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Abstract

We consider the equation −ε2�u+u = up in a bounded domain Ω ⊂ R
3 with edges. We impose Neumann boundary conditions,

assuming 1 < p < 5, and prove concentration of solutions at suitable points of ∂Ω on the edges.

1. Introduction

In this paper we study the following singular perturbation problem with Neumann boundary condition in a bounded
domain Ω ⊂ R

3 whose boundary ∂Ω is non-smooth:⎧⎨
⎩

−ε2�u + u = up in Ω,

∂u

∂ν
= 0 on ∂Ω.

(1)

Here p ∈ (1,5) is subcritical and ν denotes the outer unit normal at ∂Ω .
Problem (1) or some of its variants arise in several physical and biological models. Consider, for example, the Non-

linear Schrödinger Equation

ih̄
∂ψ

∂t
= − h̄2

2m
�ψ + V ψ − γ |ψ |p−2ψ, (2)

where h̄ is the Planck constant, V is the potential, and γ and m are positive constants. Then standing waves of (2) can
be found setting ψ(x, t) = e−iEt/h̄v(x), where E is a constant and the real function v satisfies the elliptic equation

−h̄2�v + Ṽ v = |v|p−2v

for some modified potential Ṽ . In particular, when one considers the semiclassical limit h̄ → 0, the last equation
becomes a singularly perturbed one; see for example [2,9], and references therein.

Concerning reaction–diffusion systems, this phenomenon is related to the so-called Turing’s instability. More pre-
cisely, it is known that scalar reaction–diffusion equations in a convex domain admit only constant stable steady
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state solutions; see [4,27]. On the other hand, as noticed in [38], reaction–diffusion systems with different diffusiv-
ities might generate non-homogeneous stable steady states. A well-known example is the Gierer–Meinhardt system,
introduced in [12] to describe some biological experiment. We refer to [30,34] for more details.

The study of the concentration phenomena at points for smooth domains is very rich and has been intensively
developed in recent years. The search for such condensing solutions is essentially carried out by two methods. The
first approach is variational and uses tools of the critical point theory or topological methods. A second way is to
reduce the problem to a finite-dimensional one by means of Lyapunov–Schmidt reduction.

The typical concentration behavior of solution UQ,ε to (1) is via a scaling of the variables in the form

UQ,ε(x) ∼ U

(
x − Q

ε

)
, (3)

where Q is some point of Ω̄ , and U is a solution of the problem

−�U + U = Up in R
3 (or in R

3+ = {
(x1, x2, x3) ∈ R

3: x3 > 0
})

, (4)

the domain depending on whether Q lies in the interior of Ω or at the boundary; in the latter case Neumann conditions
are imposed. When p < 5 (and indeed only if this inequality is satisfied), problem (4) admits positive radial solutions
which decay to zero at infinity; see [3,37]. Solutions of (1) with this profile are called spike-layers, since they are
highly concentrated near some point of Ω̄ .

Let us recall some known results. Boundary-spike layers are solutions of (1) with a concentration at one or more
points of the boundary ∂Ω as ε → 0. They are peaked near critical point of the mean curvature. It was shown in
[32,33] that mountain-pass solutions of (1) concentrate at ∂Ω near global maxima of the mean curvature. One can
see this fact considering the variational structure of (1). In fact, its solutions can be found as critical points of the
following Euler–Lagrange functional

Ĩε(u) = 1

2

∫
Ω

(
ε2|∇u|2 + u2)dx − 1

p + 1

∫
Ω

|u|p+1 dx, u ∈ W 1,2(Ω).

Plugging into Ĩε a function of the form (3) with Q ∈ ∂Ω one sees that

Ĩε(UQ,ε) = C0ε
3 − C1ε

4H(Q) + o
(
ε4), (5)

where C0,C1 are positive constants depending only on the dimension and p, and H is the mean curvature; see for
instance [2, Lemma 9.7]. To obtain this expansion one can use the radial symmetry of U and parametrize ∂Ω as a
normal graph near Q. From the above formula one can see that the bigger is the mean curvature the lower is the
energy of this function: roughly speaking, boundary spike layers would tend to move along the gradient of H in order
to minimize their energy. Moreover one can say that the energy of spike-layers is of order ε3, which is proportional to
the volume of their support, heuristically identified with a ball of radius ε centered at the peak. There is an extensive
literature regarding the search of more general solutions of (1) concentrating at critical points of H ; see [8,15–17,23,
25,31,40].

There are other types of solutions of (1) with interior and/or boundary peaks, possible multiple, which are con-
structed by using gluing techniques or topological methods; see [6,7,18–20,39]. For interior spike solutions the
distance function d from the boundary ∂Ω plays a role similar to that of the mean curvature H . In fact, solutions
with interior peaks, as for the problem with the Dirichlet boundary condition, concentrate at critical points of d , in a
generalized sense; see [24,35,41].

Concerning a singularly perturbed problem with mixed Dirichlet and Neumann boundary conditions, in [10,11]
it was proved that, under suitable geometric conditions on the boundary of a smooth domain, there exist solutions
which approach the intersection of the Neumann and the Dirichlet parts as the singular perturbation parameter tends
to zero.

There is an extensive literature regarding this type of problems, but only the case Ω smooth was considered.
Concerning the case Ω non-smooth, at our knowledge there is only a bifurcation result for the equation{

�u + λf (u) = 0 in Ω,
∂u

∂ν
= 0 on ∂Ω,

obtained by Shi in [36] when Ω is a rectangle (0, a) × (0, b) in R
2.
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In this paper we consider the problem (1), where Ω is a bounded domain in R
3 whose boundary ∂Ω has smooth

edges. If we denote by Γ an edge of ∂Ω , we can consider the function α : Γ → R which associates to every Q ∈ Γ

the opening angle at Q, α(Q). As in the previous case, we can expect that the function α plays the same role as the
mean curvature H for a smooth domain. In fact, plugging into Ĩε a function of the form (3) with Q ∈ Γ one obtains an
expression similar to (5), with C0α(Q) instead of C0; see Lemma 4.3. Roughly speaking, we can say that the energy
of solutions is of order ε3, which is proportional to the volume of their support, heuristically identified with a ball of
radius ε centered at the peak Q ∈ Γ ; then, when we intersect this ball with the domain we obtain the dependence on
the angle α(Q).

The main result of this paper is the following

Theorem 1.1. Let Ω ⊂ R
3 be a piecewise smooth bounded domain whose boundary ∂Ω has a finite number of smooth

edges, and 1 < p < 5. Fix an edge Γ , and suppose Q ∈ Γ is a local strict maximum or minimum of the function α,
with α(Q) �= π . Then for ε > 0 sufficiently small problem (1) admits a solution concentrating at Q.

Remark 1.2. The condition that Q is a local strict maximum or minimum of α can be replaced by the fact that there
exists an open set V of Γ containing Q such that α(Q) > sup∂V α or α(Q) < inf∂V α.

Remark 1.3. The condition α(Q) �= π is natural since it is needed to ensure that ∂Ω is not flat at Q.

Remark 1.4. We expect a similar result to hold in higher dimension, with substantially the same proof. For simplicity
we only treat the 3-dimensional case.

The general strategy for proving Theorem 1.1 relies on a finite-dimensional reduction; see for example the book [2].
By the change of variables x �→ εx, problem (1) can be transformed into⎧⎨
⎩

−�u + u = up in Ωε,

∂u

∂ν
= 0 on ∂Ωε,

(6)

where Ωε := 1
ε
Ω . Solutions of (6) can be found as critical points of the Euler–Lagrange functional

Iε(u) = 1

2

∫
Ωε

(|∇u|2 + u2)dx − 1

p + 1

∫
Ωε

|u|p+1 dx, u ∈ W 1,2(Ωε). (7)

Now, first of all, one finds a manifold Zε of approximate solutions to the given problem, which are of the form
UQ,ε(x) = ϕμ(εx)U(x − Q), where ϕμ is a suitable cut-off function defined in a neighborhood of Q ∈ Γ ; see the
beginning of Section 4, Lemma 4.1.

To apply the method described in Section 2.1 one needs the condition that the critical manifold Zε is non-
degenerate, in the sense that it satisfies property (ii) in Section 2.1. The result of non-degeneracy in Ωε , obtained
in Lemma 4.2, follows from the non-degeneracy of a manifold Z of critical points of the unperturbed problem in
K = K̃ × R ⊂ R

3, where K̃ ⊂ R
2 is a cone of opening angle α(Q). In fact, one sees that Ωε tends to K as ε → 0.

To show the non-degeneracy of the unperturbed manifold Z we follow the line of Lemma 4.1 in the book [2] or
Lemma 3.1 in [26]. We prove that λ = 0 is a simple eigenvalue of the linearized of the unperturbed problem at U ∈ Z;
see Lemma 3.1. Moreover, if α(Q) < π , it has only one negative simple eigenvalue; whereas, if α(Q) > π , it has two
negative simple eigenvalues; see Corollary 3.4. We note that in the case α(Q) = π , that is when ∂Ω is flat at Q, λ = 0
is an eigenvalue of multiplicity 2. The proof relies on Fourier analysis, but in this case one needs spherical functions
defined on a portion of the sphere instead of the whole S2.

