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Abstract

We present a generalization of compensated compactness theory to the case of variable and generally discontinuous coefficients,
both in the quadratic form and in the linear, up to the second order, constraints. The main tool is the localization properties for
ultra-parabolic H -measures corresponding to weakly convergent sequences.

Résumé

Nous présentons ici une généralisation de la théorie de la « compacité par compensation ». Le cas d’une forme quadratique
et de contraintes différentielles avec coefficients variables, éventuellement discontinus en espace, est considéré. Ces contraintes
différentielles peuvent être d’ordre un, mais aussi d’ordre deux. Notre outil principal est le principe de localisation pour les H -
mesures ultra-paraboliques associées à des suites de fonctions faiblement convergentes.
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1. Introduction

Recall the classical results of the compensated compactness theory (see [5,10]). Suppose that Ω is an open subset
of R

n, and a sequence ur = (u1r (x), . . . , uNr(x)) ∈ L2(Ω,R
N), r ∈ N, weakly converges to a vector-function u(x) in

L2(Ω,R
N). Assume that asαk are real constants for s = 1, . . . ,m, α = 1, . . . ,N , k = 1, . . . , n, and the sequences of

distributions

N∑
α=1

n∑
k=1

asαk∂xk
uαr , s = 1, . . . ,m, r ∈ N, (1.1)
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are strongly precompact in the space H−1
loc (Ω)

.= W−1
2,loc(Ω). Hereafter, we denote by W−1

p,loc(Ω), 1 � p � ∞ the
locally convex space consisting of distributions v ∈ D′(Ω) such that the distribution f v belongs to the Sobolev space
W−1

p
.= W−1

p (Rn) for all f (x) ∈ C∞
0 (Ω). The topology in W−1

p,loc(Ω) is generated by the family of semi-norms
u → ‖uf ‖

W−1
p

, f (x) ∈ C∞
0 (Ω). Introduce the set

Λ =
{

λ ∈ R
N

∣∣∣ ∃ξ ∈ R
n, ξ �= 0:

N∑
α=1

n∑
k=1

asαkλαξk = 0, ∀s = 1, . . . ,m

}
.

Now, let q(u) = ∑N
α,β=1 qαβuαuβ be a quadratic functional on R

N such that q(λ) � 0 for all λ ∈ Λ, and q(ur) ⇀ v

weakly in the sense of distributions on Ω (in D′(Ω)).
Then, under the above assumptions,

q
(
u(x)

)
� v in D′(Ω)

(the weak low semicontinuity). In particular, if q(λ) = 0 on Λ then v = q(u).
In this paper we generalize this result to the case when the differential constraints may contain second order terms,

while all the coefficients are variable and may be discontinuous. Thus, assume that a sequence ur(x) is bounded in
L

p

loc(Ω,R
N), 2 � p � ∞ and converges weakly in D′(Ω) to a vector-function u(x) as r → ∞. Let d = p/(p − 1) if

p < ∞, and d > 1 if p = ∞. Assume that the sequences

N∑
α=1

n∑
k=1

∂xk
(asαkuαr) +

N∑
α=1

n∑
k,l=ν+1

∂xkxl
(bsαkluαr ), s = 1, . . . ,m (1.2)

are pre-compact in the anisotropic Sobolev space W
−1,−2
d,loc (Ω), which will be defined later in Section 2. Here ν is an

integer number between 0 and n, and the coefficients asαk = asαk(x), bsαkl = bsαkl(x) belong to the space L
2q

loc(Ω),
q = p/(p − 2) (q = 1 in the case p = ∞) if p > 2, and to the space C(Ω) if p = 2. One example is given by p = ∞,
q = 1 and corresponds to the case when the functions ur(x) are uniformly locally bounded.

We introduce the set Λ (here i = √−1 ):

Λ = Λ(x)

=
{

λ ∈ C
N

∣∣∣ ∃ξ ∈ R
n, ξ �= 0:

N∑
α=1

(
i

ν∑
k=1

asαk(x)ξk −
n∑

k,l=ν+1

bsαkl(x)ξkξl

)
λα = 0, ∀s = 1, . . . ,m

}
. (1.3)

Consider the quadratic form q(x,u) = Q(x)u · u, where Q(x) is a symmetric matrix with coefficients qαβ(x), α,β =
1, . . . ,N and u · v denotes the scalar multiplication on R

N . The form q(x,u) can be extended as Hermitian form on
C

N by the standard relation

q(x,u) =
N∑

α,β=1

qαβ(x)uαuβ,

where we denote by u the complex conjugation of u ∈ C. We suppose that the coefficients qαβ(x) ∈ L
q

loc(Ω) if p > 2,
and qαβ(x) ∈ C(Ω) if p = 2.

Now, let the sequence q(x,ur) ⇀ v as r → ∞ weakly in D′(Ω). Since for each α,β = 1, . . . ,N the sequences
uαr(x)uβr (x) are bounded in L

p/2
loc (Ω) (here p/2 = ∞ for p = ∞) then, passing to a subsequence if necessary, we

may claim that

uαr(x)uβr (x) ⇀
r→∞ ζαβ(x)

weakly in L
p/2
loc (Ω) if p > 2 (hereafter, the weak convergence in L∞

loc(Ω) is understood in the sense of the weak-∗
topology), and weakly in the space Mloc(Ω) of locally finite measures on Ω if p = 2. In view of the relation 1

q
+ 2

p
= 1

this implies that



E.Yu. Panov / Ann. I. H. Poincaré – AN 28 (2011) 47–62 49
q(x,ur) ⇀
r→∞

N∑
α,β=1

qαβ(x)ζαβ(x)

weakly in Mloc(Ω) (weakly in L1
loc(Ω) if p > 2) and therefore

v(x) =
N∑

α,β=1

qαβ(x)ζαβ(x).

In particular, v = v(x) ∈ L1
loc(Ω) for p > 2 and v ∈ Mloc(Ω) for p = 2.

Our main result is the following

Theorem 1.1. Assume that q(x,λ) � 0 for all λ ∈ Λ(x), x ∈ Ω . Then q(x,u(x)) � v (in the sense of measures).

To prove Theorem 1.1 we will use the techniques of H -measures. Let

F(u)(ξ) =
∫
Rn

e−2πiξ ·xu(x) dx, ξ ∈ R
n,

be the Fourier transformation extended as a unitary operator on the space L2(Rn), let S = Sn−1 = {ξ ∈ R
n | |ξ | = 1}

be the unit sphere in R
n.

The concept of an H -measure corresponding to some sequence of vector-valued functions bounded in L2(Ω)

was introduced by Tartar [11] and Gérard [4] on the basis of the following result. For r ∈ N let Ur(x) =
(U1

r (x), . . . ,UN
r (x)) ∈ L2(Ω,RN) be a sequence weakly convergent to the zero vector.

Proposition 1.1. (See [11, Theorem 1.1].) There exists a family of complex Borel measures μ = {μαβ}Nα,β=1 in Ω × S

and a subsequence of Ur(x) (still denoted Ur ) such that

〈
μαβ,Φ1(x)Φ2(x)ψ(ξ)

〉 = lim
r→∞

∫
Rn

F
(
Uα

r Φ1
)
(ξ)F

(
U

β
r Φ2

)
(ξ)ψ

(
ξ

|ξ |
)

dξ (1.4)

for all Φ1(x),Φ2(x) ∈ C0(Ω) and ψ(ξ) ∈ C(S).

