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Abstract

We glue together standing wave solutions concentrating around critical points of the potential V with different energy scales.
We devise a hybrid method using simultaneously a Lyapunov—Schmidt reduction method and a variational method to glue together
standing waves concentrating on local minimum points which possibly have no corresponding limiting equations and those con-
centrating on general critical points which converge to solutions of corresponding limiting problems satisfying a non-degeneracy
condition.
© 2010 Elsevier Masson SAS. All rights reserved.

Résumé

Nous recollons des ondes stationnaires d’ordres différents en énergie, se concentrant autour de points critiques d’un potentiel V.
Nous introduisons une méthode hybride, utilisant a la fois une méthode de réduction de Lyapunov—Schmidt, et une méthode
variationnelle pour recoller des ondes stationnaires, se concentrant en des minima locaux, éventuellement sans équation-limite
correspondante, et d’autres se concentrant en des points critiques quelconques, convergeant vers des solutions de problemes-limites
correspondants, satisfaisant une condition de non-dégénérescence.
© 2010 Elsevier Masson SAS. All rights reserved.

1. Introduction and statement of main results

We consider a standing wave solution for the nonlinear Schrodinger equation

oy hZ n
zh¥+7Aw—V(x)1/f+f(1//)=0, (t,x) e R x R, (1.1)

where /i denotes the Plank constant, i is the imaginary unit and f (e'? V) = et? f (). A solution of the form ¥ (x, ) =
exp(—i Et/h)v(x) is called a standing wave solution of the nonlinear Schrodinger equation (1.1). Then, a function
Y(x,t) =exp(—iEt/h)v(x) is a standing wave solution of (1.1) if and only if the function v satisfies
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2
%Av—(V(x)—E)—i—f(v):O, x eR". (1.2)

For the physical background, refer to [8,29] and [30].

In this paper, we study standing waves of (1.1) for small %z > 0. For small # > 0, these standing waves of the
nonlinear Schrédinger equation (1.1) are referred to as semi-classical states. Thus we are concerned on the following
equation

{SZAM—V(X)M‘l‘f(u):Ov u>0 inR", (1.3)

1im\x|—>oo u(x) =0.

In this paper, we are interested in the situation where E is a critical frequency in the sense that minyegrr V(x) = 0.
Since the pioneering work [21], there haven been many further papers for the case inf,cre V(x) > E (refer to [1,2,
4,5,14-21,24,25,27,28,31-34,37-39] and references therein). When inf,crr V (x) > 0, we see via a transformation
v(x) = u(ex) that the following equations with constant ¢ > 0 serve as limiting equations of (1.3)

{Au_cu+f(u)zo, u>0 inR", (1.4)

limm_)oo u(x) =0.

Thus, if inf,crr V(x) > 0, for any solution u, of (1.3), liminf,_¢ ||us||z > 0. On the other hand, in the case of
min,ere V(x) = 0, it was shown in [8] and [9] that there exists a locally minimal energy solution w, of (1.3)
concentrating around an isolated component of global minimum points of V as ¢ — 0. In contrast to the case of
infycrr V(x) > 0, the amplitude ||w, |/~ and energy of the localized solution w, concentrating around global min-
imum points of V decay to 0 as ¢ — 0, and their decay rates depend subtly upon how the potential V decays to 0
around the concentration points. Moreover, if the decaying behavior of potential V to O is sufficiently irregular, there
will be no corresponding limiting problem; in such a case, an exact estimation of the amplitude and energy of the
corresponding solution may not be possible. This makes the gluing of the localized solutions very difficult. If the
decaying behavior of the potential V to 0 around global minimum points is regular and the corresponding limiting
problems have good properties, a gluing of solutions concentrating around global minimum points has been worked
out in [7,10,12,11]. Recently, without requiring the existence of limiting problems, Sato [36] were able to glue local-
ized solutions concentrating around local minimum points when f(u) = u?, p € (1,2*), where 2* = (n +2)/(n — 2)
for n > 3 and 2* = oo for n = 1, 2. He glues the solution via a minimization on a torus of finite codimension in a
Sobolev space which depends strongly on the homogeneity of an f(u) = u?. In this paper we devise a new approach
to glue together the localized solution for a more general type of nonlinearity, where the solution cannot be obtained
via a minimization argument. In fact, we glue together the localized solution concentrating around local minimum
points for quite general nonlinearities f without a monotonicity assumption for f(¢)/¢. Furthermore, we use both a
variational method and a Lyapunov—Schmidt reduction method to glue together the solutions concentrating around
global minimum points (without requiring any existence of limiting problems) and the solutions concentrating around
stable critical points of potential V. We have never seen this approach using simultaneously both variational method
and Lyapunov—Schmidt reduction method in the literature.
To begin, we list some conditions for V and f:

(V1) Ve C(R"); liminfiy|— 00 V(x) > 0 =infyern V (x);

(V2) there exist disjoint bounded open sets §2; with smooth boundary 92;, i = 1,...,k, satisfying 0 < m; =
infrep, V(x) <minyeye; V(x);

(V3) there are xi,...,x, € R" and disjoint bounded open sets £2;41, ..., $2t4, With smooth boundaries 92 ;
such that x; € £2;4;,V € C2(.Qk+j), VV(x) #0 for x € 2545\ {x;}, infxegkﬂ. V(x) > 0 and x; is a non-
degenerate critical point of V, for j € {1, ..., m};

(f1) fe CL(R), f () =0 for t <0 and there exist some p; > 1 and C > 0 satisfying | f(¢)| < Ct*! fort € (0, 1);
(f2-1) there exists some p € (1, £2) forn >3 and p € (1, 00) for n = 1,2 such that liminf, o ﬂ,% fo f(s)ds > 0;

(f2-2) there exists some p € (1, %) forn >3 and p € (1, 0o) for n =1, 2 such that limsup,_, o, w < 00;

(f3-1) there exists pup > 1 such that (uy + 1) fot f(s)ds < f()t fort > 0;
(f3-2) there exists w3 > 1 and #; > 0 such that w3 f(s) < f/()t fort € [0, 11];
(f3-3) there exists w3 > 1 such that us f(s) < f/(t)t fort > 0;
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(f4) forany a € {V(x1), ..., V(x;;)}, the problem
Au—au+ fw)=0, u>0 inR", ueH"*R") (1.5)

has a radially symmetric solution U, which is non-degenerate in Hrl’z(R”) ={weH 1*2(]R"); w(x) =w(x|)},
and f € Cl’y(R) for some y € (0, 1).

loc

It is proved in [8] that if (f1), (f2-1) and (f3-1) hold, there exists a positive solution of (1.3) concentrating around
an isolated component of zeros of V, and that if (f1), (f2-1), (f2-2) and (f3-1) hold, there exists a positive solution of
(1.3) concentrating around an isolated component of local minimum points of V. In this paper, we will glue together
the solutions found in [8] under the same conditions.

Throughout this paper we assume (f1), (f2-1) and (f3-1). Then we see that f(¢) > O for ¢ > 0. Note that (1), (f2-1)
and (f3-1) hold for f(r) =t + ¢ with p € (1,2%),q > 1.

Some remarks about the above conditions on f are in order. If we take any w € (1, min{u1, w2, u3}), then

the conditions (f1), (f3-1), (f3-2) hold with p instead of w1, uo, u3, respectively. Note that (f1) or (f3-2) implies
limsup,_, % < 00, that (f3-1) implies limsup,_, Mﬁ fot f(s)ds < oo, and that w1, (z, u3 < p if the conditions

for w1, u2, u3 and p hold. For u < wy, we can find #g € (0, ;) such that wf (f9) < f'(to)to. If not, there exists a
constant C > 0 such that f(¢) > Ct* for t € (0, 1); this contradicts (f1). Now, we define

3 f@ 1 < to,
f= { f(to) + L;T’B{(t“ —1 1>
Then we see that (11 + 1) [y f(s)ds < f(t)t forall t > 0if (£3-1) holds, and that u f () < (1)t for all £ > 0 if (3-2)
holds. Refer to [26] for the result related to the non-degeneracy condition appearing in (f4).
To state our main results we give some deﬁnitiorls. We define A, ={xe 2; |Vx)=m;} fori=1,...,k, Z=
xeR"|V(x)=0}, F(t) = [, f(s)ds, F(t)= [, f(s)ds and
1
L,(w) = 5/ |Vul|® + au’ dx — f Fuwdx, uc HI(R").
R R
For any a > 0, let S, be the set of all least energy solutions of the problem
Au—au+ f(u)=0, u>0 inR", u(O):m'ﬁleu(x). (1.6)
xeR"

It is known in [37] that for each a > 0, S, is nonempty and if (f1), (f2-2) and (f3-1) are satisfied, and in [22] that any
u € S, is radially symmetric. Moreover, any solution U € S, satisfies

U(x) < Ce <,

for some constants C, ¢ > 0,

n—2 5 na 2
5 IVU| dx—l—T U“dx—n | F(U)dx=0,
Rn R}L Rn
and
1 1
La(U):E/|VU|2dx+%/U2dx—/F(U)dx:—/|VU|2dx.
n
RYI Rn Rn ]Rn
Fori =1,...,k, we consider the following localized problem
E2Au—V@u+h(u)=0, u>0 inf2;, 1.7)
u(x) =0 on 3$2;, '

where h = f if m; >0andh=fifm,-=0.Wedeﬁne

1
Jg(u;.Q,-)E5/82|Vu|2+Vu2dx— Hu)dx,
2; 2;
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where
t

H(r):/h(s)ds={§8 iizizg (1.8)
0

Then a solution u, of (1.7) corresponds to a critical point of the energy functional J, (u; £2;) on H (£2;).
If (f3-1) holds, for each nonnegative function h] € H ($2:) \ {0}, we can find #(h]) > 0 such that for t > t(h),
Je(thi; £2;) < 0. Then we define

C! = inf max J, t); $2;
C, i el 8(V( ); )

where @ = {y € C([0, 1], Hl(.Q )N 1y (0)=0, y(1) =t(hf)h}. Then, it follows from the Mountain Pass Theorem
(refer to [35]) that if (f1) and (f3-1) are satisfied when m; =0, and (f1), (f2-2) and (f3-1) when m; > 0, there exists
a mountain pass solution u}, of (1.7) with J (u £2;)=C,. ! The main result in [9] implies that in case m; = 0, if we
further assume (f2-1), 11m8_>0 € ”Cl =0,

”“ ”LOO(Q) >0

lim [ o = liminfe ™ H
0” 8||L°°(91) 0, minte
and in case m; > 0, limg_,¢ E_HCé = Ly, (U) for U € Sp;; and there exists a maximum point xé of u’s with

lim,_, ¢ dist(xé, A;) = 0 such that for some C,c > 0, u(x) < Cexp(—cle_xél) and ué(~ + xé) converges (up to a
subsequence) uniformly to a function U € S;.
For any set A C R” and d > 0, we define A? = {x e R” | dist(x, A) < d}.

