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Abstract

We study the existence of radially symmetric solitary waves for a system of a nonlinear Klein–Gordon equation coupled with
Maxwell’s equation in presence of a positive mass. The nonlinear potential appearing in the system is assumed to be positive and
with more than quadratical growth at infinity.
© 2010 Elsevier Masson SAS. All rights reserved.
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1. Introduction, motivations and main result

In recent past years great attention was paid to some classes of systems of partial differential equations arising
in Abelian Gauge Theories, i.e. theories consisting of field equations that provide a model for the interaction of
matter with the electromagnetic field. In particular we recall the papers [1–3,5,8–10,12,14,17–19], where existence or
nonexistence results are proved in the whole physical space.

Among all classes of solutions for these equations, we are interested in a special one, consisting of the so-called
solitary waves, i.e. solutions of a field equation whose energy travels as a localized packet. Solutions of this type play
a crucial rôle in these theories, in particular if such solutions exhibit some strong form of stability, and in this case
they are called solitons. Solitons posses a particle-like behavior and they appear in a natural way in many situations of
mathematical physics, such as classical and quantum field theory, nonlinear optics, fluid mechanics and plasma physics
(for example see [11,13,20]). Therefore, the first step to prove the existence of solitons is to prove the existence
of solitary waves and then, as a second step, one can try to prove that they are stable, as done in [17], where the
author proves that solitary waves decaying at infinity are stable under some reasonable assumptions (see also [7] as a
fundamental example of orbital stability in the case of only one nonlinear Schrödinger equation).
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In this paper we are interested in showing existence results for systems obtained by coupling a Klein–Gordon
equation with Maxwell’s ones. For the derivation of the general system and for a detailed description of the physical
meaning of the unknowns we refer to the papers cited above and their references, passing to the formulation of the
system itself, which is, therefore, a model for electrodynamics:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2u

∂t2
− �u + |∇S − qA|2u −

(
∂S

∂t
+ qφ

)2

u + W ′(u) = 0,

∂

∂t

[(
∂S

∂t
+ qφ

)
u2

]
− div

[
(∇S − qA)u2] = 0,

div

(
∂A
∂t

+ ∇φ

)
= q

(
∂S

∂t
+ qφ

)
u2,

∇ × (∇ × A) + ∂

∂t

(
∂A
∂t

+ ∇φ

)
= q(∇S − qA)u2,

(1.1)

where the equations are respectively the matter equation, the charge continuity equation, the Gauss equation and the
Ampère equation.

We recall that the Klein–Gordon–Maxwell system is a special case of the Yang–Mills–Higgs equation when the
Lie group G is the circle, and there is no potential energy term (see [23]). Moreover, also system (1.1) has been widely
investigated. For example in [14] the authors prove that the system is well posed in R

3 for initial data having total
finite energy, while local well posedness in Sobolev spaces and local regularity in time of solutions are investigated
in [18]. We also mention that the system was studied in higher dimensions, see [21], where global solutions are found
in a suitable Sobolev space.

As we said above, we are interested in electrostatic standing waves, i.e. solutions having the special form

u = u(x), A = 0, φ = φ(x), S = −ωt, ω ∈ R.

Once set

Φ = φ

ω
,

the charge continuity and the Ampère equations are automatically satisfied, while the other two equations reduce to
the following stationary system of Klein–Gordon–Maxwell type:

−�u − ω2(1 − qΦ)2u + W ′(u) = 0 in R
3, (1.2)

−�Φ = q(1 − qΦ)u2 in R
3. (1.3)

Here q > 0 represents the charge of the particle, ω is a real parameter, u represents the matter, while Φ is related to
the electromagnetic field through Maxwell’s equation (see [2]). Our attention is concentrated on W and in particular
on the fact that it is assumed nonnegative and it possesses some good invariant (necessary to be considered in Abelian
Gauge Theories), typically some conditions of the form

W
(
eiθu

) = W(u) and W ′(eiθu
) = eiθW ′(u)

for any function u and any θ ∈ R.
In previous works (for example in [3,9,17]) the potential W was supposed to be

W(s) = m2

2
s2 − |s|γ

γ
(1.4)

for some γ > 2, and the authors showed existence results if γ ∈ (4,6) (in [3]) and then if γ ∈ (2,6) (in [9]), while
nonexistence results for γ ∈ (0,2] or γ ∈ [6,∞) were proved in [8], where also more general potentials, behaving
similarly to the one in (1.4), were considered.

However, the potential defined in (1.4) is not always positive, while for physical reasons a “good” potential should
be. Indeed, the fact that W is assumed nonnegative implies that the energy density of a solution (u,Φ) of system
(1.2)–(1.3) is nonnegative as well (for example, see [2]).
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In this paper we are concerned with system (1.2)–(1.3), and we take [2] as starting point, where the authors assume
that W satisfies the following assumptions:

W1) W ∈ C2(R), W � 0 and W(0) = W ′(0) = 0;
W2) W ′′(0) = m2

0 > 0;
W3) ∃C1,C2 > 0 and p ∈ (0,4) such that |W ′′(s)| � C1 + C2|s|p for every s ∈ R;
W4) 0 � sW ′(s) � 2W(s) for every s ∈ R;
W5) ∃m1, c > 0 with m1 < m2

0/2 such that W(s) � m1s
2 + c for every s ∈ R.

