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Abstract

In this article we study the optimal regularity for solutions to the following weakly coupled system with interconnected obstacles{
min(−�u1 + f 1, u1 − u2 + ψ1) = 0

min(−�u2 + f 2, u2 − u1 + ψ2) = 0,

arising in the optimal switching problem with two modes.
We derive the optimal C1,1-regularity for the minimal solution under the assumption that the zero loop set L := {ψ1 +ψ2 = 0}

is the closure of its interior. This result is optimal and we provide a counterexample showing that the C1,1-regularity does not hold 
without the assumption L = L 0.
© 2015 

Keywords: Optimal switching problem; Regularity theory; The obstacle problem; Double obstacle problem; Free boundary problem; Nonlinear 
elliptic system

1. Introduction

We consider the following system of weakly coupled equations of obstacle type{
min(−�u1 + f 1, u1 − u2 + ψ1) = 0

min(−�u2 + f 2, u2 − u1 + ψ2) = 0,
(1)

with given Dirichlet boundary conditions ui = gi on ∂�. These type of systems arise in optimal switching problems 
with two switching modes. Here f 1 and f 2 are the running cost functions corresponding to the switching modes. The 
functions ψ1 and ψ2 are the costs of switching from one mode to the other. More details on the optimal switching 
problem are provided in Section 2.1.

The uniqueness and C1,1-regularity of the solutions to such systems have been studied in the literature under the 
assumption that the switching costs are nonnegative constants, [4,7,2]. Obstacle type weakly coupled systems with 
first order Hamiltonians and nonconstant switching costs have been studied in [3,6]. In the paper [3], Section 5 the 
authors investigate the speed of convergence of the solutions to a penalized system, they also show that the solution 
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of the first order Hamilton–Jacobi obstacle type system is Lipschitz continuous, under the assumption that each of the 
switching costs is bounded from below by a positive constant.

In our paper we make only the nonnegative loop assumption. This is a necessary condition for the system to be 
well-defined. Indeed, let (u1, u2) be a solution to (1), then u1 − u2 + ψ1 ≥ 0 and u2 − u1 + ψ2 ≥ 0, which implies

ψ1(x) + ψ2(x) ≥ 0. (2)

In the optimal switching setting, the condition (2) prevents the agent from making arbitrary gains by looping, in 
the sense that ψ1(x) + ψ2(x) is the cost of switching from one mode to the other and immediately switching back. 
We denote the set where it is possible to switch for free by

L = {x ∈ � | ψ1(x) + ψ2(x) = 0},
and call it free switching or zero loop set.

By using the penalization/regularization method we derive the existence of solutions, showing that through a sub-
sequence the solutions of the penalized system converge to the minimal solution (u1

0, u
2
0) to (1). Then we see that the 

solution ui
0 ∈ C1,γ , for every 0 < γ < 1 and

‖�ui
0‖L∞(�) ≤ max

i
‖�ψi‖L∞(�) + 3 max

i
‖f i‖L∞(�). (3)

The aim of the paper is to investigate if the solutions are C1,1, which is the best regularity that we can hope that 
the solutions achieve. The structure of our system shows that at some subdomains of �, the regularity of the solutions 
can be derived by already known C1,1-regularity results for the obstacle problem. In our discussion we see that the 
main point is to describe the regularity at so called meeting points lying on ∂L , the boundary of the zero loop set.

In the main theorem, Theorem 4, we show that at the meeting points x0 ∈ ∂L 0 ∩ � the solutions are C2,α , under 
the assumption that f i ∈ Cα and ψi ∈ C2,α . By L 0 we denote the interior of the set L , and by pointwise C2,α

regularity we mean uniform approximation with a second order polynomial with the speed r2+α.
The idea of the proof is the same as in deriving the optimal regularity for the no-sign obstacle problem in [1]. The 

proof is based on the BMO-estimates for D2u1
0 and D2u2

0 following from the estimate (3). At the point x0, we consider 
r2+α-th order rescalings of ui

0 denoted by vi
r , and show that these are uniformly bounded in W 2,2(B1). Then, looking 

at the corresponding system for (v1
r , v

2
r ), we conclude that the rescalings are uniformly bounded in the ball B1.

In the end we justify our assumption 0 ∈ ∂L 0 with a counterexample: We consider a particular system in R2, 
where the zero loop set L = {0}, then we find an explicit solution, that is not C1,1.

The paper is structured as follows: In Section 2 we provide some background material. In Section 3 we use the 
penalization method to derive the existence of strong solutions, and observe that these are actually minimal solutions. 
The main results are presented in the last section, where we prove that the minimal solution is locally C1,1 if the zero 
loop set is the closure of its interior, and provide a counterexample to C1,1-regularity when ψ1 + ψ2 has an isolated 
zero.

2. Background material

In this section we state some known results, which we use in our discussion, without giving any proofs.

2.1. Optimal switching problem

Let � ⊂ R
n be a bounded domain with a smooth boundary. We consider an agent that can be anywhere in � and 

in one of a finite number m of states. For every 1 ≤ i ≤ m, the agent moves in � according to a diffusion

dx = bi(x)dt + σi(x)dWt ,

where Wt is a Brownian motion in a suitable probability space, bi : � → R
n and σi : � →R

n×m are smooth functions. 
The generator of the diffusions is denoted by Liv = 1

2σiσ
T
i : D2v + bi · Dv.

The agent can switch from any diffusion mode to another. At every instant t the agent pays a running cost f i(t)(x), 
depending on the present state i(t) and position x. Additionally, when changing state i to state j he incurs in a switch-
ing cost −ψij (x). Finally, when the diffusion reaches the boundary and the agent is in state i, the process is stopped 
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and a cost −gi(x) is incurred. As it is traditional in optimal switching setting, we consider the problem of maximizing 
a certain profit (the negative of the cost) functional

ui(x) = max
i(t),i(0)=i

E
[ T∂�ˆ

0

fi(t)(x(t))dt

−
∑

t≤T∂�

ψi(t−),i(t+)(x(t)) + gi(T∂�)(x(T∂�)
]
,

where T∂� denotes the exit time of �. Additionally, the convention ψii = 0 is assumed.
As it has been discussed in the literature [7,2], the corresponding value function ui solves the following system:

min
i

(−Liui + f i,min
j

(ui − uj + ψij )) = 0 (4)

with boundary conditions ui = gi on ∂�.
For the optimal switching problem to be well defined, we need to impose the nonnegative loop condition: Let 

i0, i1, . . . , il = i0 be any loop of length l, i.e. including l number of states. Assume that (u1, u2, . . . , um) is a solution 
to system (4), then ui − uj + ψij ≥ 0 for any i, j ∈ {1, 2, . . . , m}, then after summing the equations over the loop, we 
get

l∑
j=1

ψij−1,ij ≥ 0.

