an entropy solution is also a weak one. The converse statement is false, which
we will prove by constructing a weak non-entropy solution. A key fact here is the well-known Oleı̆nik inequality
(see [28]); in this section, we generalize it to entropy solutions of the fractal Burgers equation.

Proposition 3.1 (Oleı̆nik’s inequality). Let u0 ∈ L∞(R). Let u ∈ L∞(R+ × R) be the entropy solution to (1.1)–(1.2).
Then, we have for all t > 0,

∂xu(t) � 1

t
in D′(R). (3.1)

Remark 3.2. This result can be adapted to general uniformly convex fluxes. Moreover, we think that the Oleı̆nik
inequality gives a necessary and sufficient condition for a weak solution to be an entropy solution (as for pure scalar
conservation laws, cf. [28,25]). Nevertheless, for the sake of simplicity, we only prove the above result, which is
sufficient for our purpose.

In order to prove this proposition, we need the following technical result:

Lemma 3.3. Let v ∈ C1(R+ × R) be such that for all b > a > 0,

lim|x|→+∞ sup
t∈(a,b)

v(t, x) = −∞. (3.2)

Define m(t) := maxx∈R v(t, x) and K(t) := arg maxx∈R v(t, x). Then m is continuous and right-differentiable on R
+

with m′
r (t) = maxx∈K(t) ∂t v(t, x).

For a proof of this result, see e.g. the survey book of Danskyn [14] on the min max theory; for the reader’s
convenience, a short proof is also given in Appendix A. We can now prove the Oleı̆nik inequality.

Proof of Proposition 3.1. For ε > 0 consider the regularized problem

∂tuε + ∂x

(
u2

ε

2

)
+ Lλ[uε] − ε∂2

xxuε = 0 in R
+ × R, (3.3)

uε(0) = u0 on R. (3.4)

It was shown in [17] that there exists a unique solution uε ∈ L∞(R+ × R) to (3.3)–(3.4) in the sense of the Duhamel
formula, and that uε ∈ C∞

b ((a,+∞) × R) for all a > 0. Furthermore, it has been proved in [4] that for all T > 0, uε

converges to u in C([0, T ];L1
loc(R)) as ε → 0. Inequality (3.1) being stable by this convergence, it suffices to prove

that uε satisfies (3.1).
To do so, let us differentiate (3.3) w.r.t. x. We get

∂tvε + v2
ε + uε∂xvε + Lλ[vε] − ε∂2

xxvε = 0, (3.5)

with vε := ∂xuε . Fix 0 < λ′ < λ and introduce the “barrier function” Φ(x) := (1 + |x|2) λ′
2 . Then Φ is positive with

lim|x|→+∞Φ(x) = +∞; (3.6)

moreover Φ is smooth with

CΦ := ‖∂xΦ‖∞ + ∥∥∂2
xxΦ

∥∥∞ + ∥∥Lλ[Φ]∥∥∞ < +∞
(notice that Lemma B.2 in Appendix B ensures that Lλ[Φ] ∈ Cb(R) is well defined by (2.2)). For δ > 0 and t > 0,
define

mδ(t) := max
{
vε(t, x) − δΦ(x)

}
.

x∈R
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Define Kδ(t) := arg maxx∈R{vε(t, x) − δΦ(x)}. This set is non-empty and compact, thanks to the regularity of vε and
to (3.6); moreover, by Lemma 3.3, mδ is right-differentiable w.r.t. t with

(mδ)
′
r (t) = max

x∈Kδ(t)
∂t vε(t, x) = ∂tvε

(
t, xδ(t)

)
for some xδ(t) ∈ Kδ(t). This point is also a global maximum point of vε(t) − δΦ , so that

∂xvε

(
t, xδ(t)

) = δ∂xΦ(xδ), ∂2
xxvε

(
t, xδ(t)

)
� δ∂2

xxΦ(xδ) and Lλ[vε] � δLλ[Φ](t, xδ(t)
)

(the last inequality is easily derived from (2.2)). We deduce that∣∣∂xvε

(
t, xδ(t)

)∣∣ � δCΦ, ∂2
xxvε

(
t, xδ(t)

)
� δCΦ and Lλ[vε]

(
t, xδ(t)

)
� −δCΦ.

By (3.5), we get (mδ)
′
r (t) + v2

ε (t, xδ(t)) � Cδ, for some constant C that only depends on ε, ‖uε‖∞ and CΦ . By
construction mδ(t) = vε(t, xδ(t)) − δΦ(xδ(t)), furthermore, Φ is non-negative, so that

(mδ)
′
r (t) + (

mδ(t) + δΦ
(
xδ(t)

))2 � Cδ and (mδ)
′
r (t) − Cδ + (

max
{
mδ(t),0

})2 � 0.

Now we set m̃δ(t) := mδ(t) − Cδt . Because the function r ∈ R �→ (max{r,0})2 ∈ R is non-decreasing, we infer
that m̃δ ∈ C(R+) is right-differentiable with

(m̃δ)
′
r (t) + (

max
{
m̃δ(t),0

})2 � 0

for all t > 0. By Lemma B.1 in Appendix B, we can integrate this equation and conclude that m̃δ(t) � 1
t

for all t > 0.
Finally, it is easy to prove that m̃δ(t) = mδ(t) − Cδt → supx∈R vε(t, x) as δ → 0, so that supx∈R ∂xuε(t, x) � 1

t

(pointwise, for all t > 0). This proves (3.1) for uε in the place of u, and thus completes the proof of the proposition. �
4. A stationary regularized problem

The plan to show Theorem 1.1 consists in proving the existence of an odd weak stationary solution to (1.1) with
a discontinuity at x = 0 not satisfying the Oleı̆nik inequality. This non-entropy solution is constructed as limit of
solutions to regularized problems, see Eqs. (4.2)–(4.3) below. This section focuses on the solvability of these problems.
This is done in the second subsection; the first one lists some properties of Lλ that will be needed.

4.1. Main properties of the non-local operator

In the sequel, Lλ is always defined by the Lévy–Khintchine formula (2.2).

Lemma 4.1. Let λ ∈ (0,1). The operator Lλ defined by the Lévy–Khintchine formula (2.2) enjoys the following
properties:

(i) The operators Lλ and Lλ/2 are continuous as operators:
(a) Lλ : Cb(R∗) ∩ C1(R∗) → C(R∗);
(b) Lλ : H 1(R∗) → L1

loc(R) ∩ L2
loc(R \ {0});

(c) Lλ/2 : H 1(R∗) → L2(R).
Moreover, Lλ is sequentially continuous as an operator:
(d) Lλ : L1(R) ∩ (BV (R))w-� → L1(R).

(ii) If v ∈ H 1(R∗), then the definition of Lλ by Fourier transform (see (1.3)) makes sense; more precisely,

Lλ[v] = F −1(ξ → |ξ |λF (v)(ξ)
)

in S ′(R).