In particular, W4) is equivalent to saying that the function W(s)/s2 is decreasing if s > 0 and increasing if s < 0.
Therefore, if s > ε > 0, we get

W(s) � W(ε)

ε2
s2,

and passing to the limit as ε → 0 we obtain W(s) � m2
0

2 s2. Of course, such an inequality can be proved in the same
way also if s < 0. Then from W5) we get

W(s) � max

{
m1s

2 + c,
m2

0

2
s2

}
.

We want to relax this quadratic growth condition and show that an existence result still holds true if we replace
W4) and W5) with the new conditions

W4)
′ ∃k � 2 such that 0 � sW ′(s) � kW(s) ∀s ∈ R

and

W5)
′

⎧⎪⎨
⎪⎩

∃m1, c > 0 and ϑ > 2 such that W(s) � c|s| + m1|s|ϑ ∀s ∈ R,

m1 < min

{
m2

0

k(ϑ − 1)
,52−ϑ (ϑ − 2)ϑ−2

(ϑ − 1)ϑ−1

(
1 + c

2

)2−ϑ

k1−ϑm
2(ϑ−1)
0

}
.

Of course, if W satisfies W4), it also satisfies W4)
′, but now we can include higher order functions. In fact, operating

in a similar way as above, from W4)
′ we get that there exist a, b > 0 such that

W(s) � a|s|k + b for every s ∈ R,

so that W may have superquadratic growth at infinity, which is perfectly in agreement with W3). On the other hand,
in W4)

′ we exclude the case k < 2, since in this latter case we would get that W(s)/sk is decreasing if s > 0, so that
W(s) � W(ε)

εk sk for s > ε > 0, and passing to the limit as ε → 0+, by W1) we would get W � 0, so that W ≡ 0, which
we exclude by W2).

On the other hand, W5)
′ generalizes W5), in the sense that we can include higher order functions. However, we

do not claim that the bound on m1 is the best possible, since it is just a sufficient condition to exclude the case

W(s) = m2
0

2 s2, which does not verify the fundamental Lemma 3.1 below, in accordance with the nonexistence result
proved in [8] for such a potential.

Remark 1.1. Note that when k = 2 and ϑ → 2, the condition on m1 stated in W5)
′ simply reduces to m1 < m2

0/2, as
already expressed in W5).

Remark 1.2. As in [2], we have that s = 0 is an absolute minimum point for W , so that W ′′(0) � 0, in agreement
with W2).
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Remark 1.3. If we consider the electrostatic case, i.e. −�u + W ′(u) = 0, calling “rest mass” of the particle u the
quantity∫

R3

W(u)dx,

see [4], our assumptions on W imply that we are dealing with systems for particles having positive mass, which is, of
course, the physical interesting case.

As usual, for physical reasons, we look for solutions having finite energy, i.e. (u,Φ) ∈ H 1 × D1, where H 1 =
H 1(R3) is the usual Sobolev space endowed with the scalar product

〈u,v〉H 1 :=
∫

R3

(∇u · ∇v + uv)dx

and norm ‖u‖ = (
∫ |∇u|2 + ∫

u2)1/2, and D1 = D1(R3) is the completion of C∞
0 (R3) with respect to the norm

‖u‖2
D1 :=

∫

R3

|∇u|2 dx,

induced by the scalar product 〈u,v〉D1 := ∫
R3 ∇u · ∇v dx.

Before stating our main result, let us note that if u = 0 in (1.2), then Φ = 0 in (1.3), and if u �= 0, then also Φ �= 0.
Therefore, we can say that a solution (u,Φ) of system (1.2)–(1.3) is nontrivial if both u and Φ are different from the
trivial function, and a sufficient condition for this occurrence is that u �= 0.

Our main result is the following.

Theorem 1.1. Assume that W satisfies W1), W2), W3), W4)
′ and W5)

′. Then there exists q∗ > 0 such that for any
q < q∗ there exist ω2 > 0 and nontrivial functions (u,Φ) ∈ H 1(R3) × D1(R3) which solve (1.2)–(1.3).

For completeness, in the last section of this paper we also give the proof of the following existence result for
(1.2)–(1.3) when we assume W4) and W5) in place of the more general W4)

′ and W5)
′. A similar result was already

presented in [2], but, eventually, another system was considered, though this fact is not explicitly stated.

Theorem 1.2. Assume that W satisfies W1)–W5). Then there exists q∗ > 0 such that for any q < q∗ there exist ω2 > 0
and nontrivial functions (u,Φ) ∈ H 1(R3) × D1(R3) which solve (1.2)–(1.3).

2. Preliminary setting

First we recall the standard notation Lp ≡ Lp(R3) (1 � p < +∞) for the usual Lebesgue space endowed with the
norm

‖u‖p
p :=

∫

R3

|u|p dx.

We also recall the continuous embeddings

H 1(
R

3) ↪→ Lp
(
R

3) ∀p ∈ [2,6] and D1(
R

3) ↪→ L6(
R

3), (2.5)

being 6 the critical exponent for the Sobolev embedding H 1(R3) ↪→ Lp(R3).
Now, for any ω2 > 0 let us consider the functional F : H 1 × D1 → R defined as

Fω(u,Φ) = J (u) − ω2 A(u,Φ),

where
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J (u) = 1

2

∫

R3

|∇u|2 dx +
∫

R3

W(u)dx,

and

A(u,Φ) = 1

2

∫

R3

|∇Φ|2 dx + 1

2

∫

R3

u2(1 − qΦ)2 dx.