The family μ = {μαβ}Nα,β=1 is called the H -measure corresponding to Ur(x).

In [1] the new concept of parabolic H -measures was introduced. Here we need the more general variant of this
concept recently developed in [6]. Suppose that X ⊂ R

n is a linear subspace, X⊥ is its orthogonal complement, P1,P2

are orthogonal projections on X, X⊥, respectively. We denote for ξ ∈ R
n, ξ̃ = P1ξ , ξ̄ = P2ξ , so that ξ̃ ∈ X, ξ̄ ∈ X⊥,

ξ = ξ̃ + ξ̄ .

Definition 1. Under the above notations we define the set

SX = {
ξ ∈ R

n
∣∣ |ξ̃ |2 + |ξ̄ |4 = 1

}
and the projection πX : R

n \ {0} → SX

πX(ξ) = ξ̃

(|ξ̃ |2 + |ξ̄ |4)1/2
+ ξ̄

(|ξ̃ |2 + |ξ̄ |4)1/4
.

Obviously, SX is a compact smooth manifold of codimension 1, in the case when X = {0} or X = R
n, it coincides

with the unit sphere S = {ξ ∈ R
n | |ξ | = 1} and then πX(ξ) = ξ/|ξ | is the orthogonal projection on the sphere.

The following analogue of Proposition 1.1 holds.
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Proposition 1.2. There exist a family of complex Borel measures μ = {μαβ}Nα,β=1 in Ω × SX and a subsequence of
Ur(x) (still denoted by Ur ) such that for all Φ1(x),Φ2(x) ∈ C0(Ω), ψ(ξ) ∈ C(SX)

〈
μαβ,Φ1(x)Φ2(x)ψ(ξ)

〉 = lim
r→∞

∫
Rn

F
(
Φ1U

α
r

)
(ξ)F

(
Φ2U

β
r

)
(ξ)ψ

(
πX(ξ)

)
dξ. (1.5)

Besides, the matrix-valued measure μ is Hermitian and positive definite, that is, for each ζ = (ζ1, . . . , ζN) ∈ C
n the

measure μζ · ζ = ∑N
α,β=1 μαβζαζβ � 0.

For completeness we give the proof of Proposition 1.2 in Appendix A.

Definition 2. The family μαβ , α,β = 1, . . . ,N , is called the ultra-parabolic H -measure corresponding to a subspace
X ⊂ R

n and a subsequence Ur(x).

Remark 1.1. We can replace the function ψ(πX(ξ)) in relation (1.5) by a function ψ̃(ξ) ∈ C(Rn), which equals
ψ(πX(ξ)) for large |ξ |. Indeed, since Φ2(x) is a function with compact support, Φ2U

β
r ⇀

r→∞ 0 weakly in L2(Rn)

as well as in L1(Rn). Therefore, F(Φ2U
β
r )(ξ) −−−→r→∞ 0 point-wise and in L2

loc(R
n) (in view of the bound

|F(Φ2U
β
r )(ξ)| � ‖Φ2U

β
r ‖1 � const). Taking into account that the function χ(ξ) = ψ̃(ξ) − ψ(πX(ξ)) is bounded

and has a compact support, we conclude that

F
(
Φ2U

β
r

)
(ξ)χ(ξ) −−−→r→∞ 0 in L2(

R
n
)
.

This implies that

lim
r→∞

∫
Rn

F
(
Φ1U

α
r

)
(ξ)F

(
Φ2U

β
r

)
(ξ)χ(ξ) dξ = 0.

Therefore,

lim
r→∞

∫
Rn

F
(
Φ1U

α
r

)
(ξ)F

(
Φ2U

β
r

)
(ξ)ψ̃(ξ) dξ = lim

r→∞

∫
Rn

F
(
Φ1U

α
r

)
(ξ)F

(
Φ2U

β
r

)
(ξ)ψ

(
πX(ξ)

)
dξ

= 〈
μαβ,Φ1(x)Φ2(x)ψ(ξ)

〉
,

as required.

In Section 3 we establish the following localization principle for the ultra-parabolic H -measure corresponding to
the subspace X = R

ν and a subsequence of Ur = ur − u.

Theorem 1.2 (Localization principle). For each s = 1, . . . ,m; β = 1, . . . ,N

N∑
α=1

Psα(x, ξ)μαβ = 0,

where

Psα(x, ξ) = 2πi

ν∑
k=1

asαk(x)ξk − 4π2
n∑

k,l=ν+1

bsαkl(x)ξkξl.

Remark 1.2. Observe that the first order term in Psα(x, ξ) contains only variables ξ1, . . . , ξν while the corresponding
differential operators in (1.2) contain all first order derivatives ∂xk

, k = 1, . . . , n.
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Remark 1.3. The localization principle for “usual” H -measure (corresponding to the subspace X = {0}) yields
psα(x, ξ)μαβ = 0, s = 1, . . . ,m; β = 1, . . . ,N , where

psα(x, ξ) =
n∑

k,l=ν+1

bsαkl(x)ξkξl

are the principal symbols of the differential operators in (1.2). This easily follows from Theorem 1.2 with ν = 0, see
also [3, Lemma 2.10] in the case p = 2.

Remark also that for ν = n, p = 2 the statement of Theorem 1.2 coincides with the classic localization principle
by Tartar [11, Theorem 1.6]. As was demonstrated in [11], this localization principle allows to deduce the classic
compensated compactness results.

Remark 1.4. Actually, our compensated compactness result is an easy consequence of Theorem 1.2. This is important
that we use ultra-parabolic H -measures. The localization principle for “usual” H -measure (see Remark 1.3 above)
yields the compensated compactness for the quadratic functionals nonnegative on the set

Λ(x) =
{

λ ∈ C
N

∣∣∣ ∃ξ ∈ R
n, ξ �= 0:

N∑
α=1

n∑
k,l=ν+1

bsαkl(x)ξkξlλα = 0, ∀s = 1, . . . ,m

}
.

Obviously, Λ(x) = C
N in the case ν > 0 and the assertion q(x,u(x)) � v is trivial in this case.

The structure of this paper is following. In the next section we study some properties of ultra-parabolic H -measures
and introduce anisotropic Sobolev spaces. Section 3 is devoted to the proofs of our main results. In Section 4 we give
an application of the compensated compactness theory to a property of weak completeness for the set of generalized
solutions to the semi-linear parabolic equation

L(u) = ∂tu −
n∑

k,l=1

∂xkxl

(
akl(t, x)g(t, x,u)

) = f.

Finally, in Appendix A we produce the proof of Proposition 1.2.

2. Preliminaries

Let the sequence Ur = {Uα
r }Nα=1 converge weakly as r → ∞ to the zero vector, let it be bounded in L

p

loc(Ω,R
N),

p � 2, and let μ = {μαβ}Nα,β=1 be an ultra-parabolic H -measure corresponding to this sequence. We define η = Trμ =∑N
α=1 μαα . As follows from Proposition 1.2, η is a locally finite nonnegative measure on Ω ×SX . We assume that this

measure is extended on σ -algebra of η-measurable sets, and in particular that this measure is complete. We denote by
γ the projection of η on Ω , that is, γ (A) = η(A × SX) if the set A × SX is η-measurable. Obviously, γ is a complete
locally finite measure on Ω , γ � 0. Under the above assumptions the following statements hold.

Proposition 2.1.

