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Abstract

We consider blow-up solutions for semilinear heat equations with Sobolev subcritical power nonlinearity. Given a blow-up
point â, we have from earlier literature, the asymptotic behavior in similarity variables. Our aim is to discuss the stability of that
behavior, with respect to perturbations in the blow-up point and in initial data. Introducing the notion of “profile order”, we show
that it is upper semicontinuous, and continuous only at points where it is a local minimum.

Résumé

Nous considérons des solutions explosives de l’équation semilinéaire de la chaleur avec une nonlinéarité sous-critique au sens
de Sobolev. Etant donné un point d’explosion â, grâce à des travaux antérieurs, on connaît le comportement asymptotique des
solutions en variables auto-similaires. Notre objectif est de discuter la stabilité de ce comportement, par rapport à des perturbations
du point d’explosion et de la donnée initiale. Introduisant la notion de « l’ordre du profil », nous montrons qu’il est semi-continu
supérieurement, et continu uniquement aux points où il est un minimum local.
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1. Introduction

We consider the parabolic problem{
ut = �u + |u|p−1u,

u(x,0) = u0(x)
(1.1)

where u(t) ∈ L∞(RN), u : RN × [0, T ) → R, the exponent p > 1 is subcritical (that means that p < N+2
N−2 if N � 3)

and � stands for the Laplacian in R
N.

Given u0 ∈ L∞(RN), by standard results, the parabolic problem (1.1) has a unique classical solution u(x, t), which
exists at least for small times. The solution u(x, t) may develop singularities in some finite time, no matter how smooth
u0(x) is. We say that u(x, t) blows up in a finite time T if u(x, t) satisfies (1.1) in R

N × [0, T ) and

lim
t→T

∥∥u(t)
∥∥

L∞ = +∞.

T is called the blow-up time of u(x, t).
A point a ∈ R

N is a blow-up point if and only if there exist (an, tn) → (a, T ) such that |u(an, tn)| → +∞ as
n → +∞. We know from [25] that an equivalent definition could be a point a ∈ R

N such that |u(x, t)| → +∞ as
(x, t) → (a, T ). The blow-up set Su ⊂ R

N at time T is the set of all blow-up points.
Problem (1.1) has been addressed in different ways in the literature. A major direction was developed by authors

looking for sufficient blow-up conditions on initial data (cf. Levine [20], Ball [3]) or on the exponent (cf. Fujita [9]).
The second main direction is about the description of the asymptotic blow-up behavior, locally near a given blow-
up point (cf. Giga and Kohn [12], Bricmont and Kupiainen [4], Herrero and Velázquez [17], Velázquez [28], Merle
and Zaag [25]). It happens however that most contributions concern the case of isolated blow-up, which is better
understood (see Weissler [32], Bricmont and Kupiainen [4], Fermanian Kammerer, Merle and Zaag [6,5]), and much
less the case of non-isolated points. In this paper, we make contributions to the asymptotic behavior question, in
particular in the much less studied case of non-isolated blow-up points.

Consider u(x, t) a solution of (1.1) which blows up at a time T on some blow-up set Su. The very first question
to be answered is the blow-up rate. According to Giga and Kohn [11] and Giga, Matsui and Sasayama [13], we know
that

∀t ∈ [0, T ),
∥∥u(t)

∥∥
L∞ � C(T − t)

− 1
p−1 . (1.2)

This fundamental step opens the door to the notion of blow-up profile which has been initiated by Herrero and
Velázquez in [14,17], Velázquez in [28,29], Filippas and Kohn in [7] and Filippas and Liu in [8]. The following
selfsimilar change of variables is particularly well adapted to the study of the blow-up profile.

Given a be a blow-up point of u(x, t) (a solution to (1.1)) at time T , we set

u(x, t) = (T − t)
− 1

p−1 wa,T (y, s) where x − a = y(T − t)
1
2 , s = − log(T − t) (1.3)

so that the selfsimilar solution wa,T (y, s) satisfies for all s ∈ [− logT ,+∞) and for all y ∈ R
N ,

∂swa,T = �wa,T − 1

2
y · ∇wa,T − 1

p − 1
wa,T + |wa,T |p−1wa,T . (1.4)

The study of u in the neighborhood of (a, T ) is equivalent to the study of wa,T for large values of the time s. We note
that, considering −wa,T if necessary, we have by [12],

wa,T (y, s) −→
s→+∞κ = (p − 1)

− 1
p−1 ,

uniformly on compact sets. Moreover, we know that the speed of convergence is either | log(T − t)|−1 (slow) or
(T − t)μ (fast) for some μ > 0 (see Velázquez [29] for example).

To learn more about the way wa,T approaches κ , it is natural to linearize Eq. (1.4) about κ . If we set

va,T (y, s) = wa,T (y, s) − κ, (1.5)

then va,T (or v for simplicity) satisfies the following equation

∂sv = �v − 1
y · ∇v + v + f (v) ≡ Lv + f (v), (1.6)
2
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where f (v) = |v + κ|p−1(v + κ) − κ
p−1 − p

p−1v. We easily see from (1.2) that |f (v)| � C|v|2 for some positive
constant C.

It is natural to consider (1.6) as a dynamical system in the weighted Hilbert space

L2
ρ

(
R

N
) =

{
g(y) ∈ L2

loc

(
R

N
)
:

∫
RN

g2(y)ρ(y) dy < +∞
}
, with ρ(y) = e− |y|2

4

(4π)
N
2

,

endowed with the norm defined by

‖g‖2
L2

ρ
= 〈g,g〉L2

ρ
=

∫
RN

(
g(y)

)2
ρ(y)dy,

since the operator L is self-adjoint on L2
ρ(RN) and has eigenvalues

λm = 1 − m

2
, m = 0,1,2, . . . . (1.7)

If N = 1, then all the eigenvalues of L are simple and to 1 − m
2 corresponds the eigenfunction

hm(y) =
[ m

2 ]∑
n=0

m!
n!(m − 2n)! (−1)nym−2n. (1.8)

If N � 2, the eigenfunctions corresponding to 1 − m
2 are

Hα(y) = hα1(y1) · · ·hαN
(yN), with α = (α1, . . . , αN) ∈ N

N and |α| = m. (1.9)

Since the eigenfunctions of L span L2
ρ(RN), we expand v as follows

v(y, s) =
∞∑

k=0

vk(y, s), where vk(y, s) = Pk(v)(y, s) (1.10)

is the orthogonal projection of v on the eigenspace associated to λk = 1 − k
2 .

With these new notations, we know from Velázquez [29] that if v(·, s) is not equal to the null function for some
s > 0, then, it holds that∥∥v(s) − Pm(v)(s)

∥∥
L2

ρ
= o

(∥∥v(s)
∥∥

L2
ρ

)
as s → +∞, (1.11)

for some even number m = m(u0, a) � 2.
Moreover, the following possibilities arise according to the value of m(u0, a):

• If m(u0, a) = 2, then there exists an orthogonal transformation of coordinate axes such that, denoting still by y

the new coordinates

v(y, s) = − κ

4ps

la∑
k=1

(
y2
k − 2

) + o

(
1

s

)
as s → +∞, (1.12)

and then for all K0 > 0,

sup
|z|�K0

∣∣(T − t)
1

p−1 u
(
a + z

√
(T − t)

∣∣log(T − t)
∣∣, t) − fla (z)

∣∣ → 0 as t → T , (1.13)

where la = 1, . . . ,N and fla (z) = (p − 1 + (p−1)2

4p

∑la
i=1 z2

i )
− 1

p−1 .

• If m(u0, a) � 4 and even, there exist constants cα not all zero such that

v(y, s) = −e(1− m(u0,a)

2 )s
∑

cαHα(y) + o
(
e(1− m(u0,a)

2 )s
)

as s → +∞, (1.14)

|α|=m(u0,a)
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and then for all K0 > 0,

sup
|z|�K0

∣∣∣∣(T − t)
1

p−1 u
(
a + z(T − t)

1
m , t

) −
(

p − 1 +
∑

|α|=m(u0,a)

Cαzα

)− 1
p−1

∣∣∣∣ → 0 as t → T , (1.15)

where Cα = − κ

(p−1)2 cα , xα = x
α1
1 · · ·xαN

N and |α| = α1 + · · · + αN if α = (α1, . . . , αN) and Ba(x) =∑
|α|=m(u0,a) Cαxα � 0 for all x ∈ R

N .

We recall that in (1.12) and (1.14), convergence takes place in L2
ρ(RN) as well as in Ck,γ

loc (RN) for any k ∈ N and
γ ∈ (0,1).

In our paper, we call the even number m(u0, a) the profile order at the blow-up point a. One may think that this
description of Velázquez is exhaustive, since it gives a “profile” near any blow-up point a ∈ Su. In our opinion, this
description lets two fundamental questions unanswered:

• Question 1: Are the descriptions (1.11)–(1.15) uniform with respect to the blow-up point and initial data?
• Question 2: What about the geometry of the blow-up set? In other words, is it possible to sum up the local

information given in (1.12)–(1.15) for all a ∈ Su ∩ B(â, δ̂) for some â ∈ Su and δ̂ > 0, in order to derive global
information about the geometry of Su ∩ B(â, δ̂)?

In this paper, we address the first question. The second question was the very first motivation of our work. Indeed,
we initially wanted to extend the work done in [33] in the case m(û0, â) = 2 to the case m(û0, â) � 4. In fact, in [33],
the author could successfully use local information to show a global information. Namely, he proved that the blow-up
set is a smooth manifold, assuming only continuity of the blow-up set. Unfortunately, we feel far from obtaining an
analogous result when m(û0, â) � 4, which is a much more complicated case. Thus, we leave the second question
open.

In the following, we give various answers for Question 1 in Section 1.1. In Section 1.2, we discuss the difficulty of
answering Question 2.

1.1. Uniform convergence to the blow-up profile in selfsimilar variables

We address Question 1 in this subsection. Up to our knowledge, Question 1 was first addressed by Zaag in [33]
in the case m(u0, a) = 2, under the assumption that Su locally contains a continuum. In [33], the author proves that
the profile remains unchanged and that the convergence is uniform with respect to the blow-up point. This uniform
estimate allowed to derive local geometrical information on the blow-up set, namely that it is a C1 manifold, and if
its codimension is 1, then, it is of class C2 (see [36]).

The result of [33,34] and [36] relies on a dynamical system formulation of Eq. (1.4) and on the following Liouville
theorem by Merle and Zaag [24,25].

Liouville theorem for Eq. (1.4). Assume that w is a solution of (1.4) defined on R
N × R such that w ∈ L∞(RN).

