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Abstract

We prove the existence of a positive and radially increasing solution for a semilinear Neumann problem on a ball. No growth
conditions are imposed on the nonlinearity. The method introduces monotonicity constraints which simplify the existence of a min-
imizer for the associated functional. Special care must be employed to establish the validity of the Euler equation.
© 2010 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

Résumé

On démontre 1’existence d’une solution positive et radialement croissante pour un probleme de Neumann semilinéaire sur une
boule. Aucune restriction de croissance n’est imposée sur la nonlinéarité. La méthode indroduit des contraintes de monotonie
qui simplifient la preuve de I’existence d’un minimum pour la fonctionnelle associée a 1’équation. Une attention particuliere est
consacrée a la preuve de la validité de 1’équation d’Euler.

© 2010 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction and statement of the main result

In this paper we consider the Neumann problem

—Au+u =a(|x|)f(u) in Bg,

u=>0 in Bg, €))
ou

— =0 on dBg,

ov

where By, is the ball of radius R centered at zero in RY, with N > 2.
The function f is assumed to behave superlinearly, and our principal scope is to prove, under qualitative assump-
tions on a, an existence result without any restriction on the growth of f. This generality usually prevents the use of
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variational methods; nevertheless we will show that the problem can still be treated variationally, and, more precisely,
that a solution can be obtained by a variational principle on the set of radially increasing functions.

In trying to prove existence results for nonlinear elliptic problems, it is common wisdom to exploit the characteristic
features of the equation under study to gain useful properties. For example, if a problem (equation and boundary
conditions) is invariant under rotation, it is quite natural, as a first try, to work in the space of radially symmetric
functions. Then the problem becomes essentially one-dimensional and, for instance, compactness properties are not
only much easier to establish, but often hold under less restrictive assumptions. In this case everything works fine in
the variational approach because of the Principle of Symmetric Criticality by Palais [8]. This means, loosely speaking,
that constraining the problem to the space of radial functions does not prevent one to establish the validity of the Euler
equation. One also says that this type of constraint is a natural constraint: constrained critical points (of the energy
functional) are indeed free critical points.

This sort of arguments work generally well when the problem is invariant under the action of some group of
symmetries, but may fail to be applicable in more general situations. For example, in some cases it is natural to expect
a solution enjoying a certain property, but one cannot work directly in the set of functions satisfying that property. The
reason for this is that the set to which one constrains the problem may not contain enough functions to prove that the
differential of the energy functional vanishes at a supposedly “critical” point.

Problems like (1) have been studied extensively in the literature, and particularly in the case a =1 and f(u) =
2
u% see for example [5,6,1,2,7,10] and the rich list of references provided by these papers. In contrast, nonau-

tonomous problems, where a is not constant, and even with power nonlinearities, do not seem to have been deeply
investigated in the supercritical case (with the exception of singularly perturbed problems, see for example [4] and the
references therein). The only nonperturbative result that we are aware of is that of [3], which is concerned with the
Neumann problem for the Hénon equation

—Au+u=|x|uP.

In [3] the authors prove, by a shooting method, that the problem has a positive and radially increasing solution for
every p > 1 and o > 0. The proof of the existence result in [3] makes great use of the fact that the function r > r¢
vanishes at = 0. Also the particularity that all the functions (of r and ) involved are powers plays a relevant role.

If one neglects the technical aspects, the proof in [3] suggests that if the function |x|* is replaced by some a(|x|),
increasing in |x|, and if the power nonlinearity is substituted by some more general f (u), the qualitative structure of
the problem should not be affected too much. In particular under some reasonable assumptions of this kind, one is led
to conjecture that problem (1) should admit an increasing solution.

The central point addressed by the present paper is the following. In absence of growth conditions on f, the
variational approach seems useless, since the functional associated to the problem is not well defined on H'(Bg),
and not even on Hrla +(BRr). But we are looking for radially increasing solutions. If we could confine ourselves to
radially increasing functions only, then the action functional would turn out to be well defined on Hrla +(BRr), because
nonnegative radially increasing H' functions are bounded. In this case it could be possible to recast the problem into
a variational framework, which is so useful in dealing with subcritical equations. However, a major obstacle has to
be faced: are there enough radially increasing functions to prove that the differential of the action functional, say at
a constrained minimum point, vanishes? At first sight one is tempted to answer this question in the negative. On the
contrary, we shall see that under suitable conditions, a variational approach in the set of radially increasing functions
is possible, and does indeed lead to a solution of (1).