This condition is a necessary assumption for the existence of a solution to (3), and it prevents the agent from making 
arbitrary gains by looping.

In this paper we consider a system, arising in a model optimal switching problem with only two states.

2.2. The Poisson equation, Calderon–Zygmund estimates

We start by recalling the definition of the Hölder space Ck,γ . Let us denote the continuity norm

‖u‖C(�) = sup
x∈�

|u(x)|,

and the Hölder seminorm

[u]C0,γ (�) = sup
x,y∈�,x 
=y

|u(x) − u(y)|
|x − y|γ .

Definition 1. The Hölder space Ck,γ (�) consists of all functions u ∈ Ck(�) such that

‖u‖Ck,γ (�) :=
∑
|α|≤k

‖Dαu‖C(�) +
∑
|α|=k

[Dαu]C0,γ (�) < ∞.

The next theorem states the known regularity of the solutions to the Poisson equation �u = f , under the assumption 
that f is Hölder continuous, and can be found in the book [5].

Theorem 1. Assume that f ∈ Cγ , then there exists a classical solution to the Poisson equation

�u = f in �.

Moreover, the solution is locally C2,γ (�), and for every �′ ��

‖u‖C2,γ (�′) ≤ Cn,γ (�′)
(
‖u‖C(�) + ‖f ‖C0,γ (�)

)
,

where the constant Cn,γ (�′) depends on diam�′ and dist(�′, ∂�).
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Next let us recall the definition of BMO spaces, and then state the Calderon–Zygmund estimates for the Poisson 
equation �u = f , when f ∈ Lp , 1 < p ≤ ∞.

Definition 2. We say that a function u ∈ L2(�) is in BMO(�) if

‖f ‖2
BMO(�) := sup

x∈U,r>0

1

rn

ˆ

Br (x)∩�

|f (y) − (f )r,x |2dy + ‖f ‖2
L2(�)

< ∞,

where (f )r,x is the average of f in Br(x) ∩ �.

The proofs of the following results can be found in [5] when p < ∞ and in [9] when p = ∞.

Theorem 2. Consider the equation

�u = f in B2R.

If f ∈ Lp(B2R) for 1 < p < ∞, then the solution u ∈ W 2,p(BR), and

‖D2u‖Lp(BR) ≤ Cp,n

(‖f ‖Lp(B2R) + ‖u‖L1(B2R)

)
If f ∈ L∞(B2R), then in general u /∈ W 2,∞(BR), but

‖D2u‖BMO(BR) ≤ C∞,n

(‖f ‖L∞(B2R) + ‖u‖L1(B2R)

)
,

here Cp,n, C∞,n are dimensional constants.

2.3. The obstacle problem

In this section we state the regularity of the solution to the following obstacle problem,

min(−�u + f,u − ψ) = 0 in �

with boundary conditions u − g ∈ W
1,2
0 (�).

Here we will omit the variational formulation of the problem, the first regularity results and will state the 
C1,1-regularity of the solutions referring to the book [8].

In order to be consistent with the assumptions in our paper, we will assume that f ∈ Cα and the obstacle ψ ∈ C2,α , 
although these assumptions can be weakened.

Theorem 3. Assume that f ∈ Cα and ψ ∈ C2,α , and u solves the obstacle problem

min(−�u + f,u − ψ) = 0 a.e. in �.

Then u ∈ C1,1(�′) for every �′ � �, and

‖u‖C1,1(�′) ≤ C
(‖u‖L∞(�) + ‖f ‖C0,α(�) + ‖ψ‖C2,α(�)

)
,

where the constant C depends on the dimension and on the subset �′ � �.

3. Existence of C1,α solutions

We consider the system (1) with boundary conditions ui = gi on ∂�, gi ∈ C2. Then we also need to impose the 
following compatibility condition on the boundary data:

g1 − g2 + ψ1 ≥ 0, and g2 − g1 + ψ2 ≥ 0 on ∂�. (5)

Clearly, without the compatibility conditions, there are no solutions to (1) achieving the boundary data.



G. Aleksanyan / Ann. I. H. Poincaré – AN 33 (2016) 1455–1471 1459
We are interested in deriving C1,1-regularity for the solutions to our system, which is the best regularity one can 
expect. Throughout our discussion we will assume that

f 1, f 2 ∈ Cα(�), and ψ1,ψ2 ∈ C2,α(�), (6)

for some 0 < α < 1. These are natural assumptions, since f being bounded or continuous, is not enough for its 
Newtonian potential to be C1,1. We also provide a one-dimensional counterexample to the existence of solutions in 
case the switching costs are not smooth.

Example 1 (Diogo Gomes). Consider the following system in the interval (−1, 1) with zero Dirichlet boundary 
conditions,⎧⎪⎨

⎪⎩
min

(
−(u1)xx, u1 − u2 + (1 − |x|) cos

(
π

1−|x|
))

= 0,

min
(
−(u2)xx, u2 − u1 + (1 − |x|)(1 − cos

(
π

1−|x|
))

= 0.

Then the value function of the corresponding optimal control problem is not finite.

Proof. In our example the running costs are identically zero, the switching costs satisfy the nonnegative loop assump-
tion ψ1(x) + ψ2(x) > 0 in (−1, 1), and the compatibility condition on the boundary ψ1(±1) = ψ2(±1) = 0.

The example illustrates that when the switching costs are not smooth, then the negative values give infinity growth 
to the value function of the corresponding optimal control problem. In order to show this, we choose optimal controls 
i(t) as follows: the switching occurs at times tk where π

1−|x(tk)| = πk: When π
1−|x(tk)| = πk = π(2n + 1), n ∈ N0, we 

switch from regime 1 to regime 2 gaining 1
2n+1 and for the values π

1−|x(tk)| = πk = 2πn we switch back from regime 2 
to 1 paying zero cost, and so

ui(x) ≥ −
∑

0≤t≤T∂�

ψi(tk),i(tk+1)(x(t)) =
∑ 1

2n + 1
.

Then the conclusion follows from the divergence of harmonic series. �
3.1. Penalization method

In this section we approximate the system (1) with a smooth penalized system. Let us take any smooth nonpositive 
function β :R → (−∞, 0], such that

β(s) = 0 for s ≥ 0,

β(s) < 0 for s < 0 and

0 < β ′(s) ≤ 1 for s < 0,

lim
s→−∞β(s) = −∞

Next we consider the following penalization function βε(s) = β(s/ε), for s ∈ R, ε > 0, and the corresponding penal-
ized system{−�u1

ε + f 1 + βε(u
1
ε − u2

ε + ψ1) = 0

−�u2
ε + f 2 + βε(u

2
ε − u1

ε + ψ2) = 0,
(7)

with boundary conditions ui
ε = gi on ∂�.

