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Abstract

In this paper, we continue our investigation of the high-frequency and subsonic limits of the Klein–Gordon–Zakharov system.
Formally, the limit system is the nonlinear Schrödinger equation. However, for some special case of the parameters going to the
limits, some new models arise. The main object of this paper is the derivation of those new models, together with convergence of
the solutions along the limits.
© 2010 Elsevier Masson SAS. All rights reserved.

Résumé

Dans cet article, on continue l’investigation des limites haute fréquence et subsonique du système de Klein–Gordon–Zakharov.
Formellement, le système limite est le système de Schrödinger nonlinéaire. Cependant, pour un cas particulier des paramètres,
on trouve un nouveau modèle qui contient un terme singulier. L’objet de ce papier est de donner une dérivation rigoureuse de ce
modèle et de montrer la convergence dans l’espace d’énergie.
© 2010 Elsevier Masson SAS. All rights reserved.

1. Introduction

In this paper we continue the investigation of the Klein–Gordon–Zakharov system started in [11–13].
The Klein–Gordon–Zakharov system in nondimensional variables reads
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{
c−2Ë − �E + c2E = −nE,

α−2n̈ − �n = �|E|2, (1.1)

where E : R
1+3 → R

3 is the electric field2 and n : R
1+3 → R, is the density fluctuation of ions, c2 is the plasma

frequency and α the ion sound speed. This system describes the interaction between Langmuir waves [1,3,22] and ion
sound waves in a plasma (see Dendy [7] and Bellan [2]). It can be derived from the two-fluid Euler–Maxwell system
(see Sulem and Sulem [17], Colin and Colin [5] and Texier [6,18,19] for some rigorous derivations). We also refer to
[12, Introduction] for the rescaling with physical constants.

The system (1.1) has the following conserved energy∫
c2|E|2 + |∇E|2 + c−2|Ė|2 + 1

2

∣∣|α∇|−1ṅ
∣∣2 + 1

2
|n|2 + n|E|2 dx. (1.2)

Notice that this energy is at least O(c2) due to the first term when c goes to infinity, so it is not useful by itself to get
uniform bounds when c goes to infinity and does not give a conserved quantity for the limit system.

To explain the main contribution of this paper, we start by some formal considerations. Taking F = eic2tE, sys-
tem (1.1) becomes{

c−2F̈ + 2iḞ − �F = −nF,

α−2n̈ − �n = �|F |2. (1.3)

Its formal limit as c,α → ∞ is given by the nonlinear Schrödinger equation:

2iḞ − �F = |F |2F, n = −|F |2. (1.4)

If we take the limit c → ∞ first, we get the usual Zakharov system:{
2iḞ − �F = −nF,

α−2n̈ − �n = �|F |2. (1.5)

If we take the limit α → ∞ first in (1.1), we get the nonlinear Klein–Gordon system:

c−2Ë − �E + c2E = −|E|2E. (1.6)

It is classically known that the limit when α goes to infinity in the Zakharov system (1.5) leads to the cubic
nonlinear Schrödinger equation (1.4) and that the limit when c goes to infinity in the cubic nonlinear Klein–Gordon
system (1.6) also leads to the cubic nonlinear Schrödinger equation.

However a more precise analysis involving the two different modes of oscillations of (1.1), namely writing E =
E1e

−ic2t + E2e
ic2t shows that these two limits do not commute. Indeed, the non-relativistic limit of the nonlinear

Klein–Gordon was studied in [9,10]. In [10] we proved that the limit system is a coupled nonlinear Schrödinger
system{

2iĖ1 − �E1 − (|E1|2 + 2|E2|2
)
E1 = 0,

2iĖ2 − �E2 − (|E2|2 + 2|E1|2
)
E2 = 0

(1.7)

which differs from the one we can derive from the Zakharov system or the one derived in [12] where we took a
simultaneous limit requiring that α < c where the limit system was{

2iĖ1 − �E1 − (|E1|2 + |E2|2
)
E1 = 0,

2iĖ2 − �E2 − (|E2|2 + |E1|2
)
E2 = 0.

(1.8)

In this paper, we will study the case where γ α = 2c2 for some fixed constant γ . At the limit we will get a singular
Schrödinger system (1.13). Formally, we see that when γ goes to infinity we recover the nonlinear Schrödinger
system (1.8) derived in [12], and when γ goes to zero we recover the nonlinear Schrödinger system (1.7) derived
in [10]. The rigorous justification of these two limits is given in the forthcoming paper [14].

In this paper, γ will be called the resonant frequency and we will need extra work to bound n around the fre-
quency γ . Indeed, the general definition of resonance comes from the theory of ODEs. Resonant terms are those that

2 In our results the range of E may be R
d or C

d with arbitrary d .
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cannot be eliminated by a Poincaré–Dulac normal forms. For dispersive equations, this notion is less precise. One can
reduce to the theory of ODEs by considering plane wave solutions of the linear equation. In our case, this means that
the frequencies (η, ξ − η, ξ) are resonant if

±c

√
c2 + |η|2 ± c

√
c2 + |ξ − η|2 = α|ξ |. (1.9)

This equation has many solutions. For instance (η,−η,0) for any η. These resonances will not be important due to
the presence of the � in front of the |E|2 term and that � vanishes at the frequency ξ = 0. Eq. (1.9) has also solutions
which grow with c, namely if |η| � |ξ | ∼ c, then the equation reduces to

c2 ± c

√
c2 + |ξ |2 = 2

c2

γ
|ξ |. (1.10)

Hence, (1.9) has some solutions with |ξ | ∼ c. These resonances do not affect the solution so much, since they involve
high frequencies, where the interaction is smaller due to the regularity of the solutions, and so can be handled in a
relatively simple way. The main resonance will be the one where η = 0 and |ξ | = γc , γc solving c2 +c

√
c2 + γ 2

c = αγc.
Hence, γc goes to γ when c goes to infinity. There is no factor which cancels this resonant interaction, and in fact
the limit equation becomes singular at this frequency due to the resonance, which can be formally observed by partial
integration in time, as we will do in Section 2. This justifies the importance of the frequency γ .

To write our limit system, we need some notations. We define the following operators as functions of |∇| = √−�

(by using the Fourier transform)

A+
γ := |∇|

|∇| − γ + 0i
= PV

( |∇|
|∇| − γ

)
− iγ πδ

(|∇| − γ
)
,

A−
γ := |∇|

|∇| + γ
,

Aγ := 1

2

(
A+

γ + A−
γ

) = PV

( |∇|2
|∇|2 − γ 2

)
− iγ π

2
δ
(|∇| − γ

)
,

Ic := (
1 + |∇/c|2)−1/2

, (1.11)

where PV denotes the principal value. The dot product a · b will always denote the Euclidian dot product, namely
a · b = ∑3

i=1 aibi . In particular, we have |E1|2 = E1 · E1. Our main result is as follows.

Theorem 1.1. Let (Ec,nc) be a sequence of solutions for (1.1) such that c → ∞ with γ = 2c2/α > 0 fixed, and initial
data satisfying(

Ec(0), c−2IcĖ
c(0)

) → (ϕ,ψ) in H 1,(
nc(0), |α∇|−1ṅc(0)

)
bounded in L2. (1.12)

Let T c be its maximal existence time. Let E
∞ := (E∞

1 ,E
∞
2 ) be the solution of the following nonlinear Schrödinger

type system

2iĖ − �E = |E|2E + Aγ (E1 · E2)E
⊥,

E(0) = 1

2
(ϕ − iψ,ϕ − iψ), (1.13)

where E
⊥ = (E2,E1). Let T ∞ be the maximal existence time for E∞. Then in the limit c → ∞ with γ α = 2c2, we

have lim infT c � T ∞, and for any T < T ∞,

Ec − (
eic2t

E
∞
1 + e−ic2t

E
∞
2

) → 0 in C
([0, T ];H 1). (1.14)

We have asymptotic formula also for Ėc, nc and ṅc, which we will give in a more precise and general version
of the above theorem (see Theorem 3.1). Here we just remark that the singular part in the equation for E

∞ actually
comes from the singular behavior of nc and ṅc.
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Remark that in the limit system (1.13), the L2 norm of the solution decreases in t by the nonlinear interaction of
E1 · E2 at the frequency of size γ , because of the dissipative part of A+

γ , i.e. 
A+
γ = −γπδ(|∇| − γ ):

∂t

∥∥E
∞(t)

∥∥2
L2

x
= − γ

2(2π)2

∫
|ξ |=γ

∣∣∣∣
∫
R3

(
E

∞
1 · E

∞
2

)
(t, ξ)e−ixξ dx

∣∣∣∣
2

dξ. (1.15)

This property is used in a forthcoming paper [14] to study the limit when γ goes to infinity in (1.13). A similar
phenomenon is known in the context of stability of nonlinear bound states, to cause the radiation damping [16] in
the nonlinear Klein–Gordon equation (the linear ground state decays by the nonlinear resonance), and the relaxation
of excited states [21] in the nonlinear Schrödinger equation (the excited states decay by the nonlinear resonance). In
those cases, the operator A+

γ involving a potential gives decay in the ODE governing the amplitude of the bound states.
But as far as the authors know, the above theorem seems the first observation with a rigorous proof for a nonlinear
resonance leading to the decrease of the energy for the limit wave functions.

The rest of the paper is organized as follows: First, in the end of this introduction, we give some notations which
are necessary to the statement of the main result in Section 3. In the next section, we will rewrite our equation into a
first order system such that we can formally derive the limit system. Then we restate our main result in Section 3 in the
new variables, allowing more general initial data, which can introduce some additional singular terms into the limit
system. After preparing some notations and tools in Section 4, we prove first a set of uniform estimates in Section 5,
and then prove the convergence in Section 6.

We conclude the introduction with some notations used throughout the paper. More notations will be given in
Section 4.

