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Abstract

I present an inverse function theorem for differentiable maps between Fréchet spaces which contains the classical theorem
of Nash and Moser as a particular case. In contrast to the latter, the proof does not rely on the Newton iteration procedure,
but on Lebesgue’s dominated convergence theorem and Ekeland’s variational principle. As a consequence, the assumptions are
substantially weakened: the map F to be inverted is not required to be C2, or even C1, or even Fréchet-differentiable.

Résumé

Je présente un théorème d’inversion pour des applications différentiables entre espaces de Fréchet, qui contient le théorème
classique de Nash et Moser. Contrairement à ce dernier, la démonstration donnée ici ne repose pas sur l’algorithme itératif de
Newton, mais sur le théorème de convergence dominée de Lebesgue et le principe variationnel d’Ekeland. Comme conséquence,
les hypothèses sont substantiellement affaiblies : on ne demande pas que l’application F à inverser soit de classe C2, ni même C1,
ni même différentiable au sens de Fréchet.
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1. Introduction

Recall that a Fréchet space X is graded if its topology is defined by an increasing sequence of norms ‖ ‖k , k � 0:

∀x ∈ X, ‖x‖k � ‖x‖k+1.

Denote by Xk the completion of X for the norm ‖ ‖k . It is a Banach space, and we have the following scheme:

→ Xk+1 →ik Xk →ik−1 Xk−1 → ·· · → X0
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where each identity map ik is injective and continuous, in fact ‖ik‖ � 1. By definition, X is a dense subspace of Xk ,
we have X = ⋂∞

k=0 Xk , and xj → x̄ in X if and only if ‖xj − x̄‖k → 0 for every k � 0.
Our main example will be X = C∞(Ω̄,R

d), where Ω̄ ⊂ R
n is compact, is the closure of its interior Ω , and has

smooth boundary. It is well known that the topology of C∞(Ω̄,R
d) can be defined in two equivalent ways. On the one

hand, we can write C∞(Ω̄,R
d) = ⋂

Ck(Ω̄,R
d), where Ck(Ω̄,R

d) is the Banach space of all functions continuously
differentiable up to order k, endowed with the sup norm:

‖x‖k := max
p1+···+pn�p

max
ω∈Ω̄

∣∣∣∣ ∂p1+···+pnx

∂p1ω1 · · ·∂pnωn

(ω)

∣∣∣∣. (1.1)

On the other, we can also write C∞(Ω̄,R
d) = ⋂

Hk(Ω,R
d), where Hk(Ω,R

d) is the Sobolev space consisting
of all functions with square-integrable derivatives, up to order k, endowed with the Hilbert space structure:

‖x‖2
k :=

∑
p1+···+pn�p

∫
Ω

∣∣∣∣ ∂p1+···+pnx

∂p1ω1 · · ·∂pnωn

∣∣∣∣
2

dω. (1.2)

We will prove an inverse function theorem between graded Fréchet spaces. Let us give a simple version in C∞; in
the following statement, either definition of the k-norms, (1.1) or (1.2), may be used:

Theorem 1. Let F be a map from a graded Fréchet space X = ⋂
k�0 Xk into C∞. Assume that there are integers d1

and d2, and sequences mk > 0, m′
k > 0, k ∈ N, such that, for all x is some neighborhood of 0 in X, we have:

(1) F(0) = 0.
(2) F is continuous and Gâteaux-differentiable, with derivative DF(x).
(3) For every u ∈ X, we have

∀k � 0,
∥∥DF(x)u

∥∥
k
� mk‖u‖k+d1 . (1.3)

(4) DF(x) has a right-inverse L(x):

∀v ∈ C∞, DF(x)L(x)v = v.

(5) For every v ∈ C∞, we have:

∀k � 0,
∥∥L(x)v

∥∥
k
� m′

k‖v‖k+d2 . (1.4)

Then for every y ∈ C∞ such that

‖y‖k0+d2 <
R

m′
k0

and every m > m′
k0

there is some x ∈ X such that:

‖x‖k0 < R,

‖x‖k0 � m‖y‖k0+d2 ,

and:

F(x) = y.

The full statement of our inverse function theorem and of its corollaries, such as the implicit function theorem, will
be given in the text (Theorems 4 and 5). Note the main feature of our result: there is a loss of derivatives both for
DF(x), by condition (1.3), and for L(x), by condition (1.4).

Since the pioneering work of Andrei Kolmogorov and John Nash [10,2–4,13], this loss of derivatives has been
overcome by using the Newton procedure: the equation F(x) = y is solved by the iteration scheme xn+1 = xn −
L(xn)F (xn) ([15,11,12]; see [9,1,5] for more recent expositions). This method has two drawbacks. The first one is
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that it requires the function F to be C2, which is quite difficult to satisfy in infinite-dimensional situations. The second
is that it gives a set of admissible right-hand sides y which is unrealistically small: in practical situations, the equation
F(x) = y will continue to have a solution long after the Newton iteration starting from y ceases to converge.