(i) As r → ∞

|Ur |2 =
N∑

α=1

∣∣Uα
r (x)

∣∣2
⇀ γ

weakly in Mloc(Ω); if p > 2 then γ ∈ L
p/2
loc (Ω) (here we identify γ and the corresponding density γ̃ of γ with

respect to the Lebesgue measure dx, so that γ = γ̃ (x) dx), and |Ur |2 ⇀ γ(x) weakly in L
p/2
loc (Ω);

(ii) The H -measure μ is absolutely continuous with respect to η, more precisely, μ = H(x, ξ)η, where H(x, ξ) =
{hαβ(x, ξ)}Nα,β=1 is a bounded η-measurable function taking values in the cone of positive definite Hermitian

N × N matrices, besides |hαβ(x, ξ)| � 1.
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Proof. By the Plancherel identity and relation (1.5) with ψ ≡ 1

∫
Ω

Φ1(x)Φ2(x)|Ur |2 dx =
N∑

α=1

∫
Rn

F
(
Φ1U

α
r

)
(ξ)F

(
Φ2Uα

r

)
(ξ) dξ −−−→r→∞

〈
η(x, ξ),Φ1(x)Φ2(x)

〉

= 〈
γ,Φ1(x)Φ2(x)

〉
.

Since any function Φ(x) ∈ C0(Ω) can be represented in the form Φ(x) = Φ1(x)Φ2(x) (for instance, one can take
Φ1(x) = Φ(x), Φ2(x) being arbitrary function in C0(Ω) equal to 1 on suppΦ1(x)), we conclude that |Ur |2 ⇀ γ as
r → ∞ weakly in Mloc(Ω). In the case p > 2 (here p/2 = ∞ if p = ∞) the sequence |Ur |2 is bounded in L

p/2
loc (Ω),

and we conclude that γ ∈ L
p/2
loc (Ω). The first assertion is proved.

To prove (ii), remark firstly that μαα � η for all α = 1, . . . ,N . Now, suppose that α,β ∈ {1, . . . ,N}, α �= β . By
Proposition 1.2 for any compact set B ⊂ Ω × SX the matrix(

μαα(B) μαβ(B)

μαβ(B) μββ(B)

)

is positive-definite; in particular,∣∣μαβ(B)
∣∣ �

(
μαα(B)μββ(B)

)1/2 � η(B).

By regularity of measures μαβ and η this estimate is satisfied for all Borel sets B . This easily implies the inequality
Varμαβ � η. In particular, the measures μαβ are absolutely continuous with respect to η, and by the Radon–Nykodim
theorem μαβ = hαβ(x, ξ)η, where the densities hαβ(x, ξ) are η-measurable and, as follows from the inequalities
Varμαβ � η, |hαβ(x, ξ)| � 1 η-a.e. on Ω × SX . We denote by H(x, ξ) the matrix with components hαβ(x, ξ). Recall
that the H -measure μ is positive definite. This means that for all ζ ∈ C

N

μζ · ζ = H(x, ξ)ζ · ζη � 0. (2.1)

Hence H(x, ξ)ζ · ζ � 0 for η-a.e. (x, ξ) ∈ Ω ×SX . Choose a countable dense set E ⊂ C
N . Since E is countable, then

it follows from (2.1) that for a set (x, ξ) ∈ Ω × SX of full η-measure H(x, ξ)ζ · ζ � 0, ∀ζ ∈ E, and since E is dense
we conclude that actually H(x, ξ)ζ · ζ � 0 for all ζ ∈ C

N . Thus, the matrix H(x, ξ) is Hermitian and positive definite
for η-a.e. (x, ξ). After an appropriate correction on a set of null η-measure, we can assume that the above property
is satisfied for all (x, ξ) ∈ Ω × SX , and also |hαβ(x, ξ)| � 1 for all (x, ξ) ∈ Ω × SX , α,β = 1, . . . ,N . The proof is
complete. �
Corollary 2.1. Suppose that the sequence Ur = {Uα

r }Nα=1 is bounded in L
p

loc(Ω,R
N), p > 2. Let q = p/(p − 2) (as

usual we set q = 1 if p = ∞), and let L
2q

0 (Ω) be the space of functions in L2q(Ω) having compact supports. Then

relation (1.5) still holds for all functions Φ1(x),Φ2(x) ∈ L
2q

0 (Ω), ψ(ξ) ∈ C(SX).

Proof. Let K be a compact subset of Ω and Φ1(x),Φ(x) ∈ L2q(K). The functions from L2q(K) are supposed to be
extended on Ω as zero functions outside of K . Using the Plancherel identity and the Hölder inequality (observe that
1

2q
+ 1

p
= 1

2 ), we get the following estimate∣∣∣∣
∫
Rn

F
(
Φ1U

α
r

)
(ξ)F

(
Φ2U

β
r

)
(ξ)ψ

(
πX(ξ)

)
dξ

∣∣∣∣ � ‖ψ‖∞
∥∥Φ1U

α
r

∥∥
2

∥∥Φ2U
β
r

∥∥
2

� (CK)2‖ψ‖∞ · ‖Φ1‖2q‖Φ2‖2q, (2.2)

where CK = supr∈N ‖Ur‖Lp(K). On the other hand, by Proposition 2.1

∣∣〈μαβ,Φ1(x)Φ2(x)ψ(ξ)
〉∣∣ = ∣∣〈η,hαβ(x, ξ)Φ1(x)Φ2(x)ψ(ξ)

〉∣∣ � ‖ψ‖∞
∫
Ω

∣∣Φ1(x)Φ2(x)
∣∣γ (x)dx

� ‖ψ‖∞‖γ ‖Lp/2(K)‖Φ1‖2q‖Φ2‖2q (2.3)
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(in the last estimate we used again the Hölder inequality). Estimates (2.2), (2.3) show that both sides of relation (1.5)
are continuous with respect to (Φ1,Φ2) ∈ (L2q(K))2. Since (1.5) holds for Φ1,Φ2 ∈ C0(K) and the space C0(K) is
dense in L2q(K), we claim that (1.5) holds for each Φ1(x),Φ2(x) ∈ L2q(K). To conclude the proof, it only remains
to notice that K is an arbitrary compact subset of Ω . �

We will need in the sequel some results about Fourier multipliers in spaces Ld , d > 1. Recall (see for instance
[2,9]) that a function a(ξ) ∈ L∞(Rn) is a Fourier multiplier in Ld if the pseudo-differential operator A with the
symbol a(ξ), defined as F(Au)(ξ) = a(ξ)F (u)(ξ), u = u(x) ∈ L2(Rn) ∩ Ld(Rn) can be extended as a bounded
operator on Ld(Rn), that is

‖Au‖d � C‖u‖d, ∀u ∈ L2(
R

n
) ∩ Ld

(
R

n
)
, C = const .

We denote by Md the set of Fourier multipliers in Ld .
Let X be a linear subspace of R

n, and let πX : R
n → SX be the projection indicated in Definition 1. Recall that for

ξ ∈ R
n the notations ξ̃ , ξ̄ are used for orthogonal projections of ξ onto the spaces X and X⊥, respectively: ξ̃ = P1ξ ,

ξ̄ = P2ξ (see Introduction).
The following proposition was proved in [6, Proposition 6].