The precise setting is the following. Throughout the paper we make the following assumptions:

(H1) a € L'(0, R) is increasing, not constant and a(r) > 0 a.e. in [0, R];

(H2) f e C'([0,+00)), f(0)=0and f'(0) =0;
(H3) f/(t)t — f() > 0forallt > 0;
(H4) there exists > 2 such that f(¢£)t > uF(t) := /,Lfot f(s)ds for all t € [0, +00).

Assumptions (H2)-(H4) are quite standard when one deals with elliptic problems from a variational point of view
(though they can still be slightly relaxed). The point here is the absence of any upper bound on the growth of f.
Our main result is the following.
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Theorem 1.1. Assume that (H1)-(H4) hold. Then problem (1) admits at least one radially increasing solution.

Remark 1.2. We have stated the result for nonlinearities of the form a(|x|) f («) mainly because the assumptions can
be expressed in a very simple form. It is not difficult to show that the same result holds for nonlinearities like f(|x/|, u),
provided (H1)—(H4) are suitably adapted.

Power nonlinearities satisfy (H2)—(H4). Therefore we obtain directly from the preceding theorem the following
corollary.

Corollary 1.3. Assume that a € LY0, R) is increasing, not constant and satisfies a(r) > 0 a.e. in [0, R]. Then for
every p > 1 the problem

—Au+u=a(|x))uP in Bg,

u>0 in Bg,

9 2
— =0 on 0BgR,

v

admits at least one radially increasing solution.

We point out that, apart from the existence result, we believe that the method by which the result is proved is quite
interesting, and should have a wider range of applicability than that shown here. In particular, variational methods
on spaces of monotone functions do not seem to be a standard tool: the only example we are aware of, though in a
different context, is the paper [9]. Some extensions to other types of equations will be the object of further research.

Notation. Open balls of center zero and radius r in R are denoted by B,. For any radial function u, we write freely
u(x), with x € Bg, or u(r), with r € [0, R]. The symbol |lu|| denotes the standard H'(Bg) norm, while lull », with
p €[1, +oc], stands for the L? norm on Bg. Finally, the scalar product in H! (BR) is denoted by (u, v).

2. Minimizing over monotone functions

We begin by listing, for further reference, some properties of f and F that we will use frequently throughout the
paper, and that can be deduced directly from (H2)—(H4).

The functions f and F are strictly increasing on [0, +00) and positive on (0, +00). As t — 0%, f(¢) = o(¢) and
F(t)= 0(t2). Finally, there exists a constant C > 0 such that

fr>=Ct" and F(r) >Ct* Vi>1. 3)
Our ambient set is that of radially increasing functions. We define

M= {u € Hrlad(BR) \ u(r) =20, u(r) <u(s) foreveryr,s €[0,R], r <s }

Remark 2.1. Since we are working with radial functions in H'!(Bg), we can assume that any function u is continuous
on (0, R], and since u is increasing and nonnegative, continuity can be guaranteed also at zero by defining u(0) =
lim, _, o+ u(r), and we will tacitly use this fact throughout the paper.

The main advantage of working in the set M is that concentration phenomena are prevented, as is pointed out in
the next statement.

Lemma 2.2. There exists a positive constant C, depending only on R and on the dimension, such that

lulloo < Cllull  VYu e M. “4)
Proof. Fix p € (0, R). Since any # € M is nonnegative and increasing, we have

lelloo = el o5, < C el 5, < Clull

by the continuity of the embedding of Hr]ad(BR \ l_?p) into L*°(Bg \ Ep). O
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We now define a functional / : M — R by

tw=y [vatdr+3 [ = [ae)Fo i

Bg Bg Bg
1
= z||u||2—/a(|x|)F(u)dx.

Br

Note that the last integral is well defined on M because M C L°°(Bg). Clearly, working on M allows one to define /
without growth conditions on f; on the other hand, it is by no means clear why constrained minimizer should solve
the Euler equation (1).

In general, the functional / will not be bounded from below on M. To overcome this difficulty we use a standard
procedure in Critical Point Theory, that consists in restricting / to a set where it becomes bounded from below. The
set we use is the following version of “Nehari manifold”: we define

N={ueM‘u¢O, ||u||2=/a(|x|)f(u)udx}.