(iii) For all v,w ∈ H 1(R∗),∫
Lλ[v]w =

∫
vLλ[w] =

∫
Lλ/2[v]Lλ/2[w].
R R R
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(iv) If v ∈ H 1(R∗) is odd (resp. even), then Lλ[v] is odd (resp. even).

(v) Let 0 �≡ v ∈ Cb(R∗) ∩ C1(R∗) be odd. Assume that x∗ > 0 is an extreme point of v such that

v(x∗) = max
R+ v and v(x∗) � 0

(
resp. v(x∗) = min

R+ v and v(x∗) � 0
)
.

Then, we have Lλ[v](x∗) > 0 (resp. Lλ[v](x∗) < 0).

Remark 4.2. Item (v) can be interpreted as a positive reverse maximum principle for the fractional Laplacian acting
on the space of odd functions.

The proofs of these results are gathered in Section 6.

4.2. The regularized problem

Throughout this section, ε > 0 is a fixed parameter. Consider the space H 1
odd(R∗) with the scalar product

〈v,w〉 :=
∫
R∗

{
ε(vw + ∂xv∂xw) + Lλ/2[v]Lλ/2[w]}. (4.1)

By the item (i)(c) of Lemma 4.1, 〈·,·〉 is well defined and its associated norm ‖ · ‖ := √〈·,·〉 is equivalent to the
usual H 1(R∗)-norm; in particular, H 1

odd(R∗) is a Hilbert space.
Let us construct a solution v ∈ H 1

odd(R∗) to the problem

ε
(
vε − ∂2

xxvε

) + ∂x

(
v2
ε

2

)
+ Lλ[vε] = 0 in R∗, (4.2)

vε

(
0±) = ±1, (4.3)

where Eq. (4.2) is understood in the weak sense (e.g. in D′(R∗)) and the constraint (4.3) is understood in the sense of
traces. Setting

θ(x) := (
1 − |x|)+ signx, (4.4)

we equivalently look for a weak solution of (4.2) living in the affine subspace of H 1
odd(R∗) given by

E := θ + H 1
odd(R) = {

v ∈ H 1
odd(R∗)

∣∣ v
(
0±) = ±1 in the sense of traces

}
.

Here is the main result of this section.

Proposition 4.3. Let λ ∈ (0,1) and ε > 0. Eq. (4.2) admits a weak solution vε ∈ E satisfying

0 � vε(x) signx � 1 for all x ∈ R∗, (4.5)

sup
ε∈(0,1)

∫
R

{
ε(∂xvε)

2|R∗ + (
Lλ/2[vε]

)2}
< +∞. (4.6)

Proof. The proof is divided into several steps.
Step one. We first fix v̄ ∈ E and introduce the auxiliary equation with modified convection term:

ε
(
v − ∂2

xxv
) + ρn∂x

(
(ρnTn(v̄))2

2

)
+ Lλ[v] = 0, (4.7)

where for n ∈ N∗, the truncation functions Tn and ρn are given, respectively, by (2.1) and by the formula ρn(x) :=
ρ( x ) with
C(n,ε)
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{
ρ ∈ C∞

c (R) even,

0 � ρ � ρ(0) = 1,

−1 � ρ ′ � 0 on R
+

and with

C(n, ε) := n2

ε
(4.8)

(this choice of the constant is explained in Step three). Note the property

ρn −→
n→+∞ 1 uniformly on compact subsets of R. (4.9)

It is straightforward to see that solving (4.7), (4.3) in the variational sense below,∣∣∣∣∣∣∣∣
find v ∈ E such that for all ϕ ∈ H 1

odd(R),∫
R∗

{
ε(vϕ + ∂xv∂xϕ) + Lλ/2[v]Lλ/2[ϕ]} =

∫
R

(ρnTn(v̄))2

2
∂x(ρnϕ),

(4.10)

is equivalent to finding a minimizer v ∈ E for the functional

Jv̄,n :
E → R

u �→ 1

2

∫
R∗

{
ε
(
u2 + (∂xu)2) + (

Lλ/2[u])2 − (
ρnTn(v̄)

)2
∂x(ρnu)

}
.

Notice that ρnTn(v̄) ∈ L∞(R) and ρn ∈ H 1(R), so that(
ρnTn(v̄)

)2(
∂x(ρnu)

)
|R∗

∈ L1(R) with
∫
R∗

∣∣(ρnTn(v̄)
)2

∂x(ρnu)
∣∣ � Cn‖u‖;

let us precise that here and until the end of this proof, Cn denotes a generic constant that depends only on n and
eventually on the fixed parameter ε (and which can change from one expression to another). Then the functional Jv̄,n

is well defined on E and coercive, because

Jv̄,n(u) = 1

2
‖u‖2 − 1

2

∫
R∗

(
ρnTn(v̄)

)2
∂x(ρnu) � 1

2
‖u‖2 − Cn‖u‖ (4.11)

tends to infinity as ‖u‖ → +∞.
Finally, it is clear that Jv̄,n is strictly convex and strongly continuous. Thus we conclude that there exists a unique

minimizer of Jv̄,n, which is the unique solution of (4.10). We denote this solution by Fn(v̄), which defines a map
Fn : E → E.

Step two: apply the Schauder fixed-point theorem to the map Fn. Note that Fn(E) is contained in the closed ball
BRn := B(0H 1

odd(R∗),Rn) of H 1
odd(R∗) for some radius Rn > 0 (only depending on n and ε). Indeed, let v := Fn(v̄);

then by using (4.11), replacing the minimizer v with the function θ ∈ E in (4.4), and applying the Young inequality
we get

‖v‖2 � 2Jv̄,n(v) + Cn‖v‖ � 2Jv̄,n(θ) + 1

2
‖v‖2 + Cn.

We can restrict Fn to the closed convex set C := E ∩ BRn of the Banach space H 1
odd(R∗). It remains to show

that Fn : C → C is continuous and compact.
In order to justify the compactness of Fn(C), take a sequence (vk)k ⊂ Fn(C) and an associated sequence (v̄k)k ⊂ C

with vk = Fn(v̄k). Because C is bounded, by standard embedding theorems there exists a (not relabelled) subsequence
of (v̄k)k that converges weakly in H 1(R∗) and strongly in L2

loc(R); let v̄∞ be its limit. One has v̄∞ ∈ C because C is a
strongly closed convex subset in H 1(R∗), thus it is weakly closed. We can assume without loss of generality that the
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corresponding subsequence of (vk)k converges weakly to some v∞ ∈ C in H 1
odd(R∗). Let us prove that vk converges

strongly to v∞ in H 1
odd(R∗) and that v∞ = Fn(v̄∞).