Then w ≡ 0 or w ≡ ±κ or w(y, s) ≡ ±θ(s + s0) for some s0 ∈ R, where θ(s) = κ(1 + es)
− 1

p−1 .

In this paper, we want to see if the uniform convergence to the blow-up profile proved in [33] can be extended in a
double way:

• to the case where m(u0, a) � 4;
• by allowing perturbations, not only with respect to the blow-up point, but also with respect to initial data.

Our first result states that the profile order m(u0, a) is upper semicontinuous with respect to perturbations in the
initial data and the blow-up point. More precisely, we prove the following:

Theorem 1 (Upper semicontinuity of the profile order). Let û be a solution of (1.1) associated to the initial data û0 and

blowing up at a point â and at the time T̂ such that û(x, t) �≡ ±κ(T̂ − t)
− 1

p−1 . Then, there exist Vû a neighborhood
0
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of û0 in L∞(RN) and δ̂ > 0 such that for all u0 ∈ Vû0 , u, the solution of (1.1) with initial data u0, blows up at T and
we have this alternative:

(1) either Su ∩ B(â, δ̂) = ∅, or
(2) for all a ∈ Su ∩ B(â, δ̂), m(u0, a) � m̂ ≡ m(û0, â).

Moreover, we have

sup
u0∈Vû0

sup
a∈Su∩B(â,δ̂)

‖va,T (s) − ∑m̂
i=2 Pi(va,T )(s)‖L2

ρ

‖∑m̂
i=2 Pi(va,T )(s)‖L2

ρ

→ 0 as s → +∞. (1.16)

Remark. Case (1) may occur as one can see from the example constructed by Merle in [23]. Indeed, given â and b̂

in R, Merle gives a family of blow-up solutions uλ(x, t) to (1.1), where λ > 0, with initial data u0,λ (continuous in λ)
such that for a critical value λ∗ > 0, the following occurs:

• If λ = λ∗, then uλ∗ blows up exactly at two points, â and b̂ with m(u0,λ∗ , â) = m(u0,λ∗ , b̂) = 2.
• If λ < λ∗, then uλ blows up only at a point aλ with m(u0,λ, aλ) = 2 and aλ → â as λ → λ∗−.
• If λ > λ∗, then uλ blows up only at a point bλ with m(u0,λ, bλ) = 2 and bλ → b̂ as λ → λ∗+.

Since u0,λ → u0,λ∗ as λ → λ∗, we see that for some ε0 > 0, δ̂ > 0, we have the following:

• If λ∗ < λ < λ∗ + ε0, then Suλ ∩ B(â, δ̂) = ∅.
• If λ∗ − ε0 < λ < λ∗, then Suλ ∩ B(â, δ̂) = {aλ}.

Thus, this example illustrates the alternative in Theorem 1.

Remark. The existence of the blow-up profile order for (u0, a) means that u(x, t) is different from the trivial solution

±κ(T − t)
− 1

p−1 (see the line before (1.11)). Since the profile order is by definition greater than or equal to 2, when
m(û0, â) = 2, we get m(u0, a) = 2 for all u0 ∈ Vû0 and a ∈ Su ∩B(â, δ̂). In other words, the profile order is continuous
near its minimal value 2. Theorem 1 was already obtained when m(û0, â) = 2 by Fermanian Kammerer, Merle and
Zaag [6] (for lâ = N ) and Zaag [33] (for lâ � N − 1).

Remark. Unlike Zaag [34,33,36], there is no need to assume that Su ∩ B(â, δ̂) contains a continuum.

Theorem 1 gives the uniform predominance of ‖∑m̂
i=2 Pi(va,T )(s)‖L2

ρ
with respect to the initial data u0 in a

neighborhood of û0 and with respect to the singular point a in a neighborhood of â. It also provides the upper
semicontinuity of the profile order m(u0, a). In order to get the continuity (in fact, the property of being locally
constant, since m(u0, a) ∈ N), we give in the following theorem a necessary and sufficient condition:

Theorem 2 (Necessary and sufficient conditions for the continuity of the profile order). Under the hypotheses of
Theorem 1, the following statements are equivalent:

(i) For some δ̂′ > 0 and some neighborhood V ′
û0

of û0, for all u0 ∈ V ′
û0

and a ∈ Su ∩ B(â, δ̂′), m(u0, a) = m(û0, â).
(ii) For some δ0 > 0 and some neighborhood V0 of û0,

m(û0, â) = min
u0∈V0, a∈Su∩B(â,δ0)

m(u0, a).

(iii) For some δ̂′ > 0 and some neighborhood V ′
û0

of û0,

sup
u0∈V ′

û

sup
a∈Su∩B(â,δ̂′)

‖va,T (s) − Pm̂(va,T )(s)‖L2
ρ

‖Pm̂(va,T )(s)‖L2
ρ

→ 0 as s → +∞.
0
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Remark. Since m(u0, a) ∈ N, the set {(u0, a) | u0 ∈ V0 and a ∈ Su ∩ B(â, δ0)} �= ∅ (it contains (û0, â)), the minimum
in (ii) is realized for some (û1, â1). Up to replacing (û0, â) by (û1, â1) and shrinking the neighborhoods, (ii) is
satisfied. Thus, Theorem 2 is not an empty statement.

Remark. Taking u0 = û0 in Theorem 2, we obtain a new version of Theorem 2 given in the next subsection (see
Theorem 2′).

Following Velázquez [29] and Filippas and Kohn [7], we find the asymptotic behavior (uniformly in u0 and a) in
the following

Proposition 3 (Asymptotic behavior and blow-up profiles uniform in u0 and a). The assertions of Theorem 2 are
equivalent to the following: For some δ̂′ > 0 and V ′

û0
a neighborhood of û0 in L∞(RN):

• If m̂ = 2, then for some C > 0 and s′ ∈ R, we have for all u0 ∈ V ′
û0

, a ∈ Su ∩ B(â, δ̂′) and s � s′

1

Cs
�

∥∥va,T (s)
∥∥

L2
ρ

� C

s
. (1.17)

• If m̂ � 4, then for each α ∈ N
N with |α| = m̂, there exists cα(u0, a) ∈ R such that

sup
u0∈V ′

û0

sup
a∈Su∩B(â,δ̂′)

‖va,T (s) − e(1− m̂
2 )s

∑
|α|=m̂ cα(u0, a)Hα‖L2

ρ

e(1− m̂
2 )s

→ 0 as s → +∞,

and for all K0 > 0,

sup
u0∈V ′

û0

sup
a∈Su∩B(â,δ̂′)

sup
|z|�K0

∣∣∣∣(T − t)
1

p−1 u
(
a + z(T − t)

1
m̂ , t

) −
(

p − 1 +
∑

|α|=m̂

Cαzα

)− 1
p−1

∣∣∣∣ → 0 as t → T ,

where Cα = − κ

(p−1)2 cα and the multilinear form
∑

|α|=m̂ Cαxα � 0 for all x ∈ R
N.

Moreover cα(u0, a) is continuous with respect to u0 and a.

Remark. Proposition 3 has already been obtained by Herrero and Velázquez [31,17] and Filippas and Liu in [8]
(when m̂ � 2), with no uniform character in (u0, a). Our contribution is exactly to prove this uniform character. In
fact, when m̂ � 2, one has to slightly adapt the argument of [17] and [8] to get the uniform character. See the proof of
Proposition 3 in Section 3.3.

Remark. Unlike the case m̂ � 4, we don’t have a uniform convergence to some profile when m̂ = 2 systematically.
The situation is indeed more complicated.

Indeed, if lâ = N , then we know from [6, Theorem 2, p. 350] that for all u0 ∈ V ′
û0

, u0 has a single blow-up point

a(u0) in B(â, δ̂′). Moreover, we have the uniform convergence to the profile, in the sense that

sup
u0∈V ′

û0

s

∥∥∥∥va(u0),T − κ

2ps

(
N − |y|2

2

)∥∥∥∥
L2

ρ

→ 0 as s → +∞. (1.18)

If lâ � N − 1, then the uniform convergence to some profile is known only under the additional hypothesis that the
blow-up set of û contains a continuum going through â of codimension lâ . The question remains open without this
hypothesis.

Remark. Since we expect from the announced result of Herrero and Velázquez [18] that m(u0, a) = 2 is the generic
behavior, the minimum in (ii) of Theorem 2 should be 2, hence the case m̂ � 4 in Proposition 3 is an empty case.

If N = 1, we know from Herrero and Velázquez [16,15] that the situation m(u0, a) = 2 is generic, in the sense that:
given initial data û0 ∈ L∞(RN) such that the corresponding solution of Eq. (1.1) blows up at some time T̂ at some
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point â with m(û0, â) � 4, then any neighborhood of û0 contains initial data u0 such that the corresponding solution
of Eq. (1.1) blows up at some time T at only one point a with m(u0, a) = 2.

Therefore, the minimum in (ii) of Theorem 2 is equal to 2 and our Theorem 2 reads as follows:

Corollary 4. If N = 1 and under the hypotheses of Theorem 1, the following statements are equivalent:

(i) For some δ̂′ > 0 and some neighborhood V ′
û0

of û0, for all u0 ∈ V ′
û0

and a ∈ Su ∩ B(â, δ̂′), m(u0, a) = m(û0, â).
(iv) m(û0, â) = 2.

Moreover, they are both equivalent to (ii) and (iii) in Theorem 2.

Remark. Following the third remark after Proposition 3, if the result of [18] is confirmed, then Corollary 4 becomes
true for N � 2 too. From [16], one would derive that all the behaviors where m̂ � 4 or m̂ = 2 with lâ � N − 1 are
unstable.

1.2. Discussion of the geometry of the blow-up set

Regarding the blow-up set, two questions arise:

• The description: Given a blow-up solution u(x, t) of (1.1), what can we say about its blow-up set Su? The only
general answer available with no restriction on initial data is due to Velázquez who proved in [30] that Su is
closed and that its Hausdorff dimension is at most equal to N − 1. Our Question 2 stated before Section 1.1 is a
description question, to which we devote the following subsection.

• The construction: Given a closed set S whose Hausdorff dimension is at most equal to N − 1, is there a blow-up
solution u(x, t) of (1.1) such that Su = S? The answer is yes when S is one of the following cases
– a finite number of points from Merle [23];
– a sphere thanks to Giga and Kohn in [12] (see (1.15), p. 848 and Corollary 5.7, p. 877);
– a finite number of concentric spheres, as suggested by Matano and Merle in [22, Theorem 1.11, p. 1499]. To

prove the existence of such a solution, one has to adapt the method used by Merle in [23].
Note that the solution is radial in the two last cases. No other geometries for the blow-up sets are known (except
those artificially generated from the above cases by adding irrelevant space variables to the domain of definition
of the solution, giving rise to affine subspaces, cylinders, etc.). The question remains open in the other cases, in
particular when S is an ellipse in 2 dimensions.