Bg

This set has been used quite frequently in the literature. Under standard assumptions it can be proved that it is a man-
ifold diffeomorphic to the unit sphere of H!. In the present case some of these standard assumptions are missing, and
are substituted by others. Moreover, since we are working on M, the set A/ does not look like the sphere of Hrla 4(BR).
Hence, for completeness, we prove all the properties that we need.

Lemma 2.3. The set N is not empty. In particular, for every u € M, u # 0, there exists t > 0 such that tu € N.
Proof. Letu € M, u # 0. We show that there exists ¢ > 0 such that tu € A/, namely such that

2 ul? - /a(|x|)f(tu)tu dx =0. (5)
Bg

Let y : [0, +00) — R be the function of ¢ defined by the left-hand side of (5). We have to prove that y vanishes at
some positive ?.

Now f(t) =o(t) ast — 0", and u € L (Bg). Therefore, for every & > 0, there exists § > 0 such that |fu(x)| < §
implies 0 < f(tu(x)) < etu(x).

Hence, for every 0 < ¢ < .

lulloo *

0< /a(lxl)f(tu)tu dx < etz/a(lxl)uzdx <et*|lul|%llall = Cet?.
Bg Bpg
Therefore,
y (@) =1 |u))* ~ Cer® > 0

for ¢ and ¢ positive and small. We have proved that y is positive in a right neighborhood of zero.
Next, since # > 0 and u # 0, there exist « > 0 and a set E C Bg of positive measure such that u(x) > « for all
xeE. By(@3),fort >1/a,

fa(|x|)f(tu)tu dx > Ct“/a(|x|)u“ dx,
Bg E

which is finite because u € L°°(Bg). Then,

y () <2 lull® - Ct“/a(lxl)u“dx e
E

as t — 400, because > 2.
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The function y, being continuous, must then have a positive zero #y. This means that tou € . O

We now define
c= inf I(u),
ueN
and we prove that c is a positive number. Note that on NV, the functional I reads

1
I(u) = E/a(|x|)f(u)udx—/a(|x|)F(u)dx.

Br Bgr
Lemma 2.4. There results ¢ > 0.

Proof. We first prove that
inf flu||® > 0. 6
. NII l (©6)

To see this, we assume that there exists a sequence u,, of elements of A/ such that |u, || — 0 as n — oo, and we seek
a contradiction.
Letting C be the constant defined in (4), we have from Lemma 2.2

IIMn||2=/a(|x|)f(un)undx <f(llunlloo)llunlloo/a(IXI)dx

Br Br
< f(Clunll)Cllunllllali,

and hence, since (1) =o(t) as t — 0, from [u, | — 0 we obtain a contradiction. Therefore ||u, ||* is bounded away
from zero.
Now we turn to the level c. For every u € N we have, using (H4),

1
1(u)=5||u||2—/a(|x|)F<u)dx

Br
= %nuu2 - inuu2 + ﬁw - /a(|x|)F(u)dx
Bg
1
— (53 Ju % [ ala)(Fn = nFw)as
Br
11 )
> (5 ~ ;)nuu : (7

By (6), this concludes the proof. O
We can now show that 7 has a minimizer on \V.
Lemma 2.5. The level c is attained: there exists u € N such that I (u) = c.

Proof. Let u, be a minimizing sequence for I on V. By (7), we see that [ is coercive on A, and hence the sequence
u, is bounded in H'(Bg). Then, up to subsequences, we can assume that for a suitable u € H'(Bg)

o u, — uin H'(Bg),
e u, — u pointwise almost everywhere in Bpg,
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and since u, € M, we clearly have that also u € M. Moreover, by Lemma 2.2, we see that the norms ||u, | are
uniformly bounded. Hence, by dominated convergence, as n — oo,