For ε > 0 fixed, the penalized system (7) can be solved by several methods. In the paper [4] the authors use 
nonlinear functional analysis methods in order to derive the existence of classical solutions, that is ui

ε ∈ C2(�), 
assuming that the switching costs are positive constants. The proof is rather technical, however it works line for line 
in our case with variable switching costs, therefore we omit it.

Lemma 1. Under the assumptions (5) and (6) the solutions to the penalized system (7), ui
ε satisfy the following 

estimates for every ε > 0



1460 G. Aleksanyan / Ann. I. H. Poincaré – AN 33 (2016) 1455–1471
i.)

−max
i

‖f i‖L∞ ≤ −�ui
ε ≤ max

i
‖�ψi‖L∞ + 3 max

i
‖f i‖L∞ .

ii.)

u1
ε − u2

ε + ψ1 ≥ −Cε and u2
ε − u1

ε + ψ2 ≥ −Cε

In ii.) the constant C > 0 depends only on the given data and can be computed explicitly in terms of β .

Proof. For our convenience, let us denote θ1
ε = u1

ε − u2
ε + ψ1 and θ2

ε = u2
ε − u1

ε + ψ2, and observe that θ1
ε and θ2

ε

cannot be negative at the same time according to the nonnegative loop assumption.
Now let us fix ε > 0, and consider the function βε(θ

i
ε(x)), x ∈ �. It is bounded from above by 0, our aim is to prove 

that βε(θ
i
ε(x)) is bounded from below. Let x0 = x0(ε) be a point of minimum for the function βε(θ

1
ε (x)), moreover 

without loss of generality, we may assume that

min
i=1,2;x∈�

βε(θ
i
ε(x)) = βε(θ

1
ε (x0)) < 0.

If x0 ∈ ∂�, then βε(θ
1
ε (x0)) = 0 according to (5). Therefore x0 ∈ � is an interior point, and βε(θ

1
ε (x0)) < 0. Then 

θ1
ε (x0) < 0, and since θ1

ε + θ2
ε ≥ 0, we get θ2

ε (x0) ≥ 0 consequently βε(θ
2
ε (x0)) = 0. Since βε is nondecreasing and 

βε(t) < 0 if and only if t < 0, we get that

min
i=1,2;x∈�

θi
ε(x) = θ1

ε (x0).

This implies that θ1
ε = u1

ε −u2
ε +ψ1 achieves its minimum at an interior point x0, hence �u1

ε −�u2
ε +�ψ1 ≥ 0 at x0. 

The last inequality together with −�u2
ε(x0) + f 2(x0) = 0 shows that

βε(θ
1
ε (x0)) = �u1

ε(x0) − f 1(x0) =
�u1

ε(x0) − �u2
ε(x0) + f 2(x0) − f 1(x0) ≥ −�ψ1(x0) + f 2(x0) − f 1(x0).

The estimate above is true for any ε > 0, and therefore it proves the right inequality in i.). The left inequality in i.) is 
a direct consequence of −βε ≥ 0.

In order to prove ii.), we recall that lims→−∞ β(s) = −∞, and βε(s) = β(s/ε), hence βε(θ
i
ε) is bounded implies

that θi
ε

ε
is uniformly bounded from below by a negative constant −C ≤ 0. This finishes the proof of point ii.) in our 

lemma. �
Using the Sobolev embedding theorem and Calderon–Zygmund estimates, we can conclude that the functions ui

ε

are uniformly bounded in W 2,p for every 1 < p < ∞. Therefore through a subsequence ui
ε converges to a function ui

0
locally weakly in W 2,p and strongly in C1,γ for every 0 < γ < 1.

Now we proceed to prove the existence of solutions to system (1).

Proposition 1. Let (u1
0, u

2
0) = limε→0(u

1
ε, u

2
ε) through a subsequence weakly in W 2,p and strongly in C1,γ . Then 

(u1
0, u

2
0) solves the following system⎧⎪⎨
⎪⎩

min(−�u1
0 + f 1, u1

0 − u2
0 + ψ1) = 0,

min(−�u2
0 + f 2, u2

0 − u1
0 + ψ2) = 0,

min(−�u1
0 + f 1,−�u2

0 + f 2) = 0

(8)

in a strong sense, i.e. ui
0 − u

j

0 + ψi ≥ 0 and if we have a strict inequality at some point then ui
0 satisfies �ui

0 = f i in 
a neighborhood of that point, and −�ui

0 + f i ≥ 0 a.e.

Proof. The property ii.) in Lemma 1, together with the strong convergence in C1,γ shows that u1
0 − u2

0 + ψ1 ≥ 0 and 
u2 − u1 + ψ2 ≥ 0. If u1(x0) − u2(x0) + ψ1(x0) > 0, then the strict inequality u1

ε − u2
ε + ψ1 > 0 holds in a small 
0 0 0 0
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ball Br(x0), centered at x0 for ε > 0 small enough. Then it follows that −�u1
ε + f 1 = 0 in Br(x0), and we know 

that ‖�u1
ε‖L∞ is uniformly bounded, therefore through a subsequence, �u1

ε → �u1
0 a.e. as ε → 0, consequently 

−�u1
0 + f 1 = 0 a.e. in Br(x0). Moreover, since f 1 ∈ Cα , we know that u1

0 is a classical solution to −�u1
0 + f 1 = 0

in the ball Br(x0).
The solutions of the penalized system satisfy the equation

min(−�u1
ε + f 1,−�u2

ε + f 2) = 0.

After passing to a limit through a subsequence, we get the following

min(−�u1
0 + f 1,−�u2

0 + f 2) = 0 a.e. �
Proposition 1 shows that there exists (u1

0, u
2
0), u

i
0 ∈ W 2,p , ∀p < ∞ solving (1) in a strong sense. According to 

Lemma 1, ui
0 has the following property

‖�ui
0‖L∞ ≤ max

i
‖�ψi‖L∞ + 3 max

i
‖f i‖L∞, (9)

which will be relevant for deriving further regularity of solutions.
Furthermore, Proposition 1 tells us that the solution we get via the penalization method, solves an extra equation, 

which turns out to be very important in the discussion of the uniqueness.

3.2. Uniqueness

It has been shown in the paper [7] that if there are no zero loops, then the solution to the system (1) is unique. Here 
we give a counterexample showing that the uniqueness does not hold in case there are zero loops.