It is easily seen that under the growth assumptions on W we have the following:

Proposition 2.1. The functional Fω belongs to C1(H 1 × D1) and its critical points solve (1.2)–(1.3).

Moreover, a by-now standard approach shows the following result, appearing in a similar way for the first time
in [19], then in [9] and recently in [2].

Proposition 2.2. For every u ∈ H 1, there exists a unique Φ = Φ[u] ∈ D1 which solves (1.3). Furthermore

(i) 0 � Φ[u] � 1
q

;
(ii) if u is radially symmetric, then Φ[u] is radial, too.

As a consequence of Proposition 2.2, we can define the map

Φ : H 1(
R

3) → D1(
R

3)
which maps each u ∈ H 1 in the unique solution of (1.3). By the Implicit Function Theorem Φ ∈ C1(H 1,D1) and
from the very definition of Φ we get

∂Fω

∂Φ

(
u,Φ[u]) = 0 ∀u ∈ H 1, or equivalently

∂A
∂Φ

(
u,Φ[u]) = 0. (2.6)

More precisely, we have the following result, which will be used later in the stronger context of radial functions.

Lemma 2.1. The functional Λ : H 1(R3) → R defined as

Λ(u) := A
(
u,Φ[u]) = 1

2

∫

R3

∣∣∇Φ[u]∣∣2
dx + 1

2

∫

R3

u2(1 − qΦ[u])2
dx

is of class C1 and

Λ′(u)(v) =
∫

R3

u
(
1 − qΦ[u])2

v dx for any u, v ∈ H 1
(
R

3
)
.

Proof. The regularity of all characters appearing in the definition of Λ implies that it is of class C1, as claimed.
Moreover,

Λ(u) = A
(
u,Φ[u]),

so that

Λ′(u) = ∂A
∂u

(
u,Φ[u]) + ∂A

∂Φ

(
u,Φ[u])Φ ′[u] = ∂A

∂u

(
u,Φ[u])

by (2.6), and thus for any u, v ∈ H 1(R3) there holds

Λ′(u)(v) =
∫

3

u
(
1 − qΦ[u])2

v dx. �

R
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Now let us consider the functional

I : H 1(
R

3) → R, I (u) := Fω

(
u,Φ[u]).

By definition of Fω, we obtain

I (u) = 1

2

∫

R3

|∇u|2 dx +
∫

R3

W(u)dx − ω2

2

∫

R3

∣∣∇Φ[u]∣∣2
dx − ω2

2

∫

R3

u2(1 − qΦ[u])2
dx.

By Proposition 2.1 and Lemma 2.1, I ∈ C1(H 1,R) and by (2.6) we get

I ′(u) = ∂Fω

∂u

(
u,Φ[u]) − ω2 ∂A

∂Φ

(
u,Φ[u])Φ ′[u] = ∂Fω

∂u

(
u,Φ[u]) ∀u ∈ H 1(

R
3).

Standard calculations (for example, see [2]) give the following result.

Lemma 2.2. The following statements are equivalent:

(i) (u,Φ) ∈ H 1 × D1 is a critical point of F ,
(ii) u is a critical point of I and Φ = Φ[u].

Then, in order to get solutions of (1.2)–(1.3), we could look for critical points of I .
It is readily seen that the functional I is strongly indefinite, in the sense that it is unbounded both from above and

below. Moreover, a more delicate problem in getting the existence of critical points is the fact that I presents a lack
of compactness due to its invariance under the translation group, given by the set of transformations having the form
u(x) = u(x + x0) for any x0 ∈ R

3. In order to avoid the latter problem, it is standard to restrict ourselves to the set of
radial functions, so that we consider

H 1
r = H 1

r

(
R

3) := {
u ∈ H 1(

R
3): u(x) = u

(|x|)},
and the functional I|H 1

r
: H 1

r → R. In this way, if u ∈ H 1
r , then also Φ[u] is radial by (ii) of Proposition 2.2, and we

write

Φ[u] ∈ D1
r = D1

r

(
R

3) := {
φ ∈ D1(

R
3): φ(x) = φ

(|x|)}.
We recall that H 1

r (R3) is compactly embedded in the Lebesgue space of radial functions Ls
r(R

3) for any s ∈ (2,6)

(see [6] and [22]).
The introduction of I|H 1

r
is very useful, since H 1

r is a natural constraint for I , in the following standard sense (the
proof can be found, for example, in [2]):

Lemma 2.3. A function u ∈ H 1
r is a critical point for I|H 1

r
if and only if u is a critical point for I .

Thus, from now on, one could look for critical points of I|H 1
r

in H 1
r (R3). But more precisely, we look for nontrivial

triples (u,Φ[u],ω) which solve system (1.2)–(1.3).
To this purpose, we follow an approach which is similar to the one in [2] (where actually a different system of

partial differential equations was derived): for σ > 0 introduce the set

Vσ =
{
u ∈ H 1

r

(
R

3): Λ(u) = 1

2

∫

R3

∣∣∇Φ[u]∣∣2
dx + 1

2

∫

R3

u2(1 − qΦ[u])2
dx = σ 2

}
.