1
cto() = 1) =3 fa(|x|)f(un)un dx — /a(|x|)F(un)dx

Br Br

1
:E/a(|x|)f(u)udx—/a(|x|)F(u)dx+o(l). )
Br Bpg

Since ¢ > 0, this shows that u 5 0, so that u € M \ {0}.
Now if u € NV, then

/a(lxl)f(u)udx — 2,

Br

and the proof is complete, since the last equation shows that I (1) = c.
If, on the other hand, u ¢ NV, then weak lower semicontinuity shows that necessarily

lull* < /a(|x|)f(u>udx. )
Bg

We now prove that this cannot hold, so that u does indeed belong to A. We consider again the function
y : [0, +00) — R defined by

y(t)=t2||u||2—fa(|x|)f(tu)tudx.
Bpr
Since u # 0, we certainly have y (t) > 0 for ¢ positive and small, as in Lemma 2.3. Moreover, by (9), we see that

y (1) < 0, so that y must have a zero 7y € (0, 1).
Then the function fou is in . By (H3), the function

t %f(t)t—F(t)

is strictly increasing for ¢ > 0. Therefore, since 7y < 1,

c<I(tou) = / a(lxl) (%f(tou)tou — F(tou)> dx

Br

< /a(|x|)(%f(u)u — F(u)) dx =c,

Bgr

by (8). This shows that (9) cannot hold, and therefore u € A/ and is the required minimizer. O
3. The Euler equation

In the preceding section we have found a minimizer for I on A. The fact that this minimizer solves the Euler
equation is not obvious at all, since a priori there are not enough “test” functions to show that the first variation of /
vanishes on H rla +(BRr). This happens because we are working with increasing functions only. To be more precise,
let u € N be the minimizer found above. If u satisfies an estimate like u/(r) > § > O for all r in some interval
(a,b) C (0, R), then for every ¢ € Cgo (a, b), the functions u + s¢ (after radial projection on N') are admissible
variations when ¢ is small enough, and this is enough to show that u weakly solves the Euler equation. However, we
do not have for the moment any lower bound on u’, and in principle z might even be constant on certain subintervals
of (0, R). On these intervals, there would be little hope to prove that the Euler equation is satisfied.

We now show how these problems can be overcome. We begin with a necessary condition for minimizers.
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Lemma 3.1. Let u be a minimizer for I on N'. Assume that v € H,lad(BR) (not necessarily in M) is such that u 4 sv €
M for every s in some interval [0, €). Then

/Vqudx—i—/uvdx>/a(|x|)f(u)vdx. (10)

Br Br Br

Proof. Since u does not vanish identically, the same holds for u + sv for all s small enough, and we can then assume
that this happens for every s € [0, ¢).

Each function u + sv is in M, and hence, by Lemma 2.3, for every s € [0, €) there exists t = #(s) such that
t(s)(u +sv) e N.
We now study some properties of 7 (s).
To this aim we define a function G : [0, ¢) x R — R by

G(s,t)= t2||u +sv||2 - /a(|x|)f(t(u —l—sv))t(u + sv)dx.
Bg
We have

GO.1) = ul? = [ a(jxl)faudx =0

Br

because u € . Next, G is of class C! and a simple computation, together with the fact that u € NV, yields

G
Tr 0. =24l = [ a(bel) 7 @l dx = [ a(lxl) faouds

BRr Bg
=/a(|x|)f(u)udx—/a(|x|)f’(u)u2dx
BRr Br
=/a(|x|)u(f(u) — f'(wu)dx <0

Br
because of (H3).

Then, a simple variant of the Implicit Function Theorem shows that there exist § > 0 and a function ¢ : [0, §) — R
of class C! such that

G(s, t(s)) =0 Vsel0,9),
and 7(0) = 1. This means that

t(s)w+sv)eN Vs el0,9).
Now define H : [0,5) — R as

H(s)=1(t(s)(u + sv))

= %t(s)znu —i—sv||2 — / a(lxl)F(t(s)(u +sv)) dx.
Bg
By construction, / is C! and has a local minimum at 0, so that H’(0) > 0.
Hence,
0< H'(0) =/ O)ul® + {u, v) - /a(lxl)f(u)t/(o)udx - /a(lxl)f(u)vdx
Br Bp

:t’(0)<||u||2—/a(|x|)f(u)udx> + (u, v) —/a(|x|)f(u)vdx.

Br Bg
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Since u € NV, the first term in the last line vanishes, so that

w,v) > fa(lxl)f(u)vdx,
Br

and (10) is proved. O

Our scope is to show that (10) holds for every v e Hrla 4(BRr). The first step consists in gathering some more
information about the minimizer u.
To this aim, consider the problem

—Aw+w=0 in Bg,
w=u on dBg.