Theorem 1. Suppose that (V1) and (V2) hold. Assume that m; = --- =m; =0 < mj41, ..., mg. Suppose that (f1),
(f2-1), (f3-1) hold if | = k, and that (f1), (f2-1), (f2-2), (f3-1) hold if | < k. Then, for sufficiently small ¢ > 0, there
exists a positive solution u. of (1.3) such that
(1) for any sufficiently small d > 0, there exist C, ¢ > 0 satisfying

ue(x) < Cexp(—cdist(x, (A1 U---U A9)/e);
@i) fori=1,...,1,

lim ue o) =0, lim ™% flug | 1o, > 0;

e—0 e—0

and fori =141, ...,k, aleast energy solution U € S,,, and some xé € R" with limg_¢ dist(xé, A;) =0, a trans-
formed solution ug(ex + x.) converges (up to a subsequence) uniformly to U (x) on each bounded set in R".

Moreover, if (£3-2) and (£3-3) are also satisfied when | =k and | < k, respectively, there exist some C, c > 0 such
that fori =1,...,k,
| Je(ue; 2i) = CF| < Ce™/".
Theorem 2. Assume that (V1), (V2) and (V3) hold. Suppose that (1), (f2-1), (f3-1) and (f4) hold. Then for sufficiently
small € > 0, there exists a positive solution u. of (1.3) such that
(i) for any sufficiently small d > 0, there exist C, ¢ > 0 satisfying

e (x) < Cexp(—cdist(x, (A) U---UAg Ufxi} U+ U {xn))?) fe);
(i) form; =0,

lim [luellooey =0, lim e~ Djlug] 1o >0,

e—0 e—0

and for m; > 0, there exists xé € R” such that lim,_, dist(xé, A;) =0and that u.(ex + xé) converges uniformly
(up to a subsequence) to some Uy, € Sy, on each bounded set in R";
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(iii) for eachi =1,...,m, there exists yé € R" such that limg_, ¢ yé = x; and that u.(ex + yf;) converges uniformly
(up to a subsequence) to Uy (x;) on each bounded set in R". Here Uy (y;) is a function given in (f4).

Moreover, if (3-2) and (£3-3) are also satisfied when | = k and | < k, respectively, there exist some C, ¢ > 0 such
that fori =1,...,k,
| e (ue; £2i) — CE| < Ce¢/e.

We conclude the introduction with an outline of our proof of the main results.
We look for a critical point of some energy functional ;. First we choose a bounded open set £2p enclosing

Z\ Uf: 1 A; (see Section 2 for a precise condition for £2p). Then we consider a modified problem outside Uftg’ £2;
for each given function u; on £2;, and show the existence of a solution ¢(uy, ..., uxyn,) for the external problem

solving by a minimization problem. We also show the existence of a solution P;(u;) of the modified problem by a
minimization such that P; (¢;)(x) = 0 for dist(x, £2;) > 6 > 0 and P; (u;) = u; on £2;. Then, we will show that finding

a solution is reduced to finding a critical point of a reduced functional I, (uo, ..., ug+n). Finding a good estimate for
k+m
G0, - Ukgm) = @0, - pm) — Y Pi(up)
i=0

is important in our proof. In fact, we show that ¢ is exponentially small with respect to small ¢ > 0 (see Proposi-
tion 3). That enables us to regard the sum Zf‘i(’)" I':(P;(u;)) of localized functionals depending only on each u; as an
exponentially small perturbation of the reduced functional /.. This is a novelty of our argument.

To prove Theorem 1, we consider an energy gradient flow in a product of an appropriate small ball in H'(£2) and
appropriate annuli in H'(£2;),i = 1,..., k. To take appropriate radii of the ball and annuli is also important in our
proof. If there exist no solutions in the product of the ball and the annuli, we show that via a gradient estimation near
the boundary of the product of the ball and the annuli, we can deform a product of localized mountain paths into a
surface where the maximum energy is less than a sum of independent local mountain pass levels by an algebraic order
of ¢ > 0. Then, from the exponential smallness of ¢(uo, ..., ugtnm), we will get a contradiction.

For the proof of Theorem 2, we use a Lyapunov—Schmidt reduction method in a region 2y U - - - U £244,, before
we use the variational argument in a region 29 U - - - U £2; as in the proof of Theorem 1. For the typical case m = 1 we
will find a critical point of the functional uz41 +— I (ug, ..., ug+1) by the reduction method which depends smoothly
on (ug,...,ur), and then use the same argument as in the proof of Theorem 1. So we will skip the variational
procedure in the proof of Theorem 2 since the required variational argument after the reduction is exactly the same as
that of the proof of Theorem 1.

This paper is organized as follows. In Section 2, some preliminaries about the above reduction are given. Theo-
rems 1 and 2 will be proved in Sections 3 and 4, respectively.

2. Preliminaries

We define Ag := 2\ U;‘:] A; and £29 D Ag a bounded open set with a smooth boundary such that 20N 2 =0
fori =1,...,k+m.Foré >0, let .{21‘3 = {x e R" | dist(x, £2;) <6}, and .Ql._‘S = {x € £2; | dist(x, 9£2;) > §}. Taking
sufficiently small § > 0, we may assume that A; C .Qi_z‘s, .{21.2‘3 N 9126 =@ foreach 0 <i # j < k+ m, and that 8.(21.‘3/
is smooth for each 0 <i <k +m and §’ € [—28, 28]. Reordering the index, we may assume that m; =---=m; =0
and myy1,...,mi > 0 for somel € {1, ..., k}. In this section, we assume that (f1), (f2-1) and (f3-1) are satisfied and

(f2-2) are also satisfied if [ < k. As in the previous section, we can find 7y > 0 such that wf (f9) < f'(t9)f0. Then, we
define

. f@ t <1,
f= { S0+ LBt =) 1> .

0

Then we see that (11 +1) [y f(s)ds < f(t)t forall t > 0if (£3-1) holds, and that u f () < f'(t)t for all t > 0 if (3-2)
holds. We define

b=inf{V(x)|x ¢ 2,°U---UR°}>0.
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We define V. (x) := V(ex), and H; the completion of CSO(R”) with respect to a norm |ull, = (fR,, |Vu|2 +
Veu? dx)'/2. Note that He C H'(R") by (V1). We also define ;. = {x | ex € 2;}, 20, = {x | ex € 27}. Then
we see that

inf{ Ve (x) | x ¢ 250U U2 2} =b>0.

From (f3-1), there exist some C, C> > O such that f () < C(t"2 fort € [0, 1] and f(¢) > Cot"2 for t € [1, 00). Thus,
taking sufficiently small A € (0, min{b/10, b(1/2 — 1/(i + 1))}), we can construct a function f; € C!(R) for small
Ao and large A1 > O such that

| f@ <o,
H@) = {M 1>

with 0 < A9 < A1, and f5, (¢) < min{ f(z), f(t), At} | f1 (1) < 24 for r > 0. Note that f (r) =0 for r <0 and
| /o) — fa(n)]
|t — 12

We find a function x € C'(R") such that 0 < x < 1, x(x) = 1 for x € [_Ji2" 2,7 and x (x) =0 for x ¢ 17" 2;.
We define

<24 forty #1.

X(Eex) f(0) + (1= x(Eex) i) x €Uy
g =1 x(ex)f() + (1 — x(e0)) fu() xe U, Qi
£ x g U Qi
G(x,t)= fot g(x,s)ds, and for u € H,,

1
) =3 / |Vul? + Vo (x)u*dx — / G(x,u)dx.
R" R”
Then I, € C2(H,). For a measurable subset U C R", we define

1
Fg(u;U)zE/qu|2+Vg(x)u2dx—/G(x,u)dx,
U U

el = / Vul? + Ve oul dx
U

for u € He. For i = (ug, ..., Ugsm) € Hl(Qoyg) X oo+ X Hl(.QHm,g), we define a norm

k+m

il = luilg,,-
i=0
For u; € H'(£2;¢), let
Xf(ui)={ueHy(2),) |u=u; on 2;.}.
We regard u € H(} (Qi‘s’s) as an element in H'(R") by defining u(x) = 0 for x ¢ 52155

Proposition 1. For each u; € Hl(.Q,',g), i €{0,...,k+m)}, there exists a unique minimizer P;(u;) of I'; on X (u;),
which satisfies the following:

(i) w=P;(u;) € H}(£2},) solves

Aw—Vew+ fi(w) =0 in 20\ Qi
w=1u; on 982; ¢,
w=0 on 3528

1,8’
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>i1) P; :Hl(.Qi,E) — HO1 (Qgg) is of class cl, and forall h € H! (£2i¢), w= Pi’(ui)h solves

Aw = Vew + f{(Piui))w=0 in2),\ Qie.
w=nh in Qi’g,
w=0 on 8938,
(iii) there exists a positive constant C, independent of small & > 0 such that
[P, < Cluille.,, forallu; € H'(2;), i €{0,... .k +m}).
This proposition can be proved in a similar way as in [36], so we omit the proof.
For il = (U, ..., Uk+m), Ui € H'(£2;¢), let
X)) ={u€Hs |u=ujon i, i=0,....k+m}.
By the same procedure as in the proof of Proposition 1, we can prove the following proposition.
Proposition 2. For each ii = (ug, ..., Ujpim) € H! (£20¢) x -+ % H! (2k+m.¢), there exists a unique minimizer ¢ (ii)
of I, on XE(it), which satisfies the following:
(i) w= @) solves

Aw—Vew+ fL(w)=0 in (20U U2e)C,
w=u; onds2; . (i=0,...,k),

(i) ¢:H' (20.) x -+ x H'(21.s) — H, is of class C', and for all h € H (2, ¢), v ="

37,5'?) h solves

AU—VSU“‘f)i(‘P(’z))U:O in (-QO,SU"‘U-Qk,s)Cv
v=nh in Qi’g,
v=0 inQje, j#I,

(iii) there exists a positive constant C, independent of small & > 0 such that
le@ ], < Clil.
Let ¢(i1) = (i) — Zf‘:(')" P;(u;). Then it follows that (i) € Xi((_j). Now we obtain the following estimates
for @ (i).
Proposition 3. For any R > 0 and gy > 0, there exist constants C, ¢ > 0 such that
[p@], < ce

for e € (0, &9) and lille < R.

Proof. Foru; € H'(2i¢),i =0,....k+m, w; = Pi(u;) € Hy (2} ,) solves

Aw—Vew+ fi(w) =0 in 2} \ i,
w=u; on d£2; ¢,
w=0 on 9y,

By Proposition 1, there exists a constant C > 0, independent of # with ||i|, < R, such that ||w; ||H1(_Q§ \20) < C.
ie i

Hence by elliptic estimates (refer to [23]), we deduce that for each s € (0, 1), there exists a constant ¢ > 0 such that
lwill o5t @, ,) < C- By comparison principle, we conclude that for some C > 0, independent of small & > 0,

8/2
ie *

w; < Ce “/* on Qi’%g\Q
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Then, it follows from boundary Schauder estimates [23, Corollary 8.36] that |w; | ClomRd ) < Ce™ /e, Denoting ¢ =
i) = Zf‘:{)” P;(u;) + @ (i), we see that ¢ satisfies

Ap —Veo+ fi(9) =0 in (§20,U---U -Qk+m,8)ca
O =u; on 39,',8.