Then one solves the equation up to a vector parallel to the tangent plane of the manifold Zε , and generates a
new manifold Z̃ε close to Zε which represents a natural constraint for the Euler functional (7); see the proof of
Proposition 4.5. By natural constraint we mean a set for which constrained critical points of Iε are true critical
points.

We can finally apply the above mentioned perturbation method to reduce the problem to a finite-dimensional one,
and study the functional constrained on Z̃ε . Lemma 4.3 provides an expansion of the energy of the approximate
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solution peaked at Q and allows us to see that the dominant term in the expression of the reduced functional at Q

is α(Q). This implies Theorem 1.1.
The paper is organized in the following way. In Section 2 we collect preliminary material: we recall the abstract

variational perturbative scheme and obtain some useful geometric results. In Section 3 we prove the non-degeneracy of
the critical manifold for the unperturbed problem in the cone K . In Section 4 we construct the manifold of approximate
solutions, showing that it is a non-degenerate pseudo-critical manifold, expand the functional on the natural constraint
and deduce Theorem 1.1.

Notation. Generic fixed constant will be denoted by C, and will be allowed to vary within a single line or formula. The
symbols oε(1), oR(1), oε,R(1) will denote respectively a function depending on ε that tends to 0 as ε → 0, a function
depending on R that tends to 0 as R → +∞ and a function depending on both ε and R that tends to 0 as ε → 0
and R → +∞. We will work in the space W 1,2(Ωε), endowed with the norm ‖u‖2 = ∫

Ωε
(|∇u|2 + u2) dx, which we

denote simply by ‖u‖, without any subscript.

2. Some preliminaries

In this section we introduce the abstract perturbation method which takes advantage of the variational structure
of the problem, and allows us to reduce it to a finite-dimensional one. We refer the reader mainly to [2,26] and the
bibliography therein.

In the second part we make some computations concerning the parametrization of ∂Ω and ∂Ωε , and in particular
of the edge.

2.1. Perturbation in critical point theory

In this subsection we recall some results about the existence of critical points for a class of functionals which are
perturbative in nature. Given a Hilbert space H , which might depend on the perturbation parameter ε, let Iε : H → R

be a functional of class C2 which satisfies the following properties

(i) there exists a smooth finite-dimensional manifold, compact or not, Zε ⊆ H such that ‖I ′
ε(z)‖ � Cε for every

z ∈ Zε and for some fixed constant C, independent of z and ε; moreover ‖I ′′
ε (z)[q]‖ � Cε‖q‖ for every z ∈ Zε

and every q ∈ TzZε ;
(ii) letting Pz : H → (TzZε)

⊥, for every z ∈ Zε , be the projection onto the orthogonal complement of TzZε , there
exists C > 0, independent of z and ε, such that PzI

′′
ε (z), restricted to (TzZε)

⊥, is invertible from (TzZε)
⊥ into

itself, and the inverse operator satisfies ‖(PzI
′′
ε (z))−1‖ � C.

We assume that Zε has a local C2 parametric representation z = zξ , ξ ∈ R
d . If we set W = (TzZε)

⊥, we look for criti-
cal points of Iε in the form u = z +w with z ∈ Zε and w ∈ W . If Pz : H → W is as in (ii), the equation I ′

ε(z + w) = 0
is equivalent to the following system{

PzI
′
ε(z + w) = 0 (the auxiliary equation),

(Id − Pz)I
′
ε(z + w) = 0 (the bifurcation equation).

(8)

Proposition 2.1. (See Proposition 2.2 in [26].) Let (i), (ii) hold. Then there exists ε0 > 0 with the following property:
for all |ε| < ε0 and for all z ∈ Zε , the auxiliary equation in (8) has a unique solution w = wε(z) such that:

(j) wε(z) ∈ W is of class C1 with respect to z ∈ Zε and wε(z) → 0 as |ε| → 0, uniformly with respect to z ∈ Zε ,
together with its derivative with respect to z, w′

ε ;
(jj) more precisely one has that ‖wε(z)‖ = O(ε) as ε → 0, for all z ∈ Zε .

We shall now solve the bifurcation equation in (8). In order to do this, let us define the reduced functional
Φε : Zε → R by setting Φε(z) = Iε(z + wε(z)).
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Theorem 2.2. (See Theorem 2.3 in [26].) Suppose we are in the situation of Proposition 2.1, and let us assume that
Φε has, for |ε| sufficiently small, a critical point zε . Then uε = zε + w(zε) is a critical point of Iε .

The next result is a useful criterion for applying Theorem 2.2, based on expanding Iε on Zε in powers of ε.

Theorem 2.3. (See Theorem 2.4 in [26].) Suppose the assumptions of Proposition 2.1 hold, and that for ε small there
is a local parametrization ξ ∈ 1

ε
U ⊆ R

d of Zε such that, as ε → 0, Iε admits the expansion Iε(zξ ) = C0 + εG(εξ) +
o(ε), for ξ ∈ 1

ε
U , for some function G : U → R. Then we still have the expansion Φε(zξ ) = C0 + εG(εξ) + o(ε),

as ε → 0. Moreover, if ξ̄ ∈ U is a strict local maximum or minimum of G, then for |ε| small the functional Iε has a
critical point uε . Furthermore, if ξ̄ is isolated, we can take uε − zξ̄/ε = o(1/ε) as ε → 0.

Remark 2.4. The last statement asserts that, once we scale back in ε, the solution concentrates near ξ̄ .

2.2. Geometric preliminaries

Let us describe ∂Ωε near a generic point Q on the edge Γ of ∂Ωε . Without loss of generality, we can assume that
Q = 0 ∈ R

3, that x1-axis is the tangent line at Q to Γ in ∂Ωε , or ∂Ω . In a neighborhood of Q, let γ : (−μ0,μ0) → R
2

be a local parametrization of Γ , that is (x2, x3) = γ (x1) = (γ1(x1), γ2(x1)). Then one has, for |x1| < μ0,

(x2, x3) = γ (x1)

= γ (0) + γ ′(0)x1 + 1

2
γ ′′(0)x2

1 + O
(|x1|3

)
= 1

2
γ ′′(0)x2

1 + O
(|x1|3

)
.

On the other hand, Γ is parametrized by (x2, x3) = γε(x1) := 1
ε
γ (εx1), for which the following expansions hold

γε(x1) = ε

2
γ ′′(0)x2

1 + O
(
ε2|x1|3

)
,

∂γε

∂x1
= εγ ′′(0)x1 + O

(
ε2|x1|2

)
. (9)

Now we introduce a new set of coordinates on Bμ0
ε

(Q) ∩ Ωε :

y1 = x1, (y2, y3) = (x2, x3) − γε(x1).

The advantage of these coordinates is that the edge identifies with y1-axis, but the corresponding metric g = (gij )ij
will not be flat anymore. If γε(x1) = (γε1(x1), γε2(x1)), the coefficients of g are given by

(gij ) =
(

∂x

∂yi

· ∂x

∂yj

)
=
⎛
⎜⎝

1 + ∂γε1
∂y1

∂γε1
∂y1

+ ∂γε2
∂y1

∂γε2
∂y1

∂γε1
∂y1

∂γε2
∂y1

∂γε1
∂y1

1 0
∂γε2
∂y1

0 1

⎞
⎟⎠ .

From the estimates in (9) it follows that

gij = Id + εA + O
(
ε2|x1|2

)
, (10)

where

A =
(

0 γ ′′(0)x1
γ ′′(0)T x1 0

)
.

It is also easy to check that the inverse matrix (gij ) is of the form gij = Id − εA + O(ε2|x1|2). Furthermore one has
detg = 1. Therefore, by (10), for any smooth function u there holds

�gu = �u − ε

[
2

(
γ ′′(0)y1 · ∇(y2,y3)

∂u

∂y1

)
+ (

γ ′′(0) · ∇(y2,y3)u
)]

+ O
(
ε2|x1|2

)∣∣∇2u
∣∣+ O

(
ε2|x1|2

)|∇u|. (11)
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Now, let us consider a smooth domain Ω̃ ⊂ R
3 and Ω̃ε = 1

ε
Ω̃ . In the same way we can describe ∂Ω̃ε near a generic

point Q ∈ ∂Ω̃ε . Without loss of generality, we can assume that Q = 0 ∈ R
3, that {x3 = 0} is the tangent plane of ∂Ω̃ε ,

or ∂Ω̃ , at Q, and that the outer normal ν(Q) = (0,0,−1). In a neighborhood of Q, let x3 = ψ(x1, x2) be a local
parametrization of ∂Ω̃ . Then one has, for |(x1, x2)| < μ1,

x3 = ψ(x1, x2)

= 1

2

(
AQ(x1, x2) · (x1, x2)

)+ CQ(x1, x2) + O
(∣∣(x1, x2)

∣∣4),
where AQ is the Hessian of ψ at (0,0) and CQ is a cubic polynomial, which is given precisely by

CQ(x1, x2) = 1

6

2∑
i,j,k=1

∂3ψ

∂xi∂xj ∂xk

(0,0)xixj xk.