By the above convergences, using the facts that Tn ∈ C∞
b (R) and ρn ∈ C∞

c (R), one sees that∫
R∗

(
ρnTn(v̄k)

)2
∂x(ρnvk) →

∫
R∗

(
ρnTn(v̄∞)

)2
∂x(ρnv∞) as k → +∞.

Moreover, because vk is the minimizer of Jv̄k ,n, we have

‖vk‖2 −
∫
R∗

(
ρnTn(v̄k)

)2
∂x(ρnvk) = 2Jv̄k ,n(vk) � 2Jv̄k,n(v∞) = ‖v∞‖2 −

∫
R∗

(
ρnTn(v̄k)

)2
∂x(ρnv∞).

Thus passing to the limit as k → +∞ in this inequality we get ‖v∞‖ � lim supk→+∞ ‖vk‖. It follows that the con-
vergence of vk to v∞ is actually strong in H 1

odd(R∗). Passing to the limit as k → +∞ in the variational formulation
(4.10) written for vk and v̄k , we deduce by the uniqueness of a solution to (4.10) that v∞ = Fn(v̄∞); this completes
the proof of the compactness of Fn(C).

To prove the continuity of Fn, one simply assumes that v̄k → v̄∞ strongly in H 1
odd(R∗) and repeats the above

reasoning for each subsequence of (vk)k . One finds that from all subsequence of (vk)k one can extract a subsequence
strongly converging to v∞ = Fn(v̄∞); hence, the proof of the continuity of Fn is complete.

We conclude that there exists a fixed point un of Fn in C . Then v := v̄ = un satisfies the formulation (4.10). In
addition, (4.10) is trivially satisfied with a test function ϕ ∈ H 1(R) which is even. Indeed, using the definitions of Tn

and ρn and Lemma 4.1(iv), we see that

ε(vϕ + ∂xv∂xϕ) + Lλ/2[v]Lλ/2[ϕ] − (ρnTn(v̄))2

2
∂x(ρnϕ)

is an odd function, so that its integral on R∗ is null. Since all function in H 1(R) can be split into the sum of an odd
function in H 1

odd(R) and an even function in H 1(R), we have proved that the fixed point un ∈ E of Fn satisfies for
all ϕ ∈ H 1(R),∫

R

{
ε
(
unϕ + (∂xun)|R∗ ∂xϕ

) + Lλ/2[un]Lλ/2[ϕ]} =
∫
R

(ρnTn(un))
2

2
∂x(ρnϕ) (4.12)

(notice that the Rankine–Hugoniot condition is satisfied automatically because of the fact that u2
n

2 is even). In particular,
using Lemma 4.1 item (iii), one has

ε
(
∂2
xxun − un

) = ρn∂x

(
(ρnTn(un))

2

2

)
+ Lλ[un] in D′(R∗). (4.13)

Step three: uniform estimates on the sequence (un)n. First, in order to prove a maximum principle for un let us point
out that un is regular. Indeed, thanks to Lemma 4.1(i)(b) and the facts that Tn ∈ C∞

b (R) and ρn ∈ C∞
c (R), the right-

hand side of (4.13) belongs to L1(I ) for all compact interval I ⊂ R∗. Eq. (4.13) then implies that un ∈ W
2,1
loc (R∗) ⊂

C1(R∗). Recall that un ∈ H 1(R∗) ⊂ Cb(R∗); thus using Lemma 4.1(i)(a), we see that the right-hand side of (4.13)
belongs to C(I). Exploiting once more Eq. (4.13), we infer that un ∈ C2(R∗) and (4.13) holds pointwise on R∗.

Now, we are in a position to prove that for all x > 0 and n ∈ N∗, 0 � un(x) � 1. Indeed, because un ∈ H 1(R+),
we have limx→+∞ un(x) = 0; in addition, un(0+) = 1. Thus if un(x) /∈ [0,1] for some x ∈ R

+, there exists x∗ ∈ R
+

such that

either un(x∗) = max
R+ u > 1 or un(x∗) = min

R+ u < 0.

Consider the first case. Since un ∈ C2(R∗), we have ∂xun(x∗) = 0 and ∂2
xxun(x∗) � 0. In addition, by Lemma 4.1(v)

we have L[un](x∗) > 0. Therefore using (4.13) at the point x∗, by the choice of ρn and C(n, ε) in (4.8) we infer
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εun(x∗) = ε∂2
xxun(x∗) − Lλ[un](x∗) − ρn(x∗)∂x

(
(ρn(x∗)Tn(un(x∗)))2

2

)
� −(

ρn(x∗)Tn

(
u(x∗)

))2
∂xρn(x∗) � n2 1

C(n, ε)
sup
R+

(−∂xρ) � ε.

Thus un(x∗) � 1, which contradicts the definition of x∗. The case un(x∗) = minR+ u < 0 is similar; we use in addition
the fact that ∂xρn � 0 on R

+.
The function un being even, from the maximum principle of Step three we have |un| � 1 on R∗. Since Tn = Id

on [−n + 1, n − 1], we have Tn(un) = un in (4.13) for all n � 2.
Let us finally derive the uniform H 1

odd(R∗)-bound on (un)n. To do so, replace the minimum un of the func-
tional Jun,n by the fixed function θ ∈ E in (4.4); we find

‖un‖2 = 2Jun,n(un) +
∫
R∗

(ρnun)
2∂x(ρnun) � 2Jun,n(θ) +

∫
R∗

∂x

(
(ρnun)

3

3

)
.

Since ρn(0) = 1 = ±un(0±), we get

‖un‖2 � 2Jun,n(θ) − 2

3
= ‖θ‖2 −

∫
R∗

(ρnun)
2∂x(ρnθ) − 2

3
.

To estimate the integral term, we use that θ is supported by [−1,1] with |∂x(ρnθ)| � 1 + ε

n2 (once more, this is due to
the choice of ρn in (4.8)). Finally, using the bound |un| � 1 derived above, we get

−
∫
R∗

(ρnun)
2∂x(ρnθ) � 2 + 2ε

n2
;

hence, we obtain the following uniform estimate:

‖un‖2 � ‖θ‖2 + 4

3
+ 2ε

n2
. (4.14)

Step four: passage to the limit as n → +∞. The H 1
odd(R∗)-estimate of Step three permits to extract a (not rela-

belled) subsequence (un)n which converges (weakly in H 1(R∗) and strongly in L2
loc(R)) to a limit that we denote vε .