Then we look for minimizers of J constrained on a suitable Vσ , and in this way ω2 will be found as the Lagrange
multiplier.

Theorem 1.1 will be proved thanks to the following:

Proposition 2.3. Let W satisfy W1), W2), W3), W4)
′ and W5)

′. Then there exists q∗ > 0 such that for any q ∈ (0, q∗)
there exists σ 2 > 0 such that J has a minimizer on Vσ with Lagrange multiplier ω2 > 0.
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For further use, we note that by (1.3) we get∫

R3

∣∣∇Φ[u]∣∣2
dx = q

∫

R3

u2(1 − qΦ[u])Φ[u]dx,

so that an easy computation gives

Λ(u) = A
(
u,Φ[u]) = 1

2

∫

R3

u2(1 − qΦ[u])dx. (2.7)

3. The case k > 2

In this section we prove Proposition 2.3 when k > 2, leaving to the last section a few comments for the case k = 2.
A fundamental tool in this section will be the result below, which we prove under more general assumptions on W ,
since we only require that W satisfies W1) and W5)

′.

Lemma 3.1. Assume that W satisfies W1) and W5)
′. Then for any m2

0 > 0 there exists q∗ > 0 such that for any
q ∈ (0, q∗) there exists ū = ū(m2

0) ∈ H 1
r , ū �= 0, such that

kJ (ū)∫
R3 ū2(1 − qΦ[ū]) dx

< m2
0.

Proof. First, let us prove the result for q = 0.
Define

v(x) :=
{

1 − |x| if |x| � 1,

0 if |x| > 1.

Then v ∈ H 1
r (R3) and∫

R3

v2 dx = 2

15
π,

while, for future need, we also compute∫

R3

|∇v|2 dx = 4

3
π and

∫

R3

v dx = π

3
.

Now, for λ � 1 define

uλ(x) = λv

(
x

λ

)
, σ 2

λ = 1

2

∫

R3

u2
λ dx, Bλ = B(0, λ).

Then by W5)
′

k

2

J (uλ)

σ 2
λ

= k

2

1
2

∫
Bλ

|∇uλ|2 dx + ∫
Bλ

W(uλ)dx

σ 2
λ

� k

2

1
2

∫
Bλ

|∇uλ|2 dx + m1
∫
Bλ

|uλ|ϑ dx + c
∫
Bλ

|uλ|dx

σ 2
λ

. (3.8)

By the change of variable y = x/λ we immediately get
∫

|∇uλ|2 = λ3
∫

|∇v|2, σ 2
λ = λ5

2

∫
v2,

∫
|uλ|ϑ = λϑ+3

∫
vϑ,
Bλ B1 B1 Bλ B1
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and obviously |Bλ| = λ3|B1|. Therefore (3.8) gives

k

2

J (uλ)

σ 2
λ

� k

2

(∫
B1

|∇v|2 dx∫
B1

v2 dx

1

λ2
+ 2c

∫
B1

v dx∫
B1

v2 dx

1

λ

)
+ km1

∫
B1

vϑ dx∫
B1

v2
λϑ−2. (3.9)

Since v � 1 and ϑ > 2, we have
∫

vϑ �
∫

v2. Moreover, since λ � 1, from (3.9) and the calculations above we get

k

2

J (uλ)

σ 2
λ

� k

2
(10 + 5c)

1

λ
+ km1λ

ϑ−2.

Now, note that by assumption W5)
′ the function h : [1,∞) → R defined as

h(λ) := km1λ
ϑ−1 − m2

0λ + k

2
(10 + 5c)

has a minimum point in (1,∞), since m1 <
m2

0
k(ϑ−1)

, and that the minimum value is strictly less than 0, due to the other
bound on m1 assumed in W5)

′; thus there exists λ > 1 such that, setting ū = uλ, there holds

kJ (ū)∫
R3 ū2 dx

< m2
0, (3.10)

and the claim for q = 0 holds true.
From the last inequality above we get the final statement of the lemma by a continuity argument. First, let us denote

by Φq the mapping defined in Proposition 2.2, emphasizing the dependence of Φ on q , and now we show that∫

R3

ū2(1 − qΦq [ū])dx →
∫

R3

ū2 dx as q → 0,

so that the result will follow by (3.10). Note that the function ū found for (3.10) in correspondence of q = 0 depends
only on m2

0 and not on q . Then, since Φq [ū] solves

−�Φq [ū] + q2ū2Φq [ū] = qū2,

by the Hölder and Sobolev inequalities we get

∥∥Φq [ū]∥∥2 + q2
∫

R3

ū2Φq [ū]2 dx � q‖ū‖2
12/5

∥∥Φq [ū]∥∥6 � qS‖ū‖2
12/5

∥∥Φq [ū]∥∥,

so that∥∥Φ[ū]∥∥ � qS‖ū‖2
12/5. (3.11)

Then

0 � q

∫

R3

ū2Φq [ū]dx � q2S‖ū‖2
12/5

∥∥Φq [ū]∥∥,

and the claim follows from (3.11). �
Now, following Lemma 3.1, fix m2

0 > 0, take q < q∗ = q∗(m2
0) and the associated ū, define

σ 2 = 1

2

∫

R3

∣∣∇Φ[ū]∣∣2
dx + 1

2

∫
ū2(1 − qΦ[ū])2

dx

and consider the corresponding set

Vσ =
{
u ∈ H 1

r

(
R

3):
1

2

∫

R3

∣∣∇Φ[u]∣∣2
dx + 1

2

∫

R3

u2(1 − qΦ[u])2
dx = σ 2

}
. (3.12)

It turns out that this set is a good one:
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Lemma 3.2. The set Vσ defined in (3.12) is a nonempty manifold of codimension 1.