On the other hand, ∂Ω̃ε is parametrized by x3 = ψε(x1, x2) := 1
ε
ψ(εx1, εx2), for which the following expansions hold

ψε(x1, x2) = ε

2

(
AQ(x1, x2) · (x1, x2)

)+ ε2CQ(x1, x2) + O
(
ε3
∣∣(x1, x2)

∣∣4),
∂ψε

∂xi

(x1, x2) = ε
(
AQ(x1, x2)

)
i
+ ε2Di

Q(x1, x2) + O
(
ε3
∣∣(x1, x2)

∣∣3), (12)

where Di
Q are quadratic forms in (x1, x2) given by

Di
Q(x1, x2) = 1

2

2∑
j,k=1

∂3ψ

∂xi∂xj ∂xk

(0,0)xj xk.

Concerning the outer normal ν, we have also

ν = (
∂ψε

∂x1
,

∂ψε

∂x2
,−1)√

1 + |∇ψε |2
=
(

ε
(
AQ(x1, x2)

)+ ε2DQ(x1, x2),−1 + 1

2
ε2
∣∣AQ(x1, x2)

∣∣2)+ O
(
ε3
∣∣(x1, x2)

∣∣3). (13)

Now we introduce a new set of coordinates on Bμ1
ε

(Q) ∩ Ω̃ε :

z1 = x1, z2 = x2, z3 = x3 − ψε(x1, x2).

The advantage of these coordinates is that ∂Ω̃ε identifies with {z3 = 0}, but, as before, the corresponding metric
g̃ = (g̃ij )ij will not be flat anymore. Its coefficients are given by

(g̃ij ) =
(

∂x

∂zi

· ∂x

∂zj

)
=
⎛
⎝1 + ∂ψε

∂z1

∂ψε

∂z1

∂ψε

∂z1

∂ψε

∂z2

∂ψε

∂z1
∂ψε

∂z2

∂ψε

∂z1
1 + ∂ψε

∂z2

∂ψε

∂z2

∂ψε

∂z2
∂ψε

∂z1

∂ψε

∂z2
1

⎞
⎠ .

From the estimates in (12) it follows that

g̃ij = Id + εA + ε2B + O
(
ε3
∣∣(z1, z2)

∣∣3), (14)

where

A =
(

0 AQ(z1, z2)

(AQ(z1, z2))
T 0

)
,

and

B =
(

AQ(z1, z2) ⊗ AQ(z1, z2) DQ(z1, z2)

(DQ(z1, z2))
T 0

)
.1

1 If the vector v has components (vi )i , the notation v ⊗ v denotes the square matrix with entries (vivj )ij .
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It is also easy to check that the inverse matrix (g̃ij ) is of the form g̃ij = Id − εA + ε2C + O(ε3|(z1, z2)|3), where

C =
(

0 −DQ(z1, z2)

−(DQ(z1, z2))
T |AQ(z1, z2)|2

)
.

Furthermore one has det g̃ = 1. Therefore, by (14), for any smooth function u there holds

�g̃u = �u − ε

[
2

(
AQ(z1, z2) · ∇(z1,z2)

∂u

∂z3

)
+ tr AQ

∂u

∂z3

]

+ ε2
[
−2

(
DQ · ∇(z1,z2)

∂u

∂z3

)
+ ∣∣AQ(z1, z2)

∣∣2 ∂2u

∂z3∂z3
− divDQ

∂u

∂z3

]

+ O
(
ε3
∣∣(z1, z2)

∣∣3)∣∣∇2u
∣∣+ O

(
ε3
∣∣(z1, z2)

∣∣3)|∇u|.
Moreover, from (13), we obtain the expression of the unit outer normal to ∂Ω̃ε , ν̃, in the new coordinates z:

ν̃ =
(

ε
(
AQ(z1, z2)

)+ ε2DQ(z1, z2),−1 + 3

2
ε2
∣∣AQ(z1, z2)

∣∣2)+ O
(
ε3
∣∣(z1, z2)

∣∣3).
Finally the area-element of ∂Ω̃ε can be estimated as

dσ = (
1 + O

(
ε2
∣∣(z1, z2)

∣∣2))dz1 dz2.

Now, locally, in a suitable neighborhood of Q ∈ Γ , we can consider Ω as the intersection of two smooth domains
Ω̃1 and Ω̃2 if the opening angle at Q is less than π , or as the union of them if the opening angle is greater than π . In
the first case one has ∂Ω = (∂Ω̃1 ∩ Ω̃2) ∪ (∂Ω̃2 ∩ Ω̃1), whereas in the second case ∂Ω = (∂Ω̃1 ∩ Ω̃c

2) ∪ (∂Ω̃2 ∩ Ω̃c
1).

Then, locally, one can straighten Γ and stretch the two parts of the boundary using the coordinates z for the smooth
domains Ω̃1 and Ω̃2.

3. Study of the non-degeneracy for the unperturbed problem in the cone

Let us consider K = K̃ × R ⊂ R
3, where K̃ ⊂ R

2 is a cone of opening angle α, and the problem⎧⎨
⎩

−�u + u = up in K,

∂u

∂ν
= 0 on ∂K,

(15)

where p > 1.
If p < 5 and if u ∈ W 1,2(K), solutions of (15) can be found as critical points of the functional IK : W 1,2(K) → R

defined as

IK(u) = 1

2

∫
K

(|∇u|2 + u2)dx − 1

p + 1

∫
K

|u|p+1 dx. (16)

Note that Ik is well defined on W 1,2(K); in fact, since K is Lipschitz, the Sobolev embeddings hold for p � 5; see
for instance [1,13].

Let us consider also the elliptic equation in R
3

−�u + u = up, u ∈ W 1,2(
R

3), u > 0, (17)

which has a positive radial solution U ; see for instance [2,3,26,37]. It has been shown in [22] that such a solution is
unique. Moreover U and its radial derivatives decay to zero exponentially: more precisely satisfy the properties

lim
r→+∞ errU(r) = c3,p, lim

r→+∞
U ′(r)
U(r)

= − lim
r→+∞

U ′′(r)
U(r)

= −1,

where r = |x| and c3,p is a positive constant depending only on the dimension n = 3 and p; see [3].
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Now, if p is subcritical, the function U is also a solution of problem (15). Moreover, if we consider a coordinate
system with the x1-axis coinciding with the edge of K , the problem (15) is invariant under a translation along the
x1-axis. This means that any

Ux1(x) = U
(
x − (x1,0,0)

)
is also a solution of (15). Then the functional Ik has a non-compact critical manifold given by

Z = {
Ux1(x): x1 ∈ R

}� R.

Now, to apply the results of the previous section, we have to characterize the spectrum and some eigenfunctions of
I ′′
K(Ux1). More precisely we have to show the following

Lemma 3.1. Suppose α ∈ (0,2π) \ {π}. Then the following properties are true:

(a) TUx1
Z = Ker[I ′′

K(Ux1)], for all x1 ∈ R;

(b) I ′′
K(Ux1) is an index 0 Fredholm map,2 for all x1 ∈ R.

Remark 3.2. The properties (a) and (b) imply that Z satisfies condition (ii) in Section 2.1 and then it is non-degenerate
for IK .

Proof of Lemma 3.1. We will prove the lemma by taking x1 = 0, hence U0 = U . The case of a general x1 will follow
immediately.

Let us show (a). It is known that there holds the inclusion TUZ ⊂ Ker[I ′′
K(U)]; see for instance [2, Section 2.2].

Then it is sufficient to prove that Ker[I ′′
K(U)] ⊂ TUZ. Now, v ∈ W 1,2(K) belongs to Ker[I ′′

K(U)] if and only if⎧⎨
⎩

−�v + v = pUp−1v in K,

∂v

∂ν
= 0 on ∂K.

(18)

We use the polar coordinates in K , r , θ , ϕ, where r � 0, 0 � θ � π and 0 � ϕ � α. Then we write v ∈ W 1,2(K) in
the form

v(x1, x2, x3) =
∞∑

k=0

vk(r)Yk(θ,ϕ), (19)

where the Yk(θ,ϕ) are the spherical functions satisfying⎧⎨
⎩

−�S2Yk = λkYk in K,

∂Yk

∂ϕ
= 0 ϕ = 0, α.