〈a〉 := (
1 + |a|2)1/2

, 〈a, b〉 := (a · b),

〈f | g〉x :=
∫
R3

〈
f (x), g(x)

〉
dx, 〈u | v〉t,x :=

∫
R

〈
u(t)

∣∣ v(t)
〉
x
dt, (1.16)

where a, b, f , g, u and v may be scalar or vector valued. We denote by Fd the d-dimensional Fourier transform. In
particular, the space and the space–time Fourier transform are denoted by

F3ϕ = ϕ̃(ξ) =
∫
R3

ϕ(x)e−ixξ dx, F4u = û(τ, ξ) =
∫

R1+3

u(t, x)e−itτ−ixξ dt dx (1.17)

and their inverse are given by

F −1
3 ϕ̃ = ϕ(x) = 1

(2π)3
(F3ϕ̃)(−x), F −1

4 û = u(t, x) = 1

(2π)4
(F4û)(−t,−x). (1.18)

For any function ϕ, we define the Fourier multiplier ϕ(∇) := F −1
3 ϕ(ξ)F3. We will use the following multipliers

repeatedly:

Ic := 〈∇/c〉−1, �c := −2ω(∇), ω(ξ) := c2(〈ξ/c〉 − 1
)
. (1.19)

Finally we recall the definition of norms for intersection and sum of two compatible Banach spaces X and Y (see
e.g. [4,20])

‖f ‖X∩Y = ‖f ‖X + ‖f ‖Y , ‖f ‖X+Y = inf
f =f1+f2

‖f1‖X + ‖f2‖Y . (1.20)

2. Reduction of equations

In this section we rewrite the Klein–Gordon–Zakharov system (1.1) into first order equations in time and also
decompose n into different time oscillations, from which one can easily obtain the limit system. The reduced systems
will be suited also to get uniform estimates as well as the convergence.
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First we define (we will remove the c dependence from Ec and nc)

E+ := 1

2

{
E − ic−2Ic∂tE

}
, E− := 1

2

{
E − ic−2Ic∂tE

}
,

E := e−ic2t (E+,E−), N := n − i|α∇|−1ṅ.

We also define E
⊥ = (E2,E1) and E

∗ := e−2ic2t
E

⊥
for any E = (E1,E2). The original functions are given by

E = eic2t
E1 + e−ic2t

E2, Ė = ic2I−1
c

(
eic2t

E1 − e−ic2t
E2

)
,

n = N, ṅ = −
(|α∇|N)
,

where  and 
 represent the real and imaginary parts. Hence, the system (1.1) is reduced to{
2iĖ − �cE = −Icn

(
E + E

∗),
iṄ + |α∇|N = −|α∇|〈E,E + E

∗〉. (2.1)

From now on, we will concentrate on system (2.1). Further we rewrite it into integral form as

E = e−i�ct/2
E(0) − SEIcn

(
E + E

∗), (2.2)

N = ei|α∇|tN(0) − Sn|α∇|〈E,E + E
∗〉, (2.3)

where the space–time operators SE and Sn are defined by

SEf := 1

2i

t∫
0

e−i�c(t−s)/2f (s) ds, Snf := 1

i

t∫
0

ei|α∇|(t−s)f (s) ds. (2.4)

Next we decompose N into components with different time phases

N = Nf + N0 + N+ + N−,

Nf := ei|α∇|tN(0),

N0 := −Sn|α∇||E|2,
N+ := −Sne

iαγ t |α∇|(E1 · E2),

N− := −Sne
−iαγ t |α∇|(E1 · E2), (2.5)

where the oscillation αγ t = 2c2t is coming from E
∗ in the equation for N . Integrating on the phase eiα(|∇|±γ )(t−s)

in s, we get

N0 = −|E|2(t) + ei|α∇|t |E|2(0) + iSn∂t |E|2,
N+ = −eiαγ t A+

γ (E1 · E2)(t) + ei|α∇|t A+
γ (E1 · E2)(0) + iA+

γ Sne
iαγ t ∂t (E1 · E2),

N− = −e−iαγ t A−
γ (E1 · E2)(t) + ei|α∇|t A−

γ (E1 · E2)(0) + iA−
γ Sne

−iαγ t ∂t (E1 · E2). (2.6)

The second and the third terms on each line will go to zero in the limit due to dispersion of ei|α∇|t (the decay for the
singular operator ei|α∇|t A+

γ is given in Lemma 4.3). Hence plugging each first term into the nonlinearity for E, we
get the leading terms

n
(
E + E

∗) = −|E|2E − 1

2

[
A+

γ (E1 · E2) + A−
γ (E1 · E2)

]
E

⊥ + osc. + o(1), (2.7)

where osc. represents those terms with rapid oscillation e±iαγ t or e−2iαγ t , and hence goes to zero weakly in time.
Thus we arrive at the limit system (1.13).
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3. Main result

Now we restate our main result in terms of the new variables (E,N) introduced in Section 2, slightly extending
the initial data space for N . For that purpose, we introduce the Banach space W k,p on R

3 for p � 2 and k ∈ Z by the
norm

‖ϕ‖W k,p := sup
t�0

∥∥eit |∇|ϕ
∥∥

Wk,p . (3.1)

Theorem 3.1. Let (Ec,Nc) be a sequence of solutions to (2.1), such that c → ∞ with γ = 2c2/α > 0 fixed,
and ‖E

c(0)‖H 1 + ‖Nc(0)‖L2+W k,p bounded for some p > 3 and k � 1. Let T c be the maximal existence time
of (Ec,Nc). Then there is T > 0, depending only on the size of the above initial norm, such that T c � T and
‖E

c(t)‖H 1 + ‖Nc(t)‖L2+W k,p is uniformly bounded on [0, T ] for large c.
Moreover, assume that the initial data satisfies for σ = 0,+

E
c(0) → Φ∞ in H 1,

e−σ iαγ t ei|α∇|tNc(0) → μσ∞ in D′((0,∞) × R
3), (3.2)

as c → ∞, for some Φ∞ and some μσ∞. Let E
∞ be the solution of the following limit system

2iĖ∞ − �E
∞ = [∣∣E∞∣∣2 − μ0∞]

E
∞ + [

Aγ

(
E

∞
1 · E

∞
2

) − μ+∞/2
]
E

∞⊥,

E
∞(0) = Φ∞. (3.3)

Let T ∞ > 0 be the maximal existence time of E
∞. Then we have a lower bound lim infT c � T ∞, and for all T < T ∞

we have uniform convergence

E
c − E

∞ → 0 in C
([0, T ];H 1), (3.4)

and also, by decomposing Nc = Nf c + N0c + N+c + N−c according to (2.6),

N0c + ∣∣E∞∣∣2 − N0Ic → 0 in C
([0, T ];L2),

N−c + eiαγ t A−
γ

(
E

∞
1 · E

∞
2

) − N−Ic → 0 in C
([0, T ];L2),

N+c + e−iαγ t A+
γ

(
E

∞
1 · E

∞
2

) − N+Ic → 0 in C
([0, T ];L2 + W k,p

)
, (3.5)

for all p > 3, where

Nf c = ei|α∇|tNc(0), N0Ic = ei|α∇|t ∣∣Φ∞∣∣2
,

N+Ic = ei|α∇|t A+
γ

(
Φ∞

1 · Φ∞
2

)
, N−Ic = ei|α∇|t A−

γ

(
Φ∞

1 · Φ∞
2

)
. (3.6)

Moreover, we have

lim
s→∞

∥∥eis|∇|(Nc − Nf c
)
(t)

∥∥
L2+W k,p = 0 (3.7)

uniformly for t ∈ [0, T ] and for large c.

Remark 3.2. The uniform bound of Nc(0) implies that the convergence to μσ∞ in (3.2) actually holds ∗-weakly in
L∞(0,∞;L2 + Wk,p), so that we can make sense of the products with μσ∞ in the limit system.

Remark 3.3. (3.7) implies that the singular parts μσ∞ are preserved for later time, namely

e−iσαγ t eiα(t−t0)|∇|Nc(t0) → μσ∞. (3.8)

In other words, the singular initial layer N+Ic does not affect these terms (neither do the regular ones N0Ic and N−Ic).
This follows from the decay property of eit |∇|A+

γ , see Lemma 4.3.
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In particular, if we start with initial data Nc(0) bounded in Hσ for some σ ∈ R, then we will never encounter μ∗∞,
because for any χ ∈ C∞

0 (R3) we have∥∥χ(x/R)ei|α∇|tNc(0)
∥∥

L2Hσ �
√

R/α
∥∥Nc(0)

∥∥
Hσ , (3.9)

see [12, Lemma 8.1].
Hence nontrivial μ∗∞ can be created only from singular (in the Fourier space) initial data. For example, if μ0

0 and
μ+

0 are bounded complex-valued measures on [0, b) and (a, b) × S2 respectively, then

Nc(0) := F −1
3

b∫
0

|ξ |−2δ
(|ξ | − τ/α

)
μ0

0(τ ) dτ + F −1
3

b∫
a

δ
(|ξ | − γ − τ/α

)
μ+

0

(
τ, ξ/|ξ |)dτ

= F −1
3 α|ξ |−2μ0

0

(
α|ξ |) + F −1

3 αμ+
0

(
α
(|ξ | − γ

)
, ξ/|ξ |) (3.10)

is bounded in W k,∞ for any k ∈ N, and the limit profiles are given by

μ0∞(t) = (2π)−3

b∫
0

eiτ tμ0
0(τ ) dτ = (2π)−2 F −1

1 μ0
0(τ ),

μ+∞(t) = F −1
3 δ

(|ξ | − γ
) b∫

a

eiτ tμ+
0

(
τ, ξ/|ξ |)dτ = F −1

4 δ
(|ξ | − γ

)
μ+

0

(
τ, ξ/|ξ |). (3.11)

Note that μ0∞ and μ+∞ do not see each other because of the rapid oscillation e−iαγ t . If we choose Nc(0) = N(0)

independent of c, then the convergence (3.2) implies that μ0∞ is a constant, and μ+∞ is time-independent with
Fourier support on {|ξ | = γ }. We remark that σ = −1 in (3.2) would give always 0 in the limit because of the
oscillation eiα(|∇|+γ )t , which is uniformly rapid for all frequency ξ .