Our proof is entirely different. It gives the solution of F(x) = y directly by using Ekeland’s variational principle
([7,8]; see [6] for later developments). Since the latter is constructive, so is our proof, even if it does not rely on an
iteration scheme to solve the equation. To convey the idea of the method in a simple case, let us now state and prove
an inverse function theorem in Banach spaces:

Theorem 2. Let X and Y be Banach spaces. Let F : X → Y be continuous and Gâteaux-differentiable, with F(0) = 0.
Assume that the derivative DF(x) has a right-inverse L(x), uniformly bounded in a neighborhood of 0:

∀v ∈ Y, DF(x)L(x)v = v,

‖x‖ � R 	⇒ ∥∥L(x)
∥∥ � m.

Then, for every ȳ such that:

‖ȳ‖ <
R

m

and every μ > m there is some x̄ such that:

‖x̄‖ < R,

‖x̄‖ � μ‖ȳ‖,
and:

F(x̄) = ȳ.

Proof. Consider the function f : X → R defined by

f (x) = ∥∥F(x) − ȳ
∥∥.

It is continuous and bounded from below, so that we can apply Ekeland’s variational principle. For every r > 0, we
can find a point x̄ such that:

f (x̄) � f (0),

‖x̄‖ � r,

∀x, f (x) � f (x̄) − f (0)

r
‖x − x̄‖.

Note that f (0) = ‖ȳ‖. Take r = μ‖ȳ‖, so that:

f (x̄) � f (0),

‖x̄‖ � μ‖ȳ‖,
∀x, f (x) � f (x̄) − 1

μ
‖x − x̄‖. (1.5)

The point x̄ satisfies the inequality ‖x̄‖ � μ‖ȳ‖. Since m < R‖ȳ‖−1, we can assume without loss of generality that
μ < R‖ȳ‖−1, so ‖x̄‖ < R. It remains to prove that F(x̄) = ȳ.

We argue by contradiction. Assume not, so F(x̄) �= ȳ. Then, write the inequality (1.5) with x = x̄ + tu. We get:

∀t > 0, ∀u ∈ X,
‖F(x̄ + tu) − ȳ‖ − ‖F(x̄) − ȳ‖

t
� − 1

μ
‖u‖. (1.6)

As we shall see later on (Lemma 1), the function t → ‖F(x̄ + tu) − ȳ‖ is right-differentiable at t = 0, and its
derivative is given by
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lim
t→0
t>0

‖F(x̄ + tu) − ȳ‖ − ‖F(x̄) − ȳ‖
t

= 〈
y∗,DF(x̄)u

〉
for some y∗ ∈ Y ∗ with ‖y∗‖∗ = 1 and 〈y∗,F (x̄) − ȳ〉 = ‖F(x̄) − ȳ‖. In the particular case when Y is a Hilbert space,
we have

y∗ = F(x̄) − ȳ

‖F(x̄) − ȳ‖ .

Letting t → 0 in (1.6), we get:

∀u,
〈
y∗,DF(x̄)u

〉
� − 1

μ
‖u‖.

We now take u = −L(x̄)(F (x̄) − ȳ), so that DF(x̄)u = −(F (x̄) − ȳ). The preceding inequality yields:

∥∥F(x̄) − ȳ
∥∥ � 1

μ
‖u‖ � m

μ

∥∥F(x̄) − ȳ
∥∥

which is a contradiction since μ > m. �
The reader will have noted that this is much stronger than the usual inverse function theorem in Banach spaces: we

do not require that F be Fréchet-differentiable, nor that the derivative DF(x) or its inverse L(x) depend continuously
on x. All that is required is an upper bound on L(x). Note that it is very doubtful that, with such weak assumptions,
the usual Euler or Newton iteration schemes would converge.

Our inverse function theorem will extend this idea to Fréchet spaces. Ekeland’s variational principle holds for any
complete metric space, hence on Fréchet spaces. Our first result, Theorem 3, depends on the choice of a non-negative
sequence βk which converges rapidly to zero. An appropriate choice of βk will lead to the facts that F is a local
surjection (Corollary 1), that the (multivalued) local inverse F−1 satisfies a Lipschitz condition (Corollary 2), and that
the result holds also with finite regularity (if ȳ does not belong to Yk for every k, but only to Yk0+d2 , then we can still
solve F(x̄) = ȳ with x̄ ∈ Xk0 ). These results are gathered together in Theorem 4, which is our final inverse function
theorem. As usual, an implicit function theorem can be derived; it is given in Theorem 5.

The structure of the paper is as follows. Section 2 introduces the basic definitions. There will be no requirement
on X, while Y will be asked to belong to a special class of graded Fréchet spaces. This class is much larger than the
one used in the Nash–Moser literature: it is not required that X or Y be tame in the sense of Hamilton [9] or admit
smoothing operators. Section 3 states Theorem 3 and derives the other results. The proof of Theorem 3 is given in
Section 4.

Before we proceed, it will be convenient to recall some well-known facts about differentiability in Banach spaces.
Let X be a Banach space. Let U be some open subset of X, and let F be a map from U into some Banach space Y .

Definition 1. F is Gâteaux-differentiable at x ∈ U if there exists some linear continuous map from X to Y , denoted
by DF(x), such that:

∀u ∈ X, lim
t→0

∥∥∥∥F(x + tu) − F(x)

t
− DF(x)u

∥∥∥∥ = 0.