(20)

Here �S2 denotes the Laplace–Beltrami operator on S2 (acting on the variables θ , ϕ). To determine λk and the
expression of Yk , let us split Yk as

Yk(θ,ϕ) =
∞∑

m=0

Θk,m(θ)Φk,m(ϕ)

so that

�S2Yk =
∞∑

m=0

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂ϕ2

]
Θk,mΦk,m

=
∞∑

m=0

[
1

sin θ

d

dθ

(
sin θΘ ′

k,m

)
Φk,m + 1

sin2 θ
Θk,mΦ ′′

k,m

]
.

2 A linear map T ∈ L(H,H) is Fredholm if the kernel is finite-dimensional and the image is closed and has finite codimension. The index of T

is dim(Ker[T ]) − codim(Im[T ]).
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Then (20) becomes⎧⎪⎪⎨
⎪⎪⎩

−
∞∑

m=0

[
1

sin θ

d

dθ

(
sin θΘ ′

k,m

)
Φk,m + 1

sin2 θ
Θk,mΦ ′′

k,m

]
=

∞∑
m=0

λk,mΘk,mΦk,m in K,

Φ ′
k,m(0) = Φ ′

k,m(α) = 0.

(21)

If we require that for all m{−Φ ′′
k,m = μmΦk,m in [0, α],

Φ ′
k,m(0) = Φ ′

k,m(α) = 0,
(22)

we obtain that Φk,m(ϕ) = ak,m cos(πm
α

ϕ) satisfies (22) with μm = π2m2

α2 . Replacing this expression in (21) we have⎧⎪⎪⎨
⎪⎪⎩

∞∑
m=0

[
− 1

sin θ

d

dθ

(
sin θΘ ′

k,m

)+ 1

sin2 θ

π2m2

α2
Θk,m

]
Φk,m =

∞∑
m=0

λk,mΘk,mΦk,m in K,

Φ ′
k,m(0) = Φ ′

k,m(α) = 0.

Since the Φk,m are independent, we have to solve, for every m, the Sturm–Liouville equation

1

sin θ

d

dθ

(
sin θΘ ′

k,m

)+
[
λk,m − 1

sin2 θ

π2m2

α2

]
Θk,m = 0. (23)

Let us rewrite (23) in the following form

− 1

sin θ

d

dθ

(
sin θΘ ′

k,m

)+ 1

sin2 θ

π2m2

α2
Θk,m = λkΘk,m, (24)

so that we have to determine the eigenvalues λk,m and the eigenfunctions of the operator

− 1

sin θ

d

dθ

(
sin θΘ ′(θ)

)+ 1

sin2 θ

π2m2

α2
Θ(θ).

In order to do this, let us consider the case α = π , that is the following equation

− 1

sin θ

d

dθ

(
sin θΘ ′

k,m

)+ 1

sin2 θ
m2Θk,m = λk,mΘk,m. (25)

Now, for every m, (25) has solution if λk,m = k(k + 1), with k � |m|, and the solutions are the Legendre polynomials
Θk,m(θ) = Pk,m(cos θ); see for instance [14,21,28,29]. Then, for a given value of k, there are 2k + 1 independent
solutions of the form Θk,m(θ)Φk,m(ϕ), one for each integer m with −k � m � k. Now, by the classical comparison
principle, if we decrease α the corresponding eigenvalues λk,m, given by (24), should increase, whereas if we increase
α they should decrease; see for instance [5]. More precisely, if m = 0 Eqs. (24) and (25) are the same, therefore the
eigenvalues do not change (and they are 0,2,6, . . .). If m � 1 we cannot give an explicit expression for the λk,m for
general α, but we can use the comparison principle. In conclusion, we obtain that each Yk =∑∞

m=0 Θk,mΦk,m satisfies

−�S2Yk = λk,mYk. (26)

Now, one has that

�(vkYk) = �r(vk)Yk + 1

r2
vk�S2Yk, (27)

where �r denotes the Laplace operator in radial coordinates, that is �r = ∂2

∂r2 + 2
r

∂
∂r

. Then, using (19), (26) and (27),
the condition (18) becomes

∞∑[
−v′′

k − 2

r
v′
k + vk + λk,m

r2
vk − pUp−1vk

]
Yk = 0.
k=0
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Since the Yk are independent, we get the following equations for vk :

Ak,m(vk) := −v′′
k − 2

r
v′
k + vk + λk,m

r2
vk − pUp−1vk = 0, m = 0,1,2, . . . , k � m.

Let us first consider the case m = 0. If k = 0, we have to find a v0 such that

A0,0(v0) = −v′′
0 − 2

r
v′

0 + v0 − pUp−1v0 = 0.

It has been shown in [22], Lemma 6, that all the solutions of A0,0(v) = 0 are unbounded. Since we are looking for
solutions v0 ∈ W 1,2(R), it follows that v0 = 0.

For k = 1 we have to solve

A1,0(v1) = −v′′
1 − 2

r
v′

1 + v1 + 2

r2
v1 − pUp−1v1 = 0.

Let Û(r) denote the function such that U(x) = Û (|x|), where U(x) is the solution of (17). Reasoning as in the
proof of Lemma 4.1 in [2], we obtain that the family of solutions of A1,0(v1) = 0, with v1 ∈ W 1,2(R), is given by
v1(r) = cÛ ′(r), for some c ∈ R.

Now, let us show that the equation Ak,0(vk) = 0 has only the trivial solution in W 1,2(R), provided that k � 2. First
of all, note that the operator A1,0 has the solution Û ′ which does not change sign in (0,∞) and therefore is a non-
negative operator. In fact, if σ denotes its smallest eigenvalue, any corresponding eigenfunction ψσ does not change
sign. If σ < 0, then ψσ should be orthogonal to Û ′ and this is a contradiction. Thus σ � 0 and A1,0 is non-negative.
Now, we can write

Ak,0 = A1,0 + λk,0 − 2

r2
.

Since λk,0 − 2 > 0 whenever k � 2, it follows that Ak,0 is a positive operator. Thus Ak,0(vk) = 0 implies that
vk = 0.

If m � 1 and α < π , using the comparison principle, we obtain that each λk,m is greater than 2. Then, reasoning as
above, we have that each vk = 0.

Let us consider the case α > π . If m = 1 and k = 1, using again the comparison principle, we have that
0 < λ1,1 < 2; whereas for m = 1, k � 2, and for m � 2, k � m, we have that each λk,m > 2. Then in the last two
cases we can use the non-negativity of the operator A1,0 and conclude that vk = 0. In the case m = 1 and k = 1 we
note that the operator

A1,1(v1) := −v′′
1 − 2

r
v′

1 + v1 + λ1,1

r2
v1 − pUp−1v1

has a negative eigenvalue, instead of the eigenvalue 0, since λ1,1 < 2. Then also v1 = 0.
Putting together all the previous information, we deduce that any v ∈ Ker[I ′′(U)] has to be of the form

v(x1, x2, x3) = cÛ ′(r)Y1(θ,ϕ).

Now, Y1 is such that −�S2Y1 = λ1,mY1, namely it belongs to the kernel of the operator −�S2 − λ1,mId, and such a
kernel is 1-dimensional. In conclusion, we find that

v ∈ span
{
Û ′Y1

}= span

{
∂U

∂x1

}
= TUZ.

This proves that (a) holds. It is also easy to check that the operator I ′′
K(U) is a compact perturbation of the identity,

showing that (b) holds true, too. This complete the proof of Lemma 3.1. �
Remark 3.3. Since U is a Mountain–Pass solution of (17), the spectrum of I ′′

K(U) has one negative simple eigenvalue,
1 − p, with eigenspace spanned by U itself. Moreover, we have shown in the preceding lemma that λ = 0 is an
eigenvalue with multiplicity 1 and eigenspace spanned by ∂U

∂x1
. If α < π the rest of the spectrum is positive. Whereas

if α > π there is an other negative simple eigenvalue, corresponding to an eigenfunction Ũ given by
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Ũ (r, θ,ϕ) = ũ(r) cos

(
π

α
ϕ

)
Θ̃(θ),

where Θ̃ satisfies (23) with m = 1 and k = 1, and ũ satisfies the equation

−v′′ − 2

r
v′ + v + λ1,1

r2
v − pUp−1v = 0. (28)

From (28) one has that there exists a positive constant C such that, for r sufficiently large, ũ(r) � Ce−r/C . In conclu-
sion, one has the following result:

Corollary 3.4. Let U and Ũ be as above and consider the functional IK given in (16). Then for every x1 ∈ R,
Ux1(x) = U(x − (x1,0,0)) is a critical point of IK . Moreover, the kernel of I ′′

K(U) is generated by ∂U
∂x1

. If α < π the
operator has only one negative eigenvalue, and therefore there exists δ > 0 such that

I ′′
K(U)[v, v] � δ‖v‖2, for every v ∈ W 1,2(K), v ⊥ U,

∂U

∂x1
.

If α > π the operator has two negative eigenvalues, and therefore there exists δ > 0 such that

I ′′
K(U)[v, v] � δ‖v‖2, for every v ∈ W 1,2(K), v ⊥ U, Ũ,

∂U

∂x1
.