Proof. By definition ū ∈ Vσ , which is thus nonempty. Moreover, Vσ = {u ∈ H 1
r : Λ(u) = σ 2}, and by Lemma 2.1 we

have

Λ′(u) = 0 ⇔ u
(
1 − qΦ[u])2 = 0.

Then also u2(1 − qΦ[u]) ≡ 0, so that∫

R3

u2(1 − qΦ[u])dx = 0,

and thus u cannot belong to Vσ by (2.7). The claim follows. �
Now, let us prove Proposition 2.3, showing that J|Vσ has a minimizer with Lagrangian multiplier ω2 > 0.
Let (un)n be a minimizing sequence for J|Vσ , so that

J (un) = 1

2

∫

R3

|∇un|2 dx +
∫

R3

W(un)dx → inf
Vσ

J. (3.13)

By Ekeland’s Variational Principle (see for example [24, Theorem 8.5]) we can also assume that J ′|Vσ
(un) → 0, i.e.

there exists a sequence (λn)n of real numbers such that

J ′(un) − λnΛ
′(un) → 0 in H−1 := (

H 1
r

)′
. (3.14)

By Lemma 2.1, taken v ∈ H 1
r , we have Λ′(un)(v) = ∫

un(1 − qΦ[un])2v for any n ∈ N, so that, setting Φn := Φ[un],
we have∫

R3

∇un · ∇v dx +
∫

R3

W ′(un)v dx − λn

∫

R3

un(1 − qΦn)
2v → 0 ∀v ∈ H 1

r .

Our first essential result is the following.

Lemma 3.3. The sequence (un)n is bounded in H 1
r (R3) and the sequence (Φn)n is bounded in D1

r (R
3).

Proof. Since W � 0, by (3.13) it is immediately seen that the sequence (∇un)n is bounded in (L2(R3))3. Moreover,
since un ∈ Vσ , from (3.12) we immediately get that (Φn)n is bounded in D1

r .
Since Φn is radial, by the Radial Lemma (see [6] and [22]) there exists c > 0 such that

∣∣Φn(x)
∣∣ � c

‖Φn‖
|x|1/2

if |x| � 1,

and then

∣∣Φn(x)
∣∣ � c′

|x|1/2
if |x| � 1,

since (Φn)n is bounded in D1
r . This implies that there exists R > 0 such that 1 − qΦn(x) � 1/2 if |x| � R for any

n ∈ N. In this way (i) of Proposition 2.2 and (2.7) imply

2σ 2 =
∫

R3

u2
n(1 − qΦn)dx �

∫

{x∈R3: |x|�R}
u2

n(1 − qΦn)dx

� 1

2

∫
3

u2
n dx.
{x∈R : |x|�R}
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But we have already proved that (un)n is bounded in D1(R3) ↪→ L6(R3), so that it is also bounded in L6(BR), and
thus in L2(BR), and the claim follows. �

Note that the following estimate holds true by an easy integration of (1.3), using the fact that 0 � Φn � 1/q in R
3

for any n ∈ N:

∃C > 0 such that ‖Φn‖ � C‖un‖2
12/5 ∀n ∈ N.

Now, (un)n and (Φn)n are bounded in H 1
r (R3) and D1

r (R
3) respectively, so that there exists a subsequence (still

labelled (un)n) such that un ⇀ u in H 1
r (R3); the associated (sub)sequence (Φn)n admits a weakly convergent sub-

sequence in D1
r (R

3). Therefore we can assume, after relabelling, that un ⇀ u in H 1
r (R3) and Φn ⇀ Φ in D1

r (R
3).

Moreover, we can assume that (un)n converges strongly to u in Lp(R3) for any p ∈ (2,6).
Let us first show that the weak limits u and Φ are related by the fact that Φ = Φ[u]: indeed for any ψ ∈ D1(R3)

there holds∫

R3

∇Φn · ∇ψ dx = q

∫

R3

u2
n(1 − qΦn)ψ dx;

but u2
n → u2 in L6/5(R3), while, as for

∫
u2

nΦnψ , we have that Φn ⇀ Φ in L6(R3), ψ ∈ L6(R3) and u2
n → u2 in

L3/2(R3). Thus, passing to the limit,∫

R3

∇Φ · ∇ψ dx = q

∫

R3

u2(1 − qΦ)ψ dx,

i.e. Φ = Φ[u], as claimed.
We now want to prove that the (sub)sequence (un)n, which converges weakly, actually converges strongly in

H 1
r (R3). First we need the following crucial result:

Lemma 3.4. There exists ω2 ∈ [0,∞) such that λn → ω2 as n → ∞ (up to subsequences).

Remark 3.1. Actually at the end we will prove that ω2 > 0 (see Lemma 3.7 below), but for the moment this prelimi-
nary result is enough.