Proposition 2.2. The following functions are multipliers in spaces Ld for all d > 1:

(i) a1(ξ) = ψ(πX(ξ)) where ψ ∈ Cn(SX);
(ii) a2(ξ) = ρ(ξ)(1 + |ξ̃ |2 + |ξ̄ |4)1/2(|ξ̃ |2 + |ξ̄ |4)−1/2, where ρ(ξ) ∈ C∞(Rn) is a function such that 0 � ρ(ξ) � 1,

ρ(ξ) = 0 for |ξ̃ |2 + |ξ̄ |4 � 1, ρ(ξ) = 1 for |ξ̃ |2 + |ξ̄ |4 � 2;
(iii) a3(ξ) = (1 + |ξ |2)1/2(1 + |ξ̃ |2 + |ξ̄ |4)−1/2;
(iv) a4(ξ) = (1 + |ξ̃ |2 + |ξ̄ |4)1/2(1 + |ξ |2)−1.

Now we define the anisotropic Sobolev space W
−1,−2
d .

Definition 3. (See [6].) The space W
−1,−2
d consists of distributions u(x) such that

(
1 + |ξ̃ |2 + |ξ̄ |4)−1/2

F(u)(ξ) = F(v)(ξ), v = v(x) ∈ Ld
(
R

n
)
.

This is a Banach space with the norm ‖u‖ = ‖v‖d .

Using Proposition 2.2(iii), (iv) one can easily prove that the space W
−1,−2
d lays between the spaces W−1

d and W−2
d ,

that is the following statement holds (see [6, Proposition 7]):

Proposition 2.3. For each d > 1 W−1
d ⊂ W

−1,−2
d ⊂ W−2

d and the both embeddings are continuous.

We also introduce the local space W
−1,−2
d,loc (Ω) consisting of distributions u(x) such that uf (x) belongs to W

−1,−2
d

for all f (x) ∈ C∞
0 (Ω). The space W

−1,−2
d,loc (Ω) is a locally convex space with the topology generated by the family

of semi-norms u �→ ‖uf ‖
W

−1,−2
d

, f (x) ∈ C∞
0 (Ω). Analogously, we define the spaces W−1

d,loc(Ω), W−2
d,loc(Ω). As it

readily follows from Proposition 2.3, W−1
d,loc ⊂ W

−1,−2
d,loc ⊂ W−2

d,loc and these embeddings are continuous.
We will need also the following statement, which is rather well known (see, for example, [6, Lemma 6]).

Lemma 2.1. Let Ur(x) be a sequence bounded in L2(Rn) ∩ L1(Rn) and weakly convergent to zero; let a(ξ) be a
bounded function on R

n such that a(ξ) → 0 as |ξ | → ∞. Then a(ξ)F (Ur)(ξ) −−−→r→∞ 0 in L2(Rn).

3. Localization principle and proof of Theorem 1.1

Suppose that the sequence ur(x) converges weakly to u(x) in L
p

(Ω,R
N), and the sequences of distributions
loc
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N∑
α=1

n∑
k=1

∂xk
(asαkuαr) +

N∑
α=1

n∑
k,l=ν+1

∂xkxl
(bsαkluαr ), r ∈ N, s = 1, . . . ,m,

are pre-compact in the anisotropic Sobolev space W
−1,−2
d,loc (Ω), where d > 1 is indicated in the Introduction. We

will also assume that d � 2. This assumption is not restrictive, because of the natural embeddings W
−1,−2
d,loc (Ω) ⊂

W
−1,−2
d1,loc (Ω) for each d1 < d . Let Ur = ur(x)−u(x) = (U1

r , . . . ,UN
r ), Uα

r = uαr(x)−uα(x). Then Ur ⇀ 0 as r → ∞
weakly in L2

loc(Ω,R
N). Therefore, after extraction of a subsequence (still denoted Ur ), we can assume that the ultra-

parabolic H -measure μ = {μαβ}Nα,β=1 corresponding to the subspace

X = R
ν = {

ξ = (ξ1, . . . , ξν,0, . . . ,0) ∈ R
n
}

is well defined.
We are going to prove Theorem 1.2 (localization principle), asserting that for each s = 1, . . . ,m; β = 1, . . . ,N

N∑
α=1

Psα(x, ξ)μαβ = 0,

where

Psα(x, ξ) = 2πi

ν∑
k=1

asαk(x)ξk − 4π2
n∑

k,l=ν+1

bsαkl(x)ξkξl.

Proof of Theorem 1.2. Since the coefficients asαk(x), bsαkl(x) belong to L
2q

loc(Ω), and 1
2q

+ 1
p

= 1
2 , the sequences

asαkU
α
r , bsαklU

α
r converge to zero as r → ∞ weakly in L2

loc(Ω) and the sequences of distributions

Lsr
.=

N∑
α=1

n∑
k=1

∂xk

(
asαkU

α
r

) +
N∑

α=1

n∑
k,l=ν+1

∂xkxl

(
bsαklU

α
r

)
, r ∈ N, s = 1, . . . ,m,

converge weakly to zero. Using the pre-compactness of these sequences in W
−1,−2
d,loc (Ω), we find that Lsr → 0 as

r → ∞ in W
−1,−2
d,loc (Ω). We choose Φ1(x) ∈ C∞

0 (Ω) and consider the distributions

lsr = ∂xk

(
asαkΦ1U

α
r − 2bsαklU

α
r ∂xl

Φ1
) + ∂xkxl

(
bsαklΦ1U

α
r

)
. (3.1)

To simplify the notation, we use here and below the conventional rule of summation over repeated indexes, and
suppose that the coefficients bsαkl are defined for all k, l = 1, . . . , n with bsαkl = 0 if min(k, l) � ν. We can also
assume that bsαkl = bsαlk for k, l = 1, . . . , n. Then, as it is easy to compute,

lsr = Φ1 Lsr + asαkU
α
r ∂xk

Φ1 − bsαklU
α
r ∂xkxl

Φ1. (3.2)

Since the coefficients asαk(x), bsαkl(x) belong to L
2q

loc(Ω), and 1
2q

+ 1
p

= 1
2 , the sequences asαkU

α
r ∂xk

Φ1,

bsαklU
α
r ∂xkxl

Φ1 are bounded in L2(Rn). Noticing that the function Φ1(x) has a compact support, we see that these
sequences are bounded also in Ld(Rn) for all s = 1, . . . ,m, and they weakly converge to zero as r → ∞. There-
fore, they converge to zero strongly in W−1

d (Rn) and, in view of Proposition 2.3, also in W
−1,−2
d (Rn). By our

assumptions, Φ1 Lsr → 0 as r → ∞ in W
−1,−2
d (Rn). Hence, it follows from the above limit relations and (3.2) that

lsr → 0 as r → ∞ in W
−1,−2
d (Rn). Applying the Fourier transformation to this relation and then multiplying by

(1 + |ξ̃ |2 + |ξ̄ |4)−1/2, we arrive at

(
1 + |ξ̃ |2 + |ξ̄ |4)−1/2(2πiξkF

(
asαkΦ1U

α
r

)
(ξ) − 4πiξkF

(
bsαklU

α
r ∂xl

Φ1
)
(ξ) − 4π2ξ̄k ξ̄lF

(
bsαklΦ1U

α
r

)
(ξ)

)
= F(vsr )(ξ), (3.3)
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where vsr → 0 as r → ∞ in Ld(Rn). We take also into account that

ξkξlF
(
bsαklΦ1U

α
r

)
(ξ) =

n∑
k,l=ν+1

ξkξlF
(
bsαklΦ1U

α
r

)
(ξ) = ξ̄k ξ̄lF

(
bsαklΦ1U

α
r

)
(ξ).

By Proposition 2.2(ii), we have

a2(ξ) = ρ(ξ)
(
1 + |ξ̃ |2 + |ξ̄ |4)1/2(|ξ̃ |2 + |ξ̄ |4)−1/2 ∈ Md.