Remark 3.4. For the uniform bounds, we can sharpen the W k,p norm by replacing Lp with the Lorentz space L3,∞.

Remark 3.5. Theorem 1.1 easily follows from the above theorem by transforming the variables back to the origi-
nal (E,n), in the case Nc(0) is bounded in L2 and hence μ0∞ = μ+∞ = 0. However the singular part W k,p is needed
even for the proof in this case. Indeed, to prove the above result, we will work on some small time interval (0, T1) on
which we can prove some uniform estimates, then we will pass to the limit. Then, to extend the convergence to the
maximal existence interval (0, T ∞), we need to iterate the same argument on some interval (T1, T2). We notice that
at the time T1, N+c(T1) contains the singular part

N+c(T1) → −A+
γ

(
E

∞
1 (T1) · E

∞
2 (T1)

)
, (3.12)

which is bounded in W k,p + L2 for all p > 3 and k ∈ N by Lemma 4.3, but does not belong to L2 in general.

Our first order system (2.1) is not exactly invariant for time shift, because of the oscillation factors e±ic2t , but for
the modulated translation

(E,N) �→ (
eic2t0E(t + t0),N(t + t0)

)
, (3.13)

for any t0 ∈ R. Correspondingly, we have an immediate

Corollary 3.6. In the above theorem, assume instead of (3.2)

e−ic2t0E
c(0) → Φ∞ in H 1,

e−σ iαγ (t+t0)ei|α∇|tNc(0) → μσ∞ in D′((0,∞) × R
3), (3.14)

for some t0 ∈ R. Then we have the convergence
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e−ic2t0E
c − E

∞ → 0, N0c + ∣∣E∞∣∣2 − N0Ic → 0,

N−c + eiαγ (t+t0)A−
γ

(
E

∞
1 · E

∞
2

) − N−Ic → 0,

N+c + e−iαγ (t+t0)A+
γ

(
E

∞
1 · E

∞
2

) − N+Ic → 0, (3.15)

in the same topologies and with the same E∞ and N∗Ic as above.

Proof. Assume by contradiction that one of the convergences fails. Extracting a subsequence of c, we may assume in
addition that eic2t → eiθ for some θ ∈ R. Then we can apply the above theorem replacing Φ∞ with eiθΦ∞ and μσ∞
with e2σ iθμσ∞. Since the limit system is invariant with respect to the “Gauge transform”(

E
∞,μσ

) �→ (
eiθ

E
∞, e2σ iθμσ

)
, (3.16)

the theorem gives all the desired convergences for this subsequence, a contradiction. �
Strictly speaking, we will be using the above logic implicitly in the proof of the above theorem when extending

the convergence from the first time step T1 to the maximal existence time T ∞. Namely, we should apply the above
argument to the modulated translation (eic2T1E(t + T1),N(t + T1)) to get the convergence in the next time step
(cf. (3.8) for the persistence of (3.14)). We will not repeat this in the proof given below.

4. Preliminaries and notations

Before starting the proof, we prepare basic settings and estimates together with some notations.

4.1. Frequency decomposition

Let χ ∈ C∞
0 (R3) satisfy 0 � χ � 1, χ(ξ) = 1 for |ξ | � 4/3 and χ(ξ) = 0 for |ξ | � 5/3. For any a > 0 and any

function ϕ, we denote

f�a := χ
(|∇/a|)f, f>a := f − f�a, fa :=

{
f�a − f�a/2 (a > 1),

f�1 (a � 1).
(4.1)

Hence we have the inhomogeneous Littlewood–Paley decomposition

f =
∑
j∈D

fj , D := {
1,2,22,23,24, . . .

}
. (4.2)

In addition, we denote the nonresonant frequency part by

NX := N − Nγ . (4.3)

We note that the singularity of A+
γ is only around |ξ | = γ in the Fourier space, and so it is regular in the physical

space.
For bilinear interactions, we denote frequency trichotomy by

fg = (fg)LH + (fg)HL + (fg)HH

:=
∑

l<h/4

flgh +
∑
h>4l

fhgl +
∑

4i�j�i/4

figj , (4.4)

where i, j, k, l, h run over the dyadic numbers D, and LH, HL and HH respectively indicate low-high, high-low and
high-high frequency interactions.

If no ambiguity can occur, we often abbreviate such as (fg)Y l := ((fg)Y )l and (fg)Y+Z := (fg)Y + (fg)Z where
Y,Z = HH,HL or LH and l = a,> a,� a. For example, (EF)HLX = ((EF)HL)X , (EF)HH>a = ((EF)HH)>a , etc.
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4.2. Strichartz norms

We briefly recall the Strichartz estimate for e−it�c/2 and eit |α∇| on R
3 (see [8,9]). We note that all the linear

estimates can be reduced to the case c = 1 and α = 1 by rescaling.
For the Klein–Gordon equation, we have the L1–L∞ decay estimate∥∥e−it�c/2ϕ

∥∥
I

−5θ/2
c B0∞(R3)

� |t |−(2+θ)/2‖ϕ‖
B

2(1−θ)
1 (R3)

, (4.5)

for θ ∈ [0,1], where Bs
p := Bs

p,2 denotes the inhomogeneous Besov space (cf. [4]). The case θ = 0 corresponds to
the wave equation, and θ = 1 (without Ic) is for the Schrödinger equation (we will not use the intermediate case
0 < θ < 1). From the decay estimate, the standard argument derives the Strichartz estimate∥∥e−it�c/2ϕ

∥∥
I

−μ
c Lp(R;Bσ

q (R3))
� ‖ϕ‖H 1, (4.6)

for the exponents 0 � θ � 1, 2 � p,q � ∞ satisfying (p, q) �= (2,∞),

2

p
= (2 + θ)

(
1

2
− 1

q

)
, σ = 1 − (1 − θ)

(
1 − 2

q

)
, μ = 5θ

2

(
1

2
− 1

q

)
. (4.7)

Moreover, for the wave equation, we have∥∥eit |α∇|ϕ
∥∥

α−1/pLp(R;Ḃσ
q (R3))

� ‖ϕ‖L2, (4.8)

where Ḃs
q := Ḃs

q,2 denotes the homogeneous Besov space, provided that

2 < p � ∞,
1

p
+ 1

q
= 1

2
, σ = − 2

p
. (4.9)

For the Duhamel terms we have similarly

‖SEf ‖ST (E)1 � ‖f ‖ST (E)∗2 , ‖Snf ‖ST (N)3 � ‖f ‖ST (N)∗4 , (4.10)

where for each ST (E)j (resp. ST (N)j ) we could choose any space in (4.6) (resp. in (4.8)), but for the sake of
concreteness we choose the following specific exponents:

ST (E)1 = L∞H 1 ∩ I
−5/9
c L3B1

18/5 ∩ I
−1/3
c L3B

2/3
6 ,

ST (E)∗2 = L1H 1 + I
25/36
c L12/7B1

9/7 + I
1/2
c L10/7B1

10/7, (4.11)

where we chose θ = 1 for the second, the fifth, and the sixth spaces, and θ = 0 for the third one, in view of (4.7).
Here the sum and the intersection imply in practice that we can choose any member of the intersections to estimate
the solution and any member of the sum for the nonlinearity. The power of Ic indicates loss or gain of regularity for
higher frequencies |ξ | � c (� 1), which will be often exchanged with power of c (e.g. c−θ I−1

c � 〈∇〉−θ on Lp(R3)

for any 1 < p < ∞ and 0 � θ � 1). For the wave component we define similarly

ST (N)3 = L∞L2 ∩ α−1/3L3B
−2/3
6 ,

ST (N)∗4 = L1L2 + α1/3L3/2B
2/3
6/5 + α1/6L6/5B

1/3
3/2 . (4.12)

In applying the Strichartz estimates, we will write these exponents explicitly.

4.3. Fourier restriction norms

For any s ∈ R and any interval I ⊂ R, we define

Xs,1 := {
e−i�ct/2u(t)

∣∣ u ∈ H 1
t

(
I ;Hs

x

)}
,

Y s,1 := {
ei|α∇|t u(t)

∣∣ u ∈ H 1
t

(
I ;Hs

x

)}
, (4.13)
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with the norms

‖u‖Xs,1(I ) = ∥∥ei�ct/2u(t)
∥∥

H 1
t (I ;Hs

x )
, ‖v‖Y s,1(R) = ∥∥e−i|α∇|t v(t)

∥∥
H 1

t (I ;Hs
x )

. (4.14)

Those norms on the whole line t ∈ R can be represented by the Fourier transform

‖u‖Xs,1(R) = ∥∥〈
τ − ω(ξ)

〉〈ξ〉s û∥∥
L2

τ,ξ
, ‖v‖Y s,1(R) = ∥∥〈

τ − α|ξ |〉〈ξ〉s v̂∥∥
L2

τ,ξ
. (4.15)

The distance from the characteristic surface, such as |τ − ω(ξ)| for Xs,1, plays an essential role in using those norms.
So, we consider an explicit extension from (0, T ) to R. We define an extension operator ρT for any T ∈ (0,1) by

ρT u(t) = χ(t)u
(
μT (t)

)
, (4.16)

where μT (t) := max(min(t,2T − t),0) and χ ∈ C∞
0 (R) satisfies χ(t) = 1 for |t | � 2 and χ(t) = 0 for |t | � 3. It is

clear that ρT u(t) = u(t) for t ∈ (0, T ), and ρT is bounded on H 1
t (0, T ;Hs) → H 1

t H s(R1+3) uniformly for s ∈ R and
0 < T � 1.