Definition 2. F is Fréchet-differentiable at x ∈ U if it is Gâteaux-differentiable and:

lim
u→0

F(x + u) − F(x) − DF(x)u

‖u‖ = 0.

Fréchet-differentiability implies Gâteaux-differentiability and continuity, but Gâteaux-differentiability does not
even imply continuity.

If Y is a Banach space, then the norm y → ‖y‖ is convex and continuous, so that it has a non-empty subdifferential
N(y) ⊂ Y ∗ at every point y:

y∗ ∈ N(y) ⇐⇒ ∀z ∈ Y, ‖y + z‖ � ‖y‖ + 〈
y∗, z

〉
.
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When y �= 0 we have the alternative characterization:

y∗ ∈ N(y) ⇐⇒ ∥∥y∗∥∥∗ = 1 and
〈
y∗, y

〉 = ‖y‖.
N(y) is convex and compact in the σ(X∗,X)-topology. It is a singleton if and only if the norm is Gâteaux-

differentiable at y. Its unique element then is the Gâteaux-derivative of F at y:

N(y) = {
y∗} ⇐⇒ DF(x) = y∗.

If N(y) contains several elements, the norm is not Gâteaux-differentiable at y, and the preceding relation is then
replaced by the following classical result (see for instance Theorem 11, p. 34 in [14]):

Proposition 1. Take y and z in Y . Then there is some y∗ ∈ N(y) (depending possibly on z) such that:

lim
t→0
t>0

‖y + tz‖ − ‖y‖
t

= 〈
y∗, z

〉
.

The following result will be used repeatedly:

Lemma 1. Assume F : X → Y is Gâteaux-differentiable. Take x and ξ in X, and define a function f : [0,1] → R by

f (t) := ∥∥F(x + tξ )
∥∥, 0 � t � 1.

Then f has a right-derivative everywhere, and there is some y∗ ∈ N(F(x + tξ )) such that:

lim
h→0
h>0

f (t + h) − f (t)

h
= 〈

y∗,DF(x + tξ )ξ
〉
.

Proof. We have:

h−1[f (t + h) − f (t)
] = h−1[∥∥F

(
x + (t + h)ξ

)∥∥ − ∥∥F(x + tξ )
∥∥]

= h−1[∥∥F(x + tξ ) + hz(h)
∥∥ − ∥∥F(x + tξ )

∥∥]
(1.7)

with:

z(h) = F(x + (t + h)ξ) − F(x + tξ )

h
.

Since F is Gâteaux-differentiable, we have:

lim
h→0

z(h) = DF(x + tξ )ξ := z(0).

By the triangle inequality, we have:∣∣∥∥F(x + tξ ) + hz(h)
∥∥ − ∥∥F(x + tξ ) + hz(0)

∥∥∣∣ � h
∥∥z(h) − z(0)

∥∥.

Writing this into (1.7) and using Proposition 1, we find:

lim
h→0
h>0

[f (t + h) − f (t)]
h

= lim
h→0
h>0

‖F(x + tξ ) + hz(0)‖ − ‖F(x + tξ )‖
h

= 〈
y∗,DF(x + tξ )ξ

〉
for some y∗ ∈ N(F(x + tξ )). This is the desired result. �

One last word. Throughout the paper, we shall use the following:

Definition 3. A sequence αk has unbounded support if sup{k | αk �= 0} = ∞.
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2. The inverse function theorem

Let X = ⋂
k�0 Xk be a graded Fréchet space. The following result is classical:

Proposition 2. Let αk � 0 be a sequence with unbounded support such that
∑

αk < ∞. Let r > 0 be a positive
number. Then the topology of X is induced by the distance:

d(x, y) :=
∑

k

αk min
{
r,‖x − y‖k

}
(2.1)

and xn is a Cauchy sequence for d if and only if it is a Cauchy sequence for all the k-norms. It follows that (X,d) is
a complete metric space.

The main analytical difficulty with Fréchet spaces is that, given x ∈ X, there is no information on the sequence
k → ‖x‖k , except that it is positive and increasing. For instance, it can grow arbitrarily fast. So we single out some
elements x such that ‖x‖k has at most exponential growth in k.

Definition 4. A point x ∈ X is controlled if there is a constant c0(x) such that:

‖x‖k � c0(x)k. (2.2)

Definition 5. A graded Fréchet space is standard if, for every x ∈ X, there is a constant c3(x) and a sequence xn such
that:

∀k, lim
n→∞‖xn − x‖k = 0, (2.3)

∀n, ‖xn‖k � c3(x)‖x‖k (2.4)

and each xn is controlled:

‖xn‖k � c0(xn)
k. (2.5)

Proposition 3. The graded Fréchet spaces C∞(Ω̄,R
d) = ⋂

Ck(Ω̄,R
d) and C∞(Ω̄,R

d) = ⋂
Hk(Ω,R

d) are both
standard.

