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Abstract

We prove quantitative estimates for flows of vector fields subject to anisotropic regularity conditions: some derivatives of some 
components are (singular integrals of) measures, while the remaining derivatives are (singular integrals of) integrable functions. 
This is motivated by the regularity of the vector field in the Vlasov–Poisson equation with measure density. The proof exploits an 
anisotropic variant of the argument in [20,14] and suitable estimates for the difference quotients in such anisotropic context. In 
contrast to regularization methods, this approach gives quantitative estimates in terms of the given regularity bounds. From such 
estimates it is possible to recover the well posedness for the ordinary differential equation and for Lagrangian solutions to the 
continuity and transport equations.
© 2015 
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1. Introduction

1.1. Ordinary differential equations with non smooth vector field

Given a smooth vector field b : [0, T ] × R
N → R

N , the flow of b is the smooth map X : [0, T ] × R
N → R

N

satisfying⎧⎨⎩
dX

ds
(s, x) = b(s,X(s, x)), s ∈ [0, T ],

X(0, x) = x.
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In the last years much attention has been devoted to the study of flows associated to vector fields that are not smooth 
(in particular, less than Lipschitz in the space variable). In this context, the correct notion of flow is that of the regular 
Lagrangian flow, loosely speaking an “almost-everywhere flow which (almost) preserves the Lebesgue measure” (see 
Definition 3.1 for the precise definition).

Existence, uniqueness and stability of the regular Lagrangian flow have been proved by DiPerna and Lions [23]
for Sobolev vector fields, and by Ambrosio [2] for vector fields with bounded variation, in both cases under suitable 
bounds on the divergence of the vector field. Both results make use of the connection with the well posedness of the 
continuity equation

∂tu + div (bu) = 0,

which in turn is analyzed thanks to the theory of renormalized solutions. We address the interested reader to 
[5,6,12,18,22] for a detailed presentation of these results and for the further references.

1.2. Quantitative estimates for the ordinary differential equation

An alternative and more direct approach has been introduced in [20]. Many of the ODE results in [23] can be 
derived with simple a priori estimates, directly at the Lagrangian level, by studying a functional measuring an “integral 
logarithmic distance” between flows.

In detail, given two regular Lagrangian flows X and X̄ associated to a vector field b, the idea is to consider the 
functional

�δ(s) =
∫

log

(
1 + |X(s, x) − X̄(s, x)|

δ

)
dx, (1.1)

where δ > 0 is a given parameter (which will be optimized in the course of the proof) and the integration is performed 
on a suitable compact set.

It is immediate to derive the following lower estimate, for a given γ > 0:

�δ(s) ≥
∫

{|X−X̄|≥γ }
log

(
1 + γ

δ

)
dx = LN({|X − X̄| ≥ γ }) log

(
1 + γ

δ

)
,

that is, the measure of the superlevels of the difference between two regular Lagrangian flows is upper estimated by

�δ(s)

log
(
1 + γ

δ

) . (1.2)

A strategy for proving uniqueness is therefore deriving upper bounds on the functional �δ(s) which blow up in δ
slower than log (1/δ) as δ → 0.

Differentiating in time the functional and using the ordinary differential equation we obtain

�′
δ(s) ≤

∫ |b(X) − b(X̄)|
δ + |X − X̄| dx ≤

∫
min

{
2‖b‖∞

δ
; |b(X) − b(X̄)|

|X − X̄|
}

dx. (1.3)

In [20] it has been noted that the estimate of the difference quotients in terms of the maximal function

|b(X) − b(X̄)|
|X − X̄| � MDb(X) + MDb(X̄),

together with the strong estimate for the maximal function (2.7), imply an upper bound on �δ(s) independent of δ. 
This allowed in [20] the proof of existence, uniqueness, stability (with an effective rate), compactness, and mild 
regularity for the regular Lagrangian flow associated to a vector field with Sobolev regularity W 1,p, with p > 1. We 
note in passing that the rate obtained in these estimates has been recently proved to be sharp (see [1,30]).

The case p = 1 (and the more general case of vector fields with bounded variation) was left open in the above 
analysis due to the failure of the strong estimate (2.7): only the weak estimate (2.8) is available for p = 1. This case 
has been studied in [14] exploiting interpolation techniques in weak Lebesgue spaces. The weak estimate on the 
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second term in the minimum in (1.3) is interpolated with the (degenerating in δ) L∞ estimate on the first term in the 
minimum. This gives an upper bound of the form

�δ(s) � ‖Db‖L1 log

(
1

δ

)
. (1.4)

This estimate is on the critical scale discriminating uniqueness. Therefore we have to play with constants: up to an 
L2-remainder, the L1-norm of Db can be assumed to be arbitrarily small (we exploit here equi-integrability bounds 
on Db). This allows to re-gain smallness in (1.2) (notice that the L2 part can be treated as in [20]).

For this reason the analysis in [14] is not able to address the case when Db is a measure (i.e., the case of a vector 
field with bounded variation). On the other hand, by considering smooth maximal functions instead of classical ones, 
and by exploiting more sophisticated tools from harmonic analysis, the case in which Db is a singular integral of 
an L1 functional can be treated with the same strategy. This extends the case b ∈ W 1,1 and is relevant for some 
applications to nonlinear PDEs (see [9,10]). Results of existence, uniqueness, stability (with an effective rate), and 
compactness follows as in [20]. We refer to [6] and to the introduction of [14] for a more detailed presentation. See 
also [7,13,15–17,19,21,24].

1.3. A split case and the main result of the present paper

As mentioned above, the analysis in [14] is not able to include the case when Db is a measure; concerning the case 
of a singular integral of a measure, a counterexample in [23] shows that in general uniqueness may fail. However, in 
situations originating from models in mathematical physics, the vector field is endowed with a particular structure, 
and just some of the derivatives are singular integrals of measures, while the remaining derivatives are more regular.

For instance, the Vlasov–Poisson system{
∂tf + v · ∇xf + E(t, x) · ∇vf = 0,

E(t, x) = −∇xU(t, x), −�xU(t, x) = ωρ(t, x) = ω
∫

f (t, x, v) dv,

where ω = ±1, entails a (nonlinear) transport equation with vector field b(t, x, v) = (v, E(t, x)). If we look at the 
case when the space density ρ is a measure, it turns out that DxE is a singular integral of a measure, while all other 
derivatives of the vector field enjoy better regularity. However, we are not able to consider the case of f a measure 
in x, v, that has been studied in [31,27], since the characteristics are defined only almost everywhere. We mention 
however that some applications of this Lagrangian theory to the Vlasov–Poisson system with L1 space density are 
presented in [9]. See also [4], where similar arguments have been applied to the study of the Vlasov–Poisson system, 
also exploiting the notion of maximal regular flow [3].