For the bilinear estimates using those norms, we introduce decomposition with respect to the distance from char-
acteristic surface. For any β : R

3 → R and δ > 1 and any function u(t, x) on R × R
3, we define

P|τ−β(ξ)|�δu := F −1
4 χ

((
τ − β(ξ)

)
/δ

)
F4u,

P|τ−β(ξ)|>δu := u − P|τ−β(ξ)|�δu. (4.17)

Estimating in the Fourier space, we easily obtain∥∥P|τ−ω(ξ)|>δu
∥∥

L2Hs � δ−1‖u‖Xs,1, (4.18)∥∥P|τ−α|ξ ||>δu
∥∥

L2Hs � δ−1‖u‖Y s,1 . (4.19)

We can derive similar estimates in L∞
t setting without using Xs,b spaces:

Lemma 4.1. We have∥∥∥∥∥ρT

t∫
0

(P|τ |>δf )(s) ds

∥∥∥∥∥
L∞

t (R;X)

� min
(
δ−1, T

)‖f ‖L∞
t (R;X), (4.20)

uniformly for any δ > 1, any T > 0 and any Banach space X.

We note that P|τ |>δ is a Fourier multiplier in the time variable which cuts the low frequencies, and hence there is
nothing to do with the x variable in the above lemma. We also note that the proof is simpler than that of Lemma 2.3
of [12] due to the different order of the integration and the extension ρT .

Proof. The left-hand side is bounded by∥∥∥∥∥
t∫

0

(P|τ |>δf )(s) ds

∥∥∥∥∥
L∞

t (0,T ;X)

� ‖P|τ |>δf ‖L1(0,T ;X)

� T
∥∥f − F −1

1

(
χ(τ/δ)

) ∗ f
∥∥

L∞
t (R;X)

� ‖f ‖L∞
t (R;X), (4.21)

where we used the triangle inequality for the Bochner integral in X, and that F −1
1 χ(τ/δ) ∈ S(R) ⊂ L1(R). Similarly

we have∥∥∥∥∥
t∫

0

(P|τ |>δf )(s) ds

∥∥∥∥∥
L∞

t (0,T ;X)

�
∥∥[

ψ(δt) ∗ f
]t

0

∥∥
L∞(0,T ;X)

� δ−1‖f ‖L∞
t (R;X), (4.22)

where we denoted ψ(t) := F −1τ−1(1 − χ(τ)) ∈ L1(R). �
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4.4. Singular decay estimate

Here we derive some estimates on the singular operator A+
γ together with the wave propagator. First, we have a

pointwise decay estimate:

Lemma 4.2. For any ϕ ∈ S(R3) with symmetry ϕ(x) = ϕ(|x|), we have

∣∣eit |∇|A+
γ ϕ(x)

∣∣ �
{ 〈x〉−1〈t − |x|〉−1 (|x| < t),

〈x〉−1 (|x| > t),
(4.23)

uniformly for t > 0 and x ∈ R
3.

Proof. By the Laplace transform, we have

eit |∇|A+
γ ϕ(x) = −ieit |∇| lim

ε→+0

∞∫
0

|∇|eis(|∇|−γ+iε)ϕ ds

= −ieitγ lim
ε→+0

∞∫
0

|∇|ei(|∇|−γ+iε)(t+s)ϕ ds. (4.24)

Let |x| = r . By the Fourier transform, the expression before the limit is equal to

(2π)−2

∞∫
0

∞∫
0

ρei(ρ−γ+iε)(t+s)F3ϕ(ρ)
sin(ρr)

ρr
ρ2 dρ ds. (4.25)

Define f (t) by F1f (ρ) = ρ2 F3ϕ(ρ) for ρ > 0, and F1f (ρ) = 0 for ρ < 0. By the inverse Fourier transform, we have

(4.25) =
∞∫

0

f (t + r + s) − f (t − r + s)

2πir
e−(iγ+ε)(t+s) ds

= 1

iπ

1∫
−1

∞∫
0

f ′(t + θr + s)e−(iγ+ε)(t+s) ds dθ. (4.26)

Since F1f ∈ W 2,1 and F1f
′ = iρF1f ∈ W 3,1, we have∣∣f (t)

∣∣ � 〈t〉−2,
∣∣f ′(t)

∣∣ � 〈t〉−3. (4.27)

Hence we have for r < t ,

∣∣(4.25)
∣∣ � 〈r〉−1

∞∫
0

〈t − r + s〉−2 ds � 〈r〉−1〈t − r〉−1, (4.28)

and for any r > 0,

∣∣(4.25)
∣∣ � 〈r〉−1 sup

|θ |�1

∫
R

〈t + θr + s〉−2 ds � 〈r〉−1, (4.29)

both uniformly in ε > 0. Thus we get the desired bound by ε → +0. �
Applied to the Littlewood–Paley decomposition, the above estimate immediately implies the following Lp decay.
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Lemma 4.3. If q � 1, p � ∞, 1/q − 1/p � 2/3 and (p, q) �= (3,1), (∞,3/2), then we have∥∥eit |∇|A+
γ ϕγ

∥∥
Lp(R3)

� t−3(1/q−1/p−2/3)‖ϕγ ‖Lq(R3). (4.30)

In addition, we have∥∥eit |∇|A+
γ ϕγ

∥∥
L3,∞(R3)

� ‖ϕγ ‖L1(R3),
∥∥eit |∇|A+

γ ϕγ

∥∥
L∞(R3)

� ‖ϕγ ‖L3/2,1(R3), (4.31)

where Lp,q denotes the Lorentz space.

Proof. Let ψ ∈ S(R3) be radially symmetric and F3ψ(ξ) = 1 for |ξ | � γ + 1 including supp F3ϕγ , so that we have

eit |∇|A+
γ ϕγ = ϕγ ∗ eit |∇|A+

γ ψ. (4.32)

Hence by the Young inequality for the Lorentz space, we have for the first case,∥∥eit |∇|A+
γ ϕγ

∥∥
Lp � ‖ϕγ ‖Lq

∥∥eit |∇|A+
γ ψ

∥∥
Lr,∞, (4.33)

where 1/r = 1/p − 1/q + 1 ∈ [0,1/3], and applying the above lemma to ψ ,∥∥eit |∇|A+
γ ψ

∥∥
Lr,∞ �

∥∥|x|3/reit |∇|A+
γ ψ

∥∥
L∞

� sup
0<|x|<t

|x|3/r 〈x〉−1〈t − |x|〉−1 + sup
|x|>t

|x|3/r 〈x〉−1

� t3/r−1 = t−3(1/q−1/p−3/2), (4.34)

where we used that |x|−3/r ∈ Lr,∞.
The second case is just the critical case for the Young inequality. �
We will mainly use the above Lp decay with q = 1. From (4.26), it is clear that the pointwise estimate for r > t

cannot be improved, and hence eit |∇|A+
γ ϕ does not belong to L3(R3) in general.

5. Uniform estimates

In this section and the next one, we prove the main Theorem 3.1. The main part of the proof consists in estimating
the following norms uniformly in c (and α) and for small T ∈ (0,1).

‖E‖ := ‖E‖StrE(0,T ) + ‖E‖X (0,T ),

‖N‖ := ‖N‖[Strn(0,T )+L∞
t (0,t;B1/2

2,∞)]∩Y (0,T )+L∞
t (0,T ;W k,p)

, (5.1)

for arbitrarily fixed k � 1 and p > 3, where the spaces StrE,Strn, X and Y are defined by

StrE := {
u ∈ L∞

t

(
H 1) ∣∣ u�c ∈ L3

t

(
B1

18/5

)
, u>c ∈ c−1/3L3

t

(
B

1/3
6

)}
,

Strn := L∞
t

(
L2) ∩ α−1/3L3

t

(
B

−2/3
6

)
,

X = I
5/6
c X0,1, Y = I

−1/6
c αY 0,1, (5.2)

and the norm for StrE is given by

‖E‖StrE := ‖E‖L∞(H 1) + ‖E�c‖L3(B1
18/5)

+ ‖E>c‖c−1/3L3(B
1/3
6 )

. (5.3)

We recall that the existence of solutions was already proved in [15]. Note that in the StrE norm, the frequencies lower
than c are estimated in the second space in (4.11) and the higher part in the third space. The norm for N consists
of three different components; we will use Strn for the part similar to a free solution, L∞(B

1/2
2,∞) for the part which

is smoother but far from free solutions in the space–time frequency, and W k,p for the singular part at the resonant
frequency |ξ | = γ .

The uniform estimate will be done in this section, while Section 6 will be devoted to the convergence proof. Let
us outline the proof for the uniform bounds. First in Section 5.1, we derive the estimates in the space–time Fourier
spaces X and Y by simple product estimates, from the Strichartz and energy bounds.
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To estimate the Strichartz norm of E, we decompose

E = e−i�ct/2
E(0) − SEIc

[
nγ F + (nXF�c)HH+LH +

∑
k>c

(nX(�γ̃ k/c)Fk)

]

− SEIc

[ ∑
k>c

(nX(>γ̃ k/c)Fk)LH+HH + (nXF)HL

]
(5.4)

where F = E + E
∗ and γ̃ = γ /ε with ε > 0 given in Lemma 5.4. The terms appearing on the first line of (5.4) will

be treated in Proposition 5.2 using only Strichartz bounds. The terms on the second line of (5.4) require the use of the
nonresonant property and are treated in Proposition 5.5.

To estimate NX in Strn + L∞B
1/2
2,∞, we write

N = ei|α∇|tN(0) − Sn|α∇|
∑

k

∑
j�γ̃ k/c

〈
Ek,E + E

∗〉
j
− Sn|α∇|

∑
k

∑
j>γ̃ k/c

〈
Ek,E + E

∗〉
j
. (5.5)

For the part where j � γ̃ k/c, we cannot use the nonresonant property but we can gain powers of c because j is
much smaller than k. This part can be treated only by Strichartz in Proposition 5.3. The part j > γ̃ k/c, is treated in
Proposition 5.6 using the nonresonant property of the interaction.