As we said above, this subsection is devoted to Question 2. Unfortunately, we don’t give any answer, apart from
recalling the results of [33,34,36] proved in the case where m(û0, â) = 2. Indeed, the case m(û0, â) � 4 is much more
complicated. Our goal is to give the reader a flavor of the complexity of Question 2.

In the following, we fix initial data u0 = û0 and allow a to move in Sû near some â ∈ Sû, a non-isolated blow-up
point.

Question 2 asks whether one can derive any information on the geometry of the blow-up set near â, from local
information in (1.12)–(1.15) on the blow-up profile near a ∈ Sû, where a is close to â.

Knowing that â is a non-isolated blow-up point, we remark that two cases in (1.12)–(1.15) cannot hold since they
lead to an isolated point:

• when m(û0, a) = 2 with la = N : we locally have a bump, see (1.18), or
• when case (1.14) occurs with a definite positive Ba(x): in that case, we know from Velázquez [29] that a is an

isolated blow-up point, i.e. Sû ∩ B(a, δ) = {a} for some δ > 0.

Therefore, we either have (m(û0, â) = 2 with lâ � N − 1 or m(û0, â) � 4 with a non-definite positive Bâ(x)).
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– When m(û0, â) = 2 and lâ � N − 1, Zaag assumed in [33] (see also the note [35]) that Sû contains a continuum
going through â. He shows that Sû is locally a C 1 manifold. In [36], he shows that when lâ = N − 1, Sû is locally
a C 2 manifold. The proof relies on two steps:

• Step 1: Stability of the blow-up profile with respect to perturbations in the blow-up point a and uniform con-
vergence to the profile
The author proves the stability of the blow-up profile and the uniform convergence to the profile with respect
to the blow-up point a near â. The Liouville theorem in [24] and [25], stated in Section 1.1 of our paper, is the
key tool in this step.

• Step 2: A covering geometrical argument
From Step 1, the author derives an asymptotic profile for u(x, t) in every ball B(a,K0

√
T − t) for some

K0 > 0 and a a blow-up point close to â. Most importantly, these profiles are continuous in a and the speed
of convergence of u to each one in the ball B(a,K0

√
T − t) is uniform with respect to a. Now, if a and b are

in Sû and 0 < |a − b| � K0
√

T − t , then the balls B(a,K0
√

T − t) and B(b,K0
√

T − t) intersect each other,
leading to two different profiles for u(x, t) in the intersection. Of course, these profiles have to coincide, up to
the error terms. This makes a geometric constraint which gives more regularity for the blow-up set near â.
The fact that the rate of convergence of the expansion of u(x, t) in B(a,K0

√
T − t) is uniform in a is “essen-

tial”. By the way, Velázquez, Filippas and Liu obtain those profiles, with no uniform character with respect to a

(see [8,28,29]).

This two-step technique was successfully used by Nouaili in [27] for the case of the semilinear wave equation

utt = uxx + |u|p−1u (1.19)

where u = u(x, t), x ∈ R, 0 � t � T (x) and p > 1. More precisely, in [27], the author started from the C 1

regularity of the blow-up set proved by Merle and Zaag in [26] and could prove the C 1,α regularity using this
two-step technique. Note that for Eq. (1.19), non-global solutions blow up on a graph Γ = {(x, T (x)) | x ∈ R},
where x �→ T (x) is 1-Lipschitz (see Alinhac [1,2] or Lindblad and Sogge [21]).

– When m(û0, â) � 4 and Bâ(x) is not positive definite, our ambition was to adapt the two-step technique of [33]
here. We could obtain the first step provided that m(û0, â) = mina∈Sû∩B(â,δ0) m(û0, a). More precisely, let us write
the following two versions of Theorem 2 and Proposition 3 that we obtain taking u0 = û0.

Theorem 2′ (Stability of the profile order near a local minimum). Under the hypotheses of Theorem 1, the following
statements are equivalent:

(i)′ For some δ̂′ > 0, for all a ∈ Sû ∩ B(â, δ̂′), m(û0, a) = m(û0, â).
(ii)′ For some δ0 > 0, m(û0, â) = mina∈Sû∩B(â,δ0) m(û0, a).

(iii)′ For some δ̂′ > 0,

sup
a∈Sû∩B(â,δ̂′)

‖va,T (s) − Pm̂(va,T )(s)‖L2
ρ

‖Pm̂(va,T )(s)‖L2
ρ

→ 0 as s → +∞.

We also have the following equivalent statements to those of Theorem 2′:

Proposition 3′ (Asymptotic behavior and blow-up profiles uniform in a). The assertions of Theorem 2′ are equivalent
to the following: For some δ̂′ > 0:

• If m̂ = 2, then for some C > 0 and s′ ∈ R, we have for all a ∈ Sû ∩ B(â, δ̂′) and s � s′

1

Cs
�

∥∥va,T (s)
∥∥

L2
ρ

� C

s
.

• If m̂ � 4, then for each α ∈ N
N with |α| = m̂, there exists cα(a) ∈ R such that

sup
a∈S ∩B(â,δ̂′)

‖va,T (s) − e(1− m̂
2 )s

∑
|α|=m̂ cα(a)Hα‖L2

ρ

e(1− m̂
2 )s

→ 0 as s → +∞,
û
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and for all K0 > 0,

sup
a∈Sû∩B(â,δ̂′)

sup
|z|�K0

∣∣∣∣(T − t)
1

p−1 u
(
a + z(T − t)

1
m̂ , t

) −
(

p − 1 +
∑

|α|=m̂

Cαzα

)− 1
p−1

∣∣∣∣ → 0 as t → T ,

where Cα = − κ

(p−1)2 cα and the multilinear form
∑

|α|=m̂ Cαxα � 0 for all x ∈ R
N.

Moreover, cα(a) is continuous with respect to a.

Thanks to Theorem 2′, it is enough to choose â such that m(û0, â) = mina∈Sû∩B(â,δ0) m(û0, a) in order to get the
stability of the blow-up profile and the uniform convergence to those profiles. This achieves Step 1 in the technique
of [33].

As for the geometrical covering argument of Step 2 of [33], we could not do the same, since the profiles for m � 4
are much more complicated to describe than for m = 2.

Step 1 revealed to be a fundamental step towards the regularity of the blow-up set in the case m = 2 treated in [33]
and for the semilinear wave equation treated by Nouaili [27]. Similarly, we believe that in the case m � 4 for the heat
equation (1.1), we made a step towards further geometrical results for the blow-up set.

Remark. Unlike in Theorem 2 (see the third remark following Proposition 3), we may have here m(û0, â) � 4 and the
assertion in Proposition 3′ is totally meaningful. More precisely for any even integer m ∈ N

∗, there exists a blow-up
solution u such that for all a ∈ Su, m(u0, a) = m. Indeed, one has just to adapt the method of Bricmont and Kupiainen
[4] to the radial version of (1.1):

∂tU = ∂2
r U + N − 1

r
∂rU + |U |p−1U

to find a solution blowing up for r = 1 with:

• If m = 2, ∀K0 > 0,

sup
|z|<K0

∣∣∣∣(T − t)
1

p−1 U(1 + z
√

T − t, t) −
(

p − 1 + (p − 1)2

4p
z2

)− 1
p−1

∣∣∣∣ → 0 as t → T .

• If m � 4 and even, ∀K0 > 0,

sup
|z|<K0

∣∣(T − t)
1

p−1 U
(
1 + z(T − t)

1
m0 , t

) − (
p − 1 + czm0

)− 1
p−1

∣∣ → 0 as t → T .

In fact, Bricmont and Kupiainen [4] did the work in one dimension and in higher dimensions, the term N−1
r

∂rU can
be controlled as a lower order term in selfsimilar variables.

Remark. As we said in the first remark after Proposition 3, the estimate in the case m̂ = 2 has already been proved in
[8] with no uniform character.

Since m(û0, a) ∈ N, the mapping a �→ m(û0, a) has local minima. In particular, it realizes its global minimum at
some â ∈ Sû and we have the following:

Corollary 5. Let û be a solution of (1.1) associated to the initial data û0 and blowing up at some time T̂ . Then, there
exists â ∈ Sû such that (i)′, (ii)′ and (iii)′ of Theorem 2′ are satisfied.

Remark. Following this corollary, we conjecture that the profile order (for fixed initial data û0) is constant on the
connected components of Sû, and that the convergence in (iii)′ is uniform on the connected component.

Remark. This corollary is meaningful when â is a non-isolated blow-up point. Note also that we don’t prove the
stability of the blow-up profile with respect to the blow-up point and that we only prove that the order of the multilinear
form Ba(x) is locally constant (hence, is stable).
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Remark. If m(û0, a) = 2, then it is automatically a local minimum and (ii)′ of Theorem 2′ is satisfied. Moreover:

• If lâ = N , then â is an isolated blow-up point as written earlier.
• If lâ � N − 1, then with the additional hypothesis that Sû contains a continuum of dimension N − lâ going

through â, we know from [33] that the profile is stable with respect to the blow-up point.

The proof of our results relies on the Liouville theorem of [24] and [25], and on a dynamical system formulation
in selfsimilar variables. Note that we don’t prove Corollaries 4 and 5 since they are immediate consequences of
Theorems 2, 2′ and the results of Herrero and Velázquez [15] and [16].

This paper is organized as follows: In Section 2, we prove uniform estimates in the study of Eq. (1.6) satisfied by v.
In Section 3, we give the proof of Theorems 1, 2 and 2′ as well as Propositions 3 and 3′.

We note that in the remaining of this paper, we will denote by C all positive constants.

2. Uniform estimates and dynamical study in selfsimilar coordinates

Let û(x, t) be a solution of (1.1) with initial data û0(x) and blowing up at some point â and at time T̂ and

w �≡ ±κ(T̂ − t)
− 1

p−1 . (2.1)

From Giga and Kohn [12], and up to replacing û by −û, we assume that

ŵ
â,T̂

(y, s) → κ as s → +∞ in L2
ρ

(
R

N
)

and in Ck,γ

loc

(
R

N
)

(2.2)

for any k ∈ N and γ ∈ (0,1). From (2.1), as mentioned in the introduction, the blow-up profile of û near (â, T̂ ) is
given according to the value of some even parameter m̂ ≡ m(û0, â) � 2 defined in (1.11).