If ||ii]|. < R, it follows from (iii) of Proposition 2 that ||¢(if) || < C. Hence by elliptic estimates, we see that for each
s€(0, 1),

|0 i) HLO@(nggu-.-urzgjm)c <C.
Then by comparison principle, we deduce that
k+m
@< Ce® in U 372 \ Q%2
i=0

i,& i,&

Then it follows from interior Schauder estimates [23, Theorem 8.32] that
i n < Ce™°/%,
|(p(u)|cl,0(uff;ro 39,'5,5) e

Now a function w; = P; (u;) satisfies

Hwi) — file)
——(w;

—@)=0 in2),\ Q..
wi —¢@

Aw; —¢@) — Ve(w; — o) +

Multiplying by w; — ¢ and integrating by parts, we have
d(wi —¢) 2
/ (i — ) a5 f V(w; — )| dx

on
920 \2i ¢ 28\ 2
wi) —
- / Ve(w; — @) dx + / W(wi — )2 dx=0.
L
Qis,s\‘oi-s Qﬁg\gi,s

Since w; —¢ =0o0n 9£2; . and ||w; — ‘p”cl(a.(z? )= O (e /%), we see that

/ Vi =)+ f (w; — 9)* = 0(e™/");

20\ 2ie 20\
hence
||¢||H1(9f5\9i,s) =g — wl‘”[—[l(gifs’g\_()iqs) = 0((3_6/8)- (2.1)
We note that @) = @) on R" \ (.Qg’g u---u Q,ernw). From a decay property of ¢, we see that

||90||Hl(]Rn\_qgEU.,_UQg+ o= O (e~°/#). Thus combining this with (2.1), we get the required estimate. O

Let I, () = I';(¢(i1)). Then from Proposition 3, we conclude that for any R, &9 > 0, there exist constants C, ¢ > 0
such that

k+m
I (1) — Z Ie(Pi(up)| < Ce™/*  for |jii|l, < R and ¢ € (0, &0). (2.2)
i=0

Moreover, we have the following properties for I, (i2).
Proposition 4. The following hold.

(i) A vector function it = (ug, . .., ug+m) € H' (20,6) X - -+ X H' (Rk1m.¢) is a critical point of I if and only if ¢ (it)
is a critical point of T.
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(ii) The functional i — I.(it) satisfies (PS) condition if I'; does.

(iii) Forany R > 0,i =0, ...,k +m and gy > 0, there exist constants C, ¢ > 0 such that
ol dle(P;(u; -
T g M‘ <Cel® fore € (0, £0) and |l < R
uij

Proof. (i) For all 2 = (205> Cktm) € HI(SZ(),g) NERRI Hl(.Qker,e), we have (E’(z_i)z € Xi(@). Then, it follows
from the definition of ¢ that for all & € X£(0),

I)¢ = I ()¢ ()¢
~ k+m .
=I/(pG)| Y Pl + @’(ﬁ)@}

L i=0

k+m
= I/ (p@) Z P,-/(Mi){i:|

L i=0

 k+m
=TI} (pGd)) Z P! (u;)¢i +h:|.

L i=0

Then, from the fact H, = {Zk+m Pi/(ul-)f,- +h|¢ e Hl(Qigg), heX: (6)}, the equivalence of (i) follows.
(i1) We see from Propositions 1 and 2 that for E =20y ...+ Chgm) € H' (£20,¢) X --+ X H! (2k+m.e)>

k+m
@) ( > Pl + h)

i=0

< |G|

<@gl
k+m
> Pl +h

i=0

< ||

&

Thus it follows that || 17/ (¢(@))|| < |[1.(«)]|. Note that I';(¢(u)) = I. (i) and for some C > 0, |lull: < [low)]ls <
Cll]le. Thus we conclude that I, satisfies (PS) condition if I, does.

(iii) For & = (ho, ..., hgsm), il = (o, - - . Ugsm) With i, u; € H' (£2;¢), a function v = Zkf(;” a‘p(“)h solves
Av — ng+f){(¢(b7))v=0 in (-QO,SU"'UQk+m,e)C7
V= hi in ‘Qi,s'

By the minimization characterization of v, we have [[v]; < C||ﬁ|| ¢ < C for a constant C independent of h with

k] <1
Similarly, a function w; = P/(u;)h; solves

Aw—Vew+ f](P;(u;)w=0 in fz;fs \ Qie,
w:hi in Qi’g,
w=0 on 8[228.

By the minimization characterization of w;, we have ||w;|s < C|lh;|l¢ < C for a constant C independent of h with
Aalle <1.

Since
k+m k+m
Z I (eG)w Z r(Pi(ui))w

k+m

Z/ (@) = Pi(i)) - Vw; + Ve (i) — Py (ui))w; dx

I 8
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k+m
+) / | £(0GD) = f(Piud)|Jwi| dx
ot \ai
k+m k+m
<Dl = Pitun |, oo lwille gs, +22 3l = Pitui) | 12 g5\ g, ) 103l 2025 2,1
i=0 i=0
we see from Proposition 3 that for any ¢g, R > 0, there exist C, ¢ > 0 satisfying
k+m k+m
> (eG)wi — Y I (Pi(un)wi| < Ce™/* for e € (0, £9) and |l < R.
i=0 i=0
Then, it follows that
k+m k+m
. dls(Pi(ui)) -
Ik =y 5 ——==hi| = [ (¢@@)v = D I} (Pi(wi)w;
i=0 i i=0
k4+m
< | (e@)) (v - Z wi) + Cec/%
i=0

=Ce /%
since v — > w; € X4 (6). This completes the proof. O

We define ng(u) =I.(Pj(u)) foru e Hl(.Qj,g) and j e{l,...,k+m}.
Proposition 5. For each j € {1, ..., k + m}, the following hold.

(i) A function uj is a'critical point of I}j if and only if Pj(u;) € HO1 (Q?’s) is a critical point of I on H(} (.Q?,E).
(ii) The functional Iy on Hl(.Qj,s) satisfies (PS) condition if I'; on HO1 (.Q;? ¢) does.

Proof. We can prove these following the same argument as in the proof of (i) and (ii) in Proposition 4. O

Leta = 2% > 2max{l’;—ﬂ, ﬁ%}}. By Proposition 1(iii), we can choose a constant M > 1, independent of small
& > 0, such that
luille, 2. < | 1”;’(”;‘)”S <Mluille, 2, forallu; € H (2i¢), i €{0,...,k+m).

Proposition 6. Let i € {0, ..., 1}. For sufficiently small & > 0, it holds that I':(u) > 6M?&** for all u € Hy (20 ,) with
lulle =4Me®.

Proof. Note that from conditions (f2-1) and (f3-1), we have u < p. Also it follows from (f3-1) and (f2-2) that
G(x, 1) < CePH 4 Ct#+! for some C > 0. Then, for u € Hy (£2,) C H,, denoting v(x) = u(x/¢) € H; (£29), we
see that for sufficiently small ¢ > 0,
1
Te(u) > / §(|Vu|2 + Vguz) — CuPt — cuttldx

ol

1
= 5||u||§—s‘"{ ‘/CUI’Jrl —I—Cv“‘“dx}

8
Qi

1 (p+1)/2 (u+1)/2
> 5||u||§—Ce"{(f|Vv|2) +</|w|2) }

o8 ol

i i
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1
> E”M”g _ an(Pfl)/Z*(P+1)”u”£+1 _ CE"(M*U/2*(M+1) ”u”lgﬁrl
1 _1y/2— _ _1/— _
> <§ — cg"r=D/2 (1’+1)||u||é7 1 _ centu=0/2 (M+1)||u||éi 1>||u||g
> 6M2e.

This completes the proof. O

Proposition 7. Let i € {0, ..., 1}. For sufficiently small € > 0, it holds that |T'y(u)| < SM?*€** for all u € H(} (91'8,5)
with ||lulle <3Me®, and I'.(u) >0 for all u € Hy (20 ,) with ||ulls <5Me®.

Proof. As in the proof of Proposition 6, we note that u < p and G(x, 1) < CtPt! 4+ Ct#+ for some C > 0. Then,
foru e HO1 (.Qf o) C H;, we deduce as in Proposition 6 that for sufficiently small £ > 0,

M| < / %(Wulz—i-Vguz)—i-Cu”H+Cu“+ldx
2,

L2 mon(p—1)/2— 1 1y |
- p—D/2—(p+1) P+ n(u—1)/2—(u+1) u+
< 2|Iu||g +Ce IIMIIH()I(QﬁS) +Ce ”””Hgm;ig)

1
— {E + Cep—D/2=(p+D) “u”g—l 4 Ce"=D/2=(ntD llu ”g—l } llu ”g
<5M2e.
Similarly we see that for u € HO1 (.Qlfss) C Hg with |Ju|l, <5Me“,
! 2 2 +1 +1
Te(u) > E(|Vu| + Veu®) = CuP™' — cut*ldx
ol

1,&

1
> {_ _ an(p—l)/2—(l7+l)”u”‘g—l _ CSn(M—l)/Z—(M+1)||M||éL—1 } ||u||§

> {% — Ce"P=D/2(5 )Pt cgn=D/2 (5001 } luell7.

Thus we see that if ¢ > 0 is sufficiently small, Iz (u) > 0 for u € H& (938) with |lulls < 5Me*. This completes the
proof. O

Proposition 8. For all u € Hl(Qi,s), i €{0,...,k+m}, it holds that

(P ) P (wyu = [ |Vu|2+V8u2dx—/g(x,u)udx+ / |V Piw)| + Ve (Pi(w)” dx

Qi Qie 28 \2ie

- / fo.(Pi(w)) P; (u) dx.

20 \2ie

Proof. Note that w = P/(u)u solves

Aw = Vew + (P u)w =0 in 2} \ 2,
w=u in £2; ¢,
w=0 onde2?,.

Since w — P; (u) € H(; (Qgs \ §2; ¢), we deduce that I') (P; (u)) P/ (u)u = I'/(P;(u)) P; (u). Then, the claim follows. O
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p+1 u+1}
p—1’ pu—17%"

Note that we take o = ZZ—J_ri > 2 max{
Proposition 9. For sufficiently small ¢ > 0,
ey 1 o . o o .
|1.G0) | = 76 26" < |Pi(ui)|, <3Me®  for somei €0, ... k}.