We have (un)n ⊂ E which is a closed affine subspace of H 1(R∗), so that vε ∈ E. The above convergences and the
convergence of ρn in (4.9) are enough to pass to the limit in (4.12); at the limit, we conclude that vε is a weak
solution of (4.2). Notice that vε inherits the bounds on un, namely the bound (4.14) and the maximum principle
0 � un(x) signx � 1. This yields (4.5) and (4.6), thanks to the definition of ‖ · ‖ via the scalar product (4.1). �
Remark 4.4. When passing to the limit as n → +∞ in (4.12) in the last step, one gets:∫

R

{
ε
(
vεϕ + (∂xvε)|R∗ ∂xϕ

) + vε Lλ[ϕ]} =
∫
R

vε
2

2
∂xϕ for all ϕ ∈ H 1(R). (4.15)

5. A non-entropy stationary solution

We are now able to construct a stationary non-entropy solution to (1.1) by passing to the limit in vε as ε → 0.
Let us explain our strategy. First, we have to use the uniform estimates of Proposition 4.3 to get compactness; this is
done via the following lemma which is proved in Appendix A.

Lemma 5.1. Assume that for all ε ∈ (0,1), vε ∈ H 1(R∗) satisfies (4.5)–(4.6). Then the family {vε|ε ∈ (0,1)} is rela-
tively compact in L2

loc(R).

With Lemma 5.1 in hand, we can prove the convergence of a subsequence of vε , as ε → 0, to some stationary weak
solution v of (1.1). Next, we need to control the traces of v at x = 0±. This is done by reformulating Definition 2.4
and by exploiting the Green–Gauss formula.

Let us begin with giving a characterization of odd weak stationary solutions of the fractional Burgers equation.
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Proposition 5.2. An odd function v ∈ L∞(R) satisfies

∂x

(
v2

2

)
+ Lλ[v] = 0 in D′(R), (5.1)

iff (i) and (ii) below hold true:

(i) there exists the trace γ v2 := limh→0+ 1
h

∫ h

0 v2(x) dx;
(ii) for all odd compactly supported in R test function ϕ ∈ C∞

b (R∗),∫
R∗

(
vLλ[ϕ] − v2

2
∂xϕ

)
= ϕ

(
0+)

γ v2.

Proof. Assume (5.1). For all h > 0, let us set ψh(x) := 1
h
(h−|x|)+ signx. Let us recall that θ(x) = (1 −|x|)+ signx.

First consider

θh(x) :=
{

θ(x), x < 0,

−ψh(x), x � 0
and θ0(x) =

{
θ(x), x < 0,

0, x � 0.

By construction, θh ∈ H 1(R); therefore θh can be approximated in H 1(R) by functions in D(R) and thus taken as a
test function in (5.1). This gives

−
∫

R+

v2

2
∂xψh = −

∫
R−

v2

2
∂xθ +

∫
R

vLλ[θh].

But, it is obvious that θh → θ0 in L1(R) ∩ (BV (R))w-∗ as h → 0+; thus using Lemma 4.1(i)(d), we conclude that the
limit in item (i) of Proposition 5.2 does exist, and

γ v2 := lim
h→0+

1

h

h∫
0

v2 = − lim
h→0+

∫
R+

v2∂xψh = −
∫

R−
v2∂xθ + 2

∫
R

vLλ[θ0]. (5.2)

Further, take a function ϕ as in item (ii) of Proposition 5.2 and set ϕh(x) := ϕ(x) − ϕ(0+)ψh(x). One can

take ϕh ∈ H 1(R) as a test function in (5.1). Taking into account the fact that v2

2 ∂xϕh and vLλ[ϕh] are even, thanks to
Lemma 4.1(iv), we get

2
∫

R+

(
vLλ[ϕ] − v2

2
∂xϕ

)
= 2ϕ

(
0+) ∫

R+

(
vL[ψh] − v2

2
∂xψh

)
.

Now we pass to the limit as h → 0+. As previously, because ψh → 0 in L1(R) ∩ (BV (R))w-∗, the term Lλ[ψh]
vanishes in L1(R). Using (5.2), we get item (ii) of Proposition 5.2.

Conversely, assume that an odd function v satisfies the properties of items (i) and (ii) of Proposition 5.2. Take a
test function ξ ∈ D(R) and write ξ = ϕ + ψ with ϕ ∈ D(R) odd (so that ϕ(0+) = 0) and ψ ∈ D(R) even. Then (ii)
and the symmetry considerations, including Lemma 4.1(iv), show that∫

R

(
vLλ[ϕ] − v2

2
∂xϕ

)
= ϕ

(
0+)

γ v2 = 0,

∫
R

(
vLλ[ψ] − v2

2
∂xψ

)
= 0.

Hence we deduce that v satisfies (5.1). �
Here is the result of existence of a non-entropy stationary solution.

Proposition 5.3. Let λ ∈ (0,1). There exists v ∈ L∞(R) that satisfies (5.1) and such that for all c > 0, v does not
satisfy ∂xv � 1 in D′(R).
c
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Proof. First, by Proposition 4.3 and Lemma 5.1 there exist v ∈ L∞(R) and a sequence (εk)k , εk ↓ 0 as k → +∞,
such that the solution vεk

of (4.2) with ε = εk tends to v in L2
loc(R); v is bounded by 1 in the L∞-norm. Using in

particular (4.6) to make disappear the term
√

ε(
√

ε∂xvε)|R∗ , we can pass to the limit in (4.15) and infer (5.1).
In order to conclude the proof, we only need to show that there exist the limits

lim
h→0+

1

h

h∫
0

v = 1, lim
h→0+

1

h

0∫
−h

v = −1. (5.3)

Indeed, (5.3) readily implies that for all c > 0, the function (v − 1
c
Id) does not admit a non-increasing representative.

Since ∂x(v − 1
c
Id) = ∂xv − 1

c
, the inequality ∂xv − 1

c
� 0 in the distribution sense fails to be true.

Thus it remains to show (5.3). To do so, we exploit the formulation (i)–(ii) of Proposition 5.2, the analogous
formulation of the regularized problem (4.2), the fact that vεk

(0±) = ±1, and (4.5).
Let us fix some odd compactly supported in R function ϕ ∈ C∞

b (R∗) such that ϕ(0+) = 1. Let us take the test
function ϕh(x) := ϕ(x) − ψh(x) ∈ H 1(R) in (4.15). We infer∫

R∗

{
ε(vεϕh + ∂xvε∂xϕh) + vε Lλ[ϕh] − v2

ε

2
∂xϕh

}
= 0.