From now on, given initial data u0, we denote by u the solution to (1.1) corresponding to u0 and blowing up at
some time T . If a ∈ Su, we denote by wa,T the corresponding selfsimilar variables solution given by (1.3) and by va,T

the function given by (1.5).
We first derive the following uniform L∞ bound in a neighborhood of û0 and a constant sign property of u(x, t)

for x close to the blow-up point â:

Proposition 2.1 (Uniform L∞ bound and ODE localization). (See Fermanian Kammerer, Merle and Zaag [6].) There
exist V1 a neighborhood of û0 in L∞(RN), C > 0 and {Cε}ε such that for all initial data u0 in V1:

(i) u(t) blows up in T and T → T̂ as u0 → û0 in L∞(RN).

(ii) ∀t ∈ [0, T ), ‖u(t)‖L∞ � C(T − t)
− 1

p−1 .
(iii) ∀ε > 0, ∀t ∈ [T

2 , T ), |∂tu − |u|p−1u| � ε|u|p + Cε.

(iv) There exists δ1 > 0 such that

∀t ∈ [T − δ1, T ), ∀|x − â| � 2δ1, u(x, t) � 0.

(v) For all a ∈ Su ∩ B(â, δ1),

va,T (y, s) → 0 as s → +∞ in Ck,γ

loc

(
R

N
)

for any k ∈ N and γ ∈ (0,1).

Proof. • For (i) to (iv), see [6, Lemma 2.2, Proposition 1.7 and Corollary 1.8, p. 358 and p. 355]. Note that those
results of [6] are valid without the assumption made in [6] about the blow-up profile.

For the reader’s convenience, we show how to derive (iv) from (iii). Let us consider V ′
1 a neighborhood of û0 in

L∞(RN) such that for any u0 ∈ V ′
1, points (i), (ii) and (iii) hold.

Applying (iii) for ε = 1
2 , we get the existence of a positive constant C 1

2
such that

∀u0 ∈ V ′
1, ∀x ∈ R

N, ∀t ∈
[

T
,T

)
, ∂tu � |u|p−1u − 1 |u|p − C 1

2
. (2.3)
2 2
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We now choose A > 0 such that
1

2
Ap − C 1

2
> 0. (2.4)

Using (2.2), we deduce the existence of δ > 0 and δ′ > 0 such that for all |x − â| � δ, û(x, T̂ − δ′) > 2A.

Then, from continuity arguments applied to Eq. (1.1) and the continuity of the blow-up time (cf. (i) of this propo-
sition), there exists V1 a neighborhood of û0 such that V1 ⊂ V ′

1 and

∀u0 ∈ V1, ∀|x − â| � δ, u
(
x,T − δ′) > A. (2.5)

Therefore, thanks to (2.4), we can prove from (2.3) and (2.5), by a priori estimates, that u(x, t) > A > 0 for all u0 ∈ V1,
t ∈ [T − δ′, T ) and |x − â| � δ. Taking δ1 = 1

2 min(δ, δ′) concludes the proof of (iv).
• For (v), we just remark that thanks to Giga and Kohn [10], we know that we have the convergence of wa,T to ±κ

and that since we have the positivity of the solution locally near (â, T ) (see (iv)), we deduce that wa,T converges to κ.

This ends the proof of Proposition 2.1. �
Note that at this stage, we don’t know if the convergence in (v) is uniform with respect to u0 and a or not. Using

the Liouville theorem of Merle and Zaag [24,25], we can show that uniform character.
We then have:

Proposition 2.2 (Uniform smallness of va,T ). There exist a neighborhood V2 of û0 in L∞(RN) and a positive constant
δ2 such that as s → +∞,

(i) sup
u0∈V2

sup
a∈Su∩B(â,δ2)

∥∥va,T (s)
∥∥

L2
ρ

→ 0,

(ii) ∀R > 0, sup
u0∈V2

sup
a∈Su∩B(â,δ2)

(
sup

|y|�R

∣∣va,T (y, s)
∣∣) → 0.

Proof. We only prove (i), since (ii) follows from (i) by standard parabolic regularity arguments. Let us assume that
we cannot find a neighborhood of û0 and a constant δ2 > 0 such that (i) holds. Then there exist η0 > 0, sn → +∞,
u0,n → û0 and an → â, an ∈ Su0,n

when n → +∞ such that

∀n ∈ N,
∥∥wn,an,Tn(sn) − κ

∥∥
L2

ρ
> η0. (2.6)

By Proposition 2.1, we know that wn,an,Tn(y, s) → κ as s → +∞ in Ck,γ

loc (RN) for any k ∈ N and γ ∈ (0,1). Then
E(wn,an,Tn(s)) → E(κ) as s → +∞, where

E(w)(s) =
∫

RN

(
1

2

∣∣∇w(y, s)
∣∣2 + 1

2(p − 1)

∣∣w(y, s)
∣∣2 − 1

p + 1

∣∣w(y, s)
∣∣p+1

)
ρ(y)dy (2.7)

is a decreasing function in time. Therefore we have

E
(
wn,an,Tn(s)

)
� E(κ). (2.8)

Since sn → +∞, the point (iv) of Proposition 2.1 implies for n large,

wn,an,Tn(0, sn) = e
− sn

p−1 un

(
an,Tn − e−sn

)
� 0. (2.9)

We introduce

Wn(y, s) = wn,an,Tn(y, s + sn). (2.10)

Then Wn satisfies Eq. (1.4), and estimates (2.8), (2.9) and (2.6) yield for n large

E
(
Wn(0)

)
� E(κ), Wn(0,0) � 0 and

∥∥Wn(·,0) − κ
∥∥

L2
ρ

> η0. (2.11)

By (ii) in Proposition 2.1, (2.9) and (2.10), there exists C > 0 such that

∀s ∈ [− logTn − sn,+∞),
∥∥Wn(s)

∥∥ ∞ � C. (2.12)

L
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By the parabolic regularity and a compactness procedure, and since sn → +∞, there exists W(y, s) such that up to a
subsequence

Wn → W as n → +∞ in C 2,1
loc

(
R

N × R
)
. (2.13)

Moreover, W satisfies (1.4), and we have from (2.11) and (2.12),

‖W‖L∞ � C, E
(
W(0)

)
� E(κ), W(0,0) � 0 and

∥∥W(0) − κ
∥∥

L2
ρ

> η0. (2.14)

Therefore, by the Liouville theorem, we get

W ≡ ±κ, W ≡ 0 or W(y, s) = ±θ(s + s0), for some s0 ∈ R. (2.15)

This is in contradiction with (2.14). Indeed, W ≡ −κ contradicts W(0,0) � 0, W = κ contradicts ‖W(0)−κ‖L2
ρ

> η0

and W ≡ 0 or W(y, s) = ±θ(s + s0) contradict E(W(0)) � E(κ) (for E(0) = 0 < E(κ) and ∀s ∈ R, E(±θ(s)) <

E(κ)). This concludes the proof of (i) of Proposition 2.2. �
Note that Proposition 2.2 gives the uniform smallness in time and space of va,T (y, s) with respect to the initial data

u0(x) in a neighborhood V2 of û0 in L∞(RN) and a ∈ Su ∩B(â, δ2). From the result of Velázquez [29] stated in (1.11),
we know that va,T (s) ∼ Pm(va,T (s)) in L2

ρ as s → +∞, for some even m(u0, a) � 4, with no uniform information
with respect to u0 and a. If m̂ = 2, we have already the uniform character from [6] and [33]. When m̂ � 4, we believe
that we can get the uniform character if we consider the block

∑m̂
i=2 Pi(va,T )(s). Accordingly, we decompose va,T

with respect to the spectrum of L as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(expanding modes block) x+(s) =
∥∥∥∥∥

1∑
k=0

Pk(va,T )(s)

∥∥∥∥∥
L2

ρ

,

(low frequency block) ym(s) =
∥∥∥∥∥

m∑
k=2

Pk(va,T )(s)

∥∥∥∥∥
L2

ρ

,

(high frequency block) z̃m(s) =
∥∥∥∥∥va,T (s) −

m∑
k=0

Pk(va,T )(s)

∥∥∥∥∥
L2

ρ

,

(2.16)

where the projection Pk is defined in (1.10). Since the nonlinear term in (1.6) is not quadratic in L2
ρ , we need to

estimate an additional variable

Jm(s) =
( ∫

RN

∣∣va,T (y, s)
∣∣4|y|kρ(y) dy

) 1
2 (

k = k(m)
)

(2.17)

where k(m) > 0 will be fixed in Lemma 2.5 below as an increasing sequence. We need also to introduce

zm(s) = z̃m(s) + Jm(s). (2.18)

When (u0, a) = (û0, â), we add a “ ˆ” to the notation (x̂+, ŷm and ẑm).
Using the notation (2.16), we claim that estimate (1.11) yields x+(s) + zm(s) = o(ym(s)) as s → +∞ which we

write more precisely in the following:

Lemma 2.3. If u is a solution of (1.1) blowing up at time T and some point a with the profile given in (1.12) or (1.14)
according to the value of m = m(u0, a), then

∀ε > 0, ∃s0(ε,u0, a), ∀s � s0(ε,u0, a), εym(s) � x+(s) + zm(s). (2.19)

Proof. Using (1.11), (1.12) and (1.14), we see that∥∥v(s) − Pm(v)(s)
∥∥

L2
ρ

= o
(∥∥v(s)

∥∥
L2

ρ

)
as s → +∞ (2.20)

and
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either m(u0, a) = 2 and
∥∥v(s)

∥∥
L2

ρ
∼ C0

s
as s → +∞, or

m(u0, a) � 4 and
∥∥v(s)

∥∥
L2

ρ
∼ C0e

(1− m
2 )s as s → +∞. (2.21)

Since we have from (2.18), x+ + zm = x+ + z̃m + Jm, we first show that x+ + z̃m = o(ym), then we show that
Jm = o(ym).

Since we have from (2.16), ‖v(s)‖L2
ρ

� C(x+ + ym + z̃m)(s) and x+(s) + z̃m(s) � C‖v(s) − Pm(v)(s)‖L2
ρ

as
s → +∞, we use (2.20) to get

x+ + z̃m = o(ym). (2.22)

Now, we recall from Herrero and Velázquez [17], the following regularizing effect for the operator L:

Claim 2.4. (See Herrero and Velázquez [17].) There exist positive s∗ and C∗ such that for s large enough, we have:( ∫
RN

∣∣v(y, s)
∣∣8

ρ(y)dy

) 1
8

� C∗
( ∫

RN

∣∣v(
y, s − s∗)∣∣2

ρ(y)dy

) 1
2

.