4. Proof of Theorem 1.1

For every Q on the edge Γ of ∂Ωε , let μ = min{μi}, so that in Bμ
ε
(Q)∩Ωε we can use the new set of coordinates z.

Now we choose a cut-off function ϕμ with the following properties⎧⎪⎪⎨
⎪⎪⎩

ϕμ(x) = 1 in Bμ
4
(Q),

ϕμ(x) = 0 in R
3 \ Bμ

2
(Q),

|∇ϕμ| + ∣∣∇2ϕμ

∣∣� C in Bμ
2
(Q) \ Bμ

4
(Q).

(29)

For any Q ∈ Γ , we define the following function, in the coordinates (z1, z2, z3),

UQ,ε(z) := ϕμ(εz)UQ(z), (30)

where UQ(z) = U(z − Q). Then we consider the manifold

Zε = {UQ,ε : Q ∈ Γ }.
Now, we estimate the gradient of Iε at UQ,ε , showing that Zε constitute a manifold of pseudo-critical points of Iε .

Lemma 4.1. There exists C > 0 such that for ε small there holds∥∥I ′
ε(UQ,ε)

∥∥� Cε, for all Q ∈ Γ.

Proof. Let v ∈ W 1,2(Ωε). Since the function UQ,ε is supported in B := B μ
2ε

(Q), see (30), we can use the coordinate
z in this set, and we obtain

I ′
ε(UQ,ε)[v] =

∫
∂Ωε

∂UQ,ε

∂ν̃
v dσ̃ +

∫
Ωε

(−�g̃UQ,ε + UQ,ε − |UQ,ε |p
)
v dVg̃(z)

� I + II.

Let us now estimate I :

I =
∫

∂UQ,ε

∂ν̃1
v dσ̃1 +

∫
∂UQ,ε

∂ν̃2
v dσ̃2 � I1 + I2.
∂Ωε1 ∂Ωε2
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If K = Kα(Q) denotes the cone of angle equal to the angle of the edge in Q, we have

I1 =
∫

∂K

(
UQ(z)∇ϕμ(εz) · ν̃1 + ϕμ(εz)∇UQ(z) · ν̃1

)
v dσ̃1

=
∫

∂K

UQ(z)∇ϕμ(εz) ·
(

ε
(
AQ(z1, z2)

)+ ε2DQ(z1, z2),−1 + 3

2
ε2
∣∣AQ(z1, z2)

∣∣2)

+ ϕμ(εz)∇UQ(z) ·
(

ε
(
AQ(z1, z2)

)+ ε2DQ(z1, z2),−1 + 3

2
ε2
∣∣AQ(z1, z2)

∣∣2)

× v
(
1 + O

(
ε2
∣∣(z1, z2)

∣∣2))dz1 dz2

� a + b.

Since ∇ϕμ(ε·) is supported in R
3 \ B μ

4ε
(Q) and UQ has an exponential decay, we have that, for ε small,

|a| � Cεe− μ
4ε

∫
∂K

|v|dz1 dz2. (31)

On the other hand

b =
∫

μ
4ε

�|z−Q|� μ
2ε

ϕμ(εz)∇UQ(z) ·
(

ε
(
AQ(z1, z2)

)+ ε2DQ(z1, z2),−1 + 3

2
ε2
∣∣AQ(z1, z2)

∣∣2)

× v
(
1 + O

(
ε2
∣∣(z1, z2)

∣∣2))dz1 dz2

+
∫

|z−Q|� μ
4ε

ϕμ(εz)∇UQ(z) ·
(

ε
(
AQ(z1, z2)

)+ ε2DQ(z1, z2),−1 + 3

2
ε2
∣∣AQ(z1, z2)

∣∣2)

× v
(
1 + O

(
ε2
∣∣(y1, y2)

∣∣2))dy1 dy2

� Cεe− μ
4ε

∫
∂K

|v|dz1 dz2 + Cε

∫
∂K

|∇UQ| · |v|dz1 dz2. (32)

The estimates (31) and (32), and the trace Sobolev inequalities imply |I1| � Cε‖v‖. In the same way we can esti-
mate I2, getting

|I | � Cε‖v‖. (33)

Now let’s evaluate II. Using (11) one has

II =
∫
K

(−�UQ,ε + UQ,ε − |UQ,ε |p
)
v dVg̃(z)

+ ε

∫
K

[
2

(
γ ′′(0)z1 · ∇(z2,z3)

∂UQ,ε

∂z1

)
+ (

γ ′′(0) · ∇(z2,z3)UQ,ε

)]
v dVg̃(z)

+ O
(
ε2)∫

K

(|z1|2
∣∣∇2UQ,ε

∣∣+ |z1|2|∇UQ,ε |
)
v dVg̃(z)

� II1 + εII2 + O
(
ε2)II3.

Since �UQ,ε = UQ�ϕμ(εz) + 2∇UQ · ∇ϕμ(εz) + ϕμ(εz)�UQ and both �ϕμ(ε·) and ∇ϕμ(ε·) are supported in
R

3 \ B μ (Q), we get

4ε
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II1 =
∫

μ
4ε

�|z−Q|� μ
2ε

(−UQ�ϕμ(εz) − 2∇UQ · ∇ϕμ(εz)
)
v
(
1 + O

(
ε|z|))dz

+
∫

μ
4ε

�|z−Q|� μ
2ε

(−ϕμ(εz)�UQ + UQ,ε − |UQ,ε |p
)
v
(
1 + O

(
ε|z|))dz

+
∫

|z−Q|� μ
4ε

(−�UQ + UQ − |UQ|p)v(1 + O
(
ε|z|))dz. (34)

Since UQ is a solution in R
3 the last term in (34) vanishes, and using the exponential decay of UQ at infinity and the

properties of the cut-off function, see (29), one has

|II1| � Ce− μ
4ε

∫
K

|v|dz.

By (30) we can compute also ∇(z2,z3)
∂UQ,ε

∂z1
and ∇(z2,z3)UQ,ε and we have

II2 =
∫
K

2γ ′′(0)z1 ·
[
∇(z2,z3)

∂ϕμ(εz)

∂z1
UQ + ∇(z2,z3)ϕμ(εz)

∂UQ

∂z1

]

+ 2γ ′′(0)z1 ·
[
∂ϕμ(εz)

∂z1
∇(z2,z3)UQ + ϕμ(εz)∇(z2,z3)

∂UQ

∂z1

]
+ γ ′′(0) · [∇(z2,z3)ϕμ(εz)UQ + ϕμ(εz)∇(z2,z3)UQ

]
v dVg̃(z)

=
∫

μ
4ε

�|z−Q|� μ
2ε

2γ ′′(0)z1 ·
[
∇(z2,z3)

∂ϕμ(εz)

∂z1
UQ + ∇(z2,z3)ϕμ(εz)

∂UQ

∂z1
+ ∂ϕμ(εz)

∂z1
∇(z2,z3)UQ

]

+ γ ′′(0) · ∇(z2,z3)ϕμ(εz)UQv dVg̃(z)

+
∫

|z−Q|� μ
2ε

ϕμ(εz)

[
2γ ′′(0)z1 · ∇(z2,z3)

∂UQ

∂z1
+ γ ′′(0) · ∇(z2,z3)UQ

]
v dVg̃(z).

Hence

|II2| � C

∫
μ
4ε

�|z−Q|� μ
2ε

[
2
∣∣γ ′′(0)

∣∣ · |z1|
(

|UQ| +
∣∣∣∣∂UQ

∂z1

∣∣∣∣+ |∇(z2,z3)UQ|
)

+ ∣∣γ ′′(0)
∣∣ · |UQ|

]
|v|dVg̃(z)

+
∫

|z−Q|� μ
2ε

2
∣∣ϕμ(εz)

∣∣ · sup
Q

∣∣γ ′′(0)
∣∣(|z1| ·

∣∣∣∣∇(z2,z3)

∂UQ

∂z1

∣∣∣∣+ |∇(z2,z3)UQ|
)

|v|dVg̃(z).

Using again the exponential decay of UQ at infinity one can estimate the first term by Ce− μ
4ε

∫
K

|v|dz and conclude
that the second term is bounded. In the same way we can estimate II3, getting

|II| � Cε‖v‖. (35)

From (33) and (35) we obtain the conclusion. �
Now, we need a result of non-degeneracy, which allows us to say that the operator I ′′

ε (UQ,ε) is invertible on the
orthogonal complement of TUQ,ε

Zε .

Lemma 4.2. There exists δ̄ > 0 such that for ε small, if α < π , there holds

I ′′
ε (UQ,ε)[v, v] � δ̄‖v‖2, for every v ∈ W 1,2(Ωε), v ⊥ UQ,ε,

∂UQ,ε
,

∂Q
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and, if α > π , there holds

I ′′
ε (UQ,ε)[v, v] � δ̄‖v‖2, for every v ∈ W 1,2(Ωε), v ⊥ UQ,ε, ŨQ,ε

∂UQ,ε

∂Q
,

where ŨQ,ε is defined as UQ,ε in (30).