Finally, the estimate on Nγ ∈ L∞(W k,p) is done in Section 5.4 by integrating by parts in time.
We emphasize that in the following estimates, the implicit constants are always independ of the parameters c, α, γ

or T .

5.1. X × Y bounds from Strichartz bounds

Now we start the actual proof of Theorem 1.1, or the general version 3.1. Here we derive the X and Y type estimate
from the Strichartz type bounds. We have the following proposition.

Proposition 5.1. For any T ∈ (0,1), any p > 3, and any functions n, E and F on (0, T ) × R
3, we have

‖SEIcnE‖X (0,T ) � T 1/6‖n‖L∞(0,T ;L2+W 1,p)‖E‖StrE(0,T ),∥∥Sn|α∇|〈E,F 〉∥∥Y (0,T )
� T 1/6‖E‖StrE(0,T )‖F‖StrE(0,T ). (5.6)

Proof. We decompose n = n1 + n2 such that n1 ∈ L∞L2 and n2 ∈ L∞W 1,p . We use by Sobolev that W 1,p ⊂ L∞
and

StrE ⊂ I
−1/3
c L3(B2/3

6

) ⊂ L3(B2/3
6

) + c−1/3L3(B1/3
6

) ⊂ L3L∞ + c−1/3L3L18, (5.7)

where for the second embedding we separated the frequencies into |ξ | � c and |ξ | > c. By Hölder and Sobolev, we
have also that L18 × L2 (products of functions) ⊂ L9/5 ⊂ H−1/6, where the exponents satisfy

1

2
+ 1

18
= 5

9
= 1

2
+ 1/6

3
. (5.8)

Thus we obtain

‖n1E‖L3L2+c−1/3L3H−1/6 � ‖n1‖L∞L2‖E‖StrE ,

‖n2E‖L∞L2 � ‖n2‖L∞L∞‖E‖L∞L2 � ‖n2‖L∞W 1,p‖E‖L∞L2 . (5.9)

Summing these two, and using that c−1/3H−1/6 ⊂ c−1/6H−1/6 ⊂ I
−1/6
c L2, we obtain the first estimate:

‖SEIcnE‖X (0,T ) �
∥∥(n1 + n2)E

∥∥
L2(I

−1/6
c L2)

� T 1/6‖n‖L∞(L2+W 1,p)‖E‖StrE . (5.10)

We get the second estimate exactly in the same way∥∥∇〈E,F 〉∥∥
L3L2+c−1/3L3H−1/6 � ‖∇E‖L∞L2‖F‖StrE + ‖∇F‖L∞L2‖E‖StrE , (5.11)

by putting the low frequency in the Strichartz space. �
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5.2. Strichartz estimate for regular interactions

To derive H 1 × L2 and Strichartz bounds for E and NX , we decompose the bilinear terms into frequencies as
in (4.4). Those interactions where the less regular function has lower or similar frequency are relatively more regular.
In [12], these term were treated only by the Strichartz estimate. Here, due to the low regularity, we have to treat some
of those terms using their nonresonant property. We have the following estimates, which will be used with E = E

or E
∗.

Proposition 5.2. For any T ∈ (0,1), any p > 3 and any functions E and n defined on (0, T ) × R
3, we have∥∥SEIc(nE�c)HH+LH

∥∥
StrE(0,T )

� T 1/4‖n‖L∞(0,T ;L2)‖E‖StrE(0,T ),∥∥SEIc(nE)
∥∥

StrE(0,T )
� T ‖n‖L∞(0,T ;W 1,p)‖E‖L∞(0,T ;H 1),∥∥∥∥SEIc

∑
k>c

(n�γ̃ k/cEk)

∥∥∥∥
StrE(0,T )

�
(
T + T 1/2c−1/2)‖n‖

Strn(0,T )+L∞(0,T ;B1/2
2,∞)

‖E‖StrE . (5.12)

Proof. For the first estimate, we use the Strichartz estimate, hence it is bounded by

∥∥(nE�c)HH+LH
∥∥

StrE
∗ �

∥∥∥∥∑
l∈D

∑
k�c

∑
j�k

(njEk)l

∥∥∥∥
L12/7B1

9/7

�
∥∥l/k

∥∥nj (t)
∥∥

L2

∥∥Ek(t)
∥∥

B1
18/5

∥∥
L

12/7
t �2

l �
1
j,k(j�l∼k�c)

� T 1/4‖n‖L∞L2‖E�c‖L3B1
18/5

� T 1/4‖n‖L∞L2‖E‖StrE , (5.13)

where we used Hölder in R3 and R for x and t , and Young in Z for l ∈ D = 2N (cf. [12, Lemma 2.6]).
The second estimate easily follows from the fact that

‖nE‖L∞H 1 � ‖n‖L∞
t (W 1,p)‖E‖L∞H 1 . (5.14)

For the third estimate, we decompose n = w +u such that w ∈ Strn and u ∈ L∞B
1/2
2,∞. For the part in Strn, we have∥∥∥∥∑

k>c

Ic(w�γ̃ k/cEk)

∥∥∥∥
H 1

�
∥∥(c/k)1−2/3‖w‖

B
−2/3
6

‖Ek‖B
2/3
3

k1/3
∥∥

�2
k>c

� c−1/2‖w‖
α−1/3B

−2/3
6

‖E>c‖c−1/6B
2/3
3

. (5.15)

Integrating in time, we get∥∥∥∥SEIc

∑
k>c

(w�γ̃ k/cEk)

∥∥∥∥
StrE

� T 1/2c−1/2‖w‖
α−1/3L3B

−2/3
6

‖E>c‖c−1/6L6B
2/3
3

. (5.16)

For the part in L∞B
1/2
2,∞, we have∥∥∥∥∑

k>c

Ic(u�γ̃ k/cEk)

∥∥∥∥
H 1

�
∥∥∥∥(c/k)u�γ̃ k/c

∥∥
L∞‖Ek‖H 1

∥∥
�2
k>c

� ‖u‖
B

1/2
2,∞

‖E‖H 1 . (5.17)

Integrating in time, we get∥∥∥∥SEIc

∑
k>c

(u�γ̃ k/cEk)

∥∥∥∥
StrE

� T ‖u‖
L∞B

1/2
2,∞

‖E‖L∞H 1 . � (5.18)

For the estimate of Snα|∇|〈E,F 〉X in Strn + L∞B
1/2
2,∞ where E,F = E,E

∗, we have to use the nonresonant
property for almost all the interactions. However, there is a resonant case where we can only use the Strichartz
estimate. The resonance we have here is actually less severe than the one at the frequency γ . This is the case when
cj ∼ k ∼ l and E = E and F = E

∗. For this case, we use the following proposition.
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Proposition 5.3. For any T ∈ (0,1) and any functions E,F on (0, T ) × R
3, we have∥∥∥∥Sn

∑
k�c

α|∇|(FEk)�γ̃ k/c

∥∥∥∥
Strn(0,T )

� T 1/2c−1/2‖F‖StrE(0,T )‖E‖StrE(0,T ). (5.19)

Proof. Here we use that they are HH interactions. Hence,∥∥Snα|∇|(FlEk)j
∥∥

Strn � αj
∥∥(FlEk)j

∥∥
α1/3L3/2B

2/3
6/5

� α2/3j5/3
∥∥(FlEk)j

∥∥
L3/2L6/5

� α2/3j5/3c−1/6l−1k−2/3‖Fl‖L2H 1‖Ek‖c−1/6L6B
2/3
3

� c−1/2(cj/ l)5/3‖Fl‖L2H 1‖E>c‖c−1/6L6B
2/3
3

, (5.20)

which can be summed in �2
j �

1
k�

1
l (cj � k ∼ l), using the Young inequality for convolution in Z, and yields a fac-

tor c−1/2. �
5.3. Bilinear estimate for nonresonant interactions

The remaining terms cannot be estimated simply by using the Strichartz estimates. We need to take into account
the nonresonance property and use the Xs,b norms. Here nonresonance means the following simple trichotomy: one
of three interacting functions (including the output) must be away from the characteristic surface in the space–
time Fourier space. The Xs,b spaces give a gain for functions away from the characteristics as in (4.18), (4.19)
and (4.20).

Now we make the above statement into precise estimates. We estimate interactions of the form 〈(N)E | F 〉t,x
for N ∈ Y (R) and E,F ∈ X (R), splitting each function with respect to the distance from the characteristic surfaces.
Using (4.17), we define

NC = P|τ−α|ξ ||�δN, EC = P|τ−ω(ξ)|�δE, E∗C = P|τ+ω(ξ)+2c2|�δE
∗,

NF = P|τ−α|ξ ||>δN, EF = P|τ−ω(ξ)|>δE, E∗F = P|τ+ω(ξ)+2c2|>δE
∗, (5.21)

where δ > 0 will be determined according to Lemma 5.4. We denote nF := (NF ), nC := (NC). Notice also that

E
∗C = E

C∗ = e−2ic2t (EC
2 ,E

C
1 ). Then the nonresonance property is expressed in the following way.

Lemma 5.4. Let αγ = 2c2 for some fixed γ > 0. There exists ε > 0 (one can take ε = 1/80), such that we have the
following (i) and (ii) for large c (say c > 2(γ + 1)). Let j, k, l ∈ D be dyadic numbers.

(i) If δ � εαj and j > 1, then we have 〈nC
j EC

k | FC
l 〉

t,x
= 0.

(ii) If δ � εαj and min(k, l) < ε c
γ
j , then we have 〈nC

XjE
∗C
k | FC

l 〉
t,x

= 0.

Proof. By the Plancherel identity in space–time, we have

〈
nC

j EC
k

∣∣ FC
l

〉
t,x

= 
∫

nC
j EC

k FC
l (t, x) dt dx

= C
∫ ∫

(τ0,ξ0)+(τ1,ξ1)=(τ,ξ)

n̂C
j (τ0, ξ0)Ê

C
k (τ1, ξ1)F̂

C
l (τ, ξ) dξ1 dτ1 dξ dτ. (5.22)

For the proof of the first point, we want to show that the set

A = Supp
(
n̂C

j (τ0, ξ0)Ê
C
k (τ1, ξ1)F̂

C
l (τ, ξ)

) ∩ {
(τ0, ξ0) + (τ1, ξ1) = (τ, ξ)

} = ∅.