Each term in the above integrand is even; moreover, letting h → 0+ and using Lemma 4.1(i)(d) on Lλ[ψh], we infer∫
R∗

{
ε(vεϕ + ∂xvε∂xϕ) + vε Lλ[ϕ] − v2

ε

2
∂xϕ

}
= 2 lim

h→0+
1

h

h∫
0

(
v2
ε

2
− ε∂xvε

)
= 1 − 2ε

h
[vε]h0

= 1 − 2ε

h

(
vε(h) − 1

)
� 1; (5.4)

here in the last inequality, we have used the fact that 0 � vε(x) � 1 = vε(0+) for x > 0.
Letting εk → 0 in (5.4), using again (4.6) to make disappear the term

∫
R∗ ε∂xvε∂xϕ, we infer∫

R∗

{
vLλ[ϕ] − v2

2
∂xϕ

}
� 1. (5.5)

Recall that v is odd and solves (5.1); thus it satisfies items (i) and (ii) of Proposition 5.2. From item (ii), we infer
that limh→0+ 1

h

∫ h

0 v2 = γ v2 � 1. But we also have 0 � v � 1 on [0, h]. Therefore

lim
h→0+

1

h

h∫
0

|1 − v| = lim
h→0+

1

h

h∫
0

1 − v2

1 + v
� lim

h→0+
1

h

h∫
0

(
1 − v2) = 1 − γ v2 � 0.

Whence the first equality in (5.3) follows. The second one is clear because v is an odd function. This concludes the
proof. �

From Propositions 3.1 and 5.3, Theorem 1.1 readily follows.

Proof of Theorem 1.1. Take u0 := v. From (5.1) we derive that the function defined by u(t) := v for all t � 0 is a
weak solution to (1.1)–(1.2). But it is not the entropy solution, because it fails to satisfy (3.1). �
Remark 5.4. Let us stress that the solution vε to the regularized problem (4.2)–(4.3) does not satisfy Eq. (4.2) on all
the domain R; indeed, one has

ε
(
vε − ∂2

xxvε

) + ∂x

(
v2
ε

2

)
+ Lλ[vε] = −2ε∂x(δ0) in R, (5.6)

where δ0 is the Dirac distribution at zero.
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It is natural to compare (5.6) and (3.3); within the class of stationary solutions, the two regularizations are very
similar. Yet the presence of a vanishing (as ε → 0) but singular source term in (5.6) is responsible for the failure of
the Oleı̆nik inequality: this source term creates the increasing jump in vε across the line {x = 0}. This explains why vε

converges as ε → 0 to a weak non-entropy solution of Eq. (1.1), whereas we have seen in the proof of Proposition 3.1
that the solution uε of the regularized problem (3.3)–(3.4) converges to an entropy solution.

6. Proof of Lemma 4.1

We end this paper by proving the main properties of the fractional Laplacian acting on spaces of odd functions.
First, we have to state and prove some technical lemmata.

Here are the embedding and density results that will be needed; for the reader’s convenience, short proofs are given
in Appendix A.

Lemma 6.1. The inclusions

H 1(R∗) ⊂ BVloc(R) ∩ H 1
loc

(
R \ {0}) ⊂ L∞(R) ∩ L2(R) (6.1)

and (
BVloc(R)

)
w-�

∩ H 1
loc

(
R \ {0}) ⊂ L2(R) (6.2)

are continuous and sequentially continuous, respectively.

Lemma 6.2. The space D(R) is dense in H 1(R∗) for the (BVloc(R))w-� ∩ H 1
loc(R \ {0})-topology.

The next lemma states weak continuity results for the fractional Laplacian. Until the end of this section, Lλ denotes
the operator defined by (2.2) and L F

λ denotes the one defined by (1.3).

Lemma 6.3. Let λ ∈ (0,1). Then the following operators are sequentially continuous:

Lλ : (BVloc(R)
)
w-�

∩ H 1
loc

(
R \ {0}) → L1

loc(R) ∩ L2
loc

(
R \ {0}),

L F
λ/2 : (BVloc(R)

)
w-�

∩ H 1
loc

(
R \ {0}) → L2(R).

Proof. The proof is divided in several steps. Step one: strong continuity of Lλ. Let v ∈ BVloc(R) ∩ H 1
loc(R \ {0}) and

let us derive some estimates on Lλ[v]. For all r,R > 0, using the Fubini theorem one has

R∫
−R

∫
R

|v(x + z) − v(x)|
|z|1+λ

dx dz

=
R∫

−R

∫
|z|�r

|v(x + z) − v(x)|
|z|1+λ

dx dz +
R∫

−R

∫
|z|>r

|v(x + z) − v(x)|
|z|1+λ

dx dz

� |v|BV ((−R−r,R+r))

∫
|z|�r

|z|−λ dz +
(

sup
|z|>r

‖v‖L1((−R+z,R+z)) + ‖v‖L1((−R,R))

) ∫
|z|>r

|z|−1−λ dz

= 2r1−λ

1 − λ
|v|BV ((−R−r,R+r)) + 2

λrλ

(
sup
|z|>r

‖v‖L1((−R+z,R+z)) + ‖v‖L1((−R,R))

)
. (6.3)

By (6.1) of Lemma 6.1, using the Cauchy–Schwarz inequality to control the L1-norms by the L2-norms, one sees that
integral term in (2.2) makes sense a.e. with∥∥Lλ[v]∥∥

L1((−R,R))
� 2Gλr

1−λ

|v|BV ((−R−r,R+r)) + 4Gλ

λ

√
2R‖v‖L2(R), (6.4)
1 − λ λr
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for all r,R > 0. In the same way, by Minkowski’s integral inequality one has for R > r > 0,

( ∫
R\[−R,R]

( ∫
R

|v(x + z) − v(x)|
|z|1+λ

dz

)2

dx

) 1
2

�
∫
R

( ∫
R\[−R,R]

|v(x + z) − v(x)|2
|z|2+2λ

dx

) 1
2

dz

=
∫

|z|�r

|z|−1−λ

( ∫
R\[−R,R]

∣∣v(x + z) − v(x)
∣∣2

dx

) 1
2

dz +
∫

|z|>r

|z|−1−λ

( ∫
R\[−R,R]

∣∣v(x + z) − v(x)
∣∣2

dx

) 1
2

dz

� 2r1−λ

1 − λ
‖∂xv‖L2(R\[−R+r,R−r]) + 4

λrλ
‖v‖L2(R);

therefore, one gets for all R > r > 0,

∥∥Lλ[v]∥∥
L2(R\[−R,R]) � 2Gλr

1−λ

1 − λ
‖∂xv‖L2(R\[−R+r,R−r]) + 4Gλ

λrλ
‖v‖L2(R). (6.5)

Now (6.4)–(6.5) imply that Lλ : BVloc(R)∩H 1(R\ {0}) → L1
loc(R)∩L2

loc(R\ {0}) is well defined and continuous.
Step two: weak-� sequential continuity of Lλ. Consider a sequence (vk)k converging to zero in (BVloc(R))w-� ∩

H 1
loc(R \ {0}). For all R > 0, (vk)k is bounded in the norm of H 1(R \ [−R,R]) and the semi-norm of BV ((−R,R))

by some constant CR . By (6.4), one deduces that

lim sup
k→+∞

∥∥Lλ[vk]
∥∥

L1((−R,R))
� 2Gλr

1−λ

1 − λ
CR+r .