Proof. We denote w; = P;(u;). Note that A < b/10. Then, from Proposition 8, conditions (f2-1) and (f3-2), we see
that

F;(P,-(u,-))Pi’(ui)ui = / |Vu,'|2+Vgui2dx— / g(x, uj)u; dx

ie Qi.s

+ / IVw; >+ Ve (wi)*dx — / fo(wp)w; dx

0N\ e 20\ Q2 ¢
> / |Vu,»|2+vgu,.2dx—cfuf‘“+u{’“dx
ie Qi,s
+ / Vw4 Ve(wi)? dx — / (wi)? dx
8 N\2ie Q22N
1
> / |Vui|2+Vgul~2dx—C/uf‘+1+uf+ldx+§ / IVw; |* + Ve (w)* dx
-Qi,s Qi,s Q;SE\AQLS
1 2 -1 /2—(p+1 p+1 —1)/2—(u+1 +1
> S lhwilly = Ce"PmRAZEE D 17 — Cem Um0 D ]

1 -1)/2— 1 -1 —-1)/2— 1 -1 2
>{——c8"<1’ i L e o ) P 1 ¢

Hence for sufficiently small ¢ > 0,

H dIe(P;(u;)) ” - TP (ui)) P/ (uj)u;
du,' -

lluille, ;.

1 ween S1 L e —t| P )12
2{5—08 T PP - ceT D P | }||u:||g,!g,.j
>3- e e pan | - e e w ]
2180[.

2

Then, the claim follows from Proposition 4. O

Proposition 10. Let E > 0 be a given constant. Then for sufficiently large Ry > 0, there exists a constant o such that
if I.(il) < E, & € (0, 80), ok <IPiui)lle < Ry for some i =1,... k, then | IGi)]| > 1.

Proof. Denoting w; = P;(u;) and F; (1) = fé fo.(s)ds, we see from Proposition 8 and the condition (f3-1) that

(1 + DI (P (w)) — T (Pi(w) P (u)u
=Mg1 / |V”|2+V8U2dx+/8(X,M)M—(M+1)G(x,u)dx

ie -Qi.s



J. Byeon, Y. Oshita / Ann. I. H. Poincaré — AN 27 (2010) 1121-1152 1133

+ / fx(wi)wt—(u-irl)F,\(wi)deruT_l / |Vw; |* 4 Ve(w;)* dx

28\ e 20\ ¢

-1 —1 A
> — / Vu + Ve d + = / IVwi > + Ve (wp)? dx — / (i + D7 ) dx
-Qi,s Qgg\gi,s ‘Q;S,s\‘Qi._s(S
by
> w2

4

By Proposition 4, we see that
1), ...,0,u;,0,...,0)= Mui + 0(e™).
du;
Then it follows that
— I/ (Pi (i) P (ui)ui + O (e™*/%)
100, ...,0,u;,0,...,0)

B NPuil2 = (n+ DTo(Piui) + 0 (e

J126] >

>
10,...,0,u;,0,...,0)|

|t (R = (u+ D@ + 0™l

= Rl

_ fap (R’ = (et DE + 0™

> x .

Thus we conclude that for sufficiently large R; > 0, there exists gy > 0 satisfying ||Is’(z?)|| >1,e€(0,809). O

Proposition 11. Suppose that (f3-1) holds. Then, there exists h; € H(} (.(2[’_85)\{0} and t; > 0 for each i € {1,...,k}
such that I';(th;) <0 fort > t; and small ¢ > 0.

Proof. Note that for u € H} (22,2,

M?2?
/|Vu|2+Vgu2dx— / H(tu)dx.

Fe(Pi(tu))zre(tu)< B

Qi,s -Qi,s

Here H is defined as in (1.8). By condition (f3-1) and the definition of f , there exist constants C > 0, i > 1 such that
H(t) > Ct*+! for all t > 1. This implies that for any nonnegative function u; € HO1 (£2;¢) \ {0}, there exists t; > 0
satisfying

Te(tu;) <0, t>t.
Then, the claim follows. O

Proposition 12. For each ¢ > 0, I'; satisfies the (PS) condition.

Proof. Note from the definition of g that (u 4+ 1)G(x, ) < g(x, 1)t for x € Uf‘;’(')” Q;f, gx,nt—(u+1DG(x,t) >

- Wrz for x ¢ Uf‘:(’)" .Q;f. Then, we can follow the same scheme as in the proof of Lemma 1.1in [16]. O
3. Proof of Theorem 1

We use the same notations as in Section 2 with m = 0. By the assumptions, m; = --- = m; = 0 and
mi4+1,...,mg > 0. Recall that M > 1 is a constant, independent of small ¢ > 0, such that

luille.2;. < | Piu)|, < Mlluille,.;, forallu; e H' (i), i €{0,... k}.
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p+l p+l

— it
Nowwetakea=2— 2max{ ;=7 =

}. By Proposition 6, for each i € {0, ..., k}, it holds that for small ¢ > 0,
inf{ I, (u); ue Hy (20,), lulle =4Me} > 6M*e™.

By Proposition 11, we can take a nonnegative function 4; € HO1 (£2; ¢) such that for some #;(h;) > 0, I:(P;(th;)) =
I(th;) <Ofort >t;(h;)andeachi € {1,...,k}. Let Gé ={y e C([0, 1], Hol(.Qi’S’g)) | y(0)=0, y(1)=h;} and

¢t = inf max I 0)) =6M?**, iec{l,... k). 3.1
o= inf max F(R(y())) i€ ) 3.1
Some functions hf,i =1,...,k were introduced in Section 1 when we define Cé. Now we take hf(x) =hi(x/e).
Then, it is obvious that Cé > sncé foreachi =1, ..., k. By Proposition 5, there exists a critical point u; € H! (£2i¢)

of I'' = I'; o P; which satisfying
AP;(uf) — Vo Py (uf) + g (x, Pi(uf)) =0 in27,.
Foreachi € {1,...,k}, let S! the set of critical points u € H'(£2; ;) of I'! = I'; o P; with I} (u’) = c.. We define [T}

the set of solution u € H'(82; ;) of I} with I' (u) < cl.
Then we see the following result.

Proposition 13. For each i € {1, ...k}, I1} is compact, and for i € {1, ..., 1}, limsup,_, o max{||ull¢ | u € [T}} =0
and fori € {l +1,... k}, limsup,_,o max{|lulls |u € I} < co. Furthermore, Jor each d > 0, there exist constants
C,c> 0 such that P;(u})(x) < Cexp(—g dist(ex, Af))fori efl,...,k}and u, e I}.

Proof. The compactness follows from Proposition 5. o
It follows by the same argument as in the proof of Proposition 4 in [9] that for j =1, ...,[, limsup,_,( I EJ (uﬁ) =0
andfor j =1+41,...,k, limsup,_,, Fj (ug) Ly, (U) for U e Sm_/ We see from (f3- 1) and the definition of f that

ril) =5 / V) + V(i) dx = g [ el Py D) Py

Q}Ss Q'/’S
A
-5 [ wwyas
e
1 1 2 2
~(5-31) [ 19P D) v )
28
J.€
1 .
i s nd)pda =5 [ () ax
$2).6\2je 2.\
1 1 ; ; A .
>(5-) [ TR DP v @ar-5 [ (i) ax
CRCE

Thus, we see from the condition A < min{%, b(% — ﬁ)} that

1 A

)= (5= / VB ) VP ) dx = 5 [ ve(p ()

w1
-5
25\

%(——m)/m ) Ve (P (ud)) .

Then the second claim follows.
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From the elliptic estimates (see Proposition 3.5 in [3]), we see that fori € {1,...,1},

limsupmax{ ||ué” 100 | ue Hé} =0,
e—=0

and for i € {I + 1..., k}, limsup,_, o max{|lu|lz~ | u € Hsi} < 00. Then, we can show as in [9] that for any small
d >0, limg_, ||u§3||Loo(9{s \(Ah,) = 0 uniformly with respect to u. € S}. Then, we can show also as in [9] that for

some ¢, C > 0 that P; (u)(x) < Cexp(—¢ dist(ex, AY)) fori € {1,...,k} and u} € IT]. This completes the proof. O

Proposition 14. For eachi € {1 ., k} and small ¢ > 0, there exist ysi € G‘ d‘ € (Cg, cy +exp(——)] and Ry > 0 such
that maxsego.1 I (72 (0) < i, and |1y 1) le.,, < Ra if T} (i) € el — 2. e + exp(—1)] for some 1 € 0. 1],

Proof. From Proposition 13, we see that R’ = SUPg ¢ <1 Max, i [lulle < oo. Then, we can find di e (ci,cl +
exp(— l)] and a(e) > 0 such that when I/ () < d! and |lulle >2R', |(I}) (u)| > a(s) From the definition of ¢!, we
can find a path g“g such that F’ (;“8 M) < d’ for ¢ € [0, 1]. Suppose that F’ ({8 (t)) € [c — & dl] and IIQ ®)ls > 2R’
for some 7 € (0, 1). Then, by a deformatlon lemma, we can deform g“g to y, € G’ such that if ||yg ®)le = 2R’ for
te(0,1), F (ye (1)) < c. —&“. Thus, if we take Ry =2R’, our conclusion holds. O

Forie{l+1,...,k}, we denote

Ei =Ly, (U), UE€S,,.

Here we state a result proved in [6].
Proposition 15. For n = 1,2 and m; > 0, there exist T > 0 and a path y; : [0, T] — H! (R™), such that

(i) L (vi(T)) < —1, ,max L, (vi(s)) = Ei
(ii) there exists Ty € (0, T) such that y (To) € Sp; and Ly, (v;(To)) = E; and L, (yi (1)) < E; for |ly; (t) — yi (To)|| =
J;
(iii) there exist C, c > 0 such that for any t € [0, T],

|yi () @) + [Vayi () ()| < Ce™H,

Proposition 16. For each i € {1,...,1}, lime_oc. =0, and for each i € {I + 1,...,k}, lime—oc’ < Ly, (U) with
UeSy,.

Proof. The behavior lim,_, ¢ ci =0,i € {1,...,1} can be proved by the same method as in the proof of Proposition 4
in [9].

For the proof of remained cases, we find a nonnegative function ¢ € C3°(IR") such that ¢ (x) = 0 for |x| < §/2 and
¢(x) =0for |x| = 8. Forx; € A; and U € S,,;;, we define

ple(x —x;DUCFE) n=3,
Pe(x —x))yi(Hx) n=1,2,

where y; is the curve satisfying the properties of Proposition 15. Then, we see that

Ve (£)(x) ={

tn—2

. " 2 " 772 _4n
lim I (ve@)) ={ 2 /& IVUPPdx + 5 [gumiU?dx — 1" [p, F(U)dx forn >3,
¢—>0 Ly (vi (1)) forn=1,2.
Thus,

lim max r/(yg(z)) L, (U).

e—>0te(0,00

This completes the proof. O
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k-times
Now we define 7 (s) = (0, ! (s1), ..., yX(sx)) with s = (s, ..., 5¢) € [0, 11F :=[0, 1] x - -- x [0, 1]. We define

de = I
pi= max, (7).