Proof. See [17, Lemma 2.3, p. 142]. Note that the result holds for sign-changing solutions with the same proof. �
Using (2.17), the Cauchy–Schwarz inequality and Claim 2.4, we write

Jm(s) �
( ∫

RN

∣∣v(y, s)
∣∣8

ρ(y)dy

) 1
4
( ∫

RN

|y|2kρ(y) dy

) 1
4

� C

( ∫
RN

v
(
y, s − s∗)2

ρ(y)dy

)
. (2.23)

We claim that for s large enough, we have∫
RN

v
(
y, s − s∗)2

ρ(y)dy � C

∫
RN

v(y, s)2ρ(y)dy. (2.24)

Indeed, if m(u0, a) = 2, then we write from (2.21), for s large enough∫
RN

v
(
y, s − s∗)2

ρ(y)dy � 2C0

s − s∗ � 3C0

s
� 4

∥∥v(s)
∥∥

L2
ρ

and the same proof holds when m(u0, a) � 4.
Using (2.23), (2.24), (2.16) and (2.22), we write

Jm(s) � C

( ∫
RN

v
(
y, s − s∗)2

ρ(y)dy

)
� C

∫
RN

v(y, s)2ρ(y)dy � C
(
x2+ + y2

m + z̃2
m

)
(s) � Cy2

m(s).

Hence Jm(s) = o(ym(s)) as s → +∞. Using (2.22), we conclude the proof of Lemma 2.3. �
In order to prove the stability of the block

∑m̂
i=2 Pi(va,T )(s), we use the decomposition (2.16) and (2.18) to project

Eq. (1.6) in the following:

Lemma 2.5 (Differential inequalities on the components of va,T (s)). For all i � 2, there exist k = k(i) > 0 an in-
creasing sequence, a neighborhood V3(i) ⊂ V2 of û0 in L∞(RN) and δ3(i) > 0 such that for all ε > 0, there exists
s3(ε, i) ∈ R such that for all s � s3(ε, i), for all u0 ∈ V3(i) and a ∈ Su ∩ B(â, δ3(i)), we have

x′+(s) � 1

2
x+(s) − ε

(
x+(s) + yi(s) + zi(s)

)
, (2.25)

ε
(
x+(s) + yi(s) + zi(s)

)
� y′

i (s) �
(

1 − i

2

)
yi(s) − ε

(
x+(s) + yi(s) + zi(s)

)
, (2.26)

z′
i (s) �

(
1 − i + 1

2

)
zi(s) + ε

(
x+(s) + yi(s) + zi(s)

)
. (2.27)

Proof. See Appendix A. �
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With these inequalities, we are in a position to prove that for i = m̂, ym̂ dominates x+ and zm̂ as s → +∞,
uniformly with respect to u0 and a. In the following, we start by neglecting x+ with respect to yi + zi .

Lemma 2.6 (Uniform smallness of the expanding modes block). For all i � 2, u0 ∈ V3(i), a ∈ Su ∩ B(â, δ3(i)), ε > 0
and s � s3(ε, i), we have

x+(s) � ε
(
yi(s) + zi(s)

)
. (2.28)

This lemma is an immediate consequence of the following:

Lemma 2.7. Consider s∗ ∈ R and Y,Z ∈ C1([s∗,+∞),R
+) such that

(1) for all ε > 0, there exists s5(ε) such that

for all s � s5(ε)

{
Y ′ � −ε(Y + Z),

Z′ � −1

3
Z + εY.

(2) If for some ŝ � s∗, we have Y(ŝ) + Z(ŝ) = 0, then for all s � ŝ, Y(s) + Z(s) = 0.

Then, either Z = o(Y ) or Y = o(Z) as s → +∞. Moreover, in this latter case, we have

∀ε > 0 and s � s5(ε), Y (s) � CεZ(s).

Indeed, let us first derive Lemma 2.6 from Lemma 2.7 and then prove this latter.

Proof of Lemma 2.6. Let Y(s) = e
s
2 x+(s) and Z(s) = e

s
2 (yi(s) + zi(s)). Using Lemma 2.5, we see that Y and Z

satisfy condition (1) of Lemma 2.7. It also satisfies condition (2). Indeed, if we assume that Y(ŝ) + Z(ŝ) = 0 for
some ŝ � − logT , then from the definitions (2.16) and (2.18) of x+, ym and zm, we have ‖va,T (ŝ)‖L2

ρ
= 0, hence

va,T (·, ŝ) ≡ 0. From the uniqueness of the solution to the Cauchy problem of Eq. (1.6), we get va,T (·, s) ≡ 0, hence
Y(s) + Z(s) = 0 for all s � ŝ. Therefore, the conclusion of Lemma 2.6 directly follows from Lemma 2.7. �

Let us now prove Lemma 2.7.

Proof of Lemma 2.7. Part 1: Let ε > 0, we prove in this part that

either ∃s′
5 = s′

5(ε) such that ∀s � s′
5, Z(s) � CεY(s), or (2.29)

∀s � s5(ε), Y (s) � CεZ(s). (2.30)

We set γ (s) = 6εY (s) − Z(s). Two cases arise:
Case 1: ∃s′

5 � s5(ε) such that γ (s′
5) > 0.

If for all s � s′
5, γ (s) � 0, then (2.29) holds.

If not, then we have γ (s∗) = 0 for some s∗ � s′
5 where s∗ is the smallest s satisfying γ (s) = 0. Therefore γ ′(s∗) � 0.

We then compute γ ′(s∗). We have from hypothesis (1)

γ ′(s∗) = 6εY ′(s∗) − Z′(s∗) � Z(s∗)
(

−ε − 6ε2 + 1

6

)
� 1

7
Z(s∗) for ε small enough.

Knowing that γ ′(s∗) � 0, we deduce that Z(s∗) = Y(s∗) = 0. By hypothesis (2), we have Z(s) = Y(s) = 0 for all
s � s∗ and (2.29) follows with s′

5 = s∗.
Case 2: ∀s � s5(ε), γ (s) � 0, that is

6εY (s) � Z(s). (2.31)

Then, we have from hypothesis (1)

∀s � s5(ε), Z′(s) � −1
Z(s) and Z(s) + Y(s) → 0 as s → +∞. (2.32)
6
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Using (2.31) and hypothesis (1), we then deduce that Y ′ � −( 1
6 + ε)Z � (1 + 6ε)Z′. Integrating between s and +∞,

we get Y � (1 + 6ε)Z. Writing again hypothesis (1) using this last inequality and (2.32), we get

Y ′ �
(−ε(1 + 6ε) − ε

)
Z � 6ε(2 + 6ε)Z′.

Integrating again between s and +∞, we get

Y(s) � 6ε(2 + 6ε)Z(s),

which gives the second case.
Part 2: Let ε < 1

C
, then either (2.29) or (2.30) occurs.

Assuming that (2.29) occurs, it is clear from Part 1, that for any ε′ < ε, (2.29) occurs as well. Hence Z = o(Y ) as
s → +∞. If (2.30) occurs for ε, then we are lead to Y = o(Z) as s → +∞. This ends the proof of Lemma 2.7. �

Using Lemmas 2.5 and 2.7, we get the following:

Corollary 2.8 (Either the high or the low frequency block of va,T dominates). For all i � 2, u0 ∈ V3(i) and a ∈
Su ∩ B(â, δ3(i)), we have either zi(s) = o(yi(s)) or yi(s) = o(zi(s)) as s → +∞. Moreover, in this latter case, we
have

for all ε > 0 and s � s3(ε, i), yi(s) � Cεzi(s). (2.33)

Proof. Just apply Lemmas 2.5 and 2.7 with Y(s) = e(1− i
2 )syi(s) and Z(s) = e(1− i

2 )szi(s). �
Remark. Unlike the case where yi = o(zi), when zi = o(yi), the inequalities (2.26) and (2.27) alone do not yield an
estimate like (2.33), uniform with respect to u0 and a. As a matter of fact, when i = m̂, we will use other ideas to
derive such a uniform estimate. That will be the heart of our argument.

We now establish the following result giving the uniform stability of the dynamics where ym is predominant.

Lemma 2.9 (Uniform stability of the dynamics where the low frequency block is predominant). For all i � 2 and
C∗ > 0, there exists s∗(i,C∗) ∈ R, such that for all initial data u0 in V3(i), a ∈ Su ∩ B(â, δ3(i)) and s0 � s∗,

if yi(s0) � C∗zi(s0), then ∀s � s0, yi(s) � C∗

2
zi(s). (2.34)

Proof. Consider i � 2. Following closely the proof in [6, Lemma 3.3, p. 375] and considering Lemmas 2.5 and 2.6,
we have for all ε ∈ (0, 1

2 ), u0 ∈ V3(i), a ∈ Su ∩ B(â, δ3(i)) and s � s3(ε, i)⎧⎪⎪⎨
⎪⎪⎩

y′
i (s) �

(
1 − i

2

)
yi(s) − 3

2
ε
(
yi(s) + zi(s)

)
,

z′
i (s) �

(
1 − i + 1

2

)
zi(s) + 3

2
ε
(
yi(s) + zi(s)

)
.

(2.35)

We argue by contradiction. Suppose that there exist C > 0, s0 > s3(ε, i) where ε = C

4(2+C)2 , u0 ∈ V3(i) and a ∈
Su ∩ B(â, δ3(i)) such that

yi(s0) � Czi(s0) and ∃s∗
0 > s0, yi

(
s∗

0

)
<

C

2
zi

(
s∗

0

)
.

Let γ (s) = yi(s) − C
2 zi(s), then γ (s0) � 0 and γ (s∗

0 ) < 0. Therefore, there exists s2 ∈ [s0, s
∗
0 [ such that

γ (s2) = 0, γ (s) < 0 for all s ∈ [
s2, s

∗
0

)
, hence γ ′(s2) � 0 (2.36)

on the one hand. On the other hand, we have from (2.35)

γ ′(s2) = y′
i (s2) − C

z′
i (s2) � C

zi(s2) +
(

1 − i
)(

yi(s) − C
zi(s2)

)
− 3

ε

(
1 + C

)(
yi(s2) + zi(s2)

)
. (2.37)
2 4 2 2 2 2
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Using (2.36) and (2.37), we obtain

γ ′(s2) �
[
C

4
− 3

2
ε

(
1 + C

2

)2]
zi(s2) > yi(s2), (2.38)

since ε = C

4(2+C)2 and zi(s2) > 0 (in case zi(s2) = 0 it follows that for all s � s2, va ≡ 0 and γ (s) = 0 which contra-

dicts γ (s∗
0 ) < 0). This contradicts (2.36) and concludes the proof of Lemma 2.9. �

3. Proof of the main results

Our aim in this section consists in proving Theorems 1, 2 and 2′ as well as Propositions 3 and 3′.