Proof. Let us consider the case α < π . Let R � 1; consider a radial smooth function χR : R
3 → R such that⎧⎪⎪⎨

⎪⎪⎩
χR(x) = 1 in BR(0),

χR(x) = 0 in R
3 \ B2R(0),

|∇χR| � 2

R
in B2R(0) \ BR(0),

(36)

and set

v1(x) = χR(x − Q)v(x), v2(x) = (
1 − χR(x − Q)

)
v(x).

A straight computation yields

‖v‖2 = ‖v1‖2 + ‖v2‖2 + 2
∫
Ωε

(∇v1 · ∇v2 + v1v2) dx.

We write
∫
Ωε

(∇v1 · ∇v2 + v1v2) dx = γ1 + γ2, where

γ1 =
∫
Ωε

χR(1 − χR)
(
v2 + |∇v|2)dx,

γ2 =
∫
Ωε

(
v2∇v · ∇χR − v1∇v · ∇χR − v2|∇χR|2)dx.

Since the integrand in γ2 is supported in B2R(Q) \ BR(Q), using (36) and the Young’s inequality we obtain that
|γ2| = oR(1)‖v‖2. As a consequence we have

‖v‖2 = ‖v1‖2 + ‖v2‖2 + 2γ1 + oR(1)‖v‖2.

Now let us evaluate I ′′
ε (UQ,ε)[v, v] = σ1 + σ2 + σ3, where

σ1 = I ′′
ε (UQ,ε)[v1, v1], σ2 = I ′′

ε (UQ,ε)[v2, v2], σ3 = 2I ′′
ε (UQ,ε)[v1, v2].

Similarly to the previous estimates, since UQ decays exponentially away from Q, we get

σ2 � C−1‖v2‖2 + oε,R(1)‖v‖2,

σ3 � C−1γ1 + oε,R(1)‖v‖2. (37)

Hence it is sufficient to estimate the term σ1. From the exponential decay of UQ and the fact that v ⊥ UQ,ε,
∂UQ,ε

∂Q
it

follows that

(v1,UQ,ε)W 1,2(Ωε)
= −(v2,UQ,ε)W 1,2(Ωε)

= oε,R(1)‖v‖2,(
v1,

∂UQ,ε

∂Q

)
W 1,2(Ωε)

= −
(

v2,
∂UQ,ε

∂Q

)
W 1,2(Ωε)

= oε,R(1)‖v‖2. (38)

Moreover, since UQ,ε is supported in B := B μ
2ε

(Q), see (30), we can use the coordinate z in this set, and we obtain

(v1,UQ,ε)W 1,2(Ωε)
=
∫

∂Ωε

v1
∂UQ,ε

∂ν̃
v dσ̃ +

∫
Ωε

v1(−�g̃UQ,ε + UQ,ε) dVg̃(z)

= (v1,UQ)W 1,2(K) + oε(1)‖v1‖, (39)
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where K = Kα is the cone of opening angle equal to the angle of Γ in Q. In the same way we can obtain that(
v1,

∂UQ,ε

∂Q

)
W 1,2(Ωε)

=
(

v1,
∂UQ

∂Q

)
W 1,2(K)

+ oε(1)‖v1‖. (40)

From the estimates (38), (39) and (40), we deduce that for R sufficiently large and ε sufficiently small

(v1,UQ)W 1,2(K) = oε,R(1)‖v1‖,(
v1,

∂UQ

∂Q

)
W 1,2(K)

= oε,R(1)‖v1‖.

Now we can apply Lemma 3.1, getting

I ′′(UQ)[v1, v1] � δ‖v1‖W 1,2(K) + oε,R(1).

Then the following estimate holds

σ1 = I ′′(UQ)[v1, v1] + oε(1)‖v1‖ � δ‖v1‖W 1,2(K) + oε,R(1)‖v‖
� δ‖v1‖ + oε,R(1)‖v‖. (41)

In conclusion, from (37) and (41) we deduce

I ′′
ε (UQ,ε)[v, v] � δ‖v‖ + oε,R(1)‖v‖ � δ

2
‖v‖,

provided R is taken large and ε sufficiently small. This concludes the proof.
The case α > π has substantially the same proof, but we have to consider also the function Ũ and use the expo-

nential decay of ũ at infinity, see Remark 3.3. �
The following lemma provides an expansion of the functional Iε(UQ,ε) with respect to Q.

Lemma 4.3. For ε small the following expansion holds

Iε(UQ,ε) = C0α(Q) + O(ε), (42)

where

C0 =
(

1

2
− 1

p + 1

) ∞∫
0

π∫
0

∣∣UQ(r)
∣∣p+1

r sin2 θ dr dθ.

Proof. Since the function UQ,ε is supported in B := B μ
2ε

(Q), see (30), we can use the coordinate z in this set, and
we obtain

Iε(UQ,ε) = 1

2

∫
B∩Ωε

(|∇g̃UQ,ε |2 + U2
Q,ε

)
dVg̃(z) − 1

p + 1

∫
B∩Ωε

|UQ,ε |p+1 dVg̃(z).

Integrating by parts, we get

Iε(UQ,ε) = 1

2

∫
B∩∂Ωε

UQ,ε

∂UQ,ε

∂ν̃
dσ̃ + 1

2

∫
B∩Ωε

UQ,ε(−�g̃UQ,ε + UQ,ε) dVg̃(z)

− 1

p + 1

∫
B∩Ωε

|UQ,ε |p+1 dVg̃(z)

� I + II,

where I is the surface integral over the boundary and II refers to the last two terms. Now, I can be split in two terms
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which correspond to the surface integrals on the “faces” of the edge Γ :

I = 1

2

∫
B∩∂Ωε1

UQ,ε

∂UQ,ε

∂ν̃1
dσ̃1 + 1

2

∫
B∩∂Ωε2

UQ,ε

∂UQ,ε

∂ν̃2
dσ̃2 � I1 + I2.

It is sufficient to evaluate I1, since the estimate of I2 is similar. Using the expression of UQ,ε , see (30), we get

I1 = 1

2

∫
B∩∂Ωε1

UQ,ε

(
UQ∇ϕμ(εz) + ϕμ(εz)∇UQ

) ·
(

ε
(
AQ(z1, z2)

)+ ε2DQ(z1, z2),−1 + 3

2
ε2
∣∣AQ(z1, z2)

∣∣2)

× (
1 + O

(
ε2
∣∣(z1, z2)

∣∣2))dz1 dz2

= 1

2

∫
μ
4ε

�|z−Q|� μ
2ε

ϕμ(εz)U2
Q∇ϕμ(εz) ·

(
ε
(
AQ(z1, z2)

)+ ε2DQ(z1, z2),−1 + 3

2
ε2
∣∣AQ(z1, z2)

∣∣2)

× (
1 + O

(
ε2
∣∣(z1, z2)

∣∣2))dz1 dz2

+ 1

2

∫
|z−Q|� μ

2ε

ϕ2
μ(εz)UQ∇UQ ·

(
ε
(
AQ(z1, z2)

)+ ε2DQ(z1, z2),−1 + 3

2
ε2
∣∣AQ(z1, z2)

∣∣2)

× (
1 + O

(
ε2
∣∣(z1, z2)

∣∣2))dz1 dz2.

Similarly to the previous estimates, we get I1 = O(e− μ
2ε ) + O(ε). Then we obtain that

I = O(ε). (43)

Now, we have to evaluate II:

II = 1

2

∫
B∩Ωε

UQ,ε(−�UQ,ε + UQ,ε)
(
1 + O

(
ε|z|))dz

+ ε

2

∫
B∩Ωε

UQ,ε

[
2γ ′′(0)z1 · ∇(z2,z3)

∂UQ,ε

∂z1
+ γ ′′(0) · ∇(z2,z3)UQ,ε

](
1 + O

(
ε|z|))dz

+ O
(
ε2|z1|2

)− 1

p + 1

∫
B∩Ωε

|UQ,ε |p+1(1 + O
(
ε|z|))dz.

We have

II =
(

1

2
− 1

p + 1

)
α(Q)

∞∫
0

π∫
0

∣∣UQ(r)
∣∣p+1

r sin2 θ dr dθ + O(ε). (44)

Putting together (43) and (44), we obtain (42) and this concludes the proof. �
Let PQ : W 1,2(Ωε) → (TUQ,ε

Zε)
⊥ be the projection onto the orthogonal complement of TUQ,ε

Zε , for all Q on the
edge Γ of ∂Ωε . According to Lemma 4.2, we have that for ε sufficiently small the operator LQ = PQ ◦ I ′′

ε (UQ,ε)◦PQ

is invertible and there exists C > 0 such that∥∥L−1
Q

∥∥� C.