Proof of Lemma 3.4. The proof is quite long and will be divided in several steps. Let us start noting that by (3.14),
and since (un)n is bounded, we have

〈
J ′(un), un

〉 − λn

∫

R3

u2
n(1 − qΦn)

2 dx := εn → 0 in R. (3.15)

First step. Assume by contradiction that along a subsequence∫

R3

u2
n(1 − qΦn)

2 dx → 0, (3.16)

that is∫

R3

u2
n dx = 2q

∫

R3

u2
nΦn dx − q2

∫

R3

u2
nΦ

2
n dx + o(1), (3.17)

where here and in the following we write o(1) for any real sequence approaching 0 as n → ∞.
Thus, by definition of Vσ and by (2.7), from (3.17) we get

2σ 2 =
∫

R3

u2
n(1 − qΦn)dx = q

∫

R3

u2
nΦn dx − q2

∫

R3

u2
nΦ

2
n dx + o(1)

= q

∫
3

u2
n(1 − qΦn)Φn dx + o(1). (3.18)
R
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Again by the Radial Lemma and recalling that Φn is bounded in D1
r (R

3), there exists M > 0 such that

0 � Φn(x) � c
‖Φn‖
|x|1/2

� 1

q
− Φn(x) ∀n ∈ N, ∀x ∈ R

3 with |x| � M. (3.19)

Thus, setting BM = {x ∈ R
3: |x| � M} and BC

M = R
3 \ BM , (3.18) and (3.19) imply

2σ 2 � q

∫
BM

u2
n(1 − qΦn)Φn dx +

∫

BC
M

u2
n(1 − qΦn)

2 dx + o(1)

� q

∫
BM

u2
n(1 − qΦn)Φn dx +

∫

R3

u2
n(1 − qΦn)

2 dx + o(1)

= q

∫
BM

u2
n(1 − qΦn)Φn dx + o(1) (3.20)

by (3.16).
By Rellich’s Theorem un → u and Φn → Φ in Lq(BM) for any q ∈ [1,6); thus, writing

u2
n(1 − qΦn)Φn = u2

nΦn − qu2
nΦ

2
n,

in the first addendum u2
n → u2 and Φn → Φ in L2(BM) and in the second addendum u2

n → u2 and Φ2
n → Φ2

in L2(BM).
Since Φ = Φ[u], as a consequence 0 � Φ � 1/q . In conclusion (3.20) gives

2σ 2 � q

∫
BM

u2(1 − qΦ)Φ dx � q

∫

R3

u2(1 − qΦ)Φ dx =
∫

R3

|∇Φ|2 dx. (3.21)

But by definition of Vσ we have

2σ 2 =
∫

R3

|∇Φn|2 dx +
∫

R3

u2
n(1 − qΦn)

2 dx ∀n ∈ N,

while by the semicontinuity of the norm in D1
r (R

3) we have∫

R3

|∇Φ|2 dx � lim inf
n→∞

∫

R3

|∇Φn|2 dx,

and since
∫

R3 u2
n(1 − qΦn)

2 dx → 0 by (3.21), we finally have

Φn → Φ in D1(
R

3).
In addition, we note that Φ �= 0, since its norm equals

√
2σ > 0 by (3.12), and this also implies that

u �= 0. (3.22)

Second step. As a consequence of the convergence of Φn in D1
r (R

3), and so in L6(R3) (the weak convergence here
would be enough), and the strong convergence of u2

n to u2 in L6/5(R3), from the equality 2σ 2 = ∫
u2

n(1 − qΦn), we
get ∫

R3

u2
n dx = 2σ 2 + q

∫

R3

u2Φ dx + o(1) � 2σ 2 ∀n ∈ N,

so that

un �→ 0 in L2(
R

3) as n → ∞.
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In light of the three possibilities established by the Lions Concentration–Compactness Principle (see Lemma A.1
in Appendix A) we start by noting that dichotomy can never occur in the case of radial functions. If vanishing took
place, by the final statement of Lemma A.1 we would have that un → 0 in Lr(R3) for any r ∈ (2,6), which is in
contradiction with (3.22). In conclusion we are in presence of compactness: there exists a sequence of points (yn)n
in R

3 such that (possibly passing to a subsequence)

∀δ > 0 ∃R = R(δ) > 0 such that
∫

BR(yn)

u2
n dx � L2 − δ ∀n ∈ N,

where, for shortness, we have set

L := lim
n→∞

∫

R3

u2
n dx.

We now show that we can actually assume that

∀δ > 0 ∃R = R(δ) > 0 such that
∫

B2R

u2
n dx � L2 − δ ∀n ∈ N, (3.23)

i.e. concentration occurs at 0. Indeed, fix δ ∈ (0,L2/2), find the corresponding R and assume by contradiction that for
infinitely many n we have that |yn| > R; then by the radial symmetry of un

L2 − δ �
∫

BR(yn)

u2
n dx = 1

2

∫
BR(yn)∪BR(−yn)

u2
n dx � 1

2

∫

R3

u2
n dx → L2

2
,

which is absurd. Thus |yn| � R definitely, so, say, for any n ∈ N. But in this way∫
BR(yn)

u2
n dx �

∫
B2R(0)

u2
n dx,

and (3.23) follows.
Finally, let us show that un → u in L2(R3). First, let us take δ and R as given in (3.23). Since u ∈ L2(R3), there

exists M � 2R such that∫

BC
M

u2 dx < δ.