(1)
It is well known that this problem has a unique solution ¢, which is radial, strictly positive on Bg, and strictly radially
increasing. The solution ¢ can be found for instance by solving

min{ |w||* | w e H'(Br), wiape = a5, )

and its properties follow by a standard application of the strong maximum principle. Actually, problem (11) can be
explicitly solved in terms of modified Bessel functions.
The function ¢ serves as a lower bound for the minimizer u.

Lemma 3.2. Let u be a minimizer for I on N, and let ¢ be the solution of (11). Then
u(x) > @(x) Vx € Bg. (12)

In particular, u is strictly positive in Bg.

Proof. We first note that for every s € [0, 1], the function

u+s(@—u)*
isin M. Indeed, u(x) +s(@(x) —u(x))t =max(u(x), s@(x) + (1 — s)u(x)), and all the functions involved are radially
increasing.
By Lemma 3.1,
/ VuV(p —u)tdx + /u((p —w)tdx > /a(|x|)f(u)((p —u)Tdx >0. (13)
Bg Bgr Bpr

Next, the definition of ¢ shows that (¢ —u)* € H(} (BR), and since ¢ solves problem (11),

/ VoV(p —u)tdx + / e@—uw)tdx=0.

Br Bg
Subtracting this from (13) we obtain

0< [ V-9 -wrdst [w-pe-wdr==e-u,
BRr Br

which means that u > ¢ on Br. O

The next result is crucial in order to prove that u solves the Euler equation. In its statement and proof, we recall
that we write freely u(x), with x € B, or u(r), with r € [0, R], depending on the convenience of the moment, and
similarly for all radial functions. The context will always rule out any ambiguity.

Proposition 3.3. Let u be a minimizer for I on N'. Then

uw'(r)>0 ae in(0,R). (14)
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Remark 3.4. The point here is the strict inequality. The function u, being increasing, obviously satisfies u’'(r) > 0
wherever u’'(r) is defined.

Proof. Fix p € (0, R) such that p is a Lebesgue point for u’ (r)r¥=1 and let A be a positive real number to be
determined later. Finally, let § be a small positive number that will eventually tend to zero.
Now consider the piecewise linear function v; : [0, R] — R defined as

-1 if r € [0, pl,
vs(r) =1 =1+ 520 —p) ifrelp, p+3l,
A if r € [p+8, R].

Clearly, the function x — vs(|x|), which we call simply vs, is in Hrlad(BR)‘

The function v; is increasing, but is not in M, since it is not positive. However, for every nonnegative and small s,
the function u + svs belongs to M, because of Lemma 3.2.

Then, by Lemma 3.1,

/Vqu(gdx—i-/.uvadx2/a(|x|)f(u)v5dx. (15)
Bg Bg Bgr
When § — 07, the functions vs tend to

oy 71 el
vV =
= a  ifre(o, Rl

pointwise and in every L” (Bg) with p finite.
Hence, as § — 07,

/‘uv(;dx—>—/udx+)n / udx
Br Bp BR\Bp
and, similarly,
/a(|x|)f(u)v5 dx — —/a(|x|)f(u)dx + A / a(|x|)f(u)dx.
Br B, BRr\B,

Furthermore, denoting by o the area of the unit sphere in RV,

R | p+8
A
/V”V')&dxZU/‘M/(V)U(/;(V)erldVZO —; /u/(r)rN*Idr.
Br 0 o

Since p is a Lebesgue point for u’(r)rV !, as § — 0" we have

f VuVvsdx — o (1+2)p" "1/ (p).
Br

We can now let § — 07T in (15), to conclude that for almost every p € (0, R),

a(1+x)pN—1u/(p)—/udx+,\ [ udx}—/a(|x|)f(u)dx+k / a(|x]) f (w) dx,

B, Bg\B, B, BRr\B,
which we write as
P R
A+0pN " (p) = / urldr — k/uerl dr
0 P
P R
—/a(r)f(u)rN*Idr—}—k/a(r)f(u)rN*ldr. (16)

0 P
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Now the functions a and u are increasing, and the function ¢ — @ is strictly increasing by (H3). All these
functions are nonnegative. Therefore

a(’)f(u(r))—a( )M (ry<a(p )f(u(p))u(r) fora.e.r €0, pl,
u(r) u(p)
while
a(r) £ (u(r)) = ()M " > a0y forae.relp. Rl
(r) u(p)
Hence we obtain
o o
—/a(r)f(u)rN*Idr>—a(p)f(”(p)) /u(r)erldr (17)
u(p)
0 0
and
R
A/a(r)f(u)rN_lerAa( s (p))/ N1 ar, (18)
p