Therefore, it follows from (3.3) that

ρ(ξ)
(|ξ̃ |2 + |ξ̄ |4)−1/2(2πiξkF

(
asαkΦ1U

α
r

)
(ξ) − 4πiξkF

(
bsαklU

α
r ∂xl

Φ1
)
(ξ) − 4π2ξ̄k ξ̄lF

(
bsαklΦ1U

α
r

)
(ξ)

)
= a2(ξ)F (vsr )(ξ) = F(wsr )(ξ), (3.4)

wsr → 0 as r → ∞ in Ld(Rn) for all s = 1, . . . ,m. Since

ρ(ξ)|ξ̄ |2
(|ξ̃ |2 + |ξ̄ |4)1/2

� 1,

ρ(ξ)|ξ |
(|ξ̃ |2 + |ξ̄ |4)1/2

� ρ(ξ)
|ξ̃ | + |ξ̄ |

(|ξ̃ |2 + |ξ̄ |4)1/2
� 1 + min

(|ξ̄ |, |ξ̄ |−1) � 2

(recall that 0 � ρ(ξ) � 1, and ρ(ξ) = 0 for |ξ̃ |2 + |ξ̄ |4 � 1), and F(asαkΦ1U
α
r )(ξ),F (bsαklΦ1U

α
r )(ξ),

F (bsαklU
α
r ∂xl

Φ1)(ξ) ∈ L2(Rn), we see that F(wsr)(ξ) ∈ L2(Rn), which implies that wsr ∈ L2(Rn) as well.
Since bsαkl = 0 for k � ν,

ξ̃kF
(
bsαklU

α
r ∂xl

Φ1
)
(ξ) =

ν∑
k=1

ξkF
(
bsαklU

α
r ∂xl

Φ1
)
(ξ) = 0. (3.5)

Now, observe that for each k the function

a(ξ) = ρ(ξ)ξ̄k

(|ξ̃ |2 + |ξ̄ |4)1/2
,

satisfies the assumption of Lemma 2.1. Indeed, this follows from the estimate

∣∣a(ξ)
∣∣ � ρ(ξ)

(|ξ̃ |2 + |ξ̄ |4)−1/4 |ξ̄ |
(|ξ̃ |2 + |ξ̄ |4)1/4

� ρ(ξ)
(|ξ̃ |2 + |ξ̄ |4)−1/4

.

Since the sequences asαkΦ1U
α
r , bsαklU

α
r ∂xl

Φ1 are bounded in L2(Rn) ∩ L1(Rn) and weakly converge to zero as
r → ∞, then by Lemma 2.1

ρ(ξ)

(|ξ̃ |2 + |ξ̄ |4)1/2
ξ̄kF

(
asαkΦ1U

α
r

)
(ξ) −−−→r→∞ 0 in L2(

R
n
)
, (3.6)

ρ(ξ)

(|ξ̃ |2 + |ξ̄ |4)1/2
ξ̄kF

(
bsαklU

α
r ∂xl

Φ1
)
(ξ) −−−→r→∞ 0 in L2(

R
n
)
. (3.7)

It follows from (3.5), (3.7) that

ρ(ξ)

(|ξ̃ |2 + |ξ̄ |4)1/2
ξkF

(
bsαklU

α
r ∂xl

Φ1
)
(ξ) −−−→r→∞ 0 in L2(

R
n
)
. (3.8)

Let Φ2(x) ∈ C0(R
n), ψ(ξ) ∈ Cn(SX). Since the sequence Φ2U

β
r is bounded in Lp(Ω) and supported in the compact

suppΦ2, and d ′ = d/(d − 1) � p, this sequence is also bounded in L2(Rn) ∩ Ld ′
(Rn). By Proposition 2.2(i) for a

fixed β = 1, . . . ,N , ψ(πX(ξ))F (Φ2U
β
r )(ξ) = F(gr)(ξ), where the sequence gr is bounded in L2(Rn)∩Ld ′

(Rn). We

multiply (3.4) by ψ(πX(ξ))F (Φ2U
β
r )(ξ) and integrate the result over ξ ∈ R

n. Passing then to the limit as r → ∞ and
taking into account relations (3.6), (3.8), we arrive at
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lim
r→∞

∫
Rn

ρ(ξ)(2πiξ̃kF (asαkΦ1U
α
r )(ξ) − 4π2ξ̄k ξ̄lF (bsαklΦ1U

α
r )(ξ))

(|ξ̃ |2 + |ξ̄ |4)1/2
× F

(
Φ2U

β
r

)
ψ

(
πX(ξ)

)
dξ

= lim
r→∞

∫
Rn

F (wsr)(ξ)F (gr )(ξ) dξ = lim
r→∞

∫
Rn

wsr (x)gr(x) dx = 0. (3.9)

On the other hand, by relation (1.5), Remark 1.1 and Corollary 2.1 (in the case p > 2), we see that

lim
r→∞

∫
Rn

ρ(ξ)(2πiξ̃kF (asαkΦ1U
α
r )(ξ) − 4π2ξ̄k ξ̄lF (bsαklΦ1U

α
r )(ξ))

(|ξ̃ |2 + |ξ̄ |4)1/2
× F

(
Φ2U

β
r

)
ψ

(
πX(ξ)

)
dξ

= 〈
μαβ,

(
2πiasαk(x)ξ̃k − 4π2bsαkl(x)ξ̄kξ̄l

)
Φ1(x)Φ2(x)ψ(ξ)

〉
.

Then it follows from (3.9) that〈
μαβ,Psα(x, ξ)Φ1(x)Φ2(x)ψ(ξ)

〉 = 0, (3.10)

where

Psα(x, ξ) = 2πiasαk(x)ξ̃k − 4π2bsαkl(x)ξ̄k ξ̄l = 2πi

ν∑
k=1

asαk(x)ξk − 4π2
n∑

k,l=ν+1

bsαkl(x)ξkξl.

We underline that the functions Psα(x, ξ)Φ1(x)Φ2(x)ψ(ξ) are measurable and locally integrable with respect to the
measure η. This is evident in the case p = 2 (then asαk, bsαkl ∈ C(Ω)) while in the case p > 2 this readily follows
from Proposition 2.1, from the assumptions asαk, bsαkl ∈ L

2q

loc(Ω), and from the inequality 1
2q

+ 2
p

< 1
q

+ 2
p

= 1.
Since the functions Φ1(x) ∈ C∞

0 (Ω), Φ2(x) ∈ C0(Ω), ψ(ξ) ∈ Cn(SX) are arbitrary, we derive from (3.10) that
Psα(x, ξ)μαβ = 0 for each s = 1, . . . ,m, β = 1, . . . ,N . The proof is complete. �

By Proposition 2.1 the H -measure μ admits the representation μ = H(x, ξ)η, where H(x, ξ) = {hαβ(x, ξ)}Nα,β=1
is a Hermitian matrix.

Corollary 3.1. For η-a.e. (x, ξ) ∈ Ω × SX the image of H(x, ξ) is contained in Λ(x).