We denote the distance from each characteristic surface in the integrand on the right-hand side by
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d0 = ∣∣τ0 ∓ α|ξ0|
∣∣, d1 = ∣∣τ1 − ω(ξ1)

∣∣, d = ∣∣τ − ω(ξ)
∣∣, (5.23)

where we recall that ω(ξ) = c2(〈|ξ |/c〉 − 1) as defined in (1.19). Assume that A �= ∅, and let (τ0, ξ0, τ1, ξ1, τ, ξ) ∈ A.
By the constraint (τ0, ξ0) + (τ1, ξ1) = (τ, ξ), we have

6δ > d0 + d1 + d � α|ξ0| −
∣∣ω(ξ) − ω(ξ1)

∣∣
� α|ξ0| − c|ξ0| � 1

2
α|ξ0|, (5.24)

since α = 2c2/γ � c when c is large. Hence, by choosing ε small enough, we have 6δ > d0 + d1 + d � 1
2α|ξ0| � 1

3αj

since j > 1, and we get a contradiction. Hence, A = ∅ and (i) is proved.
For the proof of the second point, we argue in a similar manner. We use that the characteristic surface for E∗ is

τ + c2(〈ξ/c〉 + 1) = 0, so the distance from the characteristic is given by

d1 = ∣∣τ1 + c2(〈ξ1/c〉 + 1
)∣∣. (5.25)

Hence we have

d0 + d1 + d �
∣∣α|ξ0| − 2c2 − ω(ξ1) − ω(ξ)

∣∣. (5.26)

Since |ξ0| � γ , we have∣∣α|ξ0| − 2c2
∣∣ ∼ α|ξ0| + 2c2 � αj, (5.27)

where we used the fact that if j = 1 > |ξ0| then γ > 1 (otherwise F3nX is supported away from |ξ | � 1), and hence
2c2 = αγ > α = αj . The condition on k and l implies that

ω(ξ1) + ω(ξ) < c
(|ξ1| + |ξ |) � c

(
2 min

(|ξ1|, |ξ |) + |ξ0|
)
� (εα + 2c)j. (5.28)

Hence we get a contradiction if ε is small enough and α, c are large. This ends the proof of (ii). �
Now we proceed to bilinear estimates. We start by looking at SEIc(nE).

Proposition 5.5. For any functions N and E on (0, T ) × R
3, we have∥∥SEIc(nXE)HL

∥∥
StrE(0,T )

�
(
T 1/6 + c−1/2)‖NX‖L∞L2(0,T )∩Y (0,T )‖E‖StrE(0,T )∩X (0,T ), (5.29)∥∥∥∥SEIc

[∑
k>c

(nX(>γ̃ k/c)Ek)LH+HH

]∥∥∥∥
StrE(0,T )

�
(
T 1/5 + c−1/2)‖NX‖L∞L2(0,T )∩Y (0,T )‖E‖StrE(0,T )∩X (0,T ) (5.30)

where n := N and E = E or E∗.

Proof. In order to apply Lemma 5.4, we first extend those functions to R by using (4.16):

E
′(t) := e−it�c/2ρT eit�c/2

E(t), N ′(t) = ei|α∇|t ρT e−i|α∇|tN(t), (5.31)

which does not effect them nor the output on (0, T ), and we have∥∥E
′∥∥

X (R)
� ‖E‖X (0,T ),

∥∥N ′∥∥
Y (R)

� ‖N‖Y (0,T ),∥∥E
′∥∥

L∞H 1(R)
� ‖E‖L∞(0,T ;H 1),

∥∥N ′∥∥
L∞L2(R)

� ‖N‖L∞(0,T ;L2). (5.32)

In the following, we do not distinguish (E′,N ′) and (E,N).
We decompose each function into dyadic pieces as (njEk)l , and let δ := εαj as in Lemma 5.4. Either by HL or

by j > γ̃ k/c, the condition of the lemma holds for both cases with E = E or E = E
∗, for sufficiently large c. Hence

applying to nE the same decomposition as for E, we have

(njEk)l = (
nF

j Ek

)
l
+ (

nC
j EF

k

)
l
+ (

nC
j EC

k

)F

l
. (5.33)

Here, we have used Lemma 5.4 and the fact that the truncations P are self-adjoint.
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Each term is estimated as follows, where we regard ε just as a constant.
First we prove (5.29), hence k � j ∼ l. Using the Sobolev embedding B1

18/5 + c−1/3B
1/3
6 ⊂ I

1/3
c B

1/6∞ , we have∥∥SEIc

(
nF

j Ek

)
l

∥∥
StrE � 〈l/c〉−1

∥∥(
nF

j Ek

)
l

∥∥
L1H 1

� 〈l/c〉−1l
∥∥nF

j

∥∥
L2L2‖Ek‖L2L∞

� 〈l/c〉−1l〈j/c〉1/6 α

αj
‖Nj‖Y T 1/6〈k/c〉1/3k−1/6‖E‖StrE(0,T )

� 〈l/c〉−1/2T 1/6k−1/6‖Nj‖Y ‖E‖StrE , (5.34)

where we have used (4.19) in the third line to estimate ‖nF
j ‖L2L2 . Hence, this term can be summed in �2

l �
1
j �

1
k

(k � j ∼ l) and gives∥∥SEIc

(
nF E

)
HL

∥∥
StrE � T 1/6‖N‖Y ‖E‖StrE . (5.35)

Similarly, by using L2 ⊂ B
−3/2∞ we have∥∥SEIc

(
nC

j EF
k

)
l

∥∥
StrE � 〈l/c〉−1l

∥∥NC
j

∥∥
L2L2k

3/2〈k/c〉−5/6(αj)−1‖Ek‖X

� 〈l/c〉−1〈k/c〉−5/6(k/c)3/2c−1/2‖N‖L2L2‖E‖X . (5.36)

This can be summed in �1
l �

1
j �

1
k (k � j ∼ l) and gives∥∥SEIc

(
nCEF

)C

HL

∥∥
StrE � c−1/2T 1/2‖N‖L∞L2(0,T )‖E‖X . (5.37)

Now, using Lemma 4.1 and the Sobolev embedding, we have∥∥SEIc

(
nC

j EC
k

)F

l

∥∥
c−1L∞H 3/2 � cδ−1〈l/c〉−1l3/2

∥∥NC
j

∥∥
L∞L2k

1/2
∥∥EC

k

∥∥
L∞H 1

� (cl)−1〈l/c〉−1l3/2k1/2‖N‖L∞L2‖E‖L∞H 1, (5.38)

which can be summed in �1
j �

1
k (k � j ∼ l). We then use the fact that c−1L∞B

3/2
2,∞ ⊂ c−1/2StrE , deducing∥∥SEIc

(
nCEC

)F

HL

∥∥
StrE � c−1/2‖N‖L∞L2‖E‖L∞H 1 . (5.39)

Next we concentrate on (5.30), hence we have γ̃ k/c � j and k > c. We will use the notation a ∧ b = min(a, b) and
a ∨ b = max(a, b). By Strichartz we have∥∥SEIc

(
nF

j Ek

)
l

∥∥
StrE � 〈l/c〉−1

∥∥(
nF

j Ek

)
l

∥∥
I

1/2
c L10/7B1

10/7(0,T )

� T 1/5〈l/c〉−1/2(l ∧ j)9/10
∥∥nF

j

∥∥
L2L2‖Ek‖L∞H 1

� T 1/5〈l/c〉−1/2(l ∧ j)9/10〈j/c〉1/6 α

αj
‖N‖Y ‖E‖StrE , (5.40)

which can be bounded in �1
l �

1
j �

1
k (j ∨ l ∼ k � c), and yields a factor T 1/5.

In the same way as (5.36), we have∥∥SEIc

(
nC

j EF
k

)
l

∥∥
StrE � 〈l/c〉−1l(l ∧ j)3/2

∥∥NC
j

∥∥
L2L2〈k/c〉−5/6(αj)−1‖Ek‖X

� 〈l/c〉l(l ∧ j)3/2k−5/6c−7/6j−1‖N‖L2L2‖E‖X , (5.41)

where we used that α ∼ c2. The last coefficient is bounded by{ 〈l/c〉−1l1/6j1/2c−7/6 (k ∼ l),

〈l/c〉−1l5/2j−11/6c−7/6 (k ∼ j),
(5.42)

and hence we can bound (5.41) in �1
l �

1
k�

1
j (j ∨ l ∼ k), getting a factor c−1/2T 1/2.

Finally, in the same way as (5.38), we have∥∥SEIc

(
nC

j EC
k

)F

l

∥∥
c−1L∞H 3/2 � c 〈l/c〉−1l3/2(l ∧ j)3/2k−1‖N‖L∞L2‖E‖L∞H 1, (5.43)
αj
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where the last coefficient is bounded by{
c−1〈l/c〉−1j1/2l1/2 (k ∼ l),

c−1〈l/c〉−1j−2l3 (k ∼ j),
(5.44)

and hence we can bound (5.43) in �∞
l �1

k�
1
j (j ∨ l ∼ k). We then use that c−1L∞B

3/2
2,∞ ⊂ c−1/2StrE , getting a fac-

tor c−1/2. �
Next we consider the nonresonant term in the equation for n.