It follows from maX,epo, 1k Le (Y(s) = Zf.‘:l maxg; e[0,1] F; (ygi (i) + O(exp(—g)) for some ¢ > 0, the definition of
cé, and Proposition 14 that for some ¢ > 0,

- k
: : i c
;cg-l-O(eXp(—E)) < max I )/(v) gd +0(exp(_g>>

sel0,11%

k
< Zci‘ + O<exp(—§)).
i=1

Thus we see that d, = cg +---+ cf + O(e_c/g) for some ¢ > 0. From Proposition 16, we find that d, < E for some
constant E, independent of small ¢ > 0.

Let Ry, Ry > 0 be constants given in Proposition 10 and Proposition 14, respectively. We define R =
4M max{Ry, Ry}. In what follows, for the sake of simplicity, we write P;(u) for P;(u;) = P;i(ul|g,,), u € H,. For
eachc,d e R, we define I'Y ={u € H; | I':(u) < c} and

19 = {ii € Ho(2§5) x -+ x Ho(2f) | L. (i) < d}.

Now we have the following existence result.

2a
Proposition 17. For sufficiently small ¢ > 0, there exists a critical point us € He of I's such thatu, € (I's° \ I gdfg )
and

ue € {ue He | |Pow)|, <5Me* and e* < || Piw)|, <2R, i=1,....k}.

Proof. Recall from Proposition 4 that i is a critical point of I, if and only if ¢ (i) € H, is a critical point of I.
To the contrary, suppose that there are not such critical points of I',. Then, there are no critical points # of I, on
the set
Ye= (1% \ 1%~ {ii | | Potuo) |, < 5Ms%, 6 < |Piw)|, <2Rfori=1,...,k}.
We define

20
A, = (1% \ijT) N{ii | || Potuo) ||, <3Me®, 2% < | Pi(w)|, < Rfori=1,... k}.
Let x be a Lipschitz continuous function such that x (i) = 1 if i € A, and x () =0 if I, (it) < d, — &% or
i g {ii|||Pouo)|, <5Me*, e < |Piw)|, <2Rfori=1,... k}.

Let y (s, 1), t > 0 be the solution of

J . R R N N o
6.0 ==X (G 0)VEF6.0)/|VEF6D)]. 7.0 =7). sel0. 11

Note that ¥ is defined for all 7 > 0, and also that I.(y (s, t)) is nonincreasing in ¢ >> 0. We shall prove that there exits
t* =1*(&) > 0 such that

. 820(
max I (y(s,t*)) <d. — —.
Jmax L (7(s,17) < de =
If I.(y(s)) <de — % for some s € [0, 11, then I (5 (s, 1)) < I (¥ (5)) < dp — % for any ¢ > 0 by the monotonicity.
Now let s be a point in [0, 11¢ such that (¥ (s)) > dp — $£%. Then we claim that || P;(y;(s))]le > 3Me® for all
i €{l,...,k}. Indeed, if it is not true, it follows from Proposition 7 that |l (P;(y;(s)))| < 5M?&%® for some i €
{1, ..., k}. Then, we see from (3.1) that for sufficiently small ¢ > 0,
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>~

(S) = Z J/z (Sl + O(eic/e)

i=1

(et Hcl o )4 5M% 4 0(e )
<d, — c(,3 + 5M282°‘ + O(efc/g)

<do — 6M*e™ +5M*e* + O (e %)

20

N

<d, —¢

This contradicts the above condition I, (¥ (s)) > d, — %82‘1, and the claim follows. Now from the definition of R, we
see that y (s) € A if I (3 (5)) > d, — 1 g2,

By our assumption and (PS) COIldlthIl proved in Proposition 4(ii), we see that for given ¢ > 0, there exists a
positive constant ¢(g) > 0 such that || 1/ (i)|| = c(¢) > 0if i € Y.. Hence there exits a number * = t*(¢) > 0 such that
if y(s,t) € A, forall 0 <t < t*, then

820(
(7 (5.1%)) < de = .
Hence we need only prove that if 7 (s, t1) ¢ A, for some 1 € (0, ¢*], then

R 82(1
IE(V(Svtl)) gda_ 7 (32)

Assume that (s, t;) ¢ A, for some t; € (0, t*]. Then there holds one of the following

(CO) 1Po(yo(s, t1))lle = 3Me®;
(CD) [I1Pi (yi (s, 1))l <26 for some i € {1,...,k};
(C2) |12 (yi(s,t1)|le > R/2 for some i € {1,...,k};

(C3) I.(F(s,11)) < de — 5.

The case (C3) implies (3.2).
In case (C1), it follows from || P;(y;(s)lle > 3Me* and ||P;(yi(s,t1)lle < 28% that |ly;()lle, ;. > 3&%,

lyiCs, tDlle,2;, < 2&* for sufficiently small ¢ > 0. Thus there exists an interval [2,#3] C [0, 7] such that

lviCs, ) lle.2;. = 3e%, |lyi (s, B3)le.2;. = 2% and 2&% < ||y (s, D), 2, < 3&% forall 1 € [12, 13]. Then we see that

5]

5%
/—y(s,‘l,')dl'
ot

1

<P -76n0)|, . =

E,Qi,e

K]

/ x(76.D)VIL(P(5. D)/ | V(P (5. D) | de

5]

3

</X(J7(s,r))dr

5]

E,Qi,s

Moreover since [[1,(u)]s > %8"‘ for 2% < || Pi(u;)]e < 3Me* by (i) of Proposition 9, we see that for sufficiently
small ¢ > 0,

N

. . L oy
LF6m) = 1LG0) + [ 1F60) 5 6 0d

0
1

=I(y(s)) — / x(Ps. )| (s, 0)| dx

0

3
20

1 -
<de — Ega/X(V(Ss T))dT Sde — 87

5]

We get (3.2) as desired.
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In case (CO0), it follows from || Py(yo(s))|le =0 and || Po(yo(s, t1))|le = 3Me“ that there exists an interval [1,, £3] C
[0, 71] such that [[yo(s, 22) lle, 25 = 36, l1V0(s, 13) lle, 2¢ = 26* and 2e% < [[yo(s, ) lls, ¢ < 3¢” forall 7 € [12, 13]. Then,
by the same procedure as in the proof of case (Cl), we get (3.2).

In case (C2), we assume that || P; (y; (s, tl))|| e R for some i € {1 ., k}. From the choice of R, it follows that

for sufficiently small ¢ > 0, ||y, e, o < 4M and ||y, (s, t1)||g Qf > 2M Thus there ex1sts an interval [#2, t3] C [0, 1]
such that ”yl (s, t2)||5’91£ 4M’ “yt (s, t3)||8,9,"£ = 2M and 4M < ”yl (s, t)”a 2 < 2M for all ¢ € [12, t3]. We then
have 41;,1 <P (yiGs,)le < E forall r € [t2, 13]. We also have || P; (y; (s, t))]le < Rforalli € {1,...,k}andz > 0 due

to the cut-off function y. Note from Proposition 10 that ||1(u)|| > 1 if 737 R 7 S Piulle <R for somei € {l,...,k}
and || P;(u;)|le < R foralli € {0, ..., k}. Then, by a similar procedure as 1n the case (C1), we get (3.2) for sufficiently
small ¢ > 0. Therefore we conclude that

R . 820{
sen[t)e,vf]k L(y (s, 1%)) < de — - (3.3)

We note that

ZF (vi(s, 1)) + 0 (™),

and from Proposition 7 that

I (Pol(s. 1)) > 0
Thus, it follows that

-

(7 (s, 1) i (vi(s. 1)) + O(e_c/g). (3.4)

I|M>-

Furthermore, if s € 9[0, 1]", we have y (s, t) = y (s) for all ¢ > 0 since it follows from (3.1) that for sufficiently small
e >0,

L(7(5)) = Xk: Le(Pi(vi(sn)) + O (™)

<max (el 4o+l 4o+ k) + 0(e)
l
<d; _820:

The result [13, Proposition 3.4] of Coti Zelati and Rabinowitz says that

B Zf 5. ) B el et = det 0(e )

This contradicts (3.3) and (3.4), and hence completes the proof. O

Completion of Proof of Theorem 1. From Proposition 17, there exists a solution u, satisfying Auz — Ve (x)u, +
g(x,us) =0 for x € R". It also follows from the strong maximum principle that u, > 0. By elliptic estimates (see
Proposition 3.5 in [3]), we see that {||ug| L~ }s<1 is bounded. Then by elliptic estimates, we see that for some « €
0, 1), {llugllct.e}e<1 is bounded.

From the definition of ¢ on R”" \ Uf:o £2; ¢, we see that u.(x) — O uniformly with respect to small ¢ > 0
as dist(x, Uf:() £2; ) — oo. Then we can show by a comparison principle that for some C,c > 0, u.(x) <
Cexp(—cdist(x, | s_y Qi)

Note that {||ug||¢, [ (1g)}s<1 is bounded. Then, it is standard to see (refer [24, Proposition 2.2]) that there exists
O], ...,y C U{'(=l+1 £2; . satisfying
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liérjrl)i(l)lfus(yj) >0 (a=1,...,e),

liminfmin{|y5 — y;|, 1 <a#b<e} =00,
e—0
and

) lim ug(x) =0.
dist(x,{$20,¢,..-,821,6, Y]+ YE ) —>00

Then we deduce that for some C, ¢ > 0,

g (x) < Cexp(—cdist(x, {206, ..., 26, 3], .... ¥ }))- (3.5)
Taking a subsequence if it is necessary, we can assume that lim,_,gey; =y, € U{F:H-l §2; foreacha=1,...,e.
Suppose that for some i € {{ +1,...,k}, liminfe—¢ [|ue||Loo(e; ,) = 0. Then, from the definition of @(il), it is stan-

dard to see that for some C,c > 0, [lugllL>~(,,) < Cexp(—c/e). This implies that some C,c > 0, I (P;(ug)) <
C exp(—c/¢). This contradicts to the fact || P;(u.)||s = €*. Thus we see that for each i € {{ + 1, ..., k}, there exists
ae{l,..., e} with y, € 2;. Then, defining vé (x) = ue(x + y%), we see that v, converges locally uniformly to some
v in C'(R") which satisfies

Av—=V(y)v+g(sv)=0, v>0 inR", lim v(x)=0.

|x]—00

We define

1
L@;ya) =3 / IVol? + V (y)v?dx — / G (yq, v)dx,
Rll Rn

where G (y,, v) = fov 8(Va,s)ds < F(t). Then, from Proposition 15 for n = 1, 2 and by defining v;(x) = v(x/t),t >0
for n > 3, we see that there exists a continuous path v, t > 0 satisfying vo =0, v{ = v and limsup,_, ., L(v;; y4) <0,
max;e(0,00) L(Vt; Ya) = L(v; y4). Then, we see that

L(v; yo) = max L(vs; ya)
t€[0,00)

1
> f IV 2+ V (ya) (v) dx — f G (Ya, vy) dx
Rr R»
1
>3 / Vo 4 V) (w) dx — / F(vp) dx.
Rll Rn

Then it follows from Pohozaev identity that for V € Sy (y,),

1
Ly (y)(V) < max [— / IV >+ V (ya) (v)* dx — / F(v:)dx}
te(0,00)| 2
R» R
< L(v; ya)~
We note that if ¢ < d, L.(V) < Lg(W) for V € S, and W € S; (refer to [9, Proposition 5]). Furthermore, from

condition (f3-1), the decaying property (3.5) and the fact f; (f) < At with A < min{b/10,b(1/2 — 1/(uu + 1))}, we
deduce that for some C, ¢ > 0,

1
5 f Ve |> + Veu? dx — / G(x,ug)dx
Uiz 2!, Uizo 22,
> E |VM8| + Vgug dx — m g()C, ug)ug dx

1o I o8
Uiz 92/, Uizo 25,
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1
- (1—x<ex>)(mug>—ﬂ+1

Uimo@2\27

1 1 A
> > / |Vu£| + Vgu dx — j / gx,ug)ugdx — 5 / (ug)zdx

Uimo 22, Uiz 27, Ulp@? 27!