The key remark now is that since the function a is not constant, at least one of the two preceding inequalities must be
strict. Indeed, if they were both equalities, then we should have
S (r)) S w(p))
=a(p)
u(r) u(p)
If u is not constant, this is impossible because f(¢)/t is strictly increasing. If u is constant, then a must be constant
too, against assumption (HI).
Inserting (17) and (18) into (16), and keeping in mind the preceding remark we see that for almost every p € (0, R),

a(r)

for almost every r € [0, R].

P R P R
A+2)N " (p) >f N_ldr—A/urN_ldr+a(p)M<—furN_ldr+kfurN_ldr). (19)
0 o “(e) 0 o
We now choose A > 0 such that
0 R
/urN_ldrzkfurN_ldr,
0 P

which is possible since both integrals are positive, by Lemma 3.2. Then (19) becomes
A +20)pN "' (p) >0 for almost every p € (0, R).

Since A is positive, this is the required inequality. O

We now show that the estimate provided by the preceding proposition is enough to show that the “first variation”
of the functional / vanishes on a dense subset of H wa(BR)-

Proposition 3.5. Let u be a minimizer for I on N'. Then

fVqudx+fuvdx:/a(|x|)f(u)vdx foreveryveCrlad(ER).

Br Br Br
Proof. Let

1
E; = {r € (0, R) ‘ u'(r) exists and u'(r) > E}’ k=1,2,...
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and note that

{re 0. R) | u'(r) exists and u'(r) > 0} = ] Ex, meas([O, RN Ek) =0 (20)

k k

by the preceding proposition.
Denote by xg, be the ch_aracteristic function of the set Ey.
Now take any v € Crlad(BR), and define, for every k =1, 2, ..., a function v : [0, R] — R by

r

vk(")=U(O)+/U/(S)XEk(S)dS-

0
Of course, vy € W12°(0, R) and
v () = V' (M) xg, ()

for almost every r € [0, R].
Now for a fixed k, we let ¢ € R be such that

|£|<min( u(©) , ! ) 21
L+ [[vlloo k(14 [IV]lo0)

and for such ¢’s we claim that

u+evp e M\ {0}.

To see this, we use (21): we first note that for every r € [0, R],

u(r) + eve(r) = u(0) — lel[v]loo > u(0) — %u«» - 0.

Next, for almost every r € (0, R), we have
(u+evp) (r) =u'(r) + &' (r) xE, ().
If r € Eg, then
(4 eve) () =u'(r) + ev' () xE, (r) =u'(r) + &v'(r) > L lelllv'lloo > Lo >
k ko k(14 1v o)
If r ¢ Ey, then
(u+evr)'(r) =u'(r),

and we know from Proposition 3.3, that u’(r) > 0 almost everywhere.
It follows that (« + gvg)’(r) > 0 for almost every r € (0, R), and then the function u + gvy is also increasing.
Hence, by Lemma 3.1,

R R R

/u’v,/(erldr—l—/uvkrN*ldrZ/a(r)f(u)vkerldr, Vk=1,2,.... (22)
0 0 0

We now let k — oo. To this aim we note that
r
)] < o] + [ 16 e )] ds < [oo)] + R 2]
0

and ||v,/€||o<, < ||v'||o- By the Ascoli-Arzela Theorem, vy — v uniformly on [0, R]. Moreover, since Ex C Ex4 for
every k, and by (20),

v (r) = v'(r) ae.in (0, R).
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By dominated convergence, we can let k — oo in (22) to obtain
R R R

/u’v’rN_ldr—i-/uer_ldr>/a(r)f(u)er_ldr.
0 0 0

Since v is arbitrary, this means

/Vqudx —i—/uvdx = /a(|x|)f(u)vdx for every v € Crlad(l_gR),
Bg Bg Bg

and the proof is complete. O

End of the proof of Theorem 1.1. By the previous result one easily deduces, with a density argument, that

/Vqudx +/uvdx = fa(|x|)f(u)vdx forevery v € H,lad(BR),
Bg Bg Bg

namely that u € M weakly solves problem (1). O
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