Proof. In fact, much more is true. It can be proved (see [9], [1, Proposition II.A.1.6]) that both admit a family of
smoothing operators Sn : X → X satisfying:

(1) ‖Snx − x‖k → 0 when n → ∞,
(2) ‖Snx‖k+d � c1n

d‖x‖k , ∀d � 0, ∀k � 0, ∀n � 0,
(3) ‖(I − Sn)x‖k � c2n

−d‖x‖k+d , ∀d � 0, ∀k � 0, ∀n � 0,

where c1 and c2 are positive constants. For every x ∈ X, condition (2) with k = 0 implies that:

‖Snx‖d � c1n
d‖x‖0.

So (2.2) is satisfied and the point xn = Snx is controlled. Condition (2.3) follows from (1) and condition (2.4)
follows from (2) with d = 0. �

Now consider two graded Fréchet spaces X = ⋂
k�0 Xk and Y = ⋂

k�0 Yk . We are given a map F : X → Y ,
a number R ∈ (0,∞] and an integer k0 � 0. We consider the ball:

BX(k0,R) := {
x ∈ X

∣∣ ‖x‖k0 < R
}
.

Note that R = +∞ is allowed; in that case, BX(k0,R) = X.
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Theorem 3. Assume Y is standard. Let there be given two integers d1, d2 and two non-decreasing sequences mk > 0,
m′

k > 0. Assume that, on BX(k0,R), the map F satisfies the following conditions:

(1) F(0) = 0.
(2) F is continuous, and Gâteaux-differentiable.
(3) For every u ∈ X there is a number c1(u) > 0 for which:

∀k ∈ N,
∥∥DF(x)u

∥∥
k
� c1(u)

(
mk‖u‖k+d1 + ∥∥F(x)

∥∥
k

)
.

(4) There exists a linear map L(x) : Y → X such that DF(x)L(x) = IY :

∀v ∈ Y, DF(x)L(x)v = v.

(5) For every v ∈ Y :

∀k ∈ N,
∥∥L(x)v

∥∥
k
� m′

k‖v‖k+d2 .

Let βk � 0 be a sequence with unbounded support satisfying:

∀n ∈ N,

∞∑
k=0

βkmkm
′
k+d1

nk < ∞. (2.6)

Then, for every ȳ ∈ Y such that:
∞∑

k=0

βk‖ȳ‖k <
βk0+d2

m′
k0

R (2.7)

there exists a point x̄ such that:

F(x̄) = ȳ, (2.8)

‖x̄‖k0 < R. (2.9)

The proof is given in the next section. We will now derive the consequences. Before we do that, note that condition
(3) is equivalent to the following, seemingly more general, one:

∀k,
∥∥DF(x)u

∥∥
k
� c′

1(u)
(
mk‖u‖k+d1 + ∥∥F(x)

∥∥
k
+ 1

)
. (2.10)

Indeed, condition (3) clearly implies (2.10) with c′
1(u) = c1(u). Conversely, if (2.10) holds, for u �= 0 we set:

c1(u) = c′
1(u)

(
1 + 1

m0‖u‖0

)
and then:

c1(u)
(
mk‖u‖k+d1 + ∥∥F(x)

∥∥
k

)
� c′

1(u)
(
mk‖u‖k+d1 + ∥∥F(x)

∥∥
k
+ 1

)
,

so condition (3) holds as well.

Corollary 1 (Local surjection). Let X = ⋂
k�0 Xk and Y = ⋂

k�0 Yk be graded Fréchet spaces, with Y standard, and
let F : X → Y satisfy conditions (1) to (5). Suppose:

‖y‖k0+d2 <
R

m′
k0

. (2.11)

Then, for every μ > m′
k0

, there is some x ∈ BX(k0,R) such that:

‖x‖k0 � μ‖y‖k0+d2 , (2.12)

and:

F(x) = y.
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Proof. Given μ > m′
k0

, take R′ < R such that m′
k0

‖y‖k0+d2 < R′ < μ‖y‖k0+d2 and choose h > 0 so small that:

‖y‖k0+d2 + h

∞∑
k=0

k−k <
R′

m′
k0

. (2.13)

Define a sequence βk by

βk =
⎧⎨
⎩

0 for k < k0 + d2,

1 for k = k0 + d2,

hk−k[max{‖y‖k,mkm
′
k+d1

}]−1 for k > k0 + d2.
(2.14)

Then (2.6) is satisfied. On the other hand:

∞∑
k=0

βk‖y‖k � ‖y‖k0+d2 + h
∑

k−k

and using (2.13) we find that:

∞∑
k=0

βk‖y‖k <
1

m′
k0

R′ < ∞. (2.15)

We now apply Theorem 3 with R′ instead of R, and we find some x ∈ X with F(x) = y and ‖x‖k0 � R′. The result
follows. �

Consider the two balls:

BX(k0,R) = {
x

∣∣ ‖x‖k0 < R
}
,

BY

(
k0 + d2,

R

m′
k0

)
=

{
y

∣∣∣ ‖y‖k0+d2 <
R

m′
k0

}
.