This motivates the setting of the present paper. We write RN =R
n1 ×R

n2 with coordinates x1 and x2, and split anal-
ogously the vector field according to b = (b1, b2). Roughly speaking, we consider the case in which D1b2 is a singular 
integral (in Rn1 ) of a measure, while D1b1, D2b1 and D2b2 are singular integrals (in Rn1 ) of integrable functions:

Db =
(

S ∗ L1 S ∗ L1

S ∗M S ∗ L1

)
(in fact our assumptions are slightly more general: see assumption (R2) in Section 4). Compared to [14], we are able 
to consider a situation in which some entries of the differential matrix Db are measures. (From a PDE point of view, 
related contexts have been considered in [25,26]).

The idea, analogous to the anisotropic regularization of [11,2], is to “weight” differently the two (groups of) direc-
tions, according to the different degrees of regularity. In our context, this can be done by considering, instead of (1.1), 
a functional depending on two parameters δ1 and δ2, with δ1 ≤ δ2, namely

�δ1,δ2(s) =
∫

log

(
1 +

∣∣∣∣( |X1(s, x) − X̄1(s, x)|
δ1

,
|X2(s, x) − X̄2(s, x)|

δ2

)∣∣∣∣) dx. (1.5)

Following the same strategy as before (estimate of the difference quotients and interpolation in the minimum in (1.3)), 
we derive the following bound, which replaces (1.4) in this context:

�δ1,δ2(s) �
[
δ1 ‖D1b2‖M + δ2 ‖D2b1‖L1 + ‖D1b1‖L1 + ‖D2b2‖L1

]
log

(
1
)

.

δ2 δ1 δ2
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We need to gain some “smallness” in criterion (1.2). Observe that ‖D2b1‖L1 , ‖D1b1‖L1 and ‖D2b2‖L1 can be assumed 
to be small, by the same equi-integrability argument as in [14]. This is however not the case for ‖D1b2‖M. But we 
can exploit the presence of the coefficient δ1/δ2 multiplying this term: both δ1 and δ2 have to be sent to zero, but we 
can do this with δ1 � δ2.

One relevant technical point in the proof is the estimate for the anisotropic difference quotients showing up when 
differentiating (1.5). We need an estimate of the form:

|f (x) − f (y)| �
∣∣∣∣(x1 − y1

δ1
,

x2 − y2

δ2

)∣∣∣∣ [U(x) + U(y)
]
. (1.6)

This is complicated by the fact that, as in the classical case, one expects to use a maximal function in x1 and x2 in 
order to estimate the difference quotients, but however this would not match (in terms of persistence of cancellations) 
with the presence of a singular integral in the variable x1 only. This is resolved in Section 5 by the use of tensor 
products of maximal functions, and will result in the proof of (1.6) together with a bound of the form

‖U‖ ≤ δ1‖D1f ‖ + δ2‖D2f ‖.
This is the plan how to obtain the proof of our main Theorem 6.1, containing the fundamental estimate for the 

distance between two regular Lagrangian flows associated to vector fields under the regularity assumption (R2). As 
recalled in Section 6 we obtain as a corollary of Theorem 6.1 existence, uniqueness, stability (with an effective rate) 
and compactness for regular Lagrangian flows, and well posedness for Lagrangian solutions to the continuity and 
transport equations.

2. Background material

This section is devoted to recalling some classical definitions and results from harmonic analysis. Most of the 
results below are stated without proofs, for which we refer to [28,29]. The proofs of the more specific results and 
additional comments can be found in [14].

2.1. Weak Lebesgue spaces and equi-integrability

We will denote by Ld the d-dimensional Lebesgue measure and by Br(x) the open ball or radius r > 0 centered at 
x ∈R

d , shortened to Br in case the center of the ball is the origin of Rd .

Definition 2.1. Let u be a measurable function on 	 ⊂R
d . For 1 ≤ p < ∞, we set

|||u|||pMp(	) = sup
λ>0

{λpLd({x ∈ 	 : |u(x)| > λ})}
and define the weak Lebesgue space Mp(	) as the space consisting of all such measurable functions u : 	 → R with 
|||u|||Mp(	) < ∞. For p = ∞, we set M∞(	) = L∞(	).

Let us remark that the quantity ||| · |||pMp(	) is not a norm, but just a quasinorm, therefore we have chosen the 
notation with the three vertical bars, different from the usual one for the norm.

The following lemma shows that we can interpolate M1 and Mp , with p > 1, obtaining a bound on the L1 norm, 
which depends logarithmically on the Mp quasinorm.

Lemma 2.2 (Interpolation). Let u : 	 
→ [0, +∞) be a nonnegative measurable function, where 	 ⊂ R
d has finite 

measure. Then for every 1 < p < ∞, we have the interpolation estimate

||u||L1(	) ≤ p

p − 1
|||u|||M1(	)

[
1 + log

(
|||u|||Mp(	)

|||u|||M1(	)

Ld(	)
1− 1

p

)]
,

and analogously for p = ∞

||u||L1(	) ≤ |||u|||M1(	)

[
1 + log

(
||u||L∞(	)

|||u|||M1(	)

Ld(	)

)]
.
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We also recall the classical definition of equi-integrability.

Definition 2.3 (Equi-integrability). Let 	 be an open subset of Rd . We say that a bounded family {ϕi}i∈I ⊂ L1(	) is 
equi-integrable if the following two conditions hold:

(i) For any ε > 0 there exists a Borel set A ⊂ 	 with finite measure such that 
∫
	\A |ϕi | dx ≤ ε for any i ∈ I ;

(ii) For any ε > 0 there exists δ > 0 such that, for every Borel set E ⊂ 	 with Ld(E) ≤ δ, there holds 
∫
E

|ϕi | dx ≤ ε

for any i ∈ I .

The Dunford–Pettis theorem ensures that a bounded family in L1(	) is relatively compact for the weak L1 topology 
if and only if it is equi-integrable. Also, a sequence un ∈ L1(Rd) converges to u in L1(Rd) if and only if it is 
equi-integrable and un converges to u locally in measure. The following lemma can be proved with elementary tools.