Proposition 5.6. For any functions E and F on (0, T ) × R
3, we have∥∥∥∥Sn

∑
k

∑
j>γ̃ k/c

α|∇|〈Ek,F + F
∗〉

Xj

∥∥∥∥
Strn(0,T )+L∞(0,T ;B1/2

2,∞)

� ‖E‖StrE(0,T )∩X (0,T )‖F‖StrE(0,T )∩X (0,T ). (5.45)

Proof. We will denote E = E and F = F or F∗. Decomposing into dyadic pieces, we consider interactions of the
form 〈Ek,Fl〉j for N with j > γ̃ k/c. Hence,

〈Ek,Fl〉Xj = 〈
EF

k ,Fl

〉
Xj

+ 〈
Ek,F

F
l

〉
Xj

− 〈
EF

k ,FF
l

〉
Xj

+ 〈
EC

k ,FC
l

〉F
Xj

(5.46)

where we have used Lemma 5.4.
By using the Strichartz estimate, we have∥∥Sn|α∇|〈EF

k ,Fl

〉
j

∥∥
Strn � αj

∥∥(
EF

k Fl

)
j

∥∥
α1/6L6/5B

1/3
3/2

� αjα−1/6j1/3
∥∥EF

k

∥∥
L2L2〈l/c〉1/3l−2/3‖Fl‖I

−1/3
c L3B

2/3
6

� αj

δ
(j/c)1/3〈k/c〉−5/6〈l/c〉1/3l−2/3‖E‖X ‖F‖StrE . (5.47)

This is summable in �1
j �

1
l �

1
k for l � j ∼ k and for j � k ∼ l. The above term can be bounded also by

αj
∥∥(

EF
k Fl

)
j

∥∥
L1L2 � αjT 1/6

∥∥EF
k

∥∥
L2L3〈l/c〉1/3l−2/3‖Fl‖I

−1/3
c L3B

2/3
6

� T 1/6 αj

δ
k1/2〈k/c〉−5/6〈l/c〉1/3l−2/3‖E‖X ‖F‖StrE , (5.48)

which is summable in �1
j �

1
l �

1
k for k � l ∼ j , yielding a factor T 1/6.

For 〈Ek,F
F
l 〉

j
, we have just to switch the roles of k and l. For 〈EF

k ,FF
l 〉

j
, we have a better bound

∥∥Sn|α∇|〈EF
k ,FF

l

〉
j

∥∥
Strn � αj

∥∥(
EF

k Fl
F
)
j

∥∥
L1L2

� (αj)−1(kl)3/4〈k/c〉−5/6〈l/c〉−5/6‖Ek‖X ‖Fk‖X , (5.49)

which is summable for all j, k, l and gives a factor c−1/2.
Finally, for the last term of (5.46), we have

∥∥Sn|α∇|〈EC
k ,FC

l

〉F
j

∥∥
L∞H 1/2 � αj

δ
s3/2j1/2(kl)−1‖Ek‖L∞H 1‖Fl‖L∞H 1 (5.50)

where s = min(j, k, l). This can be summed in �1
l �

1
k for k � l ∼ j , l � k ∼ j and k ∼ l � j and gives a result

in L∞B
1/2
2,∞. �



N. Masmoudi, K. Nakanishi / Ann. I. H. Poincaré – AN 27 (2010) 1073–1096 1091
5.4. The resonant part of N

To estimate the resonant frequency part Nγ , we integrate by parts as in (2.6). Then the estimate on the boundary
terms follows from Lemma 4.3. The estimate on the integral terms use the following proposition.

Proposition 5.7. For any functions E and F, we have∥∥Sn(Ė · F)γ
∥∥

L∞L2 � T ‖Ė‖L∞H−1‖F‖L∞H 1,∥∥A−
γ Sn

(
Ė · F

∗)
γ

∥∥
L∞L2 � T ‖Ė‖L∞H−1‖F‖L∞H 1,∥∥A+

γ Sn

(
Ė · F

∗)
γ

∥∥
L∞ W k,p � T ‖Ė‖L∞H−1‖F‖L∞H 1 . (5.51)

Proof. For the proof of the first two estimates, we have just to use that∥∥(FĖ)γ
∥∥

L2 �
∥∥(FĖ)γ

∥∥
L1

�
∑
k∼l

‖Fk‖L2‖Ėl‖L2 � ‖F‖H 1‖Ė‖H−1, (5.52)

and then apply the energy estimate. For the last term, we use the above L1
x bound together with (4.31) to deal with A+

γ ,

where we may replace L3,∞ by Wk,p (p > 3) thanks to the frequency restriction to γ . �
In the final argument, we have then to use that

‖Ė‖L∞H−1 � ‖E‖L∞H 1 + ‖E‖L∞H 1‖N‖L∞(L2+W 1,p),

which follows from the equation of E and that ‖�cϕ‖H−1 � ‖ϕ‖H 1 uniformly in c.

5.5. Concluding the estimates

Applying the propositions of the previous subsections, we can estimate all the terms appearing in (5.4) and (5.5).
Recall ‖E‖ and ‖N‖ defined in (5.1).

Proposition 5.8. If (E,N) is a solution of (2.1) on (0, T ), then we have the following a priori bound

‖E‖ �
∥∥E(0)

∥∥
H 1 + (

T 1/6 + c−1/2)‖N‖‖E‖,
‖N‖ �

∥∥N(0)
∥∥

L2+W k,p + ‖E‖2(1 + T ‖N‖). (5.53)

Hence, it is clear that there exists a c0 big enough and there exists a uniform time T such that the equation can be
solved for c > c0 on the time interval (0, T ).

6. Passage to the limit

In this section, we prove the convergence towards the limit system. We denote

N0∞ = −∣∣E∞∣∣2
,

N+∞ = −eiαγ t A+
γ

(
E

∞
1 · E

∞
2

)
, N−∞ = −e−iαγ t A−

γ

(
E

∞
1 · E

∞
2

)
, (6.1)

E
ω := e−i(�c−�)t/2

E
∞, Nσω := Nσ∞ + NσI for σ = 0,±, (6.2)

where NσI = NσIc were defined in Theorem 3.1. We also denote

N∞ = N0∞ + N+∞ + N−∞,

NI = Nf + N0I + N+I + N−I ,

Nω = N∞ + NI = N0ω + N+ω + N−ω. (6.3)
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Taking the real value, we define also nI = NI ,

n∞ = N∞ = −∣∣E∞∣∣2 − [
eiαγ t Aγ

(
E

∞
1 · E

∞
2

)]
, (6.4)

and nω = Nω = n∞ + nI .
We will argue in a similar way as in [12] with the difference that here we have to estimate the whole Strichartz

norm. For any Banach space Z for space–time functions on (0, T ) × R
3 or space functions on R

3, we will denote by

o(Z), O(Z), (6.5)

those sequence of functions which tends to 0 as c → ∞ in the Z norm, and those sequence of functions bounded as
c → ∞ in the Z norm, respectively. We want to prove that

E − E
ω ∈ o

(
StrE

)
,

E − E
ω ∈ o(X ) + O

(
IcX

1,1),
N − Nω ∈ o

(
Strn + L∞(

B
1/2
2,∞ + W k,p

))
,(

N − Nω
)
X

∈ o(Y ), (6.6)

for any p > 3, under the assumption that E(0) = E
∞(0) + o(H 1) and Nf (0) ∈ O(L2 + W k,p).

For the limit solution, we obtain E
∞ ∈ L∞H 1 ∩ L2B1

6 in the same way as for the usual NLS, using the Strichartz
estimate together with the following nonlinear estimates∥∥[

Aγ (EF)γ + μ∞]
G

∥∥
L∞H 1 �

[∥∥(EF)γ
∥∥

L∞L1 + ∥∥μ∞∥∥
L∞W 1,p

]‖G‖L∞H 1

�
[‖E‖L∞H 1‖F‖L∞H 1 + ∥∥μ∞∥∥

L∞W 1,p

]‖G‖L∞H 1,∥∥Aγ (EF)XG
∥∥

L2B1
6/5

� T 1/2‖EF‖L∞B1
3/2

‖G‖L∞H 1

� T 1/2‖E‖L∞H 1‖F‖L∞H 1‖G‖L∞H 1,∥∥Aγ (EF)XG
∥∥

L1H 1 � T 1/2‖EF‖L4H 1‖G‖L4(B1
3 ∩L∞)

� T 1/2‖E‖L∞H 1‖F‖L4(B1
3 ∩L∞)‖G‖L4(B1

3 ∩L∞)

� T 1/2‖E‖L∞H 1‖F‖1/2
L∞H 1‖F‖1/2

L2B1
6
‖G‖1/2

L∞H 1‖G‖1/2
L2B1

6
, (6.7)

where in the last step we used the real interpolation (L6,B1
6 )1/2,1 = B

1/2
6,1 ⊂ L∞, and in all cases we used Lemma 4.3

to treat A+
γ . Since ei(�c−�)t is strongly convergent to 1 on H 1 uniformly for t ∈ [0, T ], we deduce that

E
ω = E

∞ + o
(
StrE

)
, E

ω ∈ O
(
X1,1), NI ∈ O

(
L∞W k,p + Y 0,1). (6.8)

Denote [E] := E + E
∗ and E

⊥ = (E2,E1). We decompose

E − E
ω = E1 + E2 + E3 + E4 + E5, (6.9)

where each Ej is defined by the following

E1 := e−i�ct/2(
E(0) − E

∞(0)
)
,

E2 := SEIc

{[∣∣E∞∣∣2 − μ0∞]
E

ω + [
Aγ

(
E

∞
1 · E

∞
2

) − μ+∞/2
]
E

ω⊥}
− SEei(�−�c)t/2{[∣∣E∞∣∣2 − μ0∞]

E
∞ + [

Aγ

(
E

∞
1 · E

∞
2

) − μ+∞/2
]
E

∞⊥}
,

E3 := −SEIcn
[
E − E

ω
] − SEIc

(
n − nω

)[
E

ω
]
,

E4 := −SEIc

(
nI

[
E

ω
] − μ0∞

E
ω − μ+∞

E
ω⊥/2

)
,

E5 := SEIce
−iαγ t

∣∣E∞∣∣2
E

ω⊥ − 1

2
SEIce

iαγ t Aγ

(
E

∞
1 · E

∞
2

)
E

ω

− 1
SEIce

−iαγ t Aγ

(
E

∞
1 · E

∞
2

)
E

ω − 1
SEIce

−2iαγ t Aγ

(
E

∞
1 · E

∞
2

)
E

ω⊥. (6.10)