1 1 A _
>(5-ay) [ wwPeveta-d [ wotars o).

Uizo 27, Uico@\2.0)

fk(”s)ue) dx

Then we get

1 1/1 1
5 / Ve |> + Veu? dx — / G(x,ug)dx>§<§—m) / |Vue > + Veu? dx.

Uizo 20, Uizo 27, Uizo 27,

Thus, reordering the index {a} in {y;} if it is necessary, we conclude from Proposition 16 that e =k — [, y, € Aj44
and

lim / |Vue |* + Veu? dx =0.

e—0
i 5
Uizo $2;,

This implies that for each d > 0,

gh_rfb ||“£||L°°<{xlsx¢<uf=z+1 andy =0- (3.6)

Then we see that ve(x) = u.(x/¢) satisfies (1.3). From comparison principle, we deduce that for each o > 0, there
exists constants C, ¢ > 0 satisfying

Ve (x) < Cexp(—c dist(x, (AgU---U Ak)")/s). 3.7

From (3.7), the fact || Po(u¢)|e < SMe* and an L°°-elliptic estimate [23, Theorem 8.25], we see that for some C > 0,
lluellLoocg) < Ce”. Then we see that

lim e lug |l oo ) < lim ¢ “2/(=D 205 _ fim 20/ — .
—0 —0 e—0
By the same method as in the proof of [9, Proposition 10], we see that since lim;—o & =% “~Dlu, || Lo (g, ,) = O, there
exists C’, ¢’ > 0 satisfying

lluellLoe (g, < c’ exp( c//s) for sufficiently small & > 0.

By the same method as in the proof of [9, Proposition 10], we see that if liminf,_,¢ 8_2/(M_1)||u8||L00(Q[._S) =0,
i €fl,...,k}, there exists C", ¢’ > 0 satisfying |luc||z(2;,) < C"exp(—c’/e) for some sufficiently small & > 0. This
means that for some C, ¢ > 0, || P;(ug)|ls < Cexp(—c/¢); this contradicts that || P; (us) || = ¢* foreachi € {1, ..., k}.
Thus we see that liminf,_, &~ 2/ =9 ||u, lLoo(s2;,) > O foreachi € {1,..., k}. This proves (i) and (ii) of Theorem 1.

Now we assume that/ = k and (f3-2) is also satisfied. We now estimate I (u.; §2; ). From Proposition 17 and (2.2),
we have

k

D Te(Pi(ue)) <de+ O0(e7/°). (3.8)
i=0

Since I, (Py(us)) = 0, we see that

k

Y L(Pi(ue)) < de + O(e4°). (3.9)
i=1
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We define
1
Fg(u)z5/|Vu|2+V€(x)u2dx—/F(u)dx.

Rn Rn

Then we see from (3.6) and (3.7) that Iy (ue) = I'c () and I'y(P;(ue)) = I (P;(ue)). By the definition of ¢f, we see
that for each i € {1, ..., k},

< max FS(P (tug)) < max I (tP; (us)).

By the monotonicity of f(t)/t, we see that g, (t) := I'¢(t Pi(us)), t > 0 has a unique maximum point. Let g, (¢;) =

max; >0 g (7).
Now we show 7, = 1 + O (e/¢). Indeed,

8o (1) =T} (P; (ug)) Pi(ue)

= f |Vite|* + Ve e)? — fue)ue dx + O (e/%)

Qi.s
=0 (e_c/s).
Here we used the fact that P; (u;) = O(e /) in .Q;%E \ Qi
Moreover we estimate fori =1, ..., k,

¢/ (1) = I (P o) [Pr(ue). Piue)]
_ / Vite 2+ Viue)? — () (ue)? dx

Qi.s

< [ 19 Vet = i flw s d + 0()
Qi‘s

(=) [ 1V o+ Vet + 0()

2,
< —(u3 — De™,
and so g/ ()| > (u3 — 1)e2* . Therefore we have t, = 1 + O (e~/¢) as claimed.
Hence
¢ <max I (1P;(ue)) = ge(te) = ge (1) + O(e™*) = [ (Pi(ue)) + O(e™). (3.10)

Then we have

k
de = cf >Ti(ue) > Z (Pi(ue)) + O(e7%) Zc +0(e™%).

~

This implies that for each i € {1, ...,[},
|cf — L (Pi(ue))| < O(e7%).

From the decay property (3.7), we deduce that |cf — It (ue; 2;¢)] < O(e=¢/®) fori € {1,...,1}. When (f3-3) holds
for [ < k, by the same argument, we conclude that |cf — Te(ue; £2i 0)| < O(e"'/g) fori ef{l,..., k}.

Finally, noting that Cé =e&"c + 0(e™C1%), Jo(ve; 82;) = " Tp (ug; £2;) fori e{l,...,k}, we see that v satisfies
the desired properties.

The proof of Theorem 1 is completed. O
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4. Proof of Theorem 2

For the notational simplicity, we only prove the case m = 1. We may assume that x; = 0 and £2;4+; = B, (0),
o > 0. We use the same notations as in Section 2 with m = 1. In addition, we use the following notations: (u, ux4+1) €
HY(20¢) x - x H' (Q2p1.6), u= (ug, ..., ux) € H'(20.) x -+ x H'(2k.c). We write 2, = 11,6, P = Pry1.
For a given u, we define Q¢ (ug+1) = I (W, ug41), ¥ (Up+1) = @, ug+1), Ke(it1) = Te (P (up1))-

In this section, for a given u, we solve Q% (ur+1) = 0 by the Lyapunov—Schmidt reduction method. In order to
construct an approximate solution, we first find a solution ¥, of the localized problem K/ (u) = 0. We then find a
solution 41 = @ (u) of Q) (ur+1) =0 in an exponentially small neighborhood of the solution ¥, to the localized
problem. The localized problem will be solved by the Lyapunov—Schmidt reduction method as well. To find a critical
point of I, (u, @, (u)), we consider the following functional

L) = I (u, De(w)) — Ko ().

Then we apply the same method as in the proof in Section 3 to find a critical point of I, and finish the proof of
Theorem 2. We need the non-degeneracy condition of D>V (0) to ensure C!-dependency of @, (u).

Let U be the radially symmetric solution of (1.5) with a = V (0) which is non-degenerate in Hrl’z(R”). Then we
see that if A¢ — V(0)¢p + f/(U)¢ = 0 for some ¢ € H2(R"), then ¢ € Span{M ey %}. Moreover U satisfies the

dxy’
exponential decay estimate U (x) < Ce="! for some C, ¢ > 0. We define Uey(x) :=U(x —y), x € 2 = B;/:(0),

AU,
Eey:= {weH](.Qg); <w, ”> =0, ie{l,...,n}}
8)(,‘ 8,82

for y € B1(0). Here (u, v), o, = fgg Vu -V + Ve(x)uvdx.
Lemma 1. Q, K, is of class C? and it holds that for u, h, k € HY(2,),

(i) Q)h, k1= T} @)y’ wh, ¥’ wk],
(i) K¢@)lh, k]= I (P@)LP'(w)h, P'u)k].

Proof. We prove only (i) since the proof of (ii) is similar. Since ¥’ (u)h — ¥ (h) € X& (6), there holds

Q. (wh = I/ (Y )y wh

= I, (Y )y (h).

Hence we have

QY w)lh, k] = I} (¥ ) [ Wk, ¥ (k)]

=TI} (V) [v' k, ¥ wh].
This completes the proof. O
We identify K[ (U, y + w) with an element of H'(£2,), and K] (Ug,y) with a linear operator on H'(£2,) by Riesz

representation theorem with respect to (-,-)¢ .. Let IT, be the orthogonal projection from H 1(82,) to E. y with
respect to (-,-)¢, 2,. Then we regard 1T, K;’(Ug,y) as a linear operator on E; y.

Lemma 2. There exists a constant ¢ > 0, independent of small ¢ > 0 and y € B1(0), such that for all h € E y, there
holds

| 1K Ue R, o = cliblle .-

Proof. Assume by contrary that there exist sequences {g;} with &; — 0, {y;} and h; € E,, y, such that ||h;|l¢ o, =1
and

l-E’EOHHyKZ Wer )il g, =0-
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For the sake of simplicity, we write ¢ = &;, y = y;, he = h;. Set v, = P’(Us,y)hg € HOl (95) c HY(RM). By Lemma 1,
we have
lin})/ Ve |? + Ve ()07 — g/ (x, P(Ue,y))v? dx = 0.
E—>
R}l
Since ||ve||¢ € [1, C] for some constant C > 1, we may assume that

lim [ [Vue|* + Ve(x)v2dx € [1, 00). (4.1)
e—0
Rl‘l
We deduce that
um/g’(x,P(Ug,y))vgdx: 1im/g’(x,P(Ug,y))(hs)zdx.
e—0 e—0
R» 2

We may assume that v.(- + y) converges weakly in H LR") to some function v € HY(R"Y). Using
limg 0 (K (Ue y)[hel, Tyn(- = ¥))e.@. =0 for n € CF°(R"), and
U oU oU
fw V—4+ VO v— — f(U)v—dx =0,
ax; 0x; 0x;
Rn
we then see that
/Vv -V 4+ V(©O)vn — f(U)vndx =0,
Rn
for all n € Cgo (R™). However, since h, € E, y, we obtain that
oUu aU
/V— -Vo+V(0)—vdx =0, iefl,...,n}.
ax,- ax,-
Ril
By the non-degeneracy condition (f4), we see that v = 0. It follows from v, (- + y) converges weakly in H L(R") and
strongly in L2 _(R") to 0 that

loc
tim [ ¢/(r. P(U-))he)dx = lim [ ()5 dx =0,
£— £—
Then we obtain
lim / |Vel|? + Ve (x)v2 dx =0.
e—0
Rn