Lemma 2.4. Consider a family {ϕi}i∈I ⊂ L1(	) which is bounded in L1(	) and fix 1 < p ≤ ∞. Then this family is 
equi-integrable if and only if for every ε > 0 there exists a constant Cε and a Borel set Aε ⊂ 	 with finite measure 
such that for every i ∈ I one can write

ϕi = ϕ1
i + ϕ2

i ,

with

‖ϕ1
i ‖L1(	) ≤ ε and spt (ϕ2

i ) ⊂ Aε, ‖ϕ2
i ‖Lp(	) ≤ Cε for all i ∈ I.

2.2. Singular integrals

We briefly summarize the classical Calderón–Zygmund theory of singular integrals.

Definition 2.5. We say that K is a singular kernel on Rd if

(1) K ∈ S ′(Rd) and K̂ ∈ L∞(Rd),
(2) K|Rd\{0} ∈ L1

loc(R
d \ {0}) and there exists a constant A ≥ 0 such that∫

|x|>2|y|
|K(x − y) − K(x)|dx ≤ A

for every y ∈R
d .

We now state a classical result that allows the extension of (the convolution with) a singular kernel to an operator 
on Lp spaces.

Theorem 2.6 (Calderón–Zygmund). Let K be a singular kernel and define

Su = K ∗ u for u ∈ L2(Rd)

in the sense of multiplication in the Fourier variable. Then for every 1 < p < ∞ we have the strong estimate

‖Su‖Lp(Rd ) ≤ CN,p(A + ||K̂||L∞)||u||Lp(Rd ) u ∈ Lp ∩ L2(Rd), (2.1)

and for p = 1 the weak estimate

|||Su|||M1(Rd ) ≤ CN(A + ||K̂||L∞)||u||L1(Rd ) u ∈ L1 ∩ L2(Rd). (2.2)

In addition, the operator S can be extended to the whole Lp(Rd) for any 1 < p < ∞ with values in Lp(Rd), still 
satisfying (2.1). For p = 1, the operator S extends to the whole L1(Rd) to an operator SM1

with values in M1(Rd), still 
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satisfying (2.2). However, a function in M1(Rd) is in general not integrable, therefore it does not define a distribution. 
Notice that, for u ∈ L1(Rd), we can define a tempered distribution SD ∈ S ′(Rd) by the formula

〈SDu,ϕ〉 = 〈u, S̃ϕ〉 for every ϕ ∈ S(Rd), (2.3)

where S̃ is the singular integral operator associated to the kernel K̃(x) = K(−x). The same holds for u a finite 
measure in Rd . The two operators SM1

and SD are different and cannot be identified. Since F : L1(Rd) → L∞(Rd)

is bounded, and by definition we have K̂ ∈ L∞(Rd), the definition in (2.3) is equivalent to the definition in Fourier 
variables

ŜDu = K̂û.

We also recall a particular class of singular kernels:

Definition 2.7. A kernel K is a singular kernel of fundamental type in Rd if the following properties hold:

(1) K|Rd\{0} ∈ C1(Rd \ {0}),
(2) There exists a constant C0 ≥ 0 such that

|K(x)| ≤ C0

|x|d x ∈ R
d \ {0}, (2.4)

(3) There exists a constant C1 ≥ 0 such that

|∇K(x)| ≤ C1

|x|d+1
x ∈ R

d \ {0}, (2.5)

(4) There exists a constant A1 ≥ 0 such that∣∣∣∣∣∣∣
∫

R1<|x|<R2

K(x)dx

∣∣∣∣∣∣∣≤ A1 for every 0 < R1 < R2 < ∞. (2.6)

In particular, these conditions are sufficient to extend the function defined on Rd \ {0} to a singular kernel K on Rd , 
unique up to addition of a multiple of a Dirac delta at the origin, and which satisfies the estimates in Definition 2.5.

2.3. Maximal functions

We now recall the classical maximal function.

Definition 2.8. Let u ∈ L1
loc(R

d). The maximal function of u is defined as

Mu(x) = sup
ε>0

−
∫

Bε(x)

|u(y)|dy

for every x ∈R
d .

The maximal function Mu is finite almost everywhere for u ∈ Lp(Rd), for every 1 ≤ p ≤ ∞. For every 1 < p ≤ ∞
we have the strong estimate

‖Mu‖Lp(Rd ) ≤ Cd,p||u||Lp(Rd ), (2.7)

with only the weak estimate for p = 1

|||Mu|||M1(Rd ) ≤ Cd ||u||L1(Rd ). (2.8)
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2.4. The smooth maximal function and cancellations

Given two singular kernels of fundamental type K1 and K2, with bounded and smooth Fourier transform, we con-
sider the associated singular integral operators S1 and S2. The composition S2 ◦ S1 is still a singular integral operator 
S, associated to a singular kernel K characterized by K̂ = K̂2K̂1. In general, composing two weak estimates (as in 
(2.2)) is not well defined. However, there are cancellations in the convolution K2∗ K1 (that is, in the composition of 
the two singular integral operators), which allow us to define S2 ◦ S1. A very important result is that we can compose 
a special class of maximal functions with a singular integral operator, yielding a composition operator that is bounded 
L1 → M1 and L2 → L2.

We consider a maximal function that is “smaller” than the classical maximal function, in order to allow cancella-
tions with the singular integral operator. Here the absolute value is outside the integral, instead of inside. The result 
after taking smooth averages is a maximal function that is “smoother” than the classical maximal function.

Definition 2.9 (Smooth maximal function). Given a family of functions {ρν}ν ⊂ L∞
c (Rd), for every function u ∈

L1
loc(R

d) we define the {ρν}-maximal function of u as

M{ρν }(u)(x) = sup
ν

sup
ε>0

∣∣∣∣∣∣∣
∫
Rd

ρν
ε (x − y)u(y)dy

∣∣∣∣∣∣∣= sup
ν

sup
ε>0

∣∣(ρν
ε ∗ u)(x)

∣∣ ,
where as usual

ρν
ε (x) = 1

εd
ρν

(x

ε

)
.

In the case when u is a distribution, we take a smooth family {ρν}ν ⊂ C∞
c (Rd) and define in the distributional sense

M{ρν }(u)(x) = sup
ν

sup
ε>0

∣∣〈u,ρν
ε (x − ·)〉∣∣ .

The importance of this class of maximal functions is that it is possible to define the composition M{ρν }S with 
a singular integral operator, which is impossible with the usual maximal function. The following theorem has been 
proved in [14].

Theorem 2.10. Let K be a singular kernel of fundamental type and let S be the associated singular integral operator. 
Let {ρν}ν ⊂ L∞(Rd) be a family of kernels such that

sptρν ⊂ B1 and ‖ρν‖L1(Rd ) ≤ Q1 for every ν.