Letting r → 0, one concludes that Lλ[vk] converges to zero in L1((−R,R)). In the same way, one can prove
that Lλ[vk] converges to zero in L2(R \ [−R,R]) by using (6.5). Since R is arbitrary, the proof of Lemma 6.3 is
complete.

Step three: strong continuity of L F
λ/2. Let us derive an L2-estimate on L F

λ/2[v]. Recall that by property (6.1) of

Lemma 6.1, one has v ∈ L2(R) so that | · |F (v)(·) ∈ L1
loc(R) and L F

λ/2[v] is well defined in S ′(R).
Further, consider some fixed ρ ∈ C∞

c (R) such that ρ = 1 on some neighborhood of the origin, say on [−1/2,1/2],
and suppρ ⊆ [−1,1]. Then one has v = ρv + (1 − ρ)v with supp(ρv) ⊆ [−1,1], ρv ∈ L1(R) ∩ BV (R) (since v ∈
L2(R)) and (1 − ρ)v ∈ H 1(R); moreover, one readily see that

‖ρv‖L1(R) � Cρ‖v‖L2(R), (6.6)

|ρv|BV (R) � Cρ

(|v|BV ((−1/2,1/2)) + ‖v‖H 1(R\[−1/2,1/2])
)
, (6.7)∥∥(1 − ρ)v

∥∥
L2(R)

� Cρ‖v‖L2(R), (6.8)∥∥∂x

(
(1 − ρ)v

)∥∥
L2(R)

� Cρ‖v‖H 1(R\[−1/2,1/2]); (6.9)

here and until the end of the proof, Cρ denotes a generic constant only depending on ρ.
By Plancherel’s equality, we have

∥∥L F
λ/2[v]∥∥

L2(R)
=

∫
R

|ξ |λ∣∣F (v)(ξ)
∣∣2

dξ

=
∫
R

|ξ |λ∣∣F (ρv)(ξ)
∣∣2

dξ +
∫
R

|ξ |λ∣∣F
(
(1 − ρ)v

)
(ξ)

∣∣2
dξ =: I + J. (6.10)
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Let us first bound J from above. For all r > 0, one has

J =
∫

|ξ |>r

|ξ |λ∣∣F
(
(1 − ρ)v

)
(ξ)

∣∣2
dξ +

∫
|ξ |�r

|ξ |λ∣∣F
(
(1 − ρ)v

)
(ξ)

∣∣2
dξ

�
∫

|ξ |>r

|ξ |λ−2|ξ |2∣∣F
(
(1 − ρ)v

)
(ξ)

∣∣2
dξ + rλ

∥∥F
(
(1 − ρ)v

)∥∥2
L2(R)

� 1

r2−λ

∫
|ξ |>r

|ξ |2∣∣F
(
(1 − ρ)v

)
(ξ)

∣∣2
dξ + rλ

∥∥(1 − ρ)v
∥∥2

L2(R)
.

Using the formula

F (∂xw) = 2iπξ F (w), (6.11)

using once more Plancherel’s equality, one gets J � 1
4π2r2−λ ‖∂x((1−ρ)v)‖2

L2(R)
+rλ‖(1−ρ)v‖2

L2(R)
; hence by (6.8)–

(6.9), one has

J � Cρ

r2−λ
‖v‖2

H 1(R\[−1/2,1/2]) + Cρrλ‖v‖2
L2(R)

. (6.12)

To bound I from above, one uses the boundeness of F : L1(R) → L∞(R) together with the pointwise estimate
|ξ ||F (w)(ξ)| � 1

2π
|w|BV (R) that comes from (6.11). We get

I =
∫

|ξ |>r

|ξ |λ∣∣F (ρv)(ξ)
∣∣2

dξ +
∫

|ξ |�r

|ξ |λ∣∣F (ρv)(ξ)
∣∣2

dξ

� 1

4π2
|ρv|2BV (R)

∫
|ξ |>r

|ξ |λ−2 dξ + ‖ρv‖2
L1(R)

∫
|ξ |�r

|ξ |λ dξ

= 1

2π2(1 − λ)r1−λ
|ρv|2BV (R) + 2r1+λ

1 + λ
‖ρv‖2

L1(R)
;

therefore by (6.6)–(6.7), one has

I � Cρ

(1 − λ)r1−λ

(|v|BV ((−1/2,1/2)) + ‖v‖H 1(R\[−1/2,1/2])
)2 + Cρr1+λ

1 + λ
‖v‖2

L2(R)
. (6.13)

From (6.10), (6.12) and (6.13), we deduce the final estimate:∥∥L F
λ/2[v]∥∥

L2(R)
� Cρ

(
rλ + r1+λ

1 + λ

)
‖v‖2

L2(R)

+ Cρ

(
1

r2−λ
+ 1

(1 − λ)r1−λ

)(|v|BV ((−1/2,1/2)) + ‖v‖H 1(R\[−1/2,1/2])
)2

, (6.14)

for all r > 0.
One infers that L F

λ/2 : BVloc(R) ∩ H 1
loc(R \ {0}) → L2(R) is continuous.

Step four: weak-� sequential continuity of L F
λ/2. By (6.2) of Lemma 6.1, one sees that if vk → 0 in the topological

space (BVloc(R))w-� ∩ H 1
loc(R \ {0}), then vk → 0 in L2(R). One then argues exactly as in Step two by using (6.14)

instead of (6.4)–(6.5); one deduces that L F
λ/2[vk] → 0 in L2(R) and this completes the proof of the lemma. �

We can now prove the main properties of Lλ stated in Subsection 4.1.

Proof of Lemma 4.1. Let us prove the different items step by step.
Step one: item (i) (a) and (b). Item (i)(a) is an immediate consequence of the theorem of continuity under the

integral sign; the details are left to the reader. Item (i)(b) is clear from Lemmata 6.1 and 6.3.
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Step two: item (i)(d). Passing to the limit R → +∞ in (6.3), one gets∥∥Lλ[v]∥∥
L1(R)

� 2Gλr
1−λ

1 − λ
|v|BV (R) + 4Gλ

λrλ
‖v‖L1(R), (6.15)

for all v ∈ L1(R) ∩ BV (R) and r > 0. With this estimate in hands, we can argue as in the second step of the proof of
Lemma 6.3 to show item (i)(d).

Step three: items (ii) and (i)(c). Let us prove item (ii) first. By Lemma 6.2, v ∈ H 1(R∗) can be approximated
by vk ∈ S(R) in (BVloc(R))w-� ∩ H 1

loc(R \ {0}). One has Lλ[vk] = L F
λ [vk] thanks to the classical Lévy–Khintchine

formula. By Lemma 6.3, we infer that Lλ[vk] converges toward Lλ[v] in S ′(R) as k → +∞. But the embedding (6.2)
of Lemma 6.1 implies that vk → v in L2(R), so that F (vk) → F (v) in L2(R). It follows that | · |λF (vk)(·) →
| · |λF (v)(·) in S ′(R); hence, taking the inverse Fourier transform, one sees that L F

λ [vk] → L F
λ [v] in S ′(R). By

uniqueness of the limit, one has Lλ[v] = L F
λ [v] and the proof of item (ii) is complete.