Proof. By Theorem 1.2 Psα(x, ξ)hαβ(x, ξ)η = 0. This can be written as P(x, ξ)H(x, ξ) = 0, where P(x, ξ) is an
m × N matrix with components Psα . Therefore, for η-a.e. (x, ξ) ∈ Ω × SX , ImH(x, ξ) ⊂ kerP(x, ξ). Now notice
that if λ = (λ1, . . . , λN) ∈ C

N belongs to kerP(x, ξ) then

N∑
α=1

(
i

ν∑
k=1

asαk(x)2πξk −
n∑

k,l=ν+1

bsαkl(x)2πξk2πξl

)
λα = 0

for all s = 1, . . . ,m. Remark that 2πξ �= 0 because of the inclusion ξ ∈ SX . Hence, λ ∈ Λ(x). We conclude that
kerP(x, ξ) ⊂ Λ(x), and ImH(x, ξ) ⊂ kerP(x, ξ) ⊂ Λ(x), as was to be proved. �

Now we are ready to prove our main Theorem 1.1.

Proof of Theorem 1.1. Since H = H(x, ξ) � 0 there exists a unique Hermitian matrix R = R(x, ξ) = H 1/2 such
that R � 0 and H = R2. By the known properties of Hermitian matrices kerR = kerH , which readily implies that
ImR = ImH . By Corollary 3.1 we claim that ImR(x, ξ) ⊂ Λ(x) for η-a.e. (x, ξ) ∈ Ω × SX . Now we represent the
coefficients qαβ(x) of the quadratic form q(x,u) as qαβ(x) = q

(1)
αβ (x)q

(2)
αβ (x), where for j = 1,2, q

(j)
αβ (x) ∈ L

2q

loc(Ω) if

p > 2, and q
(j)
αβ (x) ∈ C(Ω) if p = 2. For instance, we can set

q
(1)
αβ (x) = ∣∣qαβ(x)

∣∣1/2 signqαβ(x), q
(2)
αβ (x) = ∣∣qαβ(x)

∣∣1/2
.

Taking into account Corollary 2.1, we find that for real Φ(x) ∈ C0(Ω)
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∫
Ω

(
Φ(x)

)2
q
(
x,Ur(x)

)
dx =

∫
Rn

q
(1)
αβ (x)Φ(x)Uα

r (x)q
(2)
αβ (x)Φ(x)Uβ

r (x) dx

=
∫
Rn

F
(
Φq

(1)
αβ Uα

r

)
(ξ)F

(
Φq

(2)
αβ U

β
r

)
(ξ) dξ −−−→r→∞

〈
μαβ,

(
Φ(x)

)2
qαβ(x)

〉

=
∫

Ω×SX

(
Φ(x)

)2
qαβ(x)hαβ(x, ξ) dη(x, ξ). (3.11)

Since H = R2 then hαβ(x, ξ) = rαj rβj , where rij = rij (x, ξ), i, j = 1, . . . ,N are components of matrix R. Therefore,

qαβ(x)hαβ = qαβ(x)rαj rβj =
N∑

j=1

Q(x)Rej ·Rej , (3.12)

where {ej }Nj=1 is the standard basis in C
N . Since Rej ∈ ImR ⊂ Λ(x) then it follows from the assumption of Theo-

rem 1.1 that Q(x)Rej ·Rej � 0 for η-a.e. (x, ξ) ∈ Ω × SX . In view of (3.12) we find that qαβ(x)hαβ(x, ξ) � 0 for
η-a.e. (x, ξ) ∈ Ω × SX . Now, it readily follows from (3.11) that

lim
r→∞

∫
Ω

(
Φ(x)

)2
q
(
x,Ur(x)

)
dx � 0 (3.13)

for all real Φ(x) ∈ C0(Ω).
In view of the weak convergence ur ⇀ u, q(x,ur(x)) ⇀ v as r → ∞,

q
(
x,Ur(x)

) = q
(
x,ur(x)

) + q
(
x,u(x)

) − 2 Re
(
Q(x)ur(x) · u(x)

)
⇀ v − q

(
x,u(x)

)
weakly in Mloc(Ω), and we derive from (3.13) that〈

v − q
(
x,u(x)

)
dx,

(
Φ(x)

)2〉 � 0.

Since (Φ(x))2 is an arbitrary nonnegative function in C0(Ω), this implies that q(x,u(x)) � v. The proof is com-
plete. �
Corollary 3.2. Suppose that q(x,λ) = 0 for all λ ∈ Λ(x), x ∈ Ω . Then v = q(x,u(x)), that is, the functional
u → q(x,u) is weakly continuous.

Proof. Applying Theorem 1.1 to the quadratic forms ±q(x,u), we obtain the inequalities ±v � ±q(x,u(x)), which
readily imply that v = q(x,u(x)). �
Remark 3.1. In the particular case ν = n relations (1.2) are reduced to the requirement that the sequences of distribu-
tions

Lsr =
N∑

α=1

n∑
k=1

∂xk

(
asαk(x)uαr

)
, s = 1, . . . ,m

are pre-compact in W−1
d,loc(Ω). In applications to conservation laws, it usually happens that the sequences uαr are

bounded in L∞
loc(Ω) (so that p = ∞) while the sequences Lsr are bounded in Mloc(Ω). Since the space Mloc(Ω) is

compactly embedded in W−1
d,loc(Ω) for d < n/(n − 1) then condition (1.2) is satisfied.

In the case ν = 0 the statement of Theorem 1.1 is a compensated compactness result under the second order
constraints

Lsr =
N∑

α=1

n∑
k,l=1

∂xkxl

(
bsαkl(x)uαr

)
, s = 1, . . . ,m,

which are required to be pre-compact in W−2
d,loc(Ω). Observe also that in each of the cases ν = n,0 the set Λ(x) may

be defined as a subset of real space R
N .
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4. Some applications

We consider the parabolic operator

L(u) = ∂tu −
n∑

k,l=1

∂xkxl

(
akl(t, x)g(t, x,u)

)
, u = u(t, x), (t, x) ∈ Ω = (0,+∞) × V,

V being an open subset of R
n. It is assumed that for u = u(t, x)

u, g(t, x,u) ∈ L
p

loc(Ω), 2 � p � ∞,

while

akl = akl(t, x) ∈ L
2q

loc(Ω), where q = p/(p − 2), p > 2,

and

akl ∈ C(Ω) if p = 2.

The matrix A(t, x) = {akl(t, x)}nk,l=1 is supposed to be symmetric and strictly positive: A(t, x)ξ · ξ > 0, ∀ξ ∈ R
n,

ξ �= 0. The function g(t, x,u) is a Caratheodory function on Ω × R, non-strictly increasing with respect to the
variable u.

Assume that the sequences ur(t, x), g(t, x,ur(t, x)), r ∈ N are bounded in L
p

loc(Ω). Also suppose that ur ⇀ u =
u(t, x) as r → ∞ weakly in D′(Ω) while fr = L(ur) → f strongly in W

−1,−2
d,loc (Ω), where the latter space corresponds

to the subspace X = {(ξ0,0, . . . ,0)} ⊂ R
n+1, here (ξ0, ξ1, . . . , ξn) are the dual variables (ξ0 corresponds to the time

variable t ), and d = p/(p − 1) (d > 1 in the case p = ∞).

Theorem 4.1. Under the above assumptions, L(u) = f in D′(Ω). In addition, the sequence g(t, x,ur(t, x)) converges
to g(t, x,u(t, x)) as r → ∞ strongly in L1

loc(Ω).