Assume that for every ε > 0 and every ν there holds∥∥(εdK(ε·))∗ρν
∥∥

Cb(R
d )

≤ Q2 for every ε > 0 and for every ν.

Then we have the following estimates.

(1) There exists a constant Cd , depending on the dimension d only, such that

|||M{ρν }(Su)|||M1(Rd ) ≤ Cd

(
Q2 + Q1(C0 + C1 + ||K̂||∞

)
||u||L1(Rd )

for every u ∈ L1 ∩ L2(Rd). If {ρν} ⊂ C∞
c (Rd), and u is a finite measure on Rd , then the same estimate holds, 

where Su is defined as a distribution SDu:

|||M{ρν }(Su)|||M1(Rd ) ≤ Cd

(
Q2 + Q1(C0 + C1 + ||K̂||∞

)
||u||M(Rd ).

(2) If Q3 = supν ||ρν ||L∞(Rd ) is finite, then there exists Cd , depending on the dimension d only, such that

‖M{ρν }(Su)‖L2(Rd ) ≤ CdQ3‖K̂‖∞‖u‖L2(Rd )

for every u ∈ L2(Rd).
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3. Regular Lagrangian flows

As mentioned in the Introduction, we will deal with flows of non-smooth vector fields. The adequate notion of flow 
in this context is that of the regular Lagrangian flow. Given a vector field b(s, x) : (0, T ) × R

N → R
N , we assume 

the following growth condition:

(R1) The vector field b(s, x) can be decomposed as

b(s, x)

1 + |x| = b̃1(s, x) + b̃2(s, x),

with

b̃1 ∈ L1((0, T );L1(RN)) and b̃2 ∈ L1((0, T );L∞(RN)).

Given a vector field satisfying (R1), we codify in the following definition of regular Lagrangian flow the notion of 
“almost everywhere flow which almost preserves the Lebesgue measure”. We denote by L0

loc the space of measurable 
functions endowed with the local convergence in measure, by B the space of bounded functions, and by logLloc the 
space of the locally logarithmically integrable functions.

Definition 3.1 (Regular Lagrangian flow). If b is a vector field satisfying (R1), then for fixed t ∈ [0, T ), a map

X ∈ C([t, T ]s;L0
loc(R

N
x )) ∩B([t, T ]s; logLloc(R

N
x ))

is a regular Lagrangian flow in the renormalized sense relative to b starting at t if we have the following:

(1) The equation

∂s

(
β(X(s, x))

)= β ′(X(s, x))b(s,X(s, x))

holds in D′((t, T ) × R
N), for every function β ∈ C1(RN ; R) that satisfies |β(z)| ≤ C(1 + log(1 + |z|)) and 

|β ′(z)| ≤ C
1+|z| for all z ∈ R

N ,

(2) X(t, x) = x for LN -a.e. x ∈R
N ,

(3) There exists a constant L ≥ 0 such that 
∫
RN ϕ(X(s, x))dx ≤ L 

∫
RN ϕ(x)dx for all measurable ϕ : RN → [0, ∞).

We will usually refer to the constant L in Definition 3.1(3) as the compressibility constant of the flow. We define 
the sublevel of the flow as

Gλ = {x ∈ R
N : |X(s, x)| ≤ λ for almost all s ∈ [t, T ]}. (3.1)

The following lemma gives an estimate for the decay of the superlevels of a regular Lagrangian flow.

Lemma 3.2. Let b : (0, T ) ×R
N → R

N be a vector field satisfying (R1) and let X : [t, T ] ×R
N → R

N be a regular 
Lagrangian flow relative to b starting at time t , with compressibility constant L. Then for all r, λ > 0

LN(Br \ Gλ) ≤ g(r, λ),

where the function g depends only on L, ‖b̃1‖L1((0,T );L1(RN)) and ‖b̃2‖L1((0,T );L∞(RN)) and satisfies g(r, λ) ↓ 0 for r
fixed and λ ↑ ∞.

Indeed the regular Lagrangian flow X has a logarithmic summability, and this clarifies the class of renormalization 
functions β considered in Definition 3.1(1). See [14] for the proof.
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4. Regularity assumptions and the anisotropic functional

We wish to consider a regularity setting of the vector field b(t, x) in which the (weak) regularity has a different 
character with respect to different directions in space. We split RN as RN = R

n1 × R
n2 with variables x1 ∈ R

n1

and x2 ∈ R
n2 . We denote by D1 = Dx1 the derivative with respect to the first n1 variables x1, and by D2 = Dx2 the 

derivative with respect to the last n2 variables x2. Accordingly, we denote b = (b1, b2)(s, x1, x2). For X(s, x1, x2)

a regular Lagrangian flow associated to b we denote X = (X1, X2)(s, x1, x2).
We are going to assume that D1b2 is “less regular” than D1b1, D2b1, D2b2: the derivative D1b2 is a singular 

integral of a measure, whereas the other derivatives are singular integrals of L1 functions. This is made precise as 
follows:

(R2) We assume that

Db =
(

D1b1 D2b1
D1b2 D2b2

)
=
(

γ 1S1p γ 2S2q

γ 3S3m γ 4S4r

)
, (4.1)

where the sub-matrices have the representation

i, j ∈ {1, . . . , n1} : i ∈ {1, . . . , n1}, j ∈ {n1 + 1, . . . , n2} :
(D1b1)

i
j =

m∑
k=1

γ 1i
jk (s, x2)S

1i
jkp

i
jk(s, x1) (D2b1)

i
j =

m∑
k=1

γ 2i
jk (s, x2)S

2i
jkq

i
jk(s, x1)

i ∈ {n1 + 1, . . . , n2}, j ∈ {1, . . . , n1} : i ∈ {n1 + 1, . . . , n2}, j ∈ {n1 + 1, . . . , n2} :
(D1b2)

i
j =

m∑
k=1

γ 3i
jk (s, x2)S

3i
jkm

i
jk(s, x1) (D2b2)

i
j =

m∑
k=1

γ 4i
jk (s, x2)S

4i
jkr

i
jk(s, x1).

In the above assumptions we have that:
– S1i

jk , S2i
jk , S3i

jk , S4i
jk are singular integral operators associated to singular kernels of fundamental type in Rn1,

– the functions pi
jk , qi

jk , rijk belong to L1((0, T ); L1(Rn1)),

– mi
jk ∈ L1((0, T ); M(Rn1)),

– the functions γ 1,i
jk , γ 2,i

jk , γ 3,i
jk , γ 4,i

jk belong to L∞((0, T ); Lq(Rn2)) for some q > 1.