This contradicts (4.1) and completes the proof of lemma. O

Proposition 18. For any 6 € (0, 1), there exists a constant C, g > 0 such that for any € € (0, &9) and y € B1(0),

. . . . aUe.y
there exist constants C; ¢ y, i €{1,...,n} and we y € E¢ , N H%(£2,) satisfying K;(U&y + We y) = Z?:l Ciey Tél‘
lwe, ylle, 2, < Ce?>? and |Cieyl < Ce>7Y. In addition, a function y (We,y, Cl,e,y, > Ce,y) € H'(82,) x R" is

in ClL,
Proof. A linear operator I7,K/' (U, ) : E¢y — E, y has a bounded inverse [/7, K;’(Ug,y)]’1 by Lemma 2. We define

-1
Ge(w):=—[I,K!(U;,)|” [TyK.(Usy +w) — K] (U, y)[w]]
for w € E; . We shall show that there is a constant C "> 0 such that G, has a fixed point w,, y on the set

. . 2—6
Se 1= {CU S ES,)H ”w”g,.QE < C'e , ||U)||L°°(.Qs) < C/g}
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for sufficiently small ¢ > 0. Note that w is a fixed point of G, if and only if IT,K é(Ue,y + w) = 0. We claim that
if we choose a sufficiently large C’ > 0 and small gy > 0, then we have G.(w) € S, for all w € S, ¢ € (0, &9) and
1G: (@) = Ge(@)lle.0, < 3w — @lle., forall w, &€ Se. & € (0, ).

We first estimate [|G¢(w)|l¢, 2, for @ € E; . We have

|Ge(@)], 5 <co sup |K,(Ue,y + @)h — K] (Us)[w, hl|
e heEey.lhle.0, <1

for some constant ¢y > 0. We denote g’(x, 1) = g—‘f(x, t). We note that

P'(Ue,y + w)h — P'(Us,y)h € Hy (22 \ £2,),

P(Ue,y + @) — P'(Ue y)o — P(Up,y) € Hy (2] \ £2).
Then, for h € E; , it follows from Proposition 1 that

K, (Ug,y +w)h — K/ (Ug,y)[w, h)

=T)(PUs,y + ) P'(Us,y + 0)h — I/ (P(Uey)) [P’ (Ue, ), P' (Ug,y) 0]
IY(P(Ue,y + @) P'(Ug,y)h — I (P(Us, ) [ P'(Ue y)h, P'(Us, )]
"(P(Ue))[P'(Us,)h, P(Us,y + @) — P'(Us y)0]

= Fs
+ /{g’(x, P(Ue,y))P(Ue,y + @) — g(x, P(Ue,y + ) } P'(Ue ) )b

er

= I (P(Ue,))[P'(Ue y)h, P(Ue.y)]

+ /{g/(x, P(Ue,y))P(Uey + @) — g(x, P(Us,y + @) } P’ (Us,y)h

Rn
= (P (Ue )P (Usy)h - / [$(x. PUey + ) — g(x. P(Us))
R}l
— &' (x, P(Ue, )){PWs,y + @) — P(Us,y) } | P’ (Ug,y)h. 4.2)

The first term in (4.2) denotes an error of the approximate solution Uy y. For any 6 € (0, 1), there exist constants
C, ¢ > 0 such that

sup  |I/(P(Us,y))P'(Us,y)h| < sup /VUM -Vh+ VeUe yh — f(Ug y)hdx + O(e_”/g)

heEs,). heEe,y
17]le.00 <1 g, p <1826
< sup / (Ve = VO)Up b+ O (/%)
heE; y
Wlle, 0 <152

<Cfee™” V(eg) = V(0
<Cle +  sup V(&) — V(0
leg —ey|<e!=0/2

<Cs2_9.

Here we divided the integral into the parts in B,-o,2(y) and §2, \ B,-s,2(y), and used the exponential decay of Uy .
The remaining terms in (4.2) come from the nonlinearity of g. Using the uniform continuity of g’ on compact sets,
that is,

(Slinz)supﬂg/(x, s)—g'(x,0)||s,t€[0.d], |s—1]<8}=0 4.3)

for any constant d > 0, we deduce that there exists a positive constant c1, Cy, independent of small ¢ > 0 such that if
lwllLee < ¢y then

1
|Ge@)]|, o <C1e*7 + = l@lle. .- (4.4)
£,82¢ 2

Then, taking C’ > 2C}, we see that |G¢(w)||s.2, < C'e>70.
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Similarly we deduce that if ||@]|| ;> (p,) < c1 then

1
[Ge@) = Ge(@)], g, < 5llo1 —2lle.q.-
Assume that [|o|ls, o, < C’e. We denote @ = G, (w) and we estimate |||z (g,). Then there exist some constants
a; fori e {l,...,n} satisfying

n

~ aU;
— K (Ue )@, h] = KU,y + 0)h — K. (Ue. )|, h] + < D ai— ,h> (4.5)
£,82¢

i=1 !

aang'_y , and using that ||@||¢, 2, = o(e) holds by (4.4), we see that a; = o(¢). Since
J

forall h € H'(£2,). Substituting h =
there hold
K;(Ug,y + w)h — K;’(Us,y)[a), h]
=T}(P(Us,y 4+ ) P'(Us,y + w)h — I}/ (P (Us,)) [ P'(Us,y ), P'(Us,y) o]
= /{—AUg,y + VeUsy — f(Usy + @) + f'(Ue y)w}hdx
2
and
—K[(Ug, )@, h] = /{Afo — Ve + f'(Us,y) @ hdx
2
forany h € H(} (£2;), we see that @ solves
Ad — Veo + f/(Us,y)CZ) = fey(x) in £2,
where

n
oU,.y
fey(@)==AUcy+ VelUey — f(Uey + ) + f'Uey)o + Y _ai(=A + V) Py
1

i=1
Hence & = P'(Us,,)® solves

fs,y(x) in £2,,
0

AE — Ve +¢(x, P(U,)§ = { in 2\ 2.

Since a; = o(g), we have | f¢ , (x)| < 0(¢) + o(|w||L=(s,)). Note that {|| Ve — g (x, P(Uggy))||Lm(Qés)}s<1 is bounded
and ||&|| 28 = o(¢). Then, by elliptic estimates, we see that
1€l L0812y < CIEN 2By 2y + I feuy LBy (2)))-

Hence ||0]l1>2,) < IEllLo@,) < Cae + %||w||Loo(95) for some constant C, > 0, independent of C’ for small ¢ > 0.
If we take C’ = max{2C1, 2C»}, our claim follows.

By the contraction mapping theorem, there exists a unique fixed point w,, y of G, on S.. By the elliptic estimates,
we see that wg y € H?(£2,). We note that (y, w) — HyKé(Ue‘y + w) is of class C!, and that

32%”8’(% PWUe )| 1ot = glii%”g/(x’ PWUey +wey) | (i, =0
Then, for h, k € E¢ y,
| K We.y + w)lh, k] — K/ (Ue K, . < / (' (x. P(We.y)) = &' (x. P(Us,y)) k|

Q2
=o(Dl|lle.e.lklle2 ase—0.



1146 J. Byeon, Y. Oshita / Ann. I. H. Poincaré — AN 27 (2010) 1121-1152

This and Lemma 2 imply /7, K (Ug, y + we, y) # 0. Then, it follows from the implicit function theorem that y — wy
is of C1.

Substituting @ = wy,y, h = le;i,y’
proof. O

i = —Cje,y in (4.5), we see that C; ., = 0(%>?). This completes the

We define ¥,y := Uy y + wg y.

Lemma 3. There exists a constant ¢ > 0, independent of small ¢ > 0 and y € B1(0), such that for all h € E y, there
holds

|17, 0! (e IR, g, > clitle.g,-
Proof. The proof is similar to one of Lemma 2, and so omitted. O

Proposmon 19. For any R > 0, there exist C,c,&9 > 0 such that for any y € B1(0), ¢ € (0,&0) and u €
H! (£20,¢) X -+ X H! (82k.¢) with ||ull; < R, there exist a umque Ze,y(W) € Egy N H?*($2,) and constants C, e,y (@),

i €{l,...,n}satisfying Q,(We y+2zcy(W) =Y 7, C, e y(u) a < Ce™°/%. In addition, (y,u) —
(zg,y(ux Crey@), ..., Cpey(w) € H'(2:) x R" is of C'.

Proof. The proof is almost similar to one of Proposition 18. We regard ¥, , as an approximate solution and use
Lemma 3. The only difference is the error estimate of the approximate solutions. Indeed, by Propositions 4(iii) and 18,
we have

sup | (W (e ) (e y)h| < Ce™/e.
heEs,ys”hHs,Qg <1

We omit the details. O
Proposition 20. For sufficiently small ¢ > 0, there exists a y. € B1(0) such that K} (U, ye T We y,) =0.

Proof. We need only to solve C; ¢y = 0 fori =1,...,n. Note that K/ (U, + w, v) 5 ()UE t

=0,i=1,...,nisequiv-

alentto Ci ey =0,i=1,. ., n since {° “}: 1

aum n aué)

» 18 linearly independent.

.....

Then, using

= 0 and the exponential decay property of U, we deduce that

aUg
Ké(Ue,y +w£,y) 88’)

U,
f Ve(x) = Ve(0)) Ue,y 8;”

i

—/VU g ey + V. (0O)U 9Ue.y
o &y Bxi ¢ &y Bx,-
2 Qe

Ve, AU,y AU,y
+ / \% O - Vwg y + V(O) we y f (U, y)ws Y ax /(Ve(x) V(O)) We,y
2 ! Yi i o i
, U,y 5
- /{f(Ua,y twey) — fWUey) — f (Us,y)ws,y} ox -I-O(E )
2 !
AU, aUg y
- / (Vo) = Vo 0)) Uy =5 22 + / (V0 = V)
2 Q2
Uy 2
- /{f(U&}' + we,y) - f(Us,y) - f (U, y)we y} o +0(8 )
2

=[+11+ [+ o(e?).
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We note that [|wg,ylle 2, < Ce2~?. Now, we can take 6 € (0, 1/2) so that (1 + y)(2 — 0) > 2. From the property
fe C¥ and an exponential decay of U, we deduce that I = 0(&2) and III = 0(£2). As for I, we see that

1=-% / %(e(x%—y))(U(x))zdx—i-O(e*“/s).