Example 2 (Diogo Gomes). The following system{
min(−�u1 − M,u1 − u2 + ψ) = 0

min(−�u2 + M,u2 − u1 − ψ) = 0,
(10)

with given boundary conditions ui = gi, g1 − g2 + ψ = 0 on ∂�, admits infinitely many solutions, provided 2M >

‖�ψ‖L∞ .
Moreover, (10) admits solutions u1, u2 /∈ C1,1.

Proof. Let (u1, u2) be a solution to the system (10). Since both u1 − u2 + ψ ≥ 0 and u2 − u1 − ψ ≥ 0, it follows that 
u1 − u2 + ψ ≡ 0, therefore −�u1 = −�u2 + �ψ .

Now let us take any u1 ∈ W 2,p , p > n, u1 = g1 on ∂�, such that −�u1 −M ≥ 0 a.e. Then the function u2 = u1 +ψ

satisfies the boundary conditions u2 = g2 on ∂�, and −�u2 + M ≥ 0 a.e. since 2M > ‖�ψ‖L∞ . Thus we get 
infinitely many solutions of the form (u1, u1 + ψ), which may not be C1,1. �

We observe that if the zero loop set is empty, then the equation min(−�u1 + f 1, −�u2 + f 2) = 0 is satisfied 
automatically. Under the nonnegative loop assumption, we saw that there exists a solution to system (1) also solving 
system (8). Next we show that the system (8) has a unique solution, which is actually the minimal solution to (1).

Proposition 2. The system (8) has a unique solution (u1
0, u

2
0) in W 2,p for every p < ∞.

Proof. Let us assume that (u1, u2) is a solution to system (8), then the difference U = u1 − u2 solves the following 
double-obstacle problem in �:⎧⎨

⎩
−�U + f 1 − f 2 ≤ 0 a.e. if U > −ψ1

−�U + f 1 − f 2 ≥ 0 a.e. if U < ψ2

−ψ1 ≤ U ≤ ψ2,

with boundary conditions U = g1 − g2 on ∂�.
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It is well-known that the solution to the double-obstacle problem with given boundary data is unique in W 2,p. 
Indeed, let V be another solution, then without loss of generality, we may assume that maxx∈�(U − V ) = U(x0) −
V (x0) > 0. Then in a small ball Br(x0), one has U − V > 0, and U − V has a maximum at x0. The inequality 
U > V ≥ −ψ1 implies that U > −ψ1 in Br(x0), hence −�U − f 1 + f 2 ≤ 0. Similarly, V < ψ2 in Br(x0) and 
therefore −�V − f 1 + f 2 ≥ 0. After combining the inequalities −�U − f 1 + f 2 ≤ 0 and −�V − f 1 + f 2 ≥ 0, we 
see that U −V is a subharmonic function in the ball Br(x0). Recalling that U −V has a maximum at an interior point 
x0, we get a contradiction to the maximum principle for subharmonic functions.

Now let us assume that (v1, v2) is another solution to system (8), then u1 − u2 ≡ v1 − v2 in �. Denote h =
u1 − v1 ≡ u2 − v2 in �, then h = 0 on ∂�.

Now let us plugg-in v1 = u1 − h and v2 = u2 − h to the equation

0 = min(−�v1 + f 1,−�v2 + f 2) =
min(−�u1 + f 1,−�u2 + f 2) + �h = �h a.e.

Then it follows that �h = 0 a.e. in �, h ∈ W 2,p(�), for every 1 < p < ∞, hence h is a harmonic function. Then the 
difference ui − vi is a harmonic function in �, vanishing on the boundary, therefore ui − vi ≡ 0, according to the 
maximum principle for harmonic functions. �
Corollary 1. The solution to the system (8) is the minimal solution to system (1), that is if (v1, v2) solves (1), then 
u1

0 ≤ v1 and u2
0 ≤ v2.

Proof. Assume (v1, v2) solves (1) with given boundary conditions, and let ω = min(−�v1 + f 1, −�v2 + f 2), then 
ω ≥ 0 a.e., ω ∈ L∞. Let h be the solution to �h = ω in � with zero Dirichlet boundary conditions on ∂�. Then 
according to the weak maximum principle for subharmonic functions, we get that h ≤ 0 in �.

Now we note that the pair (v1 + h, v2 + h) solves the system (8) with the same boundary conditions as (u1
0, u

2
0), 

hence v1 + h = u1
0 and v2 + h = u2

0. Then the minimality of (u1
0, u

2
0) follows from nonpositivity of h. �

From now on we will be interested in studying the regularity for the minimal solutions. As Example 2 shows, there 
is no hope to get C1,1-regularity for non-minimal solutions.

4. Optimal regularity of the solutions

In this section we prove that the solution to the system (8) is locally C1,1, if L = L 0. In particular we study the 
regularity of the solutions on ∂L , the boundary of the zero-loop set.

Before proceeding to the discussion of C1,1-regularity, let us rewrite our system in a more convenient way. We have 
assumed that f 1, f 2 ∈ Cα , therefore there exist v1, v2 ∈ C

2,α
loc solving the Poisson equation �vi = f i in �. Recall 

that (u1
0, u

2
0) is the solution to system (8), and define ui = ui

0 − vi , then ui
0 is as regular as ui up to C2,α , and (u1, u2)

solves the following system⎧⎪⎨
⎪⎩

min(−�u1, u1 − u2 + ϕ1) = 0,

min(−�u2, u2 − u1 + ϕ2) = 0,

min(−�u1,−�u2) = 0.

(11)

Here ϕ1 = v1 − v2 + ψ1 and ϕ2 = v2 − v1 + ψ2 are the new switching cost functions preserving the loop condition 
ϕ1 + ϕ2 ≡ ψ1 + ψ2, and ϕ1, ϕ2 ∈ C

2,α
loc .

From now on we will be focused on studying the regularity of (u1, u2) solving the system (11).
We define the open set �1 := ∪Br(x0, u1), where the union is taken over the balls Br(x0, u1), such that −�u1 > 0

a.e. in Br(x0, u1). Similarly we define the set �2 corresponding to the function u2, and let �12 = � \ �1 ∪ �2. Then 
�1, �2 and �12 are disjoint open sets, and since ϕ1, ϕ2 ∈ C2,α ,

−�u1 = �ϕ1 > 0,−�u2 = 0 in �1,

−�u2 = �ϕ2 > 0,−�u1 = 0 in �2,

−�u1 = 0,−�u2 = 0 in �12.
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In the set � \�1 we get −�u1 = 0, and the function u2 solves the obstacle problem min(−�u2, u2 −u1 +ϕ2) = 0, 
with a C2,α obstacle u1 −ϕ2. Therefore u2 is locally C1,1 in � \�1. Similarly we get that u2 is locally C1,1 in � \�2.