We have denoted by L1((0, T ); M(Rn1)) the space of all functions t 
→ μ(t, ·) taking values in the space M(Rn1)

of finite signed measures on Rn1 such that

T∫
0

‖μ(t, ·)‖M(Rn1 ) dt < ∞.

Remark 4.1. The assumption on the functions γ 1,i
jk , γ 2,i

jk , γ 3,i
jk , γ 4,i

jk could be relaxed to L∞((0, T ); Lq

loc(R
n2)). This 

would require the use of a localized maximal function.

We will additionally assume that

(R3) b ∈ L
p

loc([0, T ] ×R
N) for some p > 1.

As mentioned in the Introduction, the proof of our main result will exploit an anisotropic functional (already 
provisionally introduced in (1.5)), which extends the functional (1.1) to the regularity setting under investigation. Let 
A be the constant N × N matrix

A = Diag(δ1, . . . , δ1, δ2, . . . , δ2). (4.2)

A acts on vectors in RN by a dilation of a factor δ1 on the first n1 coordinates, and of a factor δ2 on the last n2
coordinates: A(x1, x2) = (δ1x1, δ2x2).
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Given X(t, x1, x2) and �X(t, x1, x2) regular Lagrangian flows associated to b and b̄ respectively, we denote by Gλ

and �Gλ the sublevels of X and �X defined as in (3.1). The proof of our main theorem (see Theorem 6.1) is based on 
the study of the following anisotropic functional:

�δ1,δ2(s) =
∫

Br∩Gλ∩�Gλ

log
(

1 +
∣∣∣A−1 [X(s, x1, x2) − �X(s, x1, x2)

]∣∣∣) dx. (4.3)

5. Estimates of anisotropic difference quotients

In this section we first recall the classical estimate for the difference quotients of a BV function, and then recover 
an analogous “anisotropic” version of this result for vector fields in the regularity setting of (R2). This will be a key 
tool in order to estimate the functional (4.3).

Lemma 5.1. If u ∈ BV (Rd), then there exists an Ld -negligible set N ⊂R
d such that

|u(x) − u(y)| ≤ Cd |x − y|
(
(MDu)(x) + (MDu)(y)

)
for every x, y ∈R

d \N , where Du is the distributional derivative of u, represented by a measure.

It turns out that an analogous result holds for functions whose derivatives are singular integrals of measures. The 
following result has been proved in [14]. The smooth maximal function in Definition 2.9 plays an important role in 
this estimate.

Proposition 5.2. Let f ∈ L1
loc(R

d) and assume that for every j = 1, . . . , d we have

∂jf =
m∑

k=1

Rjkgjk

in the sense of distributions, where Rjk are singular integral operators of fundamental type in Rd and gjk ∈ M(Rd)

for j = 1, . . . , d and k = 1, . . . , m, and Rjkgjk is defined in the sense of tempered distributions. Then there exists 
a nonnegative function V ∈ M1(Rd) and an Ld -negligible set N ⊂ R

d such that for every x, y ∈ R
d \ N there 

holds

|f (x) − f (y)| ≤ |x − y|
(
V (x) + V (y)

)
,

where V is given by

V := V(R,g) =
d∑

j=1

m∑
k=1

M{ϒξ,j , ξ∈Sd−1}(Rjkgjk)

and ϒξ,j , for ξ ∈ S
d−1 and j = 1, . . . , d , is a family of smooth functions explicitly constructed in the course of the 

proof.

Remark 5.3. Theorem 2.10 implies that the operator g 
→ V(R, g) is bounded L2 → L2 and M → M1.

In the following three subsections we prove similar estimates in the anisotropic context.

5.1. Split regularity: the isotropic estimate

Given {γ ν(x1)}ν ⊂ C∞
c (Rn1), {ρσ (x2)}σ ⊂ C∞

c (Rn2) and u ∈ S ′(RN) we define

M{γ ν⊗ρσ }u(x) = sup
ε>0

sup
ν,σ

|(γ ν(x1)ρ
σ (x2))ε ∗ u(x)| = sup

ε>0
sup
ν,σ

∣∣∣∣( 1

εN
γ ν

( x1

εn1

)
ρσ

( x2

εn2

))∗ u(x)

∣∣∣∣ . (5.1)

We first of all prove an isotropic estimate in a regularity context related to (R2).
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Lemma 5.4. Let f :RN →R be a function such that for each j = 1, . . . , N we have

∂jf =
m∑

k=1

(Rjkgjk)(x1)γjk(x2), (5.2)

where Rjk are singular integrals of fundamental type in Rn1 , gjk ∈ M(Rn1) and γjk ∈ Lq(Rn2), for some q > 1. 
Then there exists a nonnegative function V : RN → [0, ∞) and an LN -negligible set N ⊂ R

N such that for every 
x, y ∈R

N \N
|f (x) − f (y)| ≤ |x − y|

(
V (x) + V (y)

)
.

The function V is given by

V := V(R,γ, g) =
N∑

j=1

m∑
k=1

M{ϒξ,j ⊗ϒ̄ξ,j }(γjkRjkgjk), (5.3)

for suitable smooth compactly supported functions ϒξ,j and ϒ̄ξ,j , which will be introduced in the proof.

Proof. We adapt the proof of Proposition 5.2 to the current regularity setting. The difficulty is that a smooth maximal 
function in RN composed with the singular kernel on Rn1 does not enjoy suitable bounds, and so we use a tensor 
product of smooth functions, as in (5.1).

Let w = (w1, w2) ∈ R
N , and let {ej }j be the standard basis for RN . We denote {w1}j = (w1, 1, . . . , 1) · ej and 

{w2}j = (1, . . . , 1, w2) · ej . Define the families of functions⎧⎪⎨⎪⎩
ϒξ,j (w1) = h1

(
ξ1
2 − w1

)
{w1}j

ϒ̄ξ,j (w2) = h2
(

ξ2
2 − w2

)
{w2}j ,

where hi ∈ C∞
c (Rni ) with 

∫
R

ni hidxi = 1 and ξ ∈ S
N−1. Let hr = 1

rN h1( ·
r
)h2( ·

r
), set r = |x − y|, and write

f (x) − f (y) =
∫
RN

hr

(
z − x + y

2

)
(f (x) − f (z))dz +

∫
RN

hr

(
z − x + y

2

)
(f (z) − f (y))dz.