3.1. Proof of Theorem 1

We claim that it is enough to prove (1.16). Indeed, assuming (1.16) true and taking a ∈ Su ∩ B(â, δ̂), we see from
the definition of m(u0, a) that va,T (s) ∼ Pm(u0,a)(va,T (s)) as s → +∞ in L2

ρ on the one hand. On the other hand, from

(1.16), va,T (s) ∼ ∑m̂
i=2 Pi(va,T (s)) as s → +∞ in L2

ρ . Thus, m(u0, a) � m̂ and the alternative (1), (2) in Theorem 1
holds. Therefore, we only prove (1.16).

We proceed in three parts. In Part 1, we prove that zm̂(s) � ym̂(s) uniformly in u0 and a. In Part 2, we prove that
zm̂(s) = o(ym̂(s)) as s → +∞, with no uniform character (with respect to a and u0). Finally, in Part 3, we prove the
uniform character of zm̂(s) = o(ym̂(s)) as s → +∞.

Part 1: We claim the following:

Lemma 3.1. There exist ŝ0 ∈ R, a neighborhood V4 ⊂ V3(m̂) of û0 in L∞(RN) and δ4 ∈ (0, δ3(m̂)), such that for all
u0 ∈ V4 and for all a ∈ Su ∩ B(â, δ4),

∀s � ŝ0, ym̂(s) � zm̂(s). (3.1)

Proof. Rewriting Lemma 2.9 with C∗ = 2, we have the existence of some s∗ such that

∀u0 ∈ V3, ∀a ∈ Su ∩ B(â, δ3),

if ∃s0 � s∗ such that ym̂(s0) � 2zm̂(s0), then ∀s � s0, ym̂(s) � zm̂(s). (3.2)

By Lemma 2.3 applied to (û0, â) with ε = 1
3 ,

∃s0

(
1

3
, û0, â

)
: ∀s � s0

(
1

3
, û0, â

)
, ŷm̂(s) � 3ẑm̂(s).

We set

ŝ0 := max

(
s0

(
1

3
, û0, â

)
, s∗

)
.

Then, using continuity arguments at s = ŝ0, applied to Eq. (1.1), we obtain the existence of a neighborhood V ′′
3 of û0

in L∞(RN) and δ′′
3 > 0 such that

∀u0 ∈ V ′′
3 , ∀a ∈ Su ∩ B

(
â, δ′′

3

)
, ym̂(ŝ0) � 2zm̂(ŝ0).

Finally, by (3.2), we obtain for all u0 ∈ V4 = V3 ∩ V ′′
3 and for all a ∈ Su ∩ B(â, δ4) (where δ4 = inf(δ3, δ

′′
3 )),

∀s � ŝ0, ym̂(s) � zm̂(s).

This ends the proof of Lemma 3.1. �
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Part 2: We claim the following:

Lemma 3.2. For all ε > 0, u0 ∈ V4 and a ∈ Su ∩ B(â, δ4), there exists s′
5(ε,u0) ∈ R such that

∀s � s′
5(ε,u0, a), 4εym̂(s) � zm̂(s). (3.3)

Proof. Let ε > 0, u0 ∈ V4 and a ∈ Su ∩B(â, δ4). We shall restrict ε to small ones in the following. Using Lemmas 2.5,
2.6 and 3.1, setting

s4(ε) = sup
(
ŝ0, s3(ε, m̂)

)
, (3.4)

we have for all s � s4(ε), the inequalities (2.35) and (3.1) hold. Using Corollary 2.8, we see that: either ym̂(s) =
o(zm̂(s)) or zm̂(s) = o(ym̂(s)) as s → +∞ and in view of (3.1), we must have zm̂(s) = o(ym̂(s)) as s → +∞ and
Lemma 3.2 follows. �

Part 3: From Lemma 3.2, we can introduce for all ε > 0, u0 ∈ V4 and a ∈ Su ∩ B(â, δ4)

s5(ε,u0, a) := inf
{
s � s4(ε): ∀σ � s, 4εym̂(σ ) � zm̂(σ )

}
. (3.5)

We claim the following:

Lemma 3.3. s5(ε,u0, a) − s4(ε) is bounded only in terms of ε independently from u0 and a.

Proof. If s5(ε,u0, a) = s4(ε), then the answer is trivial. Hence, we assume in the following that s4(ε) < s5(ε,u0, a).
We note that in this case, by minimality, there exists a sequence (sn) such that

sn −→
n→+∞s5(ε,u0, a), with sn ∈ [

s4(ε), s5(ε,u0, a)
]

and 4εym̂(sn) < zm̂(sn). (3.6)

Step 1: We prove that

∃ε0 > 0: ∀ε ∈ (0, ε0): ∀s ∈ [
s4(ε), s5(ε,u0, a)

]
, 4εym̂(s) � zm̂(s). (3.7)

We argue by contradiction. If (3.7) does not hold, then we can construct from (3.6) σ ∗(= σ ∗(n)) ∈ [s4(ε), sn) such
that

4εym̂

(
σ ∗) = zm̂

(
σ ∗) and ∀σ ∈ (

σ ∗, sn
]
, 4εym̂(σ ) < zm̂(σ ). (3.8)

By minimality, this yields

z′
m̂

(
σ ∗) − 4εy′

m̂

(
σ ∗) � 0, (3.9)

on the one hand. On the other hand, using (2.35), there exists ε0 > 0 such that for all ε ∈ (0, ε0), we have

z′
m̂

(
σ ∗) − 4εy′

m̂

(
σ ∗) �

(
1 − m̂ + 1

2

)
zm̂

(
σ ∗) + 3

2
ε
(
ym̂

(
σ ∗) + zm̂

(
σ ∗))

− 4ε

[(
1 − m̂

2

)
ym̂

(
σ ∗) − 3

2
ε
(
ym̂

(
σ ∗) + zm̂

(
σ ∗))]

� zm̂

(
σ ∗)[−1

8
+ 3ε + 6ε2

]
� 0. (3.10)

Using (3.9) and (3.10), we see that zm̂(σ ∗) = 0. Therefore, va,T (y, s) ≡ 0 for all s � σ ∗, by uniqueness in the Cauchy
problem of (1.6). By definitions (2.16) and (2.18) of ym̂ and zm̂, we see that for all s � σ ∗, zm̂(s) = ym̂(s) = 0, hence
s5(ε, u0, a) � σ ∗ from (3.5). This contradicts the fact that σ ∗ < sn � s5(ε, u0, a). Thus, (3.7) holds. Finally, using
(3.5) and (3.7), we are led to

zm̂

(
s5(ε,u0, a)

) = 4εym̂

(
s5(ε,u0, a)

)
. (3.11)

Step 2: We prove that

s5(ε,u0, a) − s4(ε) � 10|log ε|. (3.12)
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In fact, using (3.1), (3.4) and (3.7), we have

∀s ∈ [
s4(ε), s5(ε,u0, a)

]
, 4εym̂(s) � zm̂(s) � ym̂(s). (3.13)

If for some s̄ ∈ [s4, s5], ym̂(s̄) = 0, then, ym̂(s̄) = zm̂(s̄) and va,T (y, s) = 0 for all s � s̄ by uniqueness in the Cauchy
problem of (1.6). This implies s5(ε,u0, a) = s4(ε) and (3.12) follows.

If for all s ∈ [s4(ε), s5(ε,u0, a)], ym̂(s) > 0, using (3.13), (2.35) becomes: ∀s ∈ [s4(ε), s5(ε,u0, a)],

y′
m̂
(s) �

(
1 − m̂

2
− 3ε

)
ym̂(s) and z′

m̂
(s) �

(
11

8
− m̂ + 1

2
+ 3

2
ε

)
zm̂(s).

Therefore,[
log

(
zm̂

ym̂

)]′
� −1

8
+ 5ε � −1

9
if ε is small enough

and by (3.13), we have

4ε � zm̂(s5)

ym̂(s5)
� zm̂(s4)

ym̂(s4)
exp

(
− (s5 − s4)

9

)
,

which yields

s5(ε,u0, a) − s4(ε) � 9|log 4ε|,
and Lemma 3.3 is proved. �

As a conclusion: for all ε < ε′
0, u0 ∈ V ′ = V4, a ∈ Su ∩ B(0, δ4), we have from (3.5) and (3.12):

∀s � s′
0(ε) = s4(ε) + 10|log ε| � s5(ε,u0, a), 4εym̂(s) � zm̂(s). (3.14)

Therefore, from (2.18) and (2.28), we have

for all s � max
(
s′

0(ε), s3(ε, m̂)
)
, z̃m̂ + x+ � Cεym̂.

Using (2.16), we get∥∥∥∥∥va,T (s) −
m̂∑

k=2

Pk

(
va,T (s)

)∥∥∥∥∥
L2

ρ

� Cε
∥∥va,T (s)

∥∥
L2

ρ

which concludes the proof of (1.16) and Theorem 1.

3.2. Proof of Theorems 2 and 2′

We only prove Theorem 2, since the proof of Theorem 2′ is quite similar. Indeed, in order to get the proof of
Theorem 2′, just follow the proof of Theorem 2 and take V0 = Vû0 = {û0}.

Proof of Theorem 2. (iii) ⇒ (i): This follows by the definition (1.11) of the profile order.
(i) ⇒ (ii): Trivial.
(ii) ⇒ (iii): Let V6 = V4 ∩ V3(m̂) ∩ V1 ∩ V3(m̂ − 1) ∩ V0 (hence, for Theorem 2′, V6 = {û0}) and δ6 =

min(δ3(m̂), δ4, δ3(m̂ − 1), δ0) and introduce

pm̂(s) = ∥∥Pm̂(v)(s)
∥∥

L2
ρ
. (3.15)

We claim that (iii) follows from the following:

Lemma 3.4. For all ε > 0, there exists s6(ε) such that for all s � s6(ε), u0 ∈ V6 and a ∈ Su ∩ B(â, δ6), we have

(a) x+(s) � ε(ym̂−1 + pm̂ + zm̂)(s),



S. Khenissy et al. / Ann. I. H. Poincaré – AN 28 (2011) 1–26 19
(b) zm̂(s) � ε(ym̂−1 + pm̂)(s),
(c) ym̂−1(s) � ε(x+ + ym̂−1 + pm̂ + zm̂)(s).

Indeed, considering ε ∈ (0, 1
4 ), s � s6(ε), u0 ∈ V6 and a ∈ Su ∩ B(â, δ6) and summing the three inequalities in this

lemma, we get

x+(s) + zm̂(s) + ym̂−1(s) � 3εpm̂(s) + 2ε(x+ + zm̂ + ym̂−1)(s).

Hence, using the definition (2.18) of z̃m̂, we get

x+(s) + z̃m̂(s) + ym̂−1(s) � x+(s) + zm̂(s) + ym̂−1(s) � 6εpm̂(s).