The preceding corollary tells us that F maps the first ball onto the second. The inverse map

F−1 : BY

(
k0 + d2,

R

m′
k0

)
→BX(k0,R)

is multivalued:

F−1(y) = {
x ∈ BX(k0,R)

∣∣ F(x) = y
}

(2.16)

and has non-empty values: F−1(y) �= ∅ for every y. The following result shows that it satisfies a Lipschitz condition.

Corollary 2 (Lipschitz inverse). For every y0 and y1 in BY (k0 + d2,R(m′
k0

)−1), every x0 ∈ F−1(y0), and every
μ > m′

k0
, we have:

inf
{‖x0 − x1‖k0

∣∣ x1 ∈ F−1(y1)
} = inf

{‖x0 − x1‖k0

∣∣ F(x1) = y1
}

� μ‖y0 − y1‖k0+d2 .

Proof. Take some R′ < R with max{‖y0‖k0+d2 ,‖y1‖k0+d2} < R′(m′
k0

)−1 and consider the line segment yt = y0 +
t (y1 − y0), 0 � t � 1, joining y0 to y1. We have ‖yt‖ < R′(m′

k0
)−1 for every t , so that, by Corollary 1, there exists

some xt ∈ F−1(yt ) with ‖xt‖ < R′. The function Ft(x) = F(x + xt ) − yt then satisfies conditions (1) to (5) with R

replaced by ρ = R − R′.
Pick some x0 ∈ F−1(y0). By Corollary 1 applied to F0 we find that, for every y such that ‖y−y0‖k0+d2 � ρ(m′

k0
)−1

we have some x ∈ F−1(y) with:

‖x0 − x‖k0 � μ‖y0 − y‖k0 .



I. Ekeland / Ann. I. H. Poincaré – AN 28 (2011) 91–105 99
We can connect y0 and y1 by a finite chain y′
0 = y0, y

′
2, . . . y

′
N = y1 of aligned points, such that the distance between

y′
n and y′

n+1 is always less than ρ(m′
k0

)−1, and for each y′
n choose some xn ∈ F−1(y′

n) such that:

‖xn − xn+1‖k0 � μ
∥∥y′

n − y′
n+1

∥∥
k0+d2

.

Summing up:

‖x0 − x1‖k0 � μ

N∑
n=0

∥∥y′
n − y′

n+1

∥∥
k0+d2

= μ‖y1 − y0‖k0+d2 . �

Note that we are not claiming that the multivalued map F−1 has a Lipschitz section over BY (k0 + d2,R(m′
k0

)−1),
or even a continuous one.

As a consequence of Corollary 2, we can solve the equation F(x) = y when the right-hand side no longer is in Y ,
but in some of the Yk , with k � k0 + d2.

Corollary 3 (Finite regularity). Suppose F extends to a continuous map F̄ : Xk0 → Yk0−d1 . Take some y ∈ Yk0+d2

with ‖y‖k0+d2 < R(m′
k0

)−1. Then there is some x ∈ Xk0 such that ‖x‖k0 < R and F̄ (x) = y.

Proof. Let yn ∈ Y be such that ‖yn − y‖k0+d � 2−n. By Corollary 2, we can find a sequence xn ∈ X such that
F(xn) = yn and

‖xn − xn+1‖k0 � μ‖yn − yn+1‖k0+d � μ2−n.

So ‖xn − xp‖k0 � μ2−n+1 for p > n, and the sequence xn is Cauchy in Xk0 . It follows that xn converges to some
x ∈ Xk0 , with ‖x‖k0 < R, and we get F(x) = y by continuity. �

Let us sum up our results in a single statement:

Theorem 4 (Inverse function theorem). Let X = ⋂
k�0 Xk and Y = ⋂

k�0 Yk be graded Fréchet spaces, with Y

standard, and let F be a map from X to Y . Assume there exist some integer k0, some R > 0 (possibly equal to +∞),
integers d1, d2, and non-decreasing sequences mk > 0, m′

k > 0 such that, for ‖x‖k0 < R, we have:

(1) F(0) = 0.
(2) F is continuous, and Gâteaux-differentiable with derivative DF(x).
(3) For every u ∈ X there is a number c1(u) such that:

∀k,
∥∥DF(x)u

∥∥
k
� c1(u)

(
mk‖u‖k+d1 + ∥∥F(x)

∥∥
k

)
.

(4) There exists a linear map L(x) : Y → X such that DF(x)L(x) = IY

∀u ∈ X, DF(x)L(x)v = v.

(5) For every v ∈ Y , we have:

∀k ∈ N,
∥∥L(x)v

∥∥
k
� m′

k‖v‖k+d2 .

Then F maps the ball {‖x‖k0 < R} in X onto the ball {‖y‖k0+d2 < R(m′
k0

)−1} in Y , and for every μ > m′
k0

the

inverse F−1 satisfies a Lipschitz condition:

∀x1 ∈ F−1(y1), inf
{‖x1 − x2‖k0

∣∣ x2 ∈ F−1(y2)
}

� μ‖y1 − y2‖k0+d2 .

If F extends to a continuous map F̄ : Xk0 → Yk0−d1 , then F̄ maps the ball {‖x‖k0 < R} in Xk0 onto the ball
{‖y‖k0+d2 < R(m′

k0
)−1} in Yk0+d2 , and the inverse F̄−1 satisfies the same Lipschitz condition.