Proof. Let u1r = ur(t, x), u2r = g(t, x,ur(t, x)). Passing to a subsequence if necessary, we can assume that
u2r (t, x) ⇀ ũ2 = ũ2(t, x) weakly as r → ∞. Then the sequence (u1r , u2r ) converges weakly to (ũ1, ũ2) ∈
L

p

loc(Ω,R
2) with ũ1 = u(t, x). Further, it satisfies the condition that the sequence of distributions

fr = ∂tu1r −
n∑

k,l=1

∂xkxl

(
akl(t, x)u2r

)

is pre-compact in W
−1,−2
d,loc (Ω). In accordance with (1.3), we define the set Λ = Λ(t, x):

Λ = {
(λ1, λ2) ∈ C

2
∣∣ ∃(ξ0, ξ) ∈ (

R × R
n
) \ {0}, iξ0λ1 + (

A(t, x)ξ · ξ)
λ2 = 0

}
.

Since (A(t, x)ξ · ξ) > 0 for ξ �= 0 then Λ = {(λ1, λ2) ∈ C
2 | Reλ1λ2 = 0}. Therefore, the quadratic functional q =

q(u) = (u1u2 + u2u1)/2 is zero for u = λ ∈ Λ. By Corollary 3.2 (observe that all the assumptions of this corollary
are satisfied) we claim that

q(u1r , u2r ) = u1ru2r ⇀
r→∞q(ũ1, ũ2) = ũ1ũ2 (4.1)

weakly in Mloc(Ω). Since the function g(t, x,u) increases with respect to u then for every k, r ∈ N,
(g(t, x, uk) − g(t, x,ur))(uk − ur) � 0, where uk = uk(t, x), ur = ur(t, x). Passing in this inequality to the weak
limit as k → ∞ and taking into account that by (4.1)

ukg(t, x,uk) = u1ku2k ⇀
k→∞ ũ1ũ2,

we find that
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0 �
(
g(t, x,uk) − g(t, x,ur)

)
(uk − ur)

= ukg(t, x,uk) − ukg(t, x,ur) − g(t, x,uk)ur + urg(t, x,ur)

⇀
k→∞ ũ1ũ2 − ũ1g(t, x,ur) − ũ2ur + urg(t, x,ur)

= (
ũ2 − g(t, x,ur)

)
(ũ1 − ur).

Therefore, (ũ2 − g(t, x,ur))(ũ1 − ur) � 0. By (4.1) again(
ũ2 − g(t, x,ur)

)
(ũ1 − ur) = ũ1ũ2 + u1ru2r − ũ1u2r − ũ2u1r ⇀

r→∞ 0

weakly in Mloc(Ω). Since the sequence (ũ2 − g(t, x,ur))(ũ1 − ur) � 0 is nonnegative, we claim that it converges to
zero strongly: (ũ2 − g(t, x,ur))(ũ1 − ur) → 0 in L1

loc(Ω).
Extracting again a subsequence (still denoted by ur ), we may suppose that the Young measure νt,x corresponding

to this subsequence is well defined. Recall that a Young measure νt,x on Ω is a weakly measurable map (t, x) → νt,x

of Ω into the space Prob(R) of probability measures on R. The weak measurability means that for each bounded
continuous function p(λ) the function (t, x) → ∫

p(λ)dνt,x(λ) is Lebesgue measurable on Ω . It is known (see,
for example, [8]) that the Young measure corresponding to ur satisfies the property that whenever the sequence
ψ(t, x,ur(t, x)) converges weakly in L1

loc(Ω) for a Caratheodory function ψ(t, x,λ), its weak limit is the function

ψ̄(t, x) =
∫

ψ(t, x,λ) dνt,x(λ).

Moreover, νt,x(λ) = δ(λ − u(t, x)), where δ(λ − u) is the Dirac mass at u, if and only if ur → u in L1
loc(Ω). Since

ur ⇀ ũ1 = u(t, x), g(t, x,ur) ⇀ ũ2(t, x) weakly in L1
loc(Ω), and (ũ2 − g(t, x,ur))(ũ1 − ur) → 0 even strongly in

L1
loc(Ω), then these limit functions admit the representations:

ũ1 =
∫

λdνt,x(λ), ũ2 =
∫

g(t, x, λ) dνt,x(λ), 0 =
∫ (

ũ2 − g(t, x, λ)
)
(ũ1 − λ)dνt,x(λ).

It follows from these equalities that for a.e. (t, x) ∈ Ω

u(t, x)

∫
g(t, x, λ) dνt,x(λ) = ũ1(t, x)ũ2(t, x) =

∫
λg(t, x,λ) dνt,x(λ).

It is reduced to the equality∫ (
λ − u(t, x)

)
g(t, x, λ) dνt,x(λ) = 0,

and since
∫
(λ − u(t, x)) dνt,x(λ) = 0, we arrive at the relation∫ (

λ − u(t, x)
)(

g(t, x, λ) − g
(
t, x, u(t, x)

))
dνt,x(λ)

=
∫ (

λ − u(t, x)
)
g(t, x, λ) dνt,x(λ) − g

(
t, x, u(t, x)

) ∫ (
λ − u(t, x)

)
dνt,x(λ) = 0 (4.2)

for a.e. (t, x) ∈ Ω . Taking into account the fact that the function g(t, x, λ) is non-decreasing with respect to λ, we
derive from (4.2) that for a.e. (t, x) ∈ Ω , g(t, x, λ) = g(t, x,u(t, x)) on suppνt,x . Therefore,

ũ2 =
∫

g(t, x, λ) dνt,x(λ) = g
(
t, x, u(t, x)

)
almost everywhere in Ω . Hence, in the limit as r → ∞

L(ur) ⇀ L(u) = ∂tu −
n∑

k,l=1

∂xkxl

(
akl(t, x)g(t, x,u)

)
in D′(Ω).

Since L(ur) = fr ⇀ f as r → ∞ in D′(Ω), we conclude that L(u) = f . Besides, the image of νt,x under the map
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u → g(t, x,u) coincides with the Dirac measure δ(λ − g(t, x,u(t, x))):

ν̃t,x(λ)
.= (

g(t, x, ·)∗νt,x

)
(λ) = δ

(
λ − g

(
t, x, u(t, x)

))
.

It is easy to see that ν̃t,x(λ) is the Young measure corresponding to the sequence g(t, x,ur(t, x)). Since this
Young measure coincides with δ(λ − g(t, x,u(t, x))), we conclude that the sequence g(t, x,ur(t, x)) converges to
g(t, x,u(t, x)) strongly in L1

loc(Ω). Finally, observe that the limit function does not depend on the prescribed above
choice of a subsequence. Therefore, g(t, x,ur(t, x)) also converges strongly to g(t, x,u(t, x)) for the original se-
quence ur . The proof is complete. �
Remark 4.1. In the case when the function g(t, x,u) is strictly monotone we deduce from Theorem 4.1 the strong
pre-compactness property for weak solutions of the equation L(u) = f = f (t, x) ∈ W

−1,−2
loc (Ω), which satisfy the

equation in D′(Ω). Notice that for entropy solutions of this equation the strong pre-compactness property follows
from general results of [6,7].
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Appendix A. The proof of Proposition 1.2

Denote

Iαβ
r (Φ1,Φ2,ψ) =

∫
Rn

F
(
Φ1U

α
r

)
(ξ)F

(
Φ2U

β
r

)
(ξ)ψ

(
πX(ξ)

)
dξ

and observe that, by the Buniakovskii inequality and the Plancherel identity,∣∣Iαβ
r

∣∣ � ‖Φ1‖∞‖Φ2‖∞‖ψ‖∞ · ∥∥Uα
r

∥∥
L2(K)

∥∥Uβ
r

∥∥
L2(K)