We assume that f , γjk and gjk are smooth and compute the following:∫
RN

hr

(
z − x + y

2

)
(f (x) − f (z))dz

= −
N∑

j=1

∫
RN

1∫
0

hr

(
z − x + y

2

)
∂jf (x + t (z − x))(z · ej − x · ej ) dtdz.

After the change of variable −t (z − x) 
→ w we get

=
N∑

j=1

∫
RN

1∫
0

hr

(
x − y

2
− w

t

)
∂jf (x − w)

w · ej

tN+1
dtdw

= r

N∑
j=1

∫
RN

1∫
0

1

tN
hr

(
x − y

2
− w

t

)
w · ej

tr
∂j f (x − w)dtdw

= r

N∑
j=1

m∑
k=1

1∫ [ ∫
n

1

tn1
h1

r

(
x1 − y1

2
− w1

t

){w1

tr

}j

Rjkgjk(x1 − w1) dw1
0 R 1
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×
∫
R

n2

1

tn2
h2

r

(
x2 − y2

2
− w2

t

){w2

tr

}j

γjk(x2 − w2) dw2

]
dt

= r

N∑
j=1

m∑
k=1

1∫
0

[
1

tn1
h1

r

(
x1 − y1

2
− w1

t

){w1

tr

}j ∗
w1

Rjkgjk(w1)

]
(x1)

×
[

1

tn2
h2

r

(
x2 − y2

2
− w2

t

){w2

tr

}j ∗
w2

γjk(w2)

]
(x2) dt.

Denoting ϒξ,j
ε (w1) = 1

εn1 ϒξ,j
(

w1
ε

)
and ϒ̄ξ,j

ε (w2) = 1
εn2 ϒ̄ξ,j

(
w2
ε

)
, this expression equals

r

N∑
j=1

m∑
k=1

1∫
0

[ϒ
x−y
|x−y| ,j
tr ∗

1
Rjkgjk] (x1) [ϒ̄

x−y
|x−y| ,j
tr ∗

2
γjk] (x2) dt,

and so∣∣∣∣∣∣∣
∫
RN

hr

(
z − x + y

2

)
(f (x) − f (z))dz

∣∣∣∣∣∣∣
≤ |x − y|

N∑
j=1

m∑
k=1

1∫
0

|[ϒ
x1−y1|x−y| ,j

tr ∗
1

Rjkgjk] (x1) [ϒ̄
x2−y2|x−y|
tr ∗

2
γjk] (x2)|dt

≤ |x − y|
N∑

j=1

m∑
k=1

1∫
0

sup
ε>0

sup
ξ

|[ϒξ,j
ε ∗

1
Rjkgjk] (x1) [ϒ̄ξ,j

ε ∗
2

γjk] (x2)|dt

= |x − y|
N∑

j=1

m∑
k=1

M{ϒξ,j ⊗ϒ̄ξ,j }(γjkRjkgjk)(x) = |x − y|V (x).

This proves the statement in the smooth case. By a similar approximation argument as in [14], we conclude this holds 
for functions of the type in (5.2). �
5.2. Split regularity: the anisotropic estimate

We now modify Lemma 5.4 to obtain an estimate in which distances are measured “anisotropically” through the 
matrix A defined in (4.2). In the next lemma we will use the following notation:

ǧij (x1) = gjk(δ1x1), γ̌ij (x2) = γij (δ2x2),

where with gjk(δ1x1) we denote the measure on Rn1 defined through

〈gjk(δ1x1), ϕ(x1)〉 = δ
−n1
1 〈gij (y1), ϕ(y1/δ1)〉, ϕ ∈ C∞

c (Rn1).

Moreover, Rδ1
jk denotes the singular integral operator in Rn1 associated to the kernel Kδ1

jk , where

K
δ1
jk(x1) = δ

n1
1 Kij (δ1x1). (5.4)

Lemma 5.5. Let f : RN → R be a function in L1
loc(R

N) such that for each j = 1, . . . , N we have that ∂jf is as in 
(5.2). Let A be the matrix defined in (4.2). Then there exists a nonnegative function U : RN → [0, ∞), such that for 
LN -a.e. x, y ∈R

N ,

|f (x) − f (y)| ≤ |A−1[x − y]|
(
U(x) + U(y)

)
,
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where (with the notation above)

U(x) = U(R,γ, g)(x) =
N∑

j=1

m∑
k=1

[M{ϒξ,j ⊗ϒ̄ξ,j }(R
δ1
jkǧjkγ̌jkAjj )](A−1x).

Proof. Define the following rescaled vector field. For each z ∈ R
N , define

f̌ (z) = f (Az).

Now Df̌ is related to Df by the following:

∂j f̌ (z) = ∂jf (Az)Ajj =
m∑

k=1

γjk(δ2z2)Rjkgjk(δ1z1)Ajj .

We now apply Lemma 5.4. This gives the existence of a function V ∈ M1
loc(R

N) to estimate the difference quotient 
of f̌ :

|f̌ (z) − f̌ (w)| ≤ |z − w|(V (z) + V (w)), (5.5)

with V given by

V (z) = V(R,γ, g) =
N∑

j=1

m∑
k=1

M{ϒξ,j ⊗ϒ̄ξ,j }
(
γjk(δ2z2)Rjkgjk(δ1z1)

)
Ajj . (5.6)

With a change of variable we can verify that

(Rjkgjk)(δ1z1) = (R
δ1
jkǧjk)(z1).

Thus we can rewrite (5.6) as

V (z) =
N∑

j=1

m∑
k=1

[M{ϒξ,j ⊗ϒ̄ξ,j }(R
δ1
jkǧjkγ̌jkAjj )](z). (5.7)

By letting U(x) = V (A−1x) the proof is concluded. �
Remark 5.6. In order to treat the case of a function with gradient given by the singular integral in RN of a measure, 
that is

∂jf =
m∑

k=1

Rjkgjk, (5.8)

with Rjk singular integrals of fundamental type in RN and gjk ∈ M(RN), one should consider the function

U(x) = U(R,g)(x) =
N∑

j=1

m∑
k=1

[M{ϒξ,j }RA
jk(gjk(A·))Ajj )](A−1x),

where RA
ij is the singular integral operator corresponding to the kernel

KA
ij (x) = |detA|Kij (Ax)

and A is the diagonal matrix defined in (4.2). This would however give a more singular estimate in Lemma 5.7 below, 
and would therefore be useless for the proof of Theorem 6.1.