We conclude by rephrasing Theorem 4 as an implicit function theorem.
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Theorem 5. Let X = ⋂
k�0 Xk and Y = ⋂

k�0 Yk be graded Fréchet spaces, with Y standard, and let F(ε, x) =
F0(x) + εF1(x) be a map from X × R to Y . Assume there exist integers k0, d1, d2, sequences mk > 0, m′

k > 0, and
numbers R > 0, ε0 > 0 such that, for every (x, ε) such that ‖x‖k0 � R and |ε| < ε0, we have:

(1) F0(0) = 0 and F1(0) �= 0.
(2) F0 and F1 are continuous, and Gâteaux-differentiable.
(3) For every u ∈ X there is a number c1(u) such that:

∀k � 0,
∥∥DF(ε, x)u

∥∥
k
� c1(u)

(
mk‖u‖k+d1 + ∥∥F(ε, x)

∥∥
k

)
.

(4) There exists a linear map L(ε, x) : Y → X such that:

DF(ε, x)L(ε, x) = IY .

(5) For every v ∈ Y , we have:

∀k � 0,
∥∥L(ε, x)v

∥∥
k
� m′

k‖v‖k+d2 .

Then, for every ε such that:

|ε| < min

{
R

m′
k0

∥∥F1(0)
∥∥−1

k0+d2
, ε0

}

and every μ > m′
k0

, there is an xε such that:

F(ε, xε) = 0

and:

‖xε‖k0 � μ|ε|∥∥F1(0)
∥∥

k0+d2
.

Proof. Fix ε with |ε| < ε0. Consider the function:

Gε(x) := F0(x) + ε
(
F1(x) − F1(0)

)
.

It satisfies conditions (1) to (5) of Theorem 4. The equation F(ε, xε) = 0 can be rewritten Gε(x) = −εF1(0) := y. By
Theorem 4, we will be able to solve it provided:

‖y‖k0+d2 = |ε|∥∥F1(0)
∥∥

k0+d2
< R

1

m′
k0

and the solution xε then satisfies

‖xε‖k0 � μ‖y‖k0+d2 = μ|ε|∥∥F1(0)
∥∥

k0+d2
. �

3. Proof of Theorem 3

The proof proceeds in three steps. Using Ekeland’s variational principle, we first associate with ȳ ∈ Y a particular
point x̄ ∈ X. We then argue by contradiction, assuming that F(x̄) �= ȳ. We then identify for every n a particular
direction un ∈ X, and we investigate the derivative of x → ∑

βk‖F(x) − ȳ‖k in the direction un. We finally let
n → ∞ and derive a contradiction.

3.1. Step 1

We define a new sequence αk by

αk = βk+d2

m′

k
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and we endow X with the distance d defined by

d(x1, x2) :=
∑

k

αk min
{
R,‖x1 − x2‖k

}
. (3.1)

By Proposition 2, (X,d) is a complete metric space. Now consider the function f : X → R ∪ {+∞} (the value
+∞ is allowed) defined by

f (x) =
∞∑

k=0

βk

∥∥F(x) − ȳ
∥∥

k
. (3.2)

It is obviously bounded from below, and

0 � inff � f (0) =
∞∑

k=0

βk‖ȳ‖k < ∞. (3.3)

It is also lower semi-continuous. Indeed, let xn → x in (X,d). Then xn → x in every Xk . By Fatou’s lemma, we
have:

lim inf
n

f (xn) = lim inf
n

∑
k

βk

∥∥F(xn) − ȳ
∥∥

k
�

∑
k

βk lim
∥∥F(xn) − ȳ

∥∥
k

and since F : X → Y is continuous, we get:∑
k

βk lim
∥∥F(xn) − ȳ

∥∥
k
=

∑
k

βk

∥∥F(x) − ȳ
∥∥

k
= f (x)

so that lim infn f (xn) � f (x), as desired.
By assumption (2.7), we can take some R′ < R with:

∞∑
k=0

βk‖ȳ‖k <
βk0+d2

m′
k0

R′. (3.4)

We now apply Ekeland’s variational principle to f (see [7,8]). We find a point x̄ ∈ X such that:

f (x̄) � f (0), (3.5)

d(x̄,0) � R′αk0 , (3.6)

∀x ∈ X, f (x) � f (x̄) − f (0)

R′αk0

d(x, x̄). (3.7)

Replace f (x) by its definition (3.2) in inequality (3.5). We get:

∑
βk

∥∥F(x̄) − ȳ
∥∥

k
�

∞∑
k=0

βk‖ȳ‖k < ∞ (3.8)

and from the triangle inequality it follows that:

∞∑
k=0

βk

∥∥F(x̄)
∥∥

k
� 2

∞∑
k=0

βk‖ȳ‖k < ∞. (3.9)

If ‖x̄‖k0 > R′, then d(x̄,0) > R′αk0 , contradicting formula (3.6). So we must have ‖x̄‖k0 � R′ < R, and (2.9) is
proved.