Now, using the fact that I ′′
ε (UQ,ε) is invertible on the orthogonal complement of TUQ,ε

Zε , we will solve the auxiliary
equation.

Proposition 4.4. Let Iε be the functional defined in (7). Then for ε > 0 small there exists a unique w = w(ε,Q) ∈
(TUQ,ε

Zε)
⊥ such that I ′

ε(UQ,ε + w(ε,Q)) ∈ TUQ,ε
Zε . Moreover the function w(ε,Q) is of class C1 with respect to Q
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and there holds

∥∥w(ε,Q)
∥∥� Cε,

∥∥∥∥∂w(ε,Q)

∂Q

∥∥∥∥� Cε. (45)

Proof. We want to find a solution w ∈ (TUQ,ε
Zε)

⊥ of PQI ′
ε(UQ,ε + w) = 0. For every w ∈ (TUQ,ε

Zε)
⊥ we can write

I ′
ε(UQ,ε + w) = I ′

ε(UQ,ε) + I ′′
ε (UQ,ε)[w] + RQ,ε(w),

where RQ,ε(w) is given by

RQ,ε(w) = I ′
ε(UQ,ε + w) − I ′

ε(UQ,ε) − I ′′
ε (UQ,ε)[w].

Given v ∈ W 1,2(Ωε) there holds

RQ,ε(w)[v] = −
∫
Ωε

(|UQ,ε + w|p − |UQ,ε |p − p|UQ,ε |p−1w
)
v dx.

Using the following inequality

∣∣(a + b)p − ap − pap−1b
∣∣� {

C(p)|b|p for p � 2,

C(p)(|b|2 + |b|p) for p > 2,

for a, b ∈ R, |a| � 1, the Hölder’s inequality and the Sobolev embeddings we obtain

∥∥RQ,ε(w)[v]∥∥� C

∫
Ωε

(|w|2 + |w|p)|v|dx � C
(‖w‖2 + ‖w‖p

)‖v‖. (46)

Similarly, from the inequality∣∣(a + b1)
p − (a + b2)

p − pap−1(b1 − b2)
∣∣

�
{

C(p)(|b1|p−1 + |b2|p−1)|b1 − b2| for p � 2,

C(p)(|b1| + |b2| + |b1|p−1 + |b2|p−1)|b1 − b2| for p > 2,

for a, b1, b2 ∈ R, |a| � 1, we get

∥∥RQ,ε(w1)[v] − RQ,ε(w2)[v]∥∥� C

∫
Ωε

(|w1| + |w2| + |w1|p−1 + |w2|p−1)|w1 − w2| · |v|dx

� C
(‖w1‖ + ‖w2‖ + ‖w1‖p−1 + ‖w2‖p−1)‖w1 − w2‖ · ‖v‖. (47)

Now, by the invertibility of the operator LQ = PQ ◦ I ′′
ε (UQ,ε) ◦ PQ, we have that the function w solves

PQI ′
ε(UQ,ε + w) = 0 if and only if

w = −(LQ)−1[PQI ′
ε(UQ,ε) + PQRQ,ε(w)

]
.

Setting

NQ,ε(w) = −(LQ)−1[PQI ′
ε(UQ,ε) + PQRQ,ε(w)

]
,

we have to solve

w = NQ,ε(w).

The norm of I ′
ε(UQ,ε) has been estimated in Lemma 4.1. Then from (46) and (47) we obtain the two relations∥∥NQ,ε(w)
∥∥� C1ε + C2

(‖w‖2 + ‖w‖p
)
, (48)∥∥NQ,ε(w1) − NQ,ε(w2)

∥∥� C
(‖w1‖ + ‖w2‖ + ‖w1‖p−1 + ‖w2‖p−1)‖w1 − w2‖. (49)
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Now, for C̄ > 0, we define the set

WC̄ = {
w ∈ (TUQ,ε

Zε)
⊥: ‖w‖ � C̄ε

}
.

We show that NQ,ε is a contraction in WC̄ for C̄ sufficiently large and for ε small. Clearly, by (48), if C̄ > 2C1 the
set WC̄ is mapped into itself if ε is sufficiently small. Then, if w1,w2 ∈ WC̄ , by (49) there holds∥∥NQ,ε(w1) − NQ,ε(w2)

∥∥� 2C
(
C̄ε + C̄p−1εp−1)‖w1 − w2‖.

Therefore, again if ε is sufficiently small, the coefficient of ‖w1 − w2‖ in the last formula is less than 1. Hence the
Contraction Mapping Theorem applies, yielding the existence of a solution w satisfying the condition

‖w‖ � C̄ε. (50)

This concludes the proof of the existence part.
Now the C1-dependence of the function w on Q follows from the Implicit Function Theorem; see also [2], Propo-

sition 8.7. In order to prove the second estimate in (45), let us consider the map H : R
3 × W 1,2(Ωε) × R × R →

W 1,2(Ωε) × R defined by

H(Q,w,α, ε) =
(

I ′
ε(UQ,ε + w) − α

∂UQ,ε

∂Q

(w,
∂UQ,ε

∂Q
)

)
.

Then w ∈ (TUQ,ε
Zε)

⊥ is a solution of PQI ′
ε(UQ,ε + w) = 0 if and only if H(Q,w,α, ε) = 0. Moreover, for v ∈

W 1,2(Ωε) and β ∈ R, there holds

∂H

∂(w,α)
(Q,w,α, ε)[v,β] =

(
I ′′
ε (UQ,ε + w)[v] − β

∂UQ,ε

∂Q

(v,
∂UQ,ε

∂Q
)

)

=
(

I ′′
ε (UQ,ε)[v] − β

∂UQ,ε

∂Q

(v,
∂UQ,ε

∂Q
)

)
+ O

(‖w‖ + ‖w‖p−1). (51)

To prove the last estimate it is sufficient to use the following inequality

∣∣(a + b)p−1 − ap−1
∣∣� {

C(p)|b|p−1 for p � 2,

C(p)(|b| + |b|p−1) for p > 2,

for a, b ∈ R, |a| � 1, the Hölder’s inequality and the Sobolev embedding. Using the invertibility of the operator
LQ = PQ ◦ I ′′

ε (UQ,ε) ◦ PQ, it is easy to check that ∂H
∂(w,α)

(Q,0,0, ε) is uniformly invertible in Q for ε small. Hence,

by (50) and (51), also ∂H
∂(w,α)

(Q,w,α, ε) is uniformly invertible in Q for ε small. As a consequence, by the Implicit

Function Theorem, the map Q �→ (wQ,αQ) is of class C1. Now we are in position to provide the norm estimate of
∂w(ε,Q)

∂Q
. Differentiating the equation

H(Q,wQ,αQ, ε) = 0

with respect to Q, we obtain

0 = ∂H

∂Q
(Q,w,α, ε) + ∂H

∂(w,α)
(Q,w,α, ε)

∂(wQ,αQ)

∂Q
.

Hence, by the uniform invertibility of ∂H
∂(w,α)

(Q,w,α, ε) it follows that

∥∥∥∥∂(wQ,αQ)

∂Q

∥∥∥∥� C

∥∥∥∥
(

I ′′
ε (UQ,ε + w)[ ∂UQ,ε

∂Q
] − α

∂2UQ,ε

∂Q2

(w,
∂2UQ,ε

∂Q2 )

)∥∥∥∥
� C

(∥∥∥∥I ′′
ε (UQ,ε + w)

[
∂UQ,ε

∂Q

]∥∥∥∥+ |α| ·
∥∥∥∥∂2UQ,ε

∂Q2

∥∥∥∥+ ‖w‖ ·
∥∥∥∥∂2UQ,ε

∂Q2

∥∥∥∥
)

� C

(∥∥∥∥I ′′
ε (UQ,ε + w)

[
∂UQ,ε

]∥∥∥∥+ |α| + ‖w‖ + ε

)
.

∂Q
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Note that α, similarly to w, satisfies |α| � Cε. By the estimate in (51) we obtain∥∥∥∥I ′′
ε (UQ,ε + w)

[
∂UQ,ε

∂Q

]∥∥∥∥�
∥∥∥∥I ′′

ε (UQ,ε)

[
∂UQ,ε

∂Q

]∥∥∥∥+ C
(‖w‖ + ‖w‖p−1).

Using the fact that I ′′(UQ)[ ∂UQ

∂z1
] = 0 we obtain∥∥∥∥I ′′

ε (UQ,ε + w)

[
∂UQ,ε

∂Q

]∥∥∥∥�
∥∥∥∥I ′′

ε (UQ,ε)

[
∂UQ

∂z1

]
− I ′′(UQ)

[
∂UQ

∂z1

]∥∥∥∥+ Cε + C
(‖w‖ + ‖w‖p−1).

For any v ∈ W 1,2(K), one finds∣∣∣∣(I ′′
ε (UQ,ε) − I ′′(UQ)

)[∂UQ

∂z1
, v

]∣∣∣∣� p

∫
K∩Ωε

|UQ,ε − UQ|∂UQ

∂z1
v + Cε.