Next we need to study the regularity of the solution in a neighborhood of the set ∂�1 ∩ ∂�2 ∩ �. Let us note that 
it is contained in the zero loop set, ∂�1 ∩ ∂�2 ⊂ L , since u1 − u2 + ϕ1 ≡ 0 in �1 and u2 − u1 + ϕ2 ≡ 0 in �2. In 
the interior of the zero loop set the system (11) reduces to the equation

−�u1 = (�ϕ1)+, u2 = u1 + ϕ1 in L 0. (12)

From the classical theory, solutions to the equation (12) are locally C2,α if �ϕ1 ∈ Cα . So in a neighborhood of the 
points x ∈ ∂�1 ∩ ∂�2 and x ∈ L 0, the solution is C2,α .

It remains to study the regularity of (u1, u2) at the points x0 ∈ ∂�1 ∩ ∂�2 ∩ ∂L , called a “meeting” point. In this 
section we show that u1 and u2 are actually C2,α-regular at such points.

For simplicity, let us study the system locally in the unit ball B1, assuming that 0 ∈ ∂L ∩ ∂�1 ∩ ∂�2. We can 
always come to such a situation with a change of variables.

4.1. Blow-up procedure

Assume that (u1, u2) solves system (11) in the unit ball B1, and 0 ∈ ∂L = ∂L 0 is a meeting point, and let us 
study the regularity of the functions u1 and u2 at 0.

Definition 3. For a function u ∈ W 2,2, define �(u(x), r) = pr(x), where pr(x) = x · Ar · x + br · x + cr is a second 
order polynomial with the matrix Ar , vector br and scalar cr minimizing the following expression

min
A,b,c

ˆ

Br

(
|D2u − 2Ar |2 + |∇u − br |2 + |u − cr |2

)
dx.

Then �(u(rx), 1) = pr(rx), and it is easy to see that

pr(x) = 1

2
x · (D2u)r · x + (∇u)r · x + (u)r ,

where (u)r := (u)r,0, and (u)r,x0 is the average of u over the ball Br(x0) = {x ∈R
n | |x − x0| < r},

(u)r,x0 = 1

|Br |
ˆ

Br(x0)

u.

Let us recall that (u1, u2) ∈ W 2,2 is the solution to (11) in the unit ball B1, and denote Ai
r = 1

2 (D2ui)r , bi
r = (∇ui)r , 

ci
r = (ui)r , for i ∈ {1, 2}, then �(ui(rx), 1) = r2x · Ai

r · x + rbi
r · x + ci

r .
Next for any 0 < r < 1, we define

vi
r (x) = ui(rx) − �(ui(rx),1)

S(r)
,

where S(r) is chosen such that maxi ‖D2vi
r‖L2(B1)

= 1. Our aim is to describe the rate of convergence of S(r) as r
goes to zero.

It follows immediately from our definition of S(r), and BMO-estimates that S(r)

r2 is uniformly bounded from above. 
In order to show this, let us recall that ‖�ui‖L∞ ≤ maxi ‖�ϕi‖L∞ , hence D2ui ∈ BMO locally, with the following 
estimate

‖D2ui‖BMO(B 1
2
) ≤ C(max

i
‖�ϕi‖L∞ + ‖ui‖L2(B1)

).

Without loss of generality, we may assume that ‖D2v1
r ‖L2(B1)

= 1, for a fixed r > 0, then

S(r)

2
= ‖D2u1(rx) − 2A1

r‖L2(B1)
.

r
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A change of variable will give us(
S(r)

r2

)2

= 1

rn

ˆ

Br

|D2u1(y) − 2A1
r |2dy =

1

rn

ˆ

Br

|D2u1(y) − (D2u1)r |2dy ≤ C

(
max

i
‖�ϕi‖L∞ + ‖u1‖L2(B1)

)2

,

therefore ∀r < 1
2

S(r)

r2
≤ C

(
max

i
‖�ϕi‖L∞ + max

i
‖ui‖L2(B1)

)
:= C0. (13)

So S(r) has at least quadratic decay as r → 0. Next we improve the estimate, showing that actually S(r) ≤ C0r
2+α

for r > 0 small enough.

Proposition 3. Let ϕ1, ϕ2 ∈ C2,α for some 0 < α < 1, and L = L 0, then the function S(r)

r2+α is uniformly bounded as 
r goes to zero

S(r)

r2+α
≤ C

(
max

i
‖�ϕi‖L∞ + max

i
‖ui‖L2(B1)

)
, (14)

where C is a dimensional constant.

Proof. Let us start with an important observation: The assumptions 0 ∈ ∂L ∩ ∂�1 ∩ ∂�2, L = {ϕ1 + ϕ2 = 0}, 
L = L 0 and ϕ1, ϕ2 ∈ C2,α imply that �ϕ1(0) +�ϕ2(0) = 0. On the other hand �ϕ1 > 0 in �1 and �ϕ2 > 0 in �2, 
therefore �ϕ1(0) = �ϕ2(0) = 0.

Next we show that ϕi ∈ C2,α together with �ϕi(0) = 0, provide the growth estimate (14). The proof is based on 
an argument of contradiction, assume that S(r)

r2+α is not bounded, then there exists a sequence rk → 0 as k → ∞, such 

that S(rk) = kr2+α
k and S(r) ≤ kr2+α for all r ≥ rk . Our aim is to study the convergence of the sequence vi

k := vi
rk

as 
k → ∞. For that we will need some basic properties of the functions vi

r , where 0 < r < 1.
According to the definition of S(r), ‖D2vi

r‖L2(B1)
≤ 1 for r < 1. Then applying Poincaré’s inequality for the 

function ∇vi
r in the unit ball B1, we get ‖∇vi

r‖L2(B1)
≤ Cn for every 0 < r < 1, since (∇vi

r )1 = 0. Next we study the 
average of vi

r in the unit ball

(vi
r )1 = (ui)r − n

2 r2 · tr(D2ui)r
ffl
B1

x2
1dx − r

ffl
B1

x · (∇ui)rdx − (ui)r

S(r)

= −αn

r2
(
�ui(rx)

)
1

S(r)
,

where αn = n
2

ffl
B1

x2
1dx is a dimensional constant. Now let us recall that (u1, u2) solves (11), and therefore

0 ≤ −�ui(rx) ≤ max(0,�ϕi(rx)) ≤ ‖ϕi‖C2,α rα|x|α,

since �ϕi(0) = 0, ϕi ∈ C2,α . Hence we get 0 ≤ (vi
r )1 ≤ Cn

r2+α

S(r)
‖ϕi‖C2,α , where Cn > 0 is a dimensional constant. 