On the other hand it is possible to treat the case Rij = δ in (5.8), since the Dirac delta “does not see the dilation”. 
This would correspond to the case of a vector field b = (b1, b2) such that b2 is BV in x1 and W 1,1 in x2, and b1 is 
W 1,1 in both x1 and x2, the situation of [11]. This will be presented in [8].
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5.3. Split regularity: operator bounds

We finally establish suitable estimates on the norms of the operator defined in Lemma 5.5.

Lemma 5.7. Let U(R, γ, g) be as in Lemma 5.5. Then for any 1 < p < ∞ we have

|||U(R,γ, g)|||M1(	r )

≤ Cr,p,m

⎛⎝δ1

n1∑
j=1

m∑
k=1

||γjk||Lp(Rn2 )||gjk||M(Rn1 ) + δ2

N∑
j=n1+1

m∑
k=1

||γjk||Lp(Rn2 )||gjk||M(Rn1 )

⎞⎠ ,

where 	r = B1
r × B2

r ⊂R
n1 ×R

n2 , and

||U(R,γ, g)||Lp(RN) ≤ Cp

⎛⎝δ1

n1∑
j=1

m∑
k=1

||γjk||Lp(Rn2 )||gjk||Lp(Rn1 ) + δ2

N∑
j=n1+1

m∑
k=1

||γjk||Lp(Rn2 )||gjk||Lp(Rn1 )

⎞⎠.

The constants Cr,p,m and Cp also depends on the singular integral operators Rjk in (5.2) and on the space dimension. 
The first constant Cr,p,m also depend on the integer m in (5.2).

Proof. Let us start with the estimate in M1. We define B̌1
r = B1

r/δ1
, B̌2

r = B2
r/δ2

and 	̌r = B̌1
r × B̌2

r . Consider first the 

measure of the superlevels of U(x): changing variable via the linear transformation z = A−1x we obtain

LN({x ∈ 	r : |U(x)| > λ}) = LN({x ∈ 	r : |V (A−1x)| > λ}) = δ
n1
1 δ

n2
2 LN({z ∈ 	̌r : |V (z)| > λ}),

where V is as before given by

V (z) = δ1

n1∑
j=1

m∑
k=1

[M{ϒξ,j ⊗ϒ̄ξ,j }(R
δ1
jkǧjkγ̌jk)](z) + δ2

N∑
j=n1+1

m∑
k=1

[M{ϒξ,j ⊗ϒ̄ξ,j }(R
δ1
jkǧjkγ̌jk)](z) (5.9)

(compare with (5.7) and split the sum for 1 ≤ j ≤ n1 and n1 + 1 ≤ j ≤ n1 + n2).

Remembering that |||f (x1, x2)|||M1
x1x2

≤
∥∥∥|||f (x1, x2)|||M1

x1

∥∥∥
L1

x2

we estimate for fixed j = 1, . . . , N as follows:

δ
n1
1 δ

n2
2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

m∑
k=1

[M{ϒξ,j ⊗ϒ̄ξ,j }(R
δ1
jkǧjkγ̌jk)](z)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
M1(	̌r )

≤ Cm δ
n1
1 δ

n2
2

m∑
k=1

∣∣∣∣∣∣∣∣∣M{ϒξ,j }(R
δ1
jkǧjk)

∣∣∣∣∣∣∣∣∣
M1(B̌1

r )

∥∥∥M{ϒ̄ξ,j }γ̌jk

∥∥∥
L1(B̌2

r )

≤ Cm[Ln2(B̌2
r )]1−1/p δ

n1
1 δ

n2
2

m∑
k=1

∥∥ǧjk

∥∥
M(Rn1 )

∥∥∥M{ϒ̄ξ,j }γ̌jk

∥∥∥
Lp(B̌2

r )

≤ Cr,p,m δ
−n2+n2/p

2 δ
n1
1 δ

n2
2

m∑
k=1

∥∥ǧjk

∥∥
M(Rn1 )

∥∥γ̌jk

∥∥
Lp(Rn2 )

= Cr,p,m

m∑
k=1

∥∥gjk

∥∥
M(Rn1 )

∥∥γjk

∥∥
Lp(Rn2 )

.

In the above chain of inequalities we have used the fact that the norm of Rδ1
jk as singular integral operator coincides 

with the norm of Rjk as singular integral operator.
Recalling (5.9) we immediately obtain the first inequality claimed in the lemma. The second one follows with a 

simile argument, using the continuity if the operator

ǧjk 
→ R
δ1
jkǧjk

from Lp(Rn1) into itself. �
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6. The fundamental estimate for flows: main theorem and corollaries

Our main theorem is the following:

Theorem 6.1. Let b and b̄ be two vector fields satisfying assumption (R1), and assume that b also satisfies assumptions
(R2) and (R3). Fix t ∈ [0, T ) and let X and X̄ be regular Lagrangian flows starting at time t associated to b and b̄
respectively, with compressibility constants L and L̄. Then the following holds. For every γ > 0 and r > 0 and for 
every η > 0 there exist λ > 0 and Cγ,r,η > 0 such that

Ln
(
Br ∩ {|X(s, ·) − X̄(s, ·)| > γ })≤ Cγ,r,η||b − b̄||L1((0,T )×Bλ) + η

for all s ∈ [t, T ]. The constants λ and Cγ,r,η also depend on:

• The equi-integrability in L1((0, T ); L1(Rn1)) of p, q, r, as well as the norm in L1((0, T ); M(Rn1)) of m (where 
p, q, r and m are associated to b as in (R2)),

• The norms of the singular integral operators S·i
jk , as well as the norms in L∞((0, T ); Lq(Rn2)) of γ ·i

jk (associated 
to b as in (R2))),

• The norm in Lp((0, T ) × Bλ) of b,
• The L1((0, T ); L1(RN)) + L1((0, T ); L∞(RN)) norms of the decompositions of b and b̄ as in (R1),
• The compressibility constants L and L̄.