As an immediate consequence, one deduces item (i)(c) by using in particular Lemmata 6.1 and 6.3.
Step four: item (iii). Take vk,wk ∈ S(R) converging in (BVloc(R))w-� ∩ H 1

loc(R \ {0}) to v,w ∈ H 1(R∗). For such
functions, it is immediate from the definition by Fourier transform (1.3) that∫

R

Lλ[vk]wk =
∫
R

vk Lλ[wk] =
∫
R

Lλ/2[wk]Lλ/2[vk].

By Lemma 6.3, one has Lλ[uk] → Lλ[u] in L1
loc(R) ∩ L2

loc(R \ {0}) for u = v,w. By Lemma 6.1 and Banach–
Alaoglu–Bourbaki’s theorem, one has the following convergence (up to a subsequence):

uk → u in L2(R) and in L∞(R) weak-�

for u = v,w. Indeed, (6.2) implies the strong convergence in L2 and (6.1) implies that (uk)k is bounded in L∞,
because it is (strongly) bounded in BVloc(R)∩H 1

loc(R\{0}) as a convergent sequence in (BVloc(R))w-�∩H 1
loc(R\{0}).

Hence, one clearly can pass to the limit:∫
R

Lλ[v]w = lim
k→+∞

∫
R

Lλ[vk]wk = lim
k→+∞

∫
R

vk Lλ[wk] =
∫
R

vLλ[w].

To pass to the limit in
∫

R
Lλ/2[wk]Lλ/2[vk], one uses Lemma 6.3 and item (ii). The proof of item (iii) is complete.

Step five: item (iv). It suffices to change the variable by z → −z in (2.2).
Step six: item (v). We consider only the case where v(x∗) = maxR+ v � 0, since the case v(x∗) = minR+ v � 0 is

symmetric. Simple computations show that

Lλ[v](x∗) = −Gλ

∫
R

v(x∗ + z) − v(x∗)
|z|1+λ

dz

= −Gλ

+∞∫
−x∗

v(x∗ + z) − v(x∗)
|z|1+λ

dz − Gλ

−x∗∫
−∞

v(x∗ + z) − v(x∗)
|z|1+λ

dz

= −Gλ

+∞∫
−x∗

v(x∗ + z) − v(x∗)
|z|1+λ

dz − Gλ

+∞∫
−x∗

v(−x∗ − z′) − v(x∗)
|z′ + 2x∗|1+λ

dz′,

after having changed the variable by z′ = −z − 2x∗. By the oddity of v, we get

Lλ[v](x∗) = −Gλ

+∞∫
−x∗

{
v(x∗ + z) − v(x∗)

|z|1+λ
− v(x∗ + z) + v(x∗)

|z + 2x∗|1+λ

}
dz.

Let f (z) denote the integrand above. Let us prove that for 0 �= z > −x∗, this integrand is non-positive. It is readily
seen that for such z, one always has { 1

1+λ − 1
1+λ } > 0. Then, one has
|z| |z+2x∗|
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f (z) = v(x∗ + z)

{
1

|z|1+λ
− 1

|z + 2x∗|1+λ

}
− v(x∗)

{
1

|z|1+λ
+ 1

|z + 2x∗|1+λ

}
� v(x∗)

{
1

|z|1+λ
− 1

|z + 2x∗|1+λ

}
− v(x∗)

{
1

|z|1+λ
+ 1

|z + 2x∗|1+λ

}
;

indeed, x∗ + z ∈ R
+, so that v(x∗ + z) � v(x∗). We infer that f (z) � −v(x∗) 2

|z+2x∗|1+λ � 0 and conclude
that Lλ[v](x∗) � 0. To finish, observe that f cannot be identically equal to zero, whenever v is non-trivial. This
proves that Lλ[v](x∗) > 0 and completes the proof of the lemma. �
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Appendix A. Proofs of Lemmata 3.3, 5.1, 6.1 and 6.2

Proof of Lemma 3.3. The supremum m(t) is achieved because of (3.2), so that K(t) �= ∅; moreover, one has for
all b > a > 0,

sup
t∈(a,b), x∈K(t)

|x| < +∞. (A.1)

It is quite easy to show that m is continuous and we only detail the proof of the derivability from the right.
Let t0 > 0 be fixed and (tk)k, (xk)k be such that limk→+∞ tk = t0, tk > t0 and xk ∈ K(tk), m(tk) = v(tk, xk) for

all k � 1. By (A.1), (xk)k is bounded; hence, taking a subsequence if necessary, one can assume that xk converges
toward some limit x0. One has

lim sup
k→+∞

m(tk) − m(t0)

tk − t0
= lim sup

k→+∞
v(tk, xk) − m(t0)

tk − t0
� lim sup

k→+∞
v(tk, xk) − v(t0, xk)

tk − t0
= ∂tv(t0, x0),

thanks to the C1-regularity of v. But, one has x0 ∈ K(t0); indeed, for all x ∈ R, one has v(tk, xk) � v(tk, x)

so that the limit as k → +∞ gives v(t0, x0) � v(t0, x). Hence, one has proved that lim supk→+∞
m(tk)−m(t0)

tk−t0
�

supx∈K(t0)
∂t v(t0, x). In the same way, for all x ∈ K(t0) one has

lim inf
k→+∞

m(tk) − m(t0)

tn − t0
� lim inf

k→+∞
v(tk, x) − v(t0, x)

tk − t0
= ∂tv(t0, x).

This shows that

lim inf
k→+∞

m(tk) − m(t0)

tk − t0
� max

x∈K(t0)
∂t v(t0, x) � lim sup

k→+∞
m(tk) − m(t0)

tk − t0
,

for all t0 > 0 and (tk)k such that tk → t0, tk > t0. This means that m is right-differentiable with m′
r (t0) =

maxx∈K(t0) ∂t v(t0, x) on R
+. �

Proof of Lemma 5.1. Let us estimate the translations of vε . Fix h ∈ R and define Thvε(x) := vε(x − h). Classical
formula gives F (Thvε)(ξ) = e−2iπξhF (vε)(ξ). By Plancherel’s equality, we deduce that∫

R

|Thvε − vε|2 =
∫
R

∣∣e−2iπξh − 1
∣∣2∣∣F (vε)(ξ)

∣∣2
dξ

=
∫
R

|e−2iπξh − 1|2
|ξ |λ |ξ |λ∣∣F (vε)(ξ)

∣∣2
dξ

� Mh

∫
|ξ |λ∣∣F (vε)(ξ)

∣∣2
dξ,
R
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where Mh := maxξ∈R
|e−2iπξh−1|2

|ξ |λ . Lemma 4.1 item (ii) and Plancherel’s equality imply that∫
R

|Thvε − vε|2 � Mh

∫
R

∣∣Lλ/2[vε]
∣∣2

.