Next we apply Poincaré’s inequality one more time, ‖vi
r −(vi

r )1‖L2(B1)
≤ Cn‖∇vi

r‖L2(B1)
. Therefore we may conclude 

that

‖∇vi
r‖L2(B1)

≤ C,‖vi
r‖L2(B1)

≤ C

(
1 + ‖ϕ‖C2,α

r2+α

S(r)

)
, (15)

for every 0 < r < 1, where the constant C > 0 depends only on the dimension.
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Next by using (15) we want to estimate the ‖vi
k‖W 2,2(BR) for R < 1/rk as k → ∞. Let us start by looking at 

the expressions |Ai
2l rk

− Ai
2l−1rk

|, where l ∈ N and rk < 1 are chosen such that s = rk2l−1 ≤ 1
4 . It follows from 

Minkowski’s inequality, that

|Ai
2s − Ai

s | ≤
⎛
⎜⎝ 

B1

|D2ui(xs) − 2Ai
s |2

⎞
⎟⎠

1
2

+
⎛
⎜⎝ 

B1

|D2ui(xs) − 2Ai
2s |2

⎞
⎟⎠

1
2

≤ S(s)

s2
+ 2

n
2

⎛
⎜⎜⎝
 

B 1
2

|D2ui(2xs) − 2Ai
2s |2

⎞
⎟⎟⎠

1
2

≤ S(s)

s2
+ 2

n
2
S(2s)

4s2
.

Hence

|Ai
2l rk

− Ai
2l−1rk

| ≤ k(1 + 2
n
2 +α)(rk2l−1)α,

provided rk2l−1 ≤ 1
4 .

Now let us take any m ∈N such that 2m+1rk ≤ 1, then⎛
⎜⎝ ˆ

B2m

|D2vi
k(x)|2dx

⎞
⎟⎠

1
2

= r2
k

S(rk)

⎛
⎜⎝ ˆ

B2m

|D2ui(rkx) − 2Ai
rk

|2dx

⎞
⎟⎠

1
2

≤ 2
mn
2

krα
k

⎛
⎜⎝ˆ

B1

|D2ui(2mrkx) − 2Ai
rk

|2dx

⎞
⎟⎠

1
2

≤ 2
mn
2

krα
k

⎛
⎜⎜⎝

⎛
⎜⎝ˆ

B1

|D2ui(2mrkx) − 2Ai
2mrk

|2dx

⎞
⎟⎠

1
2

+ |Ai
2mrk

− Ai
rk

|

⎞
⎟⎟⎠

≤ 2
mn
2

krα
k

⎛
⎝S(2mrk)

(2mrk)2
+

m∑
j=1

|Ai
2j rk

− Ai
2j−1rk

|
⎞
⎠

≤ 2
mn
2

krα
k

⎛
⎝k2mαrα

k + k2nrα
k

m∑
j=1

2α(j−1)

⎞
⎠ ≤ 2n+12m

(
n
2 +α

)
.

For every R < 1
2rk

we can find an m ∈N such that 2m−1 ≤ R < 2m, and then applying the estimates above, we get
ˆ

BR

|D2vi
k(x)|2dx ≤ CnR

n+2α,

for every R < 1
2rk

, where Cn is a dimensional constant. Then we can also show that ‖∇vi
rk

‖L2(BR) and ‖vi
rk

‖L2(BR)

are bounded by a constant depending only on R. Indeed, applying the corresponding estimates for Ai
rk

, and the first 
inequality in (15), we get

|bi
2l rk

− bi
2l−1rk

| ≤ Cn,αk(rk2l)1+α,

and therefore

|bi
Rr − bi

r | ≤ Cn,αk(rkR)1+α.

k k
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Then Poincaré’s inequality in a ball BR implies that

‖∇vi
k − (∇vi

k)R‖L2(BR) ≤ CnR‖D2vi
k‖L2(BR),

and

‖vi
k − (vi

k)R‖L2(BR) ≤ CnR‖∇vi
k‖L2(BR),

where

(∇vi
k)R = rk

S(rk)
(∇ui

rk
− rkA

i
rk

· x − bi
rk

)R

= rk

S(rk)

(
(∇ui)Rrk − bi

rk

)
= rk

kr2+α
k

(
bi
Rrk

− bi
rk

)
,

and

(vi
k)R = 1

S(rk)

(
ci
Rrk

− ci
rk

+ n

2
r2
k (�ui)rk (x

2
1)R

)
.

Next let us observe that the second inequality in (15), with the corresponding estimates for Ai
r and bi

r imply that

|ci
Rrk

− ci
rk

| ≤ Ck(Rrk)
2+α.

Then it follows from the triangle’s inequality that

‖∇vi
k‖L2(BR) ≤ C

(
R

n
2 +1+α + R

n
2

rk

kr2+α
k

|bi
Rrk

− bi
rk

|
)

≤ CnR
n
2 +1+α,

and also

‖vi
k‖L2(BR) ≤ C

(
R‖∇vi

k‖L2(BR) + R
n
2 (vi

k)R

)
≤

C

(
R

n
2 +2+α + R

n
2
|ci

Rrk
− ci

rk
|

S(rk)
+ ‖ϕ‖C2,αR

n
2 +2 r2+α

k

S(rk)

)
≤ C′R

n
2 +2+α.

Therefore we have shown that the sequence vi
k is locally uniformly bounded in W 2,2, hence through a subsequence, 

vi
k converges weakly in W 2,2(BR), and strongly in W 1,2(BR), denote vi

0 = limk→∞ vi
k for i = 1, 2. Then the weak 

convergence of the second order derivatives implies that
ˆ

BR

|D2vi
0(x)|2dx ≤ lim sup

k→∞

ˆ

BR

|D2vi
k(x)|2dx,

and thereforeˆ

BR

|D2vi
0(x)|2dx ≤ CnR

n+2α. (16)

Next we describe further properties of the limit functions, v1
0 and v2

0 . Recall that

vi
k(x) = ui(rkx) − �(ui(rkx),1)

S(rk)
,

then we have

−�vi
k(x) = r2

k
(
−�ui(rkx) + trAi

rk

)
.

S(rk)
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Let us denote

q1
k (x) = p1

rk
(rkx) − p2

rk
(rkx) + ϕ1(rkx)

S(rk)
, and

q2
k (x) = p2

rk
(rkx) − p1

rk
(rkx) + ϕ2(rkx)

S(rk)
.