Since un → u in L2(BM), there exists n0 ∈ N such that for every n � n0 we have

‖un − u‖L2(BM) < δ,

and by the monotonicity of the integral, since M � 2R, we also have that∫
BM

u2
n dx � L2 − δ.

In conclusion

‖un − u‖2
L2(R3)

= ‖un − u‖2
L2(BM)

+ ‖un − u‖2
L2(BC

M)

< δ + 2‖un‖2
L2(BC

M)
+ 2‖u‖2

L2(BC
M)

< δ + 2‖un‖2
L2(R3)

− 2‖un‖2
L2(BM)

+ 2δ

� 5δ − 2L2 + 2‖un‖2
L2(R3)

→ 5δ as n → ∞,

and the claim follows.
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In this way by (3.16) and the strong convergence of un, Φn and Φ2
n in L2(R3), we get

o(1) =
∫

R3

u2
n(1 − qΦn)

2 dx

=
∫

R3

u2
n dx − 2q

∫

R3

u2
nΦn dx + q2

∫

R3

u2
nΦ

2
n dx

→
∫

R3

u2(1 − qΦ)2 dx.

This implies that u ≡ 0 when (1 − qΦ) �= 0, while from (3.17) we get∫

R3

u2(1 − qΦ)dx = 2σ 2 > 0.

This is a contradiction and thus (3.16) cannot hold.
Third step. Since (1 − qΦn)

2 � (1 − qΦn), we can assume that there exists Σ2 ∈ (0, σ 2] such that∫

R3

u2
n(1 − qΦn)

2 dx → 2Σ2.

By (3.15)

λn = 1

2Σ2 + o(1)

(〈
J ′(un), un

〉 − εn

)

= 1

2Σ2 + o(1)

( ∫

R3

|∇un|2 dx +
∫

R3

W ′(un)un dx

)
− εn

2Σ2 + o(1)
. (3.24)

Thus by W4)
′, since k � 2,

λn � 1

Σ2 + o(1)

(
1

2

∫

R3

|∇un|2 dx + k

2

∫

R3

W(un)dx

)
− εn

2Σ2 + o(1)

� k

2Σ2 + o(1)

(
1

2

∫

R3

|∇un|2 dx +
∫

R3

W(un)dx

)
− εn

2Σ2 + o(1)

= k

2Σ2 + o(1)
J (un) − εn

2Σ2 + o(1)
.

On the other hand, again by W4)
′,

〈
J ′(un), un

〉 =
∫

R3

|∇un|2 dx +
∫

R3

W ′(un)un dx � 0,

so that by (3.24) we finally get

− εn

2Σ2 + o(1)
� λn � k

2Σ2 + o(1)
J (un) − εn

2Σ2 + o(1)
.

Thus, up to subsequences, λn → ω2, where

0 � ω2 � k

2Σ2
inf

v∈Vσ

J (v). � (3.25)

By Lemma 3.3 we know that, up to a subsequence, (un)n converges weakly in H 1
r and λn → ω2. But, as said

above, we now prove that the convergence of (un)n is strong. We start with the following result:



1068 D. Mugnai / Ann. I. H. Poincaré – AN 27 (2010) 1055–1071
Lemma 3.5. If ω2 < m2
0, then (un)n is a Cauchy sequence in H 1

r (R3).

The proof of this lemma was given in [2] for k = 2, but it can be restated word by word also if k > 2, since the
essential assumption in its proof was only W3).

Thus, if we knew that ω2 < m2
0, we could conclude by Lemma 3.5 that un → u strongly in H 1

r (R3); in this
way u ∈ Vσ and it is a nontrivial solution of (1.2). Of course, if we knew that in any case (un)n converges strongly
in H 1

r (R3), we could conclude that u is a nontrivial solution of (1.2). For this reason we conclude with the following:

Lemma 3.6. (un)n converges strongly in H 1
r (R3).

Proof. We already know that un ⇀ u in H 1
r (R3), so that we need to show that un → u in L2(R3) and ∇un → ∇u in

(L2(R3))3. Of course we have the following two possibilities: either un �→ u or un → u in L2(R3), and we want to
exclude the first possibility.

By the Concentration–Compactness Principle, in the former case only vanishing can occur, since we are treating
radial functions and then dichotomy cannot take place. If this is the case, by the final statement of Lemma A.1, un → 0
in Ls(R3) for any s ∈ (2,6). We also recall that Φn ⇀ Φ = Φ[u] in D1

r (R
3). Then we would have that

2σ 2 =
∫

R3

u2
n(1 − qΦn)dx =

∫

R3

u2
n dx + o(1) =

∫

R3

u2
n(1 − qΦn)

2 dx + o(1) → 2Σ2,

that is σ 2 = Σ2. Then (3.25) and Lemma 3.1 imply

ω2 � k

2σ 2
inf

v∈Vσ

J (v) < m2
0,

so that Lemma 3.5 applies and in particular un → u in L2(R3), which is absurd under the assumptions of vanishing.
Then we can conclude that un → u in L2(R3); from this very last information we obtain that un → u in H 1.

Indeed,∫

R3

∇un · ∇(un − u)dx −
∫

R3

W ′(un)(un − u)dx − λn

∫

R3

un(1 − qΦn)
2(un − u)dx → 0 (3.26)

by (3.14), since (un − u)n is a bounded sequence. On the other hand, by W3) we get

∣∣W ′(un)(un − u)
∣∣ � C1|un||un − u| + C2

p + 1
|un|p+1|un − u|.