2 2
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We treat each Ej one by one. We denote the small factor by

κ = T 1/6. (6.11)

First we have immediately from the initial convergence,∥∥E1
∥∥

X1,1 = o(1). (6.12)

Next using the estimates (6.7) together with the Strichartz estimate as well as the strong convergence of ei(�−�c)t , we
get ∥∥E2

∥∥
StrE∩X = o(1),

∥∥E5
∥∥

StrE∩IcX1,1 = O(1). (6.13)

Using Propositions 5.2 and 5.5, we get∥∥E3
∥∥

StrE � κ
∥∥E − E

ω
∥∥

StrE + κ
∥∥N − Nω

∥∥
Strn+L∞(W 1,p+B

1/2
2,∞)

+ κ
∥∥(

N − Nω
)
X

∥∥
Y + o(1), (6.14)

and using Proposition 5.1,∥∥E3
∥∥

X � κ
∥∥E − E

ω
∥∥

StrE + κ
∥∥N − Nω

∥∥
L∞(W 1,p+L2)

. (6.15)

For E4 and E5, we use their rapid oscillation in time. For the higher frequency NI
>2γ+1, we integrate by parts

after cutting the high frequency of E. For any ε > 0, there exists K > 1 such that ‖E
ω
>K‖StrE∩X � ε and so by

Propositions 5.1, 5.2 and 5.5, as well as (6.7), we have∥∥SEIc

(
nI

[
E

ω
>K

] − μ0∞
E

ω
>K − μ+∞

E
ω⊥
>K/2

)∥∥
StrE∩X � ε. (6.16)

Hence we may replace E
ω by E

ω
�K

in E4. Integrating by parts on ei|α∇|t , we get

2SEIcN
I
>2γ+1E

ω
�K = [

ei�c(s−t)/2Ic

{(|α∇|−1NI
>2γ+1

)
E

ω
�K

}]t
0

− 2iSEIc

{(|α∇|−1NI
>2γ+1

)
∂tE

ω
�K

}
+ SE�cIc

{(|α∇|−1NI
>2γ+1

)
E

ω
�K

}
. (6.17)

Since |α∇|−1NI
>2γ+1 is bounded in α−1L∞(H 1 + W 2,p), the first two lines are bounded in IcX

1,1. For the last

term, we need to integrate once more, which yields similar terms but with one more |α∇|−1 and �c. Since �2
cIc �

O(α3/2|∇|) and �2
c � O(α|∇|2) on Hs , and |α∇|−2NI

>2γ+1 is bounded in α−2L∞(H 2 + W 3,p), those terms after

the second integration are bounded in c−1StrE ∩ α−1 X .
The other terms including NI

>2γ+1 or E
ω∗
�K

are treated in the same way, integrating on the phase e±i|α∇|t or

eiα(±|∇|−γ ). The denominators are never singular thanks to the frequency restriction > 2γ + 1. Actually it is not
needed for the term NE

∗. Also, the same argument applies to E5 without any low frequency cut-off, just by integrating
on the phase e±iαγ t or e−2iαγ t . Thus we obtain∥∥E5

∥∥
StrE = o(1). (6.18)

It remains to estimate the part in E4 with NI
�2γ+1 and E

ω
�K , which we further cut-off in the physical space.

Fix χ ∈ C∞
0 (R3) satisfying χ(x) = 1 for |x| � 1 and χ(x) = 0 for |x| � 2. There exists R > 1 such that

‖(1 − χ(x/R))Eω
�K

‖L∞H 1 � ε and so∥∥nI
�2γ+1

[(
1 − χ(x/R)

)
E

ω
�K

]∥∥
L∞H 1 + ∥∥μ∗∞(

1 − χ(x/R)
)
E

ω⊥
�K

∥∥
L∞H 1 � ε. (6.19)

Hence its contribution to E4 is O(ε) in IcX
1,1.

Thus we may replace E�K further by χ(x/R)E�K . For the singular part, we may replace NI by Nf because
(NI − Nf )�2γ+1 → 0 in L∞Wk,p by Lp decay for eit |∇| and Lemma 4.3. Then the Fourier and physical cut-offs
together with the time integration provide compactness for the convergence in (3.2) such that
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∥∥SEIcχ(x/R)
(
nI

�2γ+1 − μ0∞)
E

∥∥
L∞H 1 → 0,∥∥SEIcχ(x/R)

(
e−iαγ tNI

�2γ+1 − μ+∞)
E

⊥∥∥
L∞H 1 → 0, (6.20)

which implies also the decay in StrE by interpolation. These terms might not go to 0 in X , but are bounded in IcX
1,1.

Thus we conclude that

E4 ∈ o
(
StrE

) ∩ [
o(X ) + O

(
IcX

1,1)]. (6.21)

Gathering the above estimates, we obtain∥∥E − E
ω − E4 − E5

∥∥
X � κ

∥∥E − E
ω
∥∥

StrE + κ
∥∥N − Nω

∥∥
L∞(L2+W 1,p)

+ o(1),∥∥E − E
ω
∥∥

StrE � κ
∥∥E − E

ω
∥∥

StrE + κ
∥∥N − Nω

∥∥
Strn+L∞(W 1,p+B

1/2
2,∞)

+ κ
∥∥(

N − Nω
)
X

∥∥
Y + o(1). (6.22)

Next, we estimate N − Nω. We will only concentrate on N+ − N+ω since the other terms are easier. Integrating
by parts for the lower frequency part

(EE)ll := (E1)�c1/3 · (E2)�c1/3, (6.23)

as in (2.6), we get

N+ − N+ω = −Sn|α∇|eiαγ t
[
E1 · E2 − (EE)ll

] − eiαγ t A+
γ

[
(EE)ll − E

∞
1 · E

∞
2

]
+ ei|α∇|t A+

γ

[
(EE)ll(0) − E

∞
1 · E

∞
2 (0)

] + iA+
γ Sne

iαγ t ∂t (EE)ll

=: N1 + N2 + N3 + N4. (6.24)

For the Y norm, first we have∥∥N3
X

∥∥
Y � α−1

∥∥E1 · E2 − E
∞
1 · E

∞
2

∥∥
L∞L2 � α−1,∥∥N1

∥∥
Y � κ‖E>c1/3‖2

StrE
� κ

∥∥E − E
ω
∥∥

StrE + o(1), (6.25)

by using Proposition 5.1 in the second line. For the time derivative term, we use

‖Ė‖L2 � c‖E‖H 1 + c‖nE‖H−1 � c, (6.26)

and also StrE ⊂ L3(L∞ + c−1/3L18) to deduce∥∥∂t (EE)
∥∥

L2L2 � κ‖E‖StrE‖Ė‖L∞L2 � cκ. (6.27)

By the same product estimate, we have

‖EE‖L2H 1 � κ‖E‖2
StrE

. (6.28)

Using these bounds, we get∥∥N2
X

∥∥
Y � α−1

∥∥(
i∂t + |α∇|)N2

X

∥∥
L2L2 � o(1) + κ

∥∥E − E
ω
∥∥

StrE ,∥∥N4
X

∥∥
Y � α−1

∥∥∂t (EE)
∥∥

L2L2 � c−1. (6.29)

Thus by adding them up,∥∥(
N+ − N+ω

)
X

∥∥
Y � κ

∥∥E − E
ω
∥∥

StrE + o(1). (6.30)

For the Strichartz-type norms, by using Propositions 5.3 and 5.6, we have∥∥N1
∥∥

Strn+L∞B
1/2
2,∞

� ‖E>c1/3‖StrE∩X

�
∥∥E − E

ω
∥∥

StrE + ∥∥E − E
ω − E4 − E5

∥∥
X + o(1), (6.31)

where E
ω, E4 and E5 are negligible for the higher frequency > c1/3. Decomposing into the resonant frequency and

the rest, we have
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∥∥N2 + N3
∥∥

L∞(W k,p+H 1/2)
�

∥∥(EE)ll − E
∞
1 · E

∞
2

∥∥
L∞(L1∩H 1/2)

�
∥∥E − E

ω
∥∥

StrE + o(1), (6.32)

where W k,p and L1 were used for N
j
γ , and H 1/2 for N

j
X . Using the α gain in the wave Strichartz, we have∥∥N4

X

∥∥
Strn �

∥∥∂t (EE)ll
∥∥

α1/3L3/2B
2/3
6/5

� α−1/3c5/9T
∥∥∂t (EE)ll

∥∥
L∞B−1

6/5

� c−1/9T ‖Ė�c1/3‖L∞H−1‖E�c1/3‖L∞H 1 � c−1/9κ. (6.33)

Also, by Lemma 4.3 with 1/q = 2/3 + 1/p, we have∥∥A+
γ ei|α∇|t ϕγ

∥∥
W k,p � ‖ϕγ ‖1/3+2/p

L1 ‖ϕγ ‖2/3−2/p

L2 . (6.34)

Hence combining it with the same Strichartz estimate as above, we get∥∥N4
γ

∥∥
L∞ W k,p �

∥∥∂t (EE)llR
∥∥1/3+2/p

L1L1

∥∥∂t (EE)llR
∥∥2/3−2/p

α1/3L3/2B
2/3
6/5

� T α−1/3(2/3−2/p) = o(1). (6.35)

Gathering the above estimates, we get∥∥N+ − N+ω
∥∥

Strn+L∞(W k,p+B
1/2
2,∞)

�
∥∥E − E

ω
∥∥

StrE + ∥∥E − E
ω − E4 − E5

∥∥
X + o(1). (6.36)

Using the estimates (6.22), (6.30) and (6.36), as well as their counterparts for N0 and N−, we deduce that (6.6)
holds. This ends the proof of convergence. (3.7) is a direct consequence of Lemma 4.3 and (3.6).
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