Then (v1
k , v

2
k ) is a strong solution to the following system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min(−�v1
k − trA1

rk

krα
k

, v1
k − v2

k + q1
k ) = 0

min(−�v2
k − trA2

rk

krα
k

, v2
k − v1

k + q2
k ) = 0

min(−�v1
k − trA1

rk

krα
k

,−�v2
k − trA2

rk

krα
k

) = 0,

therefore

−�v1
k (x) =

⎧⎪⎨
⎪⎩

trA1
rk

krα
k

+ �ϕ1(rkx)
krα

k
, if rkx ∈ �1

trA1
rk

krα
k

, otherwise,

and

−�v2
k (x) =

⎧⎪⎨
⎪⎩

trA2
rk

krα
k

+ �ϕ2(rkx)
krα

k
, if rkx ∈ �2

trA2
rk

krα
k

, otherwise.

Then �ϕi(0) = 0, for i = 1, 2 together with ϕi ∈ C2,α , implies that

‖�ϕi(rk·)‖L2(BR)

krα
k

≤ Cn

k
R

n
2 +α‖ϕi‖C2,α → 0, as k → ∞,

for i = 1, 2, and for any fixed 1 ≤ R < ∞.
We have that vi

k ⇀ vi
0 weakly in W 2,2(BR) and vi

k → vi
0 in W 1,2(BR), therefore �vi

k ⇀ �vi
0 weakly in L2(BR), 

but �vi
k = trAi

rk

krα
k

+ �ϕi(rkx)
krα

k
χ�i

(rkx), and ‖�ϕi(rkx)
krα

k
χ�i

(rkx)‖L2(BR) → 0. Thus we may conclude that the sequence of 

numbers 
trAi

rk

krα
k

converges, and denote ai := limk→∞
trAi

rk

krα
k

. Then ‖�vi
k − ai‖L2(BR) → 0 as k → ∞ for every 1 ≤ R <

∞. Therefore both −�v1
0 − a1 ≡ 0 and −�v2

0 − a2 ≡ 0 in Rn.

We have shown that vi
0(x) − ai |x|2

2n
is a harmonic functions in Rn. Hence the matrix D2vi

0 has harmonic entries 
Dkvi

0, where k is a multiindex, |k| = 2. Next we can apply the estimates of the derivatives for harmonic functions and 
inequality (16), to get

|∇Dkvi
0(x0)| ≤ R− n

2 −1‖Dkvi
0‖L2(BR(x0))

≤ R− n
2 −1‖Dkvi

0‖L2(B2R) ≤ C′R−1+α,

provided R > |x0|. Letting R → ∞, we see that the derivatives of Dkvi
0 are vanishing, hence D2vi

0 is a constant 
matrix, and therefore vi

0, i ∈ {1, 2} is a second order polynomial.
According to our construction, vi

0 are orthogonal to the second order polynomials in L2(B1)-sense, hence both 
v1

0 and v2
0 must be identically zero. Then the constants a1 = a2 = 0, and ‖�vi

k‖L2(B1)
→ 0 as k → ∞, the latter 

contradicts to the condition maxi ‖D2vi
k‖L2(B1)

= 1. �
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4.2. C2,α-regularity at the meeting points

We start by showing that the approximating polynomials pi
r converge to a polynomial pi

0, and describe the rate of 
convergence.

Lemma 2. Let (u1, u2) be a solution to (11), and assume that ϕi ∈ C2,α . Let the polynomials pi
r be as in Definition 3, 

then there exists a polynomial pi
0 such that

sup
x∈Br

|pi
r (x) − pi

0(x)| ≤ Cr2+α. (17)

Proof. The condition ‖D2vi
r‖L2(B1)

≤ 1 with the inequality (14) implies that

⎛
⎜⎝ˆ

B1

|D2ui(rx) − D2pi
r |2dx

⎞
⎟⎠

1
2

≤ S(r)

r2
≤ C0r

α (18)

Recall that Ai
r = D2pi

r , then using the triangle inequality, and that Ai
r is minimizing ‖D2ui(rx) − A‖L2(B1)

over 
matrices A ∈R

n ×R
n, we get |Ai

r − Ai
r
2
| ≤ C0r

α for all 0 < r < 1. By taking r = 2−n, we see that Ai
2−n is a Cauchy 

sequence;

|Ai
2−n − Ai

2−n−m | ≤ �m−1
k=0 |Ai

2−n−k − Ai
2−n−k−1 | ≤

�m−1
k=0 (2−α)n+k = 2−αn�m−1

k=0 2−αk,

from the convergence of the series �(2−α)n, it follows that Ai
2−n converges to some matrix Ai

0 as n goes to infinity. 
The inequality also provides the rate of convergence; for a fixed n, by letting m go to infinity, we see that |Ai

2−n −Ai
0| ≤

C02−nα .
Moreover, we get the estimate

|Ai
r − Ai

0| ≤ Crα,

for 0 < r < 1, by choosing n so that 2−n−1 < r ≤ 2−n.
Next we proceed to describe the rate of convergence of bi

r and ci
r . We know that bi

r = (∇ui)r , and ci
r = (ui)r , 

taking into account that ui ∈ C1,γ , we see that bi
r → ∇ui(0) and ci

r → u(0) as r → 0. Our aim is to show that actually

|bi
r − ∇ui(0)| ≤ Cr1+α and |ci

r − ui(0)| ≤ Cr2+α.

Let us recall that (∇vi
r)1 = 0, and therefore Poincaré’s inequality implies that

‖∇vi
r‖L2(B1)

≤ C‖D2vi
r‖L2(B1)

≤ C′.

Hence⎛
⎜⎝ˆ

B1

|∇ui(rx) − ∇pi
r (rx)|2dx

⎞
⎟⎠

1
2

≤ C′ S(r)

r
≤ Cr1+α. (19)

Taking into account that bi
r is minimizing ‖∇ui(rx) − rx · Ai

r − b‖L2(B1)
over b ∈ R

n, and applying triangle’s 
inequality we get |bi

r − ∇ui(0)| ≤ Cr1+α .
Furthermore, using Poincaré’s inequality once again, we see that

⎛
⎜⎝ˆ

B

|ui(rx) − pi
r (rx) + r2(�ui)r |2dx

⎞
⎟⎠

1
2

≤ C′S(r) ≤ Cr2+α, (20)
1
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then

|ci
r − ui(0)| ≤ Cr2+α,

by using that ci
r is minimizing ‖ui(rx) + r2(�ui)r − 1

2 r2x · Ai
r · x − rbi

r · x − c‖L2(B1)
over c ∈ R.