We now work on (3.7). To simplify notations, we set:

A =
∑∞

k=0 βk‖ȳ‖k

R′αk0

= f (0)

R′αk0

. (3.10)

It follows from (3.7) that, for every u ∈ X and t > 0, we have:

−(
f (x̄ + tu) − f (x̄)

)
� Ad(x̄ + tu, x̄)
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and hence, dividing by t :

−1

t

[ ∞∑
k=0

βk

∥∥ȳ − F(x̄ + tu)
∥∥

k
−

∞∑
k=0

βk

∥∥ȳ − F(x̄)
∥∥

k

]
� A

t

∑
k�0

αk min
{
R, t‖u‖k

}
. (3.11)

3.2. Step 2

If F(x̄) = ȳ, the proof is over. If not, we set:

v = F(x̄) − ȳ,

u = −L(x̄)v

so that:

DF(x̄)u = −(
F(x̄) − ȳ

)
.

Since Y is standard, there is a sequence vn such that:

∀k, ‖vn − v‖k → 0, (3.12)

∀n, ‖vn‖k � c3(v)‖v‖k, (3.13)

‖vn‖k � c0(vn)
k. (3.14)

Set un = −L(x̄)vn. Clearly ‖un − u‖k → 0 for every k. We have, using condition (5):

‖un‖k � m′
k‖vn‖k+d2

� m′
kc0(vn)

k+d2 . (3.15)

We now substitute un into formula (3.11), always under the assumption that F(x̄) − ȳ �= 0, and we let t → 0. If
convergence holds, we get:

− lim
t→0
t>0

1

t

[ ∞∑
k=0

βk

∥∥ȳ − F(x̄ + tun)
∥∥

k
−

∞∑
k=0

βk

∥∥ȳ − F(x̄)
∥∥

k

]
� A lim

t→0
t>0

∑
k�0

αk

t
min

{
R, t‖un‖k

}
. (3.16)

We shall treat the right- and the left-hand side separately, leaving n fixed throughout.
We begin with the right-hand side. We have:

αk

t
min

{
R, t‖un‖k

} = αk min

{
R

t
,‖un‖k

}
=: γk(t).

We have γk(0) � 0, γk(t
′) � γk(t) for t ′ � t , and γk(t) → αk‖un‖k when t → 0. By the monotone convergence

theorem:

lim
t→0
t>0

∞∑
k=0

1

t
αk min

{
R, t‖un‖k

} =
∞∑

k=0

αk‖un‖k. (3.17)

Now for the left-hand side of (3.16). Rewrite it as

−
∞∑

k=0

βk

gk(t) − gk(0)

t
(3.18)

where:

gk(t) := ∥∥ȳ − F(x̄ + tun)
∥∥ .
k
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We have ‖x̄ + tun‖k � ‖x̄‖k + t‖un‖k . We have seen that ‖x̄‖k0 � R′ < R, so there is some t̄ > 0 so small that,
for 0 < t < t̄ , we have ‖x̄ + tun‖k0 < R. Without loss of generality, we can assume t̄ � 1. Since F is Gâteaux-
differentiable, by Lemma 1 gk has a right derivative everywhere, and:

∣∣(gk)
′+(t)

∣∣ = lim
h→0
h>0

∣∣∣∣gk(t + h) − gk(t)

h

∣∣∣∣ �
∥∥DF(x̄ + tun)un

∥∥
k
. (3.19)

Introduce the function fk(t) = ‖F(x̄ + tun)‖k . It has a right derivative everywhere, and (fk)
′+(t) � ‖DF(x̄ +

tun)un‖k , still by Lemma 1. We shall henceforth write the right derivatives g′
k and f ′

k instead of (gk)
′+ and (fk)

′+. By
condition (3), we have:

f ′
k(t) � c1(un)

(
mk‖un‖k+d1 + fk(t)

)
,

f ′
k(t) − c1(un)fk(t) � c1(un)mk‖un‖k+d1 .

Integrating, we get:

e−tc1(un)fk(t) − fk(0) �
(
1 − e−tc1(un)

)
mk‖un‖k+d1 ,

mk‖un‖k+d1 + fk(t) � etc1(un)
[
mk‖un‖k+d1 + ∥∥F(x̄)

∥∥
k

]
.

Substituting this into condition (3) and using (3.15), we get:∥∥DF(x̄ + tun)un

∥∥
k
� c1(un)

(
mk‖un‖k+d1 + fk(t)

)
� c1(un)e

tc1(un)
[
mk‖un‖k+d1 + ∥∥F(x̄)

∥∥
k

]
� C1(un)mkm

′
k+d1

c0(vn)
k+d1+d2 + C1(un)

∥∥F(x̄)
∥∥

k
=: �k

where the term C1(un) := c1(un)e
c1(un) depends on un, but not on k. We have used the fact that 0 < t < 1.

It follows from (3.19) that the function gk is �k-Lipschitzian. So we get, for every k and 0 < t < t̄ :

βk

∣∣∣∣gk(t) − gk(0)

t

∣∣∣∣ � C1(un)βkmkm
′
k+d1

c0(vn)
k+d1+d2 + C1(un)βk

∥∥F(x̄)
∥∥

k
.