By the Hölder inequality
∫ |un||un − u| � ‖un‖2‖un − u‖2 → 0. If p ∈ (0,2), then∫

R3

|un|p+1|un − u|dx � ‖un‖2(p+1)‖un − u‖2 → 0,

since 2 < 2(p + 1) < 6; if p ∈ [2,4) take ε ∈ (0,1) such that μ := ( 6−ε
p+1 )′ ∈ (2,6), so that

∫

R3

|un|p+1|un − u|dx � ‖un‖p+1
6−ε ‖un − u‖μ → 0,

since un → u in Ls(R3) for any s ∈ [2,6) by assumption and the compact embedding of H 1
r (R3).

Moreover,∫

R3

un(1 − qΦn)
2(un − u)dx =

∫

R3

[(
u2

n − unu
) − 2q

(
u2

n − unu
)
Φn + q2(u2

n − unu
)
Φ2

n

]
dx;

now the first term in the r.h.s. of the previous identity goes to 0 since un → u in L2(R3), while Φn ⇀ Φ in L6(R3)

and u2
n − unu → 0 in L6/5(R3), Φ2

n is bounded in L3(R3) and u2
n − unu → 0 in L3/2(R3), so that
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∫

R3

un(1 − qΦn)
2(un − u)dx → 0.

In conclusion (3.26) gives ‖∇un‖2 → ‖∇u‖2, so that, summing up, un → u in H 1(R3), as claimed. �
At this point we have found that un → u strongly in H 1

r (R3), so that u minimizes J on Vσ and hence it is a nontriv-
ial solution of (1.2). This leads us to state the following final result, which lets us prove completely Proposition 2.3,
and thus Theorem 1.1.

Lemma 3.7. ω2 > 0.

Proof. Assume by contradiction that ω2 = 0. Then u ∈ Vσ would be a nontrivial solution of J ′(u) = 0, i.e. u would
solve

−�u + W ′(u) = 0 in R
3.

Multiplying by u and integrating by parts give

0 =
∫

R3

|∇u|2 dx +
∫

R3

W ′(u)udx �
∫

R3

|∇u|2 dx,

which implies u ≡ 0, contradicting the fact that u ∈ Vσ . �
Theorem 1.1 is now a collection of the previous lemmas.

4. The case k = 2

In this short section we outline the proof of the existence result when k = 2, already claimed in [2], but not proved
therein. First we need the following result, which is the counterpart of Lemma 3.1 when k = ϑ = 2.

Lemma 4.1. (See [2, Lemma 2.5].) Assume that W satisfies W1) and W5). Then for any m2
0 > 0 there exists q∗ > 0

such that for any q ∈ (0, q∗) there exists ū = ū(q) ∈ H 1
r , ū �= 0, such that

2J (ū)∫
R3 ū2(1 − qΦ[ū]) dx

< m2
0.

Once got this preliminary result, the rest of the proof of the existence of a nontrivial solution for problem (1.2)–
(1.3) stated in Theorem 1.2 follows the same lines of the existence result given in Section 3, starting from Lemma 3.2
through Lemma 3.5, which hold true also if k = 2. Finally, in proving the corresponding result of Lemma 3.6, we need
Lemma 4.1 above in place of Lemma 3.1.

Appendix A

We recall the properties of Lions’s Concentration–Compactness Principle that we use in the form of the following
lemma, which is the collection of [15, Lemma I.1] and [16, Lemma I.1]:

Lemma A.1 (Concentration–Compactness Principle). Let (ρn)n be a sequence in L1(RN), N � 1, such that ρn � 0
and

∫
ρn → λ > 0. Then there exists a subsequence (ρnk

)k satisfying one of the three alternatives below:

(compactness) there exists a sequence of points (yk)k in R
N such that ∀δ > 0 ∃R > 0 with the property that∫

BR(yk)

ρnk
dx � λ − δ;
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(vanishing)

lim
k→∞ sup

y∈RN

∫
BR(y)

ρnk
dx = 0 for any R > 0;

(dichotomy) there exists α ∈ (0, λ) such that for every δ > 0 there exist k0 � 1 and two sequences of nonnegative
functions (ρ1

k )k , (ρ2
k )k in L1(RN) such that for any k � k0

∥∥ρnk
− (

ρ1
k + ρ2

k

)∥∥
L1(RN)

< δ,

∣∣∣∣
∫

RN

ρ1
k dx − α

∣∣∣∣ � δ,

∣∣∣∣
∫

RN

ρ2
k dx − (λ − α)

∣∣∣∣ � δ,

and

dist
(
Supp

(
ρ1

k

)
,Supp

(
ρ2

k

)) → ∞ as k → ∞.

Moreover, if 1 < p < N , 1 � q <
pN

N−p
, (un)n is bounded in Lq(RN) and (∇un)n is bounded in (Lp(RN))N , and

sup
y∈RN

∫
BR(y)

|un|q dx → 0 as n → ∞ for some R > 0,

then un → 0 in Ls(RN) for any s ∈ (q,
pN

N−p
).

Of course the last statement is an improvement of the first part when ρn = |un|q .
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