,

where K ⊂ Ω is a compact containing supports of Φ1 and Φ2. In view of the weak convergence of sequences Uα
r in

L2(K) these sequences are bounded in L2(K). Therefore, for some constant CK we have ‖Uα
r ‖2

L2(K)
� CK for all

r ∈ N, α = 1, . . . ,N . Hence,∣∣Iαβ
r (Φ1,Φ2,ψ)

∣∣ � CK‖Φ1‖∞‖Φ2‖∞‖ψ‖∞ (A.1)

and the sequences I
αβ
r are bounded. Let D be a countable dense set in (C0(Ω))2 ×C(SX). Using the standard diagonal

process, we can extract a subsequence Ur (we keep the notation Ur for this subsequence) such that

Iαβ
r (Φ1,Φ2,ψ) −−−→r→∞ Iαβ(Φ1,Φ2,ψ) (A.2)

for all triples (Φ1,Φ2,ψ) ∈ D. By estimate (A.1) we see that sequences I
αβ
r (Φ1,Φ2,ψ) are uniformly continuous

with respect to (Φ1,Φ2,ψ) ∈ (C0(Ω))2 × C(SX) and since D is dense in (C0(Ω))2 × C(SX), we conclude that limit
relation (A.2) holds for all Φ1(x),Φ2(x) ∈ C0(Ω), ψ(ξ) ∈ C(SX). Passing in (A.1) to the limit as r → ∞, we derive
that for all Φ1(x),Φ2(x) ∈ C0(Ω), ψ(ξ) ∈ C(SX)∣∣Iαβ(Φ1,Φ2,ψ)

∣∣ � CK‖Φ1‖∞‖Φ2‖∞‖ψ‖∞, (A.3)

with K = suppΦ1 ∪ suppΦ2. Now, we observe that

Iαβ
r (Φ1,Φ2,ψ) = (

Φ1U
α
r , A

(
Φ2U

β
r

))
2, (A.4)

where A is a pseudo-differential operator on L2 = L2(Rn) with symbol ψ(πX(ξ)), and (·,·)2 is the scalar product
in L2. Let B be a pseudo-differential operator on L2 with symbol Φ2(x), and let ω(x) ∈ C0(R

n) be a function such
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that ω(x) ≡ 1 on suppΦ2. Then

A
(
Φ2U

β
r

) = A B
(
ωUβ

r

) = B A
(
ωUβ

r

) + [A, B](ωUβ
r

)
. (A.5)

By [6, Lemma 2] the operator [A, B] is compact on L2 and since ωU
β
r ⇀ 0 as r → ∞ weakly in L2, we claim

that [A, B](ωU
β
r ) → 0 as r → ∞ strongly in L2. Since the sequence Φ1U

α
r is bounded in L2, we conclude that

(Φ1U
α
r , [A, B](ωU

β
r ))2 → 0 as r → ∞. It follows from this limit relation and (A.4), (A.5) that

lim
r→∞

(
Φ1U

α
r , B A

(
ωUβ

r

))
2 = lim

r→∞ Iαβ
r (Φ1,Φ2,ψ) = Iαβ(Φ1,Φ2,ψ).

Taking into account that(
Φ1U

α
r , B A

(
ωUβ

r

))
2 =

∫
Rn

Φ1(x)Φ2(x)Uα
r (x)A

(
ωU

β
r

)
(x) dx,

we find that

Iαβ(Φ1,Φ2,ψ) = Ĩ αβ(Φ1Φ2,ψ),

where Ĩ αβ(Φ,ψ) is a bilinear functional on C0(Ω) × C(SX) for each α,β = 1, . . . ,N . Taking in the above relation
Φ1 = Φ(x)/

√|Φ(x)| (we set Φ1(x) = 0 if Φ(x) = 0), Φ2 = √|Φ(x)|, where Φ(x) ∈ C0(Ω), we find with the help
of (A.3) that∣∣Ĩ αβ(Φ,ψ)

∣∣ = ∣∣Iαβ(Φ1,Φ2,ψ)
∣∣ � CK‖Φ1‖∞‖Φ2‖∞‖ψ‖∞

= CK‖Φ‖∞‖ψ‖∞, K = suppΦ.

This estimate shows that the functionals Ĩ αβ(Φ,ψ) are continuous on C0(Ω) × C(SX). Now, we observe that for
nonnegative Φ(x) and ψ(ξ) the matrix Ĩ

.= {Ĩ αβ(Φ,ψ)}Nα,β=1 is Hermitian and positive definite. Indeed, taking

Φ1(x) = Φ2(x) = √
Φ(x), we find

Ĩ αβ(Φ,ψ) = Iαβ(Φ1,Φ1,ψ) = lim
r→∞

∫
Rn

F
(
Φ1U

α
r

)
(ξ)F

(
Φ1U

β
r

)
(ξ)ψ

(
πX(ξ)

)
dξ. (A.6)

For ζ = (ζ1, . . . , ζN ) ∈ C
N we have, in view of (A.6),

Ĩ ζ · ζ =
N∑

α,β=1

Ĩ αβ(Φ,ψ)ζαζβ = lim
r→∞

∫
Rn

∣∣F(Φ1Vr)(ξ)
∣∣2

ψ
(
πX(ξ)

)
dξ � 0,

where Vr(x) = ∑N
α=1 Uα

r ζα . The above relation proves that the matrix Ĩ is Hermitian and positive definite.
We see that for any ζ ∈ C

n the bilinear functional Ĩ (Φ,ψ)ζ · ζ is continuous on C0(Ω)×C(SX) and nonnegative,
that is, Ĩ (Φ,ψ)ζ · ζ � 0 whenever Φ(x) � 0, ψ(ξ) � 0. It is rather well known (see for example [11, Lemma 1.10]),
that such a functional is represented by integration over some unique locally finite nonnegative Borel measure μ =
μζ (x, ξ) ∈ Mloc(Ω × SX):

Ĩ (Φ,ψ)ζ · ζ =
∫

Ω×SX

Φ(x)ψ(ξ) dμζ (x, ξ).

As a function of the vector ζ , μζ is a measure valued Hermitian form. Therefore,

μζ =
N∑

α,β=1

μαβζαζβ (A.7)

with measure valued coefficients μαβ ∈ Mloc(Ω × SX), which can be expressed as follows

μαβ = [μeα+eβ + iμeα+ieβ ]/2 − (1 + i)(μeα + μeβ )/2,

where e1, . . . , eN is the standard basis in C
N , and i2 = −1.
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By (A.7)

Ĩ (Φ,ψ)ζ · ζ =
l∑

α,β=1

〈
μαβ,Φ(x)ψ(ξ)

〉
ζαζβ

and since

Ĩ (Φ,ψ)ζ · ζ =
l∑

α,β=1

Ĩ αβ(Φ,ψ)ζαζβ,

then, comparing the coefficients, we find that〈
μαβ,Φ(x)ψ(ξ)

〉 = Ĩ αβ(Φ,ψ). (A.8)

In particular,

〈
μαβ,Φ1(x)Φ2(x)ψ(ξ)

〉 = Iαβ(Φ1,Φ2,ψ) = lim
r→∞

∫
Rn

F
(
Φ1U

α
r

)
(ξ)F

(
Φ2U

β
r

)
(ξ)ψ

(
πX(ξ)

)
dξ.

To complete the proof, observe that for each ζ ∈ C
N the measure

N∑
α,β=1

μαβζαζβ = μζ � 0.

Hence, μ is Hermitian and positive definite.
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