By assumption (2.6), the first term on the right-hand side belongs to a convergent series. By inequality (3.9), the
second term is also summable. So we can apply Lebesgue’s dominated convergence theorem to the series (3.18),
yielding:

∞∑
k=0

−βkg
′
k(0) = lim

t→0
t>0

∞∑
k=0

−βk

gk(t) − gk(0)

t
. (3.20)

Writing (3.17) and (3.20) into formula (3.11) yields:

∞∑
k=0

−βkg
′
k(0) � A

∑
k�0

αk‖un‖k. (3.21)

We now apply Lemma 1. Denote by Nk the subdifferential of the norm in Yk :

∀y �= 0, y∗ ∈ Nk(y) ⇐⇒ ∥∥y∗∥∥∗
k
= 1 and

〈
y∗, y

〉
k
= ‖y‖k.

There is some y∗
k (n) ∈ Nk(F (x̄) − ȳ) such that:

g′
k(0) = 〈

y∗
k (n),DF(x̄)un

〉
k
. (3.22)

Substituting into (3.21) we get:

∞∑
k=0

−βk

〈
y∗
k (n),DF(x̄)un

〉
k
� A

∑
k�0

αk‖un‖k. (3.23)
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Since F(x̄) − ȳ �= 0, the characterization of Nk(F (x̄) − ȳ) gives:〈
y∗
k (n),F (x̄) − ȳ

〉
k
= ∥∥F(x̄) − ȳ

∥∥
k
, (3.24)∥∥y∗

k (n)
∥∥∗

k
= 1. (3.25)

3.3. Step 3

We now remember that un = −L(x̄)vn, so that DF(x̄)un = −vn. Formula (3.23) becomes:

∞∑
k=0

βk

〈
y∗
k (n), vn

〉
k
� A

∑
k�0

αk

∥∥L(x̄)vn

∥∥
k
. (3.26)

Set ϕk(n) = βk〈y∗
k (n), vn〉k and ψk(n) = αk‖L(x̄)vn‖k .

On the one hand, by formula (3.13), since ‖y∗
k (n)‖∗

k = 1, we have:∣∣ϕk(n)
∣∣ = ∣∣βk

〈
y∗
k (n), vn

〉
k

∣∣ � βk

∥∥y∗
k (n)

∥∥∗
k
‖vn‖k

� c3(v)βk‖v‖k = c3(v)βk

∥∥F(x̄) − ȳ
∥∥

k
(3.27)

and on the other, still by formula (3.13), we have:

∣∣ψk(n)
∣∣ = αk

∥∥L(x̄)vn

∥∥
k
= βk+d2

m′
k

∥∥L(x̄)vn

∥∥
k

� βk+d2

m′
k

m′
k‖vn‖k+d2 = βk+d2‖vn‖k+d2

� c3(v)βk+d2‖v‖k+d2 = c3(v)βk+d2

∥∥F(x̄) − ȳ
∥∥

k+d2
. (3.28)

By inequality (3.8), the series
∑

βk‖F(x̄) − ȳ‖k is convergent, so the last terms in (3.27) and (3.28), which are
independent of n, form convergent series.

From (3.12) and condition (5), for each k, ‖L(x̄)(vn −v)‖k → 0 as n → ∞. We thus get the pointwise convergence
of ψk(n) = αk‖L(x̄)vn‖k :

lim
n→∞ψk(n) = αk

∥∥L(x̄)v
∥∥

k
.

Remembering that v = F(x̄) − ȳ, we have, by formulas (3.24) and (3.25):∣∣〈y∗
k (n), vn

〉
k
− ‖v‖k

∣∣ = ∣∣〈y∗
k (n), vn − v

〉
k

∣∣ � ‖vn − v‖k,

hence, from (3.12), the pointwise convergence of ϕk(n) = βk〈y∗
k (n), vn〉k :

lim
n→∞ϕk(n) = βk‖v‖k.

So, applying Lebesgue’s dominated convergence theorem to the series
∑

k ϕk(n) and
∑

k ψk(n), we get:

lim
n→∞

∞∑
k=0

βk

〈
y∗
k (n), vn

〉
k
=

∞∑
k=0

βk‖v‖k,

lim
n→∞

∞∑
k=0

αk

∥∥L(x̄)vn

∥∥
k
=

∞∑
k=0

αk

∥∥L(x̄)v
∥∥

k
.

It follows from the above and from (3.26) that:

∞∑
βk‖v‖k � A

∑
αk

∥∥L(x̄)v
∥∥

k
= A

∑ βk+d2

m′
k

∥∥L(x̄)v
∥∥

k
.

k=0 k�0 k�0
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Estimating the right-hand side by condition (5), we finally get:

∞∑
k=0

βk‖v‖k � A
∑
k�0

βk+d2‖v‖k+d2

with v = F(x̄) − ȳ �= 0, hence A � 1. Remembering the definition (3.10) of A, this yields:∑∞
k=0 βk‖ȳ‖k

R′αk0

=
∑∞

k=0 βk‖ȳ‖k

R′βk0+d2

m′
k0

� 1

which contradicts (3.4). This shows that F(x̄) − ȳ cannot be non-zero, and concludes the proof.
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