The last three formulas imply the estimate for ∂w(ε,Q)
∂Q

. This concludes the proof. �
Now we can state the following result, which allows us to perform a finite-dimensional reduction of problem (6)

on the manifold Zε .

Proposition 4.5. The functional Ψε : Zε → R defined by Ψε(Q) = Iε(UQ,ε +w(ε,Q)) is of class C1 in Q and satisfies

Ψ ′
ε(Q) = 0 ⇒ I ′

ε

(
UQ,ε + w(ε,Q)

)= 0.

Proof. This proposition can be proved using the arguments of Theorem 2.12 of [2]. From a geometric point of view,
we consider the manifold

Z̃ε = {
UQ,ε + w(ε,Q): Q ∈ Γ

}
.

Since (45) holds, we have that for ε small

TUQ,ε
Zε ∼ TUQ,ε+w(ε,Q)Z̃ε. (52)

If UQ,ε + w(ε,Q) is a critical point of Iε constrained on Z̃ε , then I ′
ε(UQ,ε + w(ε,Q)) is perpendicular to

TUQ,ε+w(ε,Q)Z̃ε , and hence, from (52), is almost perpendicular to TUQ,ε
Zε . Since, by construction of Z̃ε , it is

I ′
ε(UQ,ε + w(ε,Q)) ∈ TUQ,ε

Zε , it must be I ′
ε(UQ,ε + w(ε,Q)) = 0. This concludes the proof. �

4.1. Proof of Theorem 1.1

First of all we have

Ψε(Q) = Iε

(
UQ,ε + w(ε,Q)

)
= Iε(UQ,ε) + I ′

ε(UQ,ε)
[
w(ε,Q)

]+ O
(∥∥w(ε,Q)

∥∥2)
.

Now, using Lemma 4.1 and the estimate (45) we infer

Ψε(Q) = Iε(UQ,ε) + O
(
ε2).

Hence Lemma 4.3 yields

Ψε(Q) = C0α(Q) + O(ε).

Therefore, if Q ∈ Γ is a local strict maximum or minimum of the function α, the thesis follows from Proposition 4.5.

Acknowledgements

The author has been supported by the project FIRB-Ideas Analysis and Beyond, and wants to thank Andrea Mal-
chiodi for his great help in the preparation of this paper.



126 S. Dipierro / Ann. I. H. Poincaré – AN 28 (2011) 107–126
References

[1] R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
[2] A. Ambrosetti, A. Malchiodi, Perturbation Methods and Semilinear Elliptic Problems on R

n, Progr. Math., vol. 240, Birkhäuser, 2005.
[3] H. Berestycki, P.L. Lions, Nonlinear scalar field equations (part I and part II), Arch. Ration. Mech. Anal. 82 (1983) 313–376.
[4] R.G. Casten, C.J. Holland, Instability results for reaction diffusion equations with Neumann boundary conditions, J. Differential Equa-

tions 27 (2) (1978) 266–273.
[5] I. Chavel, Eigenvalues in Riemannian Geometry, Academic Press, New York, 1984.
[6] E.N. Dancer, J. Wei, On the effect of domain topology in a singular perturbation problem, Topol. Methods Nonlinear Anal. 11 (2) (1998)

227–248.
[7] E.N. Dancer, S. Yan, Multipeak solutions for a singularly perturbed Neumann problem, Pacific J. Math. 189 (2) (1999) 241–262.
[8] M. Del Pino, P. Felmer, J. Wei, On the role of the mean curvature in some singularly perturbed Neumann problems, SIAM J. Math. Anal. 31

(1999) 63–79.
[9] A. Floer, A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal. 69 (1986)

397–408.
[10] J. Garcia Azorero, A. Malchiodi, L. Montoro, I. Peral, Concentration of solutions for some singularly perturbed mixed problems. Part I:

existence results, Arch. Ration. Mech. Anal. 196 (3) (2010) 907–950.
[11] J. Garcia Azorero, A. Malchiodi, L. Montoro, I. Peral, Concentration of solutions for some singularly perturbed mixed problems. Part II:

asymptotic of minimal energy solutions, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010) 37–56.
[12] A. Gierer, H. Meinhardt, A theory of biological pattern formation, Kybernetik (Berlin) 12 (1972) 30–39.
[13] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, London, 1985.
[14] H. Groemer, Geometric Applications of Fourier Series and Spherical Harmonics, Encyclopedia Math. Appl., vol. 61, Cambridge University

Press, Cambridge, 1996.
[15] M. Grossi, Some results on a class of nonlinear Schrödinger equations, Math. Z. 235 (4) (2000) 687–705.
[16] M. Grossi, A. Pistoia, J. Wei, Existence of multipeak solutions for a semilinear Neumann problem via non-smooth critical point theory, Calc.

Var. Partial Differential Equations 11 (2) (2000) 143–175.
[17] C. Gui, Multipeak solutions for a semilinear Neumann problem, Duke Math. J. 84 (3) (1996) 739–769.
[18] C. Gui, J. Wei, Multiple interior peak solutions for some singularly perturbed Neumann problems, J. Differential Equations 158 (1) (1999)

1–27.
[19] C. Gui, J. Wei, On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Canad. J.

Math. 52 (3) (2000) 522–538.
[20] C. Gui, J. Wei, M. Winter, Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal.

Non Linéaire 17 (1) (2000) 47–82.
[21] E.W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics, Chelsea Pub. Co., 1955.
[22] M.K. Kwong, Uniqueness of positive solutions of �u − u + up = 0 in R

n , Arch. Ration. Mech. Anal. 105 (1989) 243–266.
[23] Y.Y. Li, On a singularly perturbed equation with Neumann boundary conditions, Comm. Partial Differential Equations 23 (3–4) (1998) 487–

545.
[24] Y.Y. Li, L. Nirenberg, The Dirichlet problem for singularly perturbed elliptic equation, Comm. Pure Appl. Math. 51 (1998) 1445–1490.
[25] C.S. Lin, W.M. Ni, I. Takagi, Large amplitude stationary solutions to a chemotaxis systems, J. Differential Equations 72 (1988) 1–27.
[26] A. Malchiodi, Concentration of solutions for some singularly perturbed Neumann problems, in: Geometric Analysis and PDEs, in: Lecture

Notes in Math., vol. 1977, Springer, Dordrecht, 2009, pp. 63–115.
[27] H. Matano, Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. Res. Inst. Math. Sci. 15 (1979) 401–454.
[28] C. Müller, Analysis of Spherical Symmetries in Euclidean Spaces, Appl. Math. Sci., vol. 129, Springer-Verlag, New York, 1998.
[29] C. Müller, Spherical Harmonics, Lecture Notes in Math., vol. 17, Springer-Verlag, Berlin/Heidelberg/New York, 1966.
[30] W.M. Ni, Diffusion, cross-diffusion, and their spike-layer steady states, Notices Amer. Math. Soc. 45 (1) (1998) 9–18.
[31] W.M. Ni, X.B. Pan, I. Takagi, Singular behavior of least-energy solutions of a semilinear Neumann problem involving critical Sobolev

exponents, Duke Math. J. 67 (1) (1992) 1–20.
[32] W.M. Ni, I. Takagi, On the shape of least-energy solution to a semilinear Neumann problem, Comm. Pure Appl. Math. 41 (1991) 819–851.
[33] W.M. Ni, I. Takagi, Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J. 70 (1993) 247–281.
[34] W.M. Ni, I. Takagi, E. Yanagida, Stability of least energy patterns of the shadow system for an activator-inhibitor model. Recent topics in

mathematics moving toward science and engineering, Japan J. Indust. Appl. Math. 18 (2) (2001) 259–272.
[35] W.M. Ni, J. Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl.

Math. 48 (7) (1995) 731–768.
[36] J. Shi, Semilinear Neumann boundary value problems on a rectangle, Trans. Amer. Math. Soc. 354 (2002) 3117–3154.
[37] W.A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977) 149–162.
[38] A.M. Turing, The chemical basis of morphogenesis, Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 237 (1952) 37–72.
[39] Z.Q. Wang, On the existence of multiple, single-peaked solutions for a semilinear Neumann problem, Arch. Ration. Mech. Anal. 120 (4)

(1992) 375–399.
[40] J. Wei, On the boundary spike layer solutions of a singularly perturbed semilinear Neumann problem, J. Differential Equations 134 (1) (1997)

104–133.
[41] J. Wei, On the construction of single-peaked solutions to a singularly perturbed semilinear Dirichlet problem, J. Differential Equations 129 (2)

(1996) 315–333.


	Concentration of solutions for a singularly perturbed Neumann problem in non-smooth domains
	Introduction
	Some preliminaries
	Perturbation in critical point theory
	Geometric preliminaries

	Study of the non-degeneracy for the unperturbed problem in the cone
	Proof of Theorem 1.1
	Proof of Theorem 1.1

	Acknowledgements
	References