Finally, after combining our estimates for Ai
r , bi

r and ci
r , we get (17), where

pi
0(x) = 1

2
x · Ai

0 · x + ∇ui(0) · x + ui(0),

for i = 1, 2. �
Corollary 2. Under the assumptions of Lemma 2 it follows that

‖ui(rx) − pi
r(rx)‖W 2,2(B1)

≤ Cn,α

(
max

i
‖ϕi‖C2,α + max

i
‖ui‖L2

)
r2+α, (21)

where Cn,α is a dimensional constant.

Proof. Let us recall that ‖�ui(rx)‖L2(B1)
≤ C‖�ϕi‖Cα rα , then the statement follows from the inequalities (18), (19)

and (20). �
Now we are ready to prove the main theorem.

Theorem 4. Assume ϕ1, ϕ2 ∈ C2,α , and L = L 0 then the solution to the system (11), (u1, u2) is C2,α-regular on 
∂�1 ∩ ∂�2 ∩ ∂L ∩ �, in the sense that for every x0 ∈ ∂�1 ∩ ∂�2 ∩ ∂L ∩ �, there exist second order polynomials 
p1

x0
, p2

x0
, such that

sup
x∈Br (x0)

|ui(x) − pi
x0

(x)| ≤ Cr2+α (22)

where the constant C > 0 depends only on the given data.

Proof. Without loss of generality, we may assume x0 = 0, and consider the following rescalings

vi
r (x) = ui(rx) − pi

0(rx)

r2+α
,

then according to Lemma 2 and Corollary 2, ‖vi
r‖W 2,2(B1)

≤ C.
The pair (v1

r , v
2
r ) solves the following system⎧⎪⎪⎪⎨

⎪⎪⎪⎩
min(−�v1

r − trA1
0

rα , v1
r − v2

r + q1
r ) = 0

min(−�v2
r − trA2

0
rα , v2

r − v1
r + q2

r ) = 0

min(−�v1
r − trA1

0
rα ,−�v2

r − trA2
0

rα ) = 0,

where

q1
r (x) = p1

0(rx) − p2
0(rx) + ϕ1(rx)

r2+α
, q2

r (x) = p2
0(rx) − p1

0(rx) + ϕ2(rx)

r2+α
.

Then

−�vi
r =

⎧⎨
⎩

trAi
0

rα + �ϕi(rx)
rα if rx ∈ �i

trAi
0

rα otherwise.

We assumed that 0 ∈ ∂�1 ∩ ∂�2 ∩ ∂L , then �ϕi(0) = 0, i = 1, 2. Hence |�ϕ1(rx)
rα | ≤ ‖ϕ1

r ‖C2,α(B1)
|x|α . We know 

that ‖�vi
r‖L2(B ) is bounded, therefore trAi = 0, and �vi

r(x) is uniformly bounded.

1 0
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We have that ‖vi
r‖L2(B1)

≤ C and we saw that ‖�vi
r‖L∞(B1) ≤ ‖ϕi‖C2,α(B1)

. Using the Calderon–Zygmund es-
timates, we conclude that ‖vi

r‖C1,γ is uniformly bounded. In particular, |vi
r(x)| ≤ C′(C0 + ‖ϕi‖C2,α(B1)

) for every 
x ∈ B1 and r ≤ 1

2 .

Recall that we set C0 = C
(
maxi ‖�ϕi‖L∞ + maxi ‖ui‖L2(B1)

)
, and vi

r (x) = ui(rx)−pi
0(rx)

r2+α . Then we get the desired 
inequality

sup
x∈Br

|ui(x) − pi
0(x)| ≤ C

(
max

i∈{1,2}
‖ui‖L2(B1)

+ max
i∈{1,2}

‖ϕi‖C2,α(B1)

)
r2+α. �

4.3. A counterexample in case the zero-loop set has an isolated point

Here we give a counterexample, showing that if the zero loop set has an isolated point, then the solution may not 
be C1,1.

We consider the following system in R2

{
min(−�u1, u1 − u2 + ϕ) = 0

min(−�u2, u2 − u1 + ϕ) = 0,
(23)

with ϕ = 1
4 |x|2.

Then the difference U = u1 − u2 solves the following double-obstacle problem in R2

−�U =
{1, if U = −ϕ

−1, if U = ϕ

0, if − ϕ < U < ϕ,

(24)

and −�u1 = (−�U)+ and −�u2 = (�U)+.
Now let us consider a function w defined as follows

w =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 1
4 |x|2, if x1 > 0, x2 > 0

1
4 (x2

1 − x2
2), if x1 < 0, x2 > 0

1
4 (x2

2 − x2
1), if x1 > 0, x2 < 0

1
4 |x|2, if x1 < 0, x2 < 0.

Then w ∈ C1,1 also solves the double-obstacle problem (24), therefore we choose U ≡ w.
Next we write u1 explicitly in polar coordinates

u1(r, θ) =
{− 1

4 r2 − 1
2π

r2θ cos 2θ − 1
2π

r2 ln r sin 2θ, if 0 < θ ≤ π
2

− 1
4 r2 cos 2θ + 1

2π
r2θ cos 2θ + 1

2π
r2 ln r sin 2θ, otherwise,

here the function r2θ cos 2θ + r2 ln r sin 2θ ∈ C1,γ for every 0 < γ < 1, solves the Laplace equation in R2\{0}, but is 
not C1,1 near the origin.

Therefore u1 is a C1,γ function in the unit ball in R2 but it is not C1,1 in the neighborhood of the origin, since 
| ∂2u1

∂r2 | ≈ | ln r| → ∞ as r → 0. Moreover, −�u1(r, θ) = χ{0<θ≤ π
2 } = χ{u1>0}, provided r > 0 is small enough.

Next we take u2(r, θ) = u1(r, θ) − w, then

u2(r, θ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 1
2π

r2θ cos 2θ − 1
2π

r2 ln r sin 2θ, if 0 < θ ≤ π
2

− 1
2 r2 cos 2θ + 1

2π
r2θ cos 2θ + 1

2π
r2 ln r sin 2θ, if π

2 < θ ≤ π

− 1
4 r2 − 1

4 r2 cos 2θ + 1
2π

r2θ cos 2θ + 1
2π

r2 ln r sin 2θ, if π < θ ≤ 3π
2

1
2π

r2θ cos 2θ + 1
2π

r2 ln r sin 2θ, if 3π
2 < θ ≤ 2π

Neither u1 nor u2 is a C1,1 function. However, it is easy to see that (u1, u2) solves (23), and it is minimal, since 
min(−�u1, −�u2) = 0 a.e.
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