By the assumptions of the lemma, we deduce that
∫

R
|Thvε − vε|2 � C0Mh for some constant C0 (the constant comes

from (4.6)). Using that ez − 1 = O(|z|) in a neighborhood, it is easy to see that limh→0 Mh = 0, because λ ∈ (0,2].
The family {vε|ε ∈ (0,1)} is bounded in L∞(R), and thus also in L2

loc(R). By the Fréchet–Kolmogorov theorem, it is
relatively compact in L2

loc(R). �
Proof of Lemma 6.1. For all v ∈ H 1(R∗), there exist the traces v(0±) ∈ R; it is not difficult to show that |v(0±)| �
‖v‖H 1(R∗). Further, for all ±x > 0,

v(x) = v
(
0±) +

x∫
0

(∂xv)|R∗ (y) dy. (A.2)

It follows that for all R > 0, one has v ∈ BV ((−R,R)) with

|v|BV ((−R,R)) �
∣∣v(

0+) − v
(
0−)∣∣ + ∥∥(∂xv)|R∗

∥∥
L1((−R,R))

� (2 + √
2R )‖v‖H 1(R∗).

This shows that the inclusion H 1(R∗) ⊂ BVloc(R) ∩ H 1
loc(R \ {0}) is continuous.

Now take v ∈ BVloc(R) ∩ H 1
loc(R \ {0}). Then v is continuous on R∗ and v(x) = v(1) + ∫ x

1 ∂xv(y) dy, where ∂xv

can be a Radon measure with singular part supported by {0}. By the continuity of the inclusion H 1(R \ [−1,1]) ⊂
Cb(R \ (−1,1)), one deduces that v is bounded outside (−1,1); since v is bounded by |v(1)| + |v|BV ((−1,1))

on [−1,1], the inclusion BVloc(R) ∩ H 1
loc(R \ {0}) ⊂ L∞(R) is continuous. From this result, it is easy to

show (6.1).
The sequential embedding (6.2) is clear from (6.1). Indeed, Helly’s theorem and Lq,Lp interpolation inequalities

imply that the inclusion L∞(R) ∩ BVloc(R) ⊂ L
p

loc(R) is continuous and compact for all p ∈ [1,+∞); since each
converging sequence in (BVloc(R))w-�∩H 1

loc(R\{0}) is (strongly) bounded in BVloc(R)∩H 1
loc(R\{0}), the inclusions(

BVloc(R)
)
w-� ∩ H 1

loc

(
R \ {0}) ⊂ L

p

loc(R) ∩ L2
loc

(
R \ {0}) ⊂ L2(R)

are sequentially continuous. �
Proof of Lemma 6.2. From (A.2), one deduces that if v ∈ H 1(R∗) then ∂xv = (∂xv)|R∗ + (v(0+) − v(0−))δ0, where
one has (∂xv)|R∗ ∈ L2(R). Let (ρk)k ⊂ D(R) be an approximate unit and define vk := ρk ∗ v. Then it is easy to check
that vk → v in L2(R) and that ∂xvk = (∂xv)|R∗ ∗ ρk + (v(0+) − v(0−))ρk converges to ∂xv in L2

loc(R \ {0}) and
in (Cc(R))′ weak-�. �
Appendix B. Technical results

Lemma B.1. Let m ∈ C(R+) be right-differentiable with

m′
r (t) + (

max{m,0})2 � 0 on R
+. (B.1)

Then one has m(t) � 1
t

for all t > 0.

Proof. Let t0 > 0 be such that m(t0) is positive. The function m has to be positive in some neighborhood of t0;
since (B.1) implies that m is non-increasing, this neighborhood has to contain the interval (0, t0]. Dividing (B.1)
by m2 = (max{m,0})2 on this interval, we get: (− 1

m
)′r � −1 in (0, t0). Integrating this inequality, one deduces that

for all t < t0, 1
m(t)

− 1
m(t0)

� t − t0, which implies that m(t0) � ( 1
m(t)

+ t0 − t)−1 � (t0 − t)−1. Letting t → 0, we

conclude that m(t0) � 1
t0

whenever m(t0) is positive. The proof is complete. �
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Lemma B.2. Let λ ∈ (0,1) and Φ : R → R be locally Lipschitz-continuous and such that there exist 0 < λ′ < λ, MΦ

and LΦ with∣∣Φ(x)
∣∣ � MΦ

(
1 + |x|λ′)

and
∣∣∂xΦ(x)

∣∣ � LΦ

1 + |x|1−λ′

for a.e. x ∈ R. Then Lλ[Φ] is well defined by (2.2) and belongs to Cb(R).

The idea of the proof of this technical result comes from [3]; we give here a short proof for the reader’s convenience.

Proof. In the sequel, C denotes a constant only depending on λ′, λ,MΦ and LΦ . For all x ∈ R and r > 0, one has∫
R

|Φ(x + z) − Φ(x)|
|z|1+λ

dz � ‖∂xΦ‖L∞((x−r,x+r))

∫
|z|�r

|z|−λ dz +
∫

|z|>r

|Φ(x + z) − Φ(x)|
|z|1+λ

dz,

� Cr1−λ‖∂xΦ‖L∞((x−r,x+r)) +
∫

|z|>r

|Φ(x + z) − Φ(x)|
|z|1+λ

dz.

Since |x + z|λ′ � |x|λ′ + |z|λ′
for all x, z ∈ R, the last integral term is bounded above by

C

∫
|z|>r

2 + 2|x|λ′ + |z|λ′

|z|1+λ
dz � Cr−λ

(
1 + |x|λ′ + rλ′)

.

Finally, we get∫
R

|Φ(x + z) − Φ(x)|
|z|1+λ

dz � Cr−λ
(
1 + |x|λ′ + rλ′ + r‖∂xΦ‖L∞((x−r,x+r))

)
(B.2)

(for some constant C not depending on x ∈ R and r > 0).
This proves that Lλ[Φ](x) is well defined by (2.2) for all x ∈ R; moreover, we let the reader check that the

continuity of Lλ[Φ] can be easily deduced from the dominated convergence theorem. What is left to study is the
behavior of Lλ[Φ] at infinity. To do so, one takes r = |x|

2 ; from (B.2), one gets the following estimate: |Lλ[Φ](x)| �
C(|x|−λ + |x|λ′−λ) for large x. The proof is complete. �
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