2
Ba/s(fy)
We define
1< 9%V
0 2
Oy)= —— Oy | U
5 () 2Zax,~ax,( )yf/
Jj=1 R~
Then since
Po=-; [ Zax 00 +3)(U0)’d
R J=1 0
we have
0 1,97V v 2 /e
1= %00 =2 Y e @) +3) = o= (e + ) (UW)” + 0(e)
A xiaxj' axi
Brr/s(_y) J
<Cs / lex + ey 2 (U(x))* + 0 (™)
Boye(—)

<Cel(e+0)  +e |+ 0(e) = 0(52).
Setting s°(y) = (57 (), ..., 55(¥)), 57 () := e’zKé(Us y +wg y) Bx 2y € B1(0), we see that

5T = 57 ()
uniformly in y € B;(0). Since D?V (0) is non-degenerate, using the degree theory, we see that there exists a point y,
such that s°(y®) = 0. Then we have C; ;. ,, = 0. The proof is completed. O

Proposition 21. For any R > 0, there exist C, c, &y > 0 such that for any u € Hl(Qoyg) X - X Hl(.Qk,s), la]le <R
and ¢ € (0, &9), there exists a unique 5, = 3. (u) € B1(0) satisfying Q. (¥, 50 T 26,5, (W) =0 and |y (@) — ye| <
Ce™¢/%. In addition, u — ,(u) is of C'.

Proof. By Proposition 20, we have Q% (¥ y,) = K. (We.y,) + O(e/?) = O(e~/¢). Hence it follows that O/, (¥, y, +
Ze.y.) = O (/). We define

()= ), () = 200

AU,
. Y€ BI(0).
3)6,‘

We have #;(y,) = O(e/¢), and we will find a solution of #(y) = 0 in an exponentially small neighborhood of y,.

For a constant y € (0, 1) given in (f4), we choose a sufficiently small 6 € (0, 1) in Proposition 18 to satisfy (2 —
H(1+y)>2.

We write W,y = W,y + Z¢,y and then have

O QL Wey +i )aU”
[ N w -
ay] I3 &,y &,y 1

U, 0we,y 0U U, ow U,y
=< = ”> /f(Usy+wa))< s ”) -

dyj — dy;  9x dy; 3yj dx;
_ 02U, 82U, _
+<Ug‘y+w(9’y,—g’}> ff(Usy+We y) 8) +0(€ C/g)
9yj0xi [ ¢ 0,
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., (dU.,  dibe 32U,
=/(Vs(x)—vg<0)){ U”( Uer | w’y>+<Ugy+wgy) Uey

ax; ay; dy; 0y;0x;
82U, 32U, aZUg
\Y LA VAT Ve (0 T U 2
+f 8yj8x,' We,y + e ( )a .,3)6 We,y — f( ey) way

€

+o(e?)

U aa)g,y)aU&y

—/{f (Us,y‘i‘a}é‘,)’) f(U€ })}< y] 8y] ax;

£2¢
=E1+ E>)+ E3 +0(82).

We estimate E; as follows:

U,y (0U;y 32 U,y 2
Ei= | (Ve(x) = V.(0 ' + (U, +o(e
1 /( e () e ( )){ ox; <8yj ( s;)a 0, 0( )
2.
1 [av, U2, 5 1[92V )
= — 2 = —— U ,
2/axj oy TOE) 2/8xi8xj ey Hole)
2 2
a4 5
— U
7 iox, )/ +ole
Rl‘l
Next we claim that |1 % 6“’” + d“’” le.o, = 0(279).
We, y 3 £, Uév 3U€,
We write 2 By, + 2 e _w1+w2, w] € span{—; T,,y} wy € Eg y.

Through by mtegratlon by parts, we see that
oW,y AU,
8Xj ’ ax,‘ 8,82,

Since we,y € Eg,y, we have |(—

k3

Bw“ AUey
S 0x;

lwalle, 2, < CHHy Q/g/(llls,y)U)Z ”5,95
< C[ My QY We.y + e w2, o +o(Dlwalle.e.
by Lemma 3. Differentiating the both sides of the following identity

dUe.y
3x,‘

Q;(Us,y + we,y)h = Z él<

,h> , heH'(2:), Ci=Ci.y(m)
i=1 &.82

with respect to y j» we get

0 - ) U, W,y
fv< . N 50) V4 (Vs _ f/(Us,y + wg,y))< &,y + &y )hdx

dyj — 9yj dy;  dy;

&

YjoXxi ]ay]

|

- oUg,y > / A% - Uy 2—
< , — + | e—(ex)wy, ~|+O0(e
K ey 0x;0x; [, o J 0x; Y (

9) < 0(82—0)_

n 2 2 n ot
. 9’U 92U,y aC; |9,
=> civa.thLva Dhdx 4y —(—"2 k) +0(e )
iz o ayj8xl- dy;ox; iz i ax,‘ 8,82

for ||A|l¢, 2, < 1. Note that w,,, € H?(£2,). The first integration in (4.7) equals to

/V<au~)£,y L ey 3Wey + uvg,y)> v
ax]' 3yj axj'

Q¢

Ve, 2.1 = 0(e*7%). Hence lwille, o, < 0 (e27%). On the other hand, we have

(4.6)

4.7
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g,y 0w AUy + 10
+(V£_f/(Ue,y+II)8’y))< We,y + We,y . ( 8,)+U)5,y)>hdx

8Xj ayj ax]'
- ah . oh - oh
= V(Ue,y + we,y) : VW - f(Us,y + ws,y)g + Vs(Ue‘y + ws,y)a_

J J Xj
£2¢

dw ow ow ow
V(—+— ) -Va+ (V. — f(Uey + 0 &y &Y\
+/ <ax, +8y]) + (Ve — f( g,>+w£,y))( o, + %,

&

+fav8
8]

&

Ly T We y)hdx

ow
—Q(Ugy+w”) +Q;’<Uey+wg>>[ =) g Y h]
ax;j ayj

v,
+/ S(U£y+w8y)hdx+0( /e,
2

The next term of the identity (4.7) equals to

92U " 3C; [9U
—Zcf Vh+ Ve ”hdx+Z—l< S’y,h> +0(e™%)
xj X; 0x;0x; P i\ 0x; .2

=1 ayl

aU, oh aUgy 0h 3V, 0U,
:Zc/ 2V — 4V, E S
iz Xi ij ax,- ax]' 8Xj Bxi

8

aC; [0Ug —c/e
+Zay1< ax; >s,95+0(e )

= Q,(Us,y

8x] 0x; = dyj\ dx;

Therefore we get

We, y oW, Ly
Q Uy +w )[ + h]
&,y &,y )Cj ay]

3)61‘

. [ 3V, U, aC; [aU, av,
e [t s S [ o)
=1 5 i 8,92

0x; ax, . dy;

€

for ||h]l¢,, < 1. We then obtain

ow 0Ws v
<H Q;’wgﬁwsy)[ — 4 “],h>
£,82¢

ax; dyj

w 0Ws.y
" U &Y &Y T h
<Q5( &,y + we y)|: )Cj + 8))/ y 8’98

~ Ve oU,.y aV, - _
=2Ci/ 3 Sj} Hyhdx—/W‘;(Ug,y+w€,y)ﬂyhdx+O(e C/a)
2 e '

for ||Alle,2, <1,

ow ow
HH Q! (U, +wgy>[ =) 4+ ”}

dx;  y;

£,82¢

Ve 0Ug, i . 3éi<aUs,y > —c/e
x4+ )y — h +O0l(e .
it 3 o)

1149
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7 IDg.y
= Ssup I1 Qg(Uax+way) Y Y Jh
1z, 2 <1 Xj dyj 6.2
v 2-6
< sup e —(ex)(Up,y + we ) Tyhdx| + 0(e*77) < 0(277),
Il <11 J 0x;

&

and hence

0Wg, y n afug,y}
dx;

+0 (82_9)

117y QF (Us,y + e y)un ||, o < HnyQ;’ (Ue.y + ws,y>[
&,82¢

< 0(8279).

Thus from (4.6), we get ||wal|e., = O(¢27?). The claim follows.
Using this claim, we see that

o(£?).

ey iy Uy
ax,-

E3=— /{f’(Us,y + We,y) — (U, »}(

2

dx; dxj
In addition, from the facts

/f(Ugy+w“)< Uey | aws’y>aU” /f(Ugy"r‘U)sy) “Ue.y +0(e™)

axl axj 0x; ]3}6
and
aU; .y oU, _
/f(U”) == 0(e™*),
£2¢
we get that
- aU;,y 0U,
f(f/(Ug,y+w5,y) f(Ugy)) £ a“
Xj o 0Xi
£2¢
- 9*U, U,y W .
—/(f<Us,y+ws,y> FWUey) 3= ff(Ugy+way) S L o(en )
2 Xj
9*Ue.y ey ey | »
U, Ugy .
Jf(Ey)wfya 8 Jf(8)+wsy) )Cl' 3xj 0(8)
Since
E {fvang" + Ve (0) —= PUs.y —fw )32Ue> }
2= w w
0x;0x e,y % a9x 50X &y &,y e,y
82
we see that
02Ue,y 02U ey 3y 5
Ex+Ez= |V Y v V. (0 i U
2+ E3 f 8x,0x; We,y + Ve ( )3 ;07 ey+f( e.y) ox;  ox; +0(8)
82
aU, ow U,y dw U,y dw
=—/V 5V Vo) — [ (U ) ()
8xl 0x Xj xi ox Xj ax,-
2

= o(=?).
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We conclude that %jt,- (y) — —% axalz_avxj 0) fRn U?dx, and hence by the condition (f4), we have that Vt¢(y), y € B1(0)

is non-degenerate for small ¢ > 0. Therefore using a fixed point theorem, we see that there exists y, such that#(y,) =0
and |3; — ye| = O(e~/%). Moreover by the implicit function theorem, u > j, isof C'. O

We define a C! map @, () = ¥, 3, ) + Z¢.5, () () and a C! functional
I () = I (w, @c (W) = Ke (e y,).

Proposition 22. The following hold.

(i) For any R > 0, there exist constants C, c, g > 0 such that

k

() = Y T (Pi(up)| < Ce™/*
i=0

foralluwe H'(R20) x -+ x H' (&) with ||ulls < R and & € (0, ).
(i) The functional I;(u) sa_tisﬁes (PS) condition.
(iii) w is a critical point of I if and only if (u, @.(0)) is a critical point of I.
Proof. (i) This follows from (2.2) and the fact
” D (u) — ws,yg

£,82¢ g ”ng)-;g(ll)lls,ﬂg = 0(6_6/8).

We can prove (ii) and (iii) following the same argument as in the proof of (i) and (ii) in Proposition 4. O

Finally we can find a critical point u, of I, similarly as in Section 3. Moreover it follows from the construction
that limsup,_, ¢ [lug|ls < 0o, and hence that @ (u,)(- + y¢) converges uniformly to U on each bounded set in R".
This proves (iv) of Theorem 2. Other properties can be proved similarly as in Section 3. The proof of Theorem 2 is
completed.
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