Using the definitions (2.16), (3.15) of x+, z̃m̂, ym̂−1 and pm̂, we get∥∥v(s) − Pm̂(v)(s)
∥∥

L2
ρ

� 6ε
∥∥Pm̂(v)(s)

∥∥
L2

ρ
,

which is the desired conclusion in (iii).
It remains to prove Lemma 3.4 to conclude the proof of Theorems 2 and 2′.

Proof of Lemma 3.4. Consider ε > 0, u0 ∈ V6 and a ∈ Su ∩ B(â, δ6).
(a) From Lemma 2.6, we have for all s � s3(ε, m̂),

x+(s) � ε(ym̂ + zm̂)(s).

Since we have the definition (2.16) of ym̂,

ym̂(s) � pm̂(s) + ym̂−1(s) (3.16)

and (a) follows.
(b) This is a direct consequence of (3.14) and (3.16).
(c) Since by (ii) of Theorem 2, we have m(u0, a) � m̂, we have from the definitions (1.11), (2.16), (2.18)

of m(u0, a), ym̂−1, z̃m̂−1 and zm̂−1

ym̂−1(s) = o
(
z̃m̂−1(s)

)
, hence ym̂−1(s) = o

(
zm̂−1(s)

)
as s → +∞ (3.17)

(with no uniform character with respect to u0 and a).
Applying Corollary 2.8 with i = m̂− 1, we see then that the second estimate in (3.17) holds uniformly in the sense

that

for all ε > 0 and s � s3(ε, m̂ − 1), ym̂−1(s) � Cεzm̂−1(s).

Using the definitions (2.18), (2.16) and (3.15) of zm̂−1, z̃m̂−1 and pm̂, we write

zm̂−1(s) = z̃m̂−1(s) + Jm̂−1(s), (3.18)

z̃m̂−1(s) � pm̂(s) + z̃m̂−1(s) � pm̂(s) + zm̂(s). (3.19)

Since ‖v‖L∞ � M + κ from (ii) of Proposition 2.1, and knowing that the sequence k(i) is increasing, we write from
the definitions (2.17) and (2.18) of Jm̂ and zm̂:

Jm̂−1(s) �
( ∫

|y|<1

∣∣v(y, s)
∣∣4|y|k(m̂−1)ρ(y) dy

) 1
2 +

( ∫
|y|>1

∣∣v(y, s)
∣∣4|y|k(m̂−1)ρ(y) dy

) 1
2

� M

( ∫
|y|<1

∣∣v(y, s)
∣∣2

ρ(y)dy

) 1
2 +

( ∫
|y|>1

∣∣v(y, s)
∣∣4|y|k(m̂)ρ(y) dy

) 1
2

� M
∥∥v(s)

∥∥
L2

ρ
+ Jm̂(s)

which gives

Jm̂−1(s) � M
∥∥v(s)

∥∥
L2 + zm̂(s). (3.20)
ρ
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Since we have from the definitions (2.16), (3.15) and (2.18) of x+, ym̂−1, pm̂, z̃m̂ and zm̂,∥∥v(s)
∥∥

L2
ρ

� (x+ + ym̂−1 + pm̂ + z̃m̂)(s) � (x+ + ym̂−1 + pm̂ + zm̂)(s),

(c) follows from (3.18), (3.19) and (3.20).
This concludes the proof of Lemma 3.4 as well as (ii) ⇒ (iii). This concludes also the proof of Theorems 2

and 2′. �
3.3. Proof of Propositions 3 and 3′

We only prove Proposition 3 since Proposition 3′ follows by the same argument.

Proof of Proposition 3. We will prove that the assertion in Proposition 3 is equivalent to assertion (i) in Theorem 2.
Assertion of Proposition 3 ⇒ (i) of Theorem 2: If the assertion of Proposition 3 is true, then by definition of

m(u0, a), for all u0 ∈ V ′
û0

, a ∈ Su ∩ B(â, δ̂′), m(u0, a) = m̂ and (i) of Theorem 2 follows.
(i) of Theorem 2 ⇒ assertion of Proposition 3: Here, we redo the analysis of Herrero and Velázquez [17] and

Filippas and Liu [8], paying attention to getting the uniform character with respect to u0 and a. We will distinguish
two cases: m̂ � 4 and even and m̂ = 2.

If m̂ � 4 and even: For a multi-index α in N
N , we introduce vα the projection of v over Hα . It is defined by

vα(s) =
∫

RN

v(y, s)
Hα(y)

‖Hα‖2
L2

ρ

ρ(y) dy. (3.21)

Note that for any m ∈ N, Pm(v) defined in (1.10) satisfies

Pm(v)(y, s) =
∑

|α|=m

vα(s)Hα(y).

Taking |α| = m̂ and projecting Eq. (1.6) on the eigenfunction Hα , we write:

v′
α(s) =

(
1 − m̂

2

)
vα(s) +

∫
RN

f
(
v(y, s)

) Hα(y)

‖Hα‖2
L2

ρ

ρ(y) dy.

Since |v| � C and |f (v)| � C|v|2 � C|v| 3
2 , we use the Hölder inequality to write∣∣∣∣

∫
RN

f
(
v(y, s)

)
Hα(y)ρ(y) dy

∣∣∣∣ � C

∫
RN

∣∣v(y, s)
∣∣ 3

2
(
1 + |y|m̂)

ρ(y)dy � C

( ∫
RN

∣∣v(y, s)
∣∣2

ρ(y)dy

) 3
4

.

Therefore, from (iii) of Theorem 2, we know that for all |α| = m̂ and s � s9 for some s9 ∈ R,∣∣∣∣v′
α(s) −

(
1 − m̂

2

)
vα(s)

∣∣∣∣ � C

( ∫
RN

∣∣v(y, s)
∣∣2

ρ(y)dy

) 3
4

� Cp
3
2
m̂
(s), (3.22)

with p2
m̂
(s) = ‖Pm̂(v)(s)‖2

L2
ρ

= ∑
|β|=m̂(vβ(s))2‖Hβ‖2

L2
ρ

and

p′
m̂
(s) �

(
1 − m̂

2

)
pm̂(s) + Cp

3
2
m̂
(s),

since ‖v(s)‖L2
ρ

→ 0, hence pm̂(s) → 0 as s → +∞, uniformly in u0 and a (see Proposition 2.2 and (i) of Theorem 2).

Therefore, this yields pm̂(s) � Ce(1− m̂
2 )s for s � s10, for some s10, and for all u0 ∈ V10 and a ∈ Su ∩ B(â, δ10).

Injecting this in (3.22), we get the existence of Cα(u0, a) such that vα ∼ Cαe(1− m̂
2 )s . More precisely, for all s � s10,

u0 ∈ V10 and a ∈ Su ∩ B(â, δ10),∣∣vα(s) − Cαe(1− m̂
2 )s

∣∣ � Ce
3
2 (1− m̂

2 )s

and Cα is continuous with respect to u0 and a.
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If m̂ = 2: This case has been treated by Filippas and Liu in [8] and Velázquez in [29], with no uniform character.
Our contribution is to prove this uniform character.

From (1.8) and (1.9) (with m = 2), we know that the eigenvalue λ2 = 0 is of multiplicity N(N+1)
2 and that its

eigenspace is generated by the orthogonal basis

{yiyj | i < j} ∪ {
y2
i − 2

∣∣ i = 1, . . . ,N
}
. (3.23)

Therefore, defining the N × N symmetric matrix A(u0, a, s) (or A(s) for simplicity) by

A(u0, a, s) ≡ A(s) =
∫

RN

va,T (y, s)M(y)ρ(y) dy where Mi,j (y) = 1

4
yiyj − 1

2
δij , (3.24)

we see that the coefficients of A(s) are (up to a multiplicity factor) the projections of va,T (y, s) on the eigenspace
generated by (3.23). Moreover, we have the following nice expression for P2(v)

P2(v)(y, s) = 1

2
yT A(s)y − trA(s) with

1

C0
�

‖P2(v)(s)‖L2
ρ

‖A(s)‖ � C0. (3.25)

We have the following result:

Lemma 3.5 (An ODE satisfied by the matrix A(s)). There exist V10 a neighborhood of u0 in L∞(RN × R) and a
constant δ10 > 0 such that for all ε > 0, there exists s10(ε) satisfying for all s � s10(ε), u0 ∈ V10, and a ∈ Su ∩
B(â, δ10),∥∥∥∥A′(s) − 1

β
A(s)2

∥∥∥∥ � ε
∥∥A(s)

∥∥2
with β = κ

2p
. (3.26)

Proof. As for Proposition 3.2 in [33, p. 514], there is no difficulty in adapting the proof of Filippas and Liu [8] to this
uniform context. �

In the following lemma, we define eigenvalues for A(s) and project (3.26) on the eigenvectors:

Lemma 3.6 (Eigenvalues for the matrix A(s)).

(i) There exist N real functions li (u0, a, s) = li (s), eigenvalues of A(s) C 1 in terms of s.
For any (ū0, ā, s̄) ∈ V10 × Sū ∩ B(â, δ10) × [− logT ,+∞) and ε > 0, there exists η > 0 such that if (u0, a, s) ∈
V10 × Su ∩ B(â, δ10) × [− logT ,+∞) and ‖u0 − ū0‖L∞(RN) + |a − ā| + |s − s̄| � η, then for all i ∈ {1, . . . ,N},
|lσ (i)(u0, a, s) − li (ū0, ā, s̄)| � ε for some permutation σ of {1, . . . ,N}.

(ii) The eigenvalues of A(s) satisfy for all s � s10(ε), u0 ∈ V10, and a ∈ Su ∩ B(â, δ10) (where s10(ε), V10 and δ10
are defined in Lemma 3.5),∣∣∣∣li ′(s) − 1

β

∣∣li (s)∣∣2
∣∣∣∣ � ε

(
N∑

i=1

∣∣li (s)∣∣2

)
, i = 1, . . . ,N. (3.27)

Remark. We take
∑N

i=1 |li (s)| or
√∑N

i=1 |li (s)|2 as a norm of A(s) depending on the convenience.

We note that
∑N

i=1 |li (s)| is always different from zero. Indeed, if we assume that there exist a time s0, u0 and
a such that

∑N
i=1 |li (s0)| = 0, then A(s0) = 0. Using (3.25) and (iii) of Theorem 2, we see that v(y, s0) ≡ 0. This

yields v(y, s) ≡ 0 and A(s) = 0 for all the times thanks to the uniqueness of the initial value problem for Eq. (1.1).
Consequently, we get

u ≡ κ(T − t)
− 1

p−1 . (3.28)

Since Proposition 3 holds under the hypotheses of Theorem 1 and (3.28) is excluded by the hypotheses of Theorem 1,
we get a contradiction. Thus,

∑N
i=1 |li (s)| is always different from zero.
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Proof of Lemma 3.6. (i) As for [33, Lemma 3.1, p. 514], from the regularity of wa,T , it is clear that for each a ∈ R
N ,

the symmetric matrix A(s) is a C 1 function of s. Therefore, according to Kato [19], we can define N C 1 functions of
s that we denote by li (u0, a, s) ≡ li (s), 1 � i � N , eigenvalues of A(s).