From this fundamental estimate, the various corollaries regarding the well posedness of the regular Lagrangian flow 
and of Lagrangian solutions to the continuity and transport equations follow with the same proofs as in Sections 6 
and 7 in [14]. In particular, we obtain:

• Uniqueness of the regular Lagrangian flow associated to a vector field satisfying (R1), (R2) and (R3),
• Stability (with an explicit rate) for a sequence Xn of regular Lagrangian flows associated to vector fields bn, that 

converge in L1
loc([0, T ] × R

N) to a vector field satisfying (R1), (R2) and (R3), under the assumption that the 
decompositions of bn in (R1) and the compressibility constants of Xn satisfy uniform bounds,

• Compactness for a sequence Xn of regular Lagrangian flows associated to vector fields bn satisfying (R1), (R2)
and (R3) with suitable uniform bounds,

• Existence of a regular Lagrangian flow associated to a vector field satisfying (R1), (R2) and (R3) and such that 
[divb]− ∈ L1((0, T ); L∞(RN)),

• If a vector field b satisfies (R1), (R2) and (R3) and divb ∈ L1((0, T ); L∞(RN)), then there exists a unique 
forward and backward regular Lagrangian flow associated to b, which satisfies the usual group property, and the 
Jacobian of the flow is well defined,

• Lagrangian solutions to the continuity and transport equations with a vector field b satisfying (R1), (R2) and (R3)
and divb ∈ L1((0, T ); L∞(RN)) are well defined and stable.

7. Proof of the fundamental estimate (Theorem 6.1)

The proof of Theorem 6.1 makes use of the integral functional

�δ1,δ2(s) =
∫

Br∩Gλ∩�Gλ

log
(

1 +
∣∣∣A−1 [X(s, x1, x2) − �X(s, x1, x2)

]∣∣∣) dx

already defined in (4.3). In the following proof we assume δ1 ≤ δ2.
In order to improve the readability of the following (many) estimates, we will use the notation “�” to de-

note an estimate up to a constant only depending on absolute constants and on the bounds assumed in Theo-
rem 6.1, and the notation “�λ” to mean that the constant could also depend on the truncation parameter λ. We 
will however write explicitly the norm of the measure m, in order to make the reader aware of its role in the esti-
mates.
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Step 1: Differentiating �δ1,δ2 . We start by differentiating the integral functional with respect to time:

�′
δ1,δ2

(s) ≤
∫

Br∩Gλ∩�Gλ

|A−1[b(s,X(s, x1, x2)) −�b(s, �X(s, x1, x2))]|
1 + |A−1[X(s, x1, x2) − �X(s, x1, x2)]|

dx.

For simplicity, we drop the notation X(s, x1, x2), setting X(s, x1, x2) = X and �X(s, x1, x2) = �X. We estimate

�′
δ1,δ2

(s) ≤
∫

Br∩Gλ∩�Gλ

|A−1[b(s, �X) −�b(s, �X)]|dx +
∫

Br∩Gλ∩�Gλ

|A−1[b(s,X) − b(s, �X)]|
1 + |A−1[X − �X]| dx.

After a change in variable along the flow �X in the first integral, and noting that δ1 ≤ δ2, we further obtain

�′
δ1,δ2

(s) ≤ �L
δ1

||b(s, ·) −�b(s, ·)||L1(Bλ)

+
∫

Br∩Gλ∩�Gλ

min

{
|A−1[b(s,X) − b(s, �X)]|, |A−1[b(s,X) − b(s, �X)]|

|A−1[X − �X]|
}

dx. (7.1)

Step 2: Decomposing the minimum. We consider the second element of the minimum. We have

A−1[b(s,X) − b(s, �X)] =
(

b1(s,X) − b1(s, �X)

δ1
,
b2(s,X) − b2(s, �X)

δ2

)
,

and therefore

|A−1[b(s,X) − b(s, �X)]|
|A−1[X − �X]| � 1

δ1

|b1(s,X) − b1(s, �X)|
|A−1[X − �X]| + 1

δ2

|b2(s,X) − b2(s, �X)|
|A−1[X − �X]| . (7.2)

Step 3: Definition of the functions Up, Uq, Um and Ur. We aim at estimating the difference quotients in (7.2). We 
apply Lemma 5.5 and (with a slight extension of the notation) we obtain that

|b1(s, x) − b1(s, x̄)|
|A−1[x − x̄]| ≤ U(S1, S2, γ 1, γ 2,p,q)(x) + U(S1, S2, γ 1, γ 2,p,q)(x̄) =: Up,q(x) + Up,q(x̄)

and

|b2(s, x) − b2(s, x̄)|
|A−1[x − x̄]| ≤ U(S3, S4, γ 3, γ 4,m, r)(x) + U(S3, S4, γ 3, γ 4,m, r)(x̄) =: Um,r(x) + Um,r(x̄)

for a.e. x and x̄ ∈R
N and s ∈ [t, T ].

It is immediate from the definition of the operator U that it is subadditive in its entries. Therefore we can further 
estimate

Up,q(x) = U(S1, S2, γ 1, γ 2,p,q)(x) ≤ U(S1, γ 1,p)(x) + U(S2, γ 2,q)(x) =: Up(x) + Uq(x)

and

Um,r(x) = U(S3, S4, γ 3, γ 4,m, r)(x) ≤ U(S3, γ 3,m)(x) + U(S4, γ 4, r)(x) =: Um(x) + Ur(x)

for a.e. x ∈R
N , implying that

|b1(s, x) − b1(s, x̄)|
|A−1[x − x̄]| ≤ Up(x) + Uq(x) + Up(x̄) + Uq(x̄) (7.3)

and

|b2(s, x) − b2(s, x̄)|
|A−1[x − x̄]| ≤ Um(x) + Ur(x) + Um(x̄) + Ur(x̄) (7.4)

for a.e. x and x̄ ∈R
N and s ∈ [t, T ].
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Step 4. Splitting of the quotient. Let 	 = (t, τ) × Br ∩ Gλ ∩ �Gλ ⊂R
N+1. We return to the estimate in (7.1) of Step 1. 

For any τ ∈ [t, T ] we integrate this expression over s ∈ (t, τ), and recall (7.2) to get

�δ1,δ2(τ ) �
�L
δ1

||b(s, ·) −�b(s, ·)||L1((t,τ )×Bλ)

+
∫
	

min

{
|A−1[b(s,X) − b(s, �X)]|, 1

δ1

|b1(s,X) − b1(s, �X)|
|A−1[X − �X]| + 1

δ2

|b2(s,X) − b2(s, �X)|
|A−1[X − �X]|

}
dxds

= �L
δ1

||b(s, ·) −�b(s, ·)||L1((t,τ )×Bλ) + �̃δ1,δ2(τ ). (7.5)

We analyze the term �̃δ1,δ2(τ ). Using the estimates in (7.3) and (7.4) in Step 3, we can write

�̃δ1,δ2(τ ) �
∫
	

min

{
|A−1[b(s,X) − b(s, �X)]|, 1

δ1

|b1(s,X) − b1(s, �X)|
|A−1[X − �X]|

}
dxds

+
∫
	

min

{
|A−1[b(s,X) − b(s, �X)]|, 1

δ2

|b