Since A(s) is a continuous function of (u0, a, s) and the eigenvalues of a matrix vary continuously with respect to
the coefficients, the eigenvalues li (s) are continuous in terms of (u0, a, s), after appropriate renaming.

(ii) The ODE (3.27) follows from (3.26) by projection on the eigenvectors. We refer to [8] and [29] for more
details. �

Since we have from (iii) in Theorem 2, (3.25) and the remark after Lemma 3.6 that for some C0 > 0 and some s13
large enough, for all s � s13, u0 ∈ V ′

û0
, a ∈ Su ∩ B(â, δ̂′),

1

C0
�

‖va,T (s)‖L2
ρ∑N

i=1 |li (s)|
� C0,

clearly (1.17) follows from the following lemma:

Lemma 3.7. There exist C0 > 0 and s11 such that for all s � s11, u0 ∈ V10, a ∈ Su ∩ B(â, δ10),

(i)
N∑

i=1

∣∣li (s)∣∣ � 1

C0s
, (3.29)

(ii) −C0

s
�

N∑
i=1

li (s) < 0, (3.30)

(iii)
N∑

i=1

∣∣li (s)∣∣ � C0

s
. (3.31)

Therefore, our proof reduces to the proof of Lemma 3.7.

Proof of Lemma 3.7. The proof of this fact follows from the argument of Filippas and Liu for the proof of Proposi-
tion 3 in [8, p. 324] and Velázquez for the proof of Lemma 3.2 in [29, p. 458].

(i) Consider u0 ∈ V10 and a ∈ Su ∩ B(â, δ10). Thanks to (3.27), we know that for all s � s10(
1

2βN
),

(
N∑

i=1

l2
i (s)

)′
= 2

N∑
i=1

li (s)l
′
i (s) � −c

(
N∑

i=1

l2
i (s)

) 3
2

,

for some positive constant c independent of u0, a and s. Integrating this inequality, we get the inequality (3.29).
(ii) Consider u0 ∈ V10 and a ∈ Su ∩ B(â, δ10). From (3.27), we know that for all s � s10(

1
2βN

)(
N∑

i=1

li (s)

)′
� 1

2β

N∑
i=1

∣∣li (s)∣∣2
> 0. (3.32)

Therefore, knowing that
∑N

i=1 li (s) → 0 as s → +∞, we must have

N∑
i=1

li (s) < 0 for all s � s10

(
1

2βN

)
. (3.33)

Then, by (3.32), we get

∀s � s10

(
1

2βN

)
,

(
N∑

i=1

li (s)

)′
� c

(
N∑

i=1

li (s)

)2

,

for some c > 0, which gives (3.30) by integration.
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(iii) Introducing

η(s) = min
1�i�N

li(s), (3.34)

we see from (ii) of Lemma 3.6 that η : s �→ η(s) is absolutely continuous on [s10(ε),+∞). Hence, η is almost
everywhere differentiable on [s10(ε),+∞). Moreover, for any ε > 0 and almost every s � s10(ε), we have

η′(s) � 1

β
η2(s) − ε

N∑
i=1

∣∣li (s)∣∣2
.

Since we trivially have

η(s) � − 1

N∗

N∑
i=1

∣∣li (s)∣∣ where N∗ = max
{
N,2(N − 1)

}
, (3.35)

it follows

N∑
i=1

∣∣li (s)∣∣2 �
(

N∑
i=1

∣∣li (s)∣∣
)2

� N2∗η2(s).

Hence for ε = 1
2βN2∗

and for almost every s � s10(ε),

η′(s) � η2(s)

(
1

β
− εN2∗

)
� 1

2β
η2(s).

Since η(s) < 0, from (3.34) and (3.33), we get by integration for all s � s11 ≡ max(s10(
1

2βN
), s10(

1
2βN2∗

))

−2β

s
� η(s) < 0.

Using (3.35), we conclude the proof of (iii) of Lemma 3.7, which gives the conclusion of Proposition 3. �
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Appendix A. Proof of Lemma 2.5

Let P̄i(v) = ∑i
l=2 Pl(v). Applying P̄i on Eq. (1.6) satisfied by va,T (y, s) (v(y, s) for simplicity), multiplying by

P̄iv and integrating with respect to ρ(y)dy, we get

y′
i (s)yi(s) =

∫
RN

P̄i(Lv)P̄ivρ dy +
∫

RN

P̄i

(
f (v)

)
P̄ivρ dy ≡ I1 + I2.

By definition of L and P̄i , we have

I1 =
∫

RN

P̄i(Lv)P̄ivρ dy =
i∑

l,j=2

(
1 − l

2

) ∫
RN

PlvPjvρ dy =
i∑

l=2

(
1 − l

2

) ∫
RN

(Plv)2ρ dy,

from the orthogonality of the eigenspaces of L in L2
ρ .
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Since y2
i (s) = ∑i

l=2

∫
RN (Plv)2ρ dy, it follows that

0 � I1 �
(

1 − i

2

)
y2
i (s).

Using the Cauchy–Schwarz inequality and the fact that |f (v)| � C|v|2, we have

I2 � C
∥∥v2(s)

∥∥
L2

ρ
yi(s).

So, we get

C
∥∥v2(s)

∥∥
L2

ρ
� y′

i (s) �
(

1 − i

2

)
yi(s) − C

∥∥v2(s)
∥∥

L2
ρ
. (A.1)

Similarly, we have

x′+(s) � 1

2
x+(s) − C

∥∥v2(s)
∥∥

L2
ρ

and z̃′
i (s) �

(
1 − i + 1

2

)
z̃i (s) + C

∥∥v2(s)
∥∥

L2
ρ
. (A.2)

In order to estimate ‖v2‖L2
ρ
, we follow an idea of Filippas and Kohn in their paper [7]. Using Proposition 2.2, we

have: ∀u0 ∈ V2, a ∈ Su ∩ B(â, δ2), ε > 0, and δ > 0, ∃s2(ε) such that ∀s � s2(ε)∥∥v2(s)
∥∥2

L2
ρ

=
∫

|y|�δ−1

v4(y, s)ρ(y) dy +
∫

|y|�δ−1

v4(y, s)ρ(y) dy � ε2
∥∥v(s)

∥∥2
L2

ρ
+ δkJ 2

i (s)

where k ∈ N (later, we will choose k large and depending on m). Then,∥∥v2(s)
∥∥

L2
ρ

� ε
∥∥v(s)

∥∥
L2

ρ
+ δ

k
2 Ji(s) � ε(x+ + yi + z̃i )(s) + δ

k
2 Ji(s), ∀s � s2(ε). (A.3)

In order to get an estimation on Ji , we multiply Eq. (1.6) by v3(y, s)|y|kρ(y) and integrate by parts. Writing L(v) =
1
ρ
∇(ρ∇v) + v, we then have

1

4

d

ds

( ∫
RN

v4(y, s)|y|kρ dy

)
= J 2

i (s) + I3 + I4, (A.4)

where, using the fact that |f (v)| � C|v|,
I3 =

∫
RN

f
(
v(y, s)

)
v3(y, s)|y|kρ dy � CJ 2

m(s),

and

I4 =
∫

RN

∇(
ρ(y)∇v(y, s)

)
v3(y, s)|y|kρ(y) dy

= −k

8
J 2

m(s) + k(k − 1)

4

∫
RN

v4(y, s)|y|k−2ρ(y)dy − 3
∫

RN

v2(y, s)
∣∣∇v(y, s)

∣∣2|y|kρ(y) dy

� −k

8
J 2

i (s) + k(k − 1)

4

∫
RN

v4(y, s)|y|k−2ρ(y)dy.

Then, going back to (A.4) and using Cauchy–Schwarz inequality, we obtain

1

4

d

ds

(
J 2

i (s)
)
� −

(
k

8
− 1 − C

)
J 2

i (s) + k(k − 1)

4
Ji(s)

( ∫
RN

v4(y, s)|y|k−4ρ(y)dy

) 1
2

. (A.5)

Now, using the uniform convergence to zero of v over the compact subsets of R
N when s → +∞ given by Proposi-

tion 2.2, we have
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( ∫
RN

v4(y, s)|y|k−4ρ(y)dy

) 1
2

�
( ∫

|y|�δ−1

v4(y, s)|y|k−4ρ(y)dy

) 1
2 +

( ∫
|y|�δ−1

v4(y, s)|y|k−4ρ(y)dy

) 1
2

� εδ2− k
2
∥∥v(s)

∥∥
L2

ρ
+ δ2Jm(s).

Thus replacing in (A.5), we get the following integral inequality satisfied by Jm:

J ′
i (s) � −θJi(s) + ε′∥∥v(s)

∥∥
L2

ρ
, (A.6)

where

θ = θ(k, δ) = k

2
− 2 − 2C − k(k − 1)

2
δ2 and ε′ = ε′(ε, δ, k) = 1

2
k(k − 1)εδ2− k

2 .

Given i � 2, by first choosing k = k(i) large, then δ = δ(i) small, we can always make θ � i+1
2 − 1. Note that by

a trivial induction on i, it is possible to choose k(i) as an increasing sequence of i. Note also that choosing ε small
enough, we can make ε′ as small as we want. Hence, from (A.6), we obtain

J ′
i (s) �

(
1 − i + 1

2

)
Ji(s) + ε′∥∥v(s)

∥∥
L2

ρ
�

(
1 − i + 1

2

)
Ji(s) + ε′(x+ + yi + z̃i )(s), ∀s � s2(ε). (A.7)

Finally, using (A.3), (A.1) and (A.2), we have for all s � s2(ε):⎧⎪⎪⎨
⎪⎪⎩

y′
i (s) �

(
1 − i

2

)
yi(s) − Cε(x+ + yi + z̃i )(s) − Cδ

k
2 Ji(s),

z̃′
i (s) �

(
1 − i + 1

2

)
z̃i (s) + Cε(x+ + yi + z̃i )(s) + Cδ

k
2 Ji(s),

as zi = z̃i + Ji . Taking ε̂ > 0, then by choosing k large enough, δ small enough and finally ε small enough, we

can make δ
k
2 C � εC + ε′ < ε̂. Therefore, we get the desired result for some s3(ε̂) � s2(ε) and some neighborhood

V3 ⊂ V2 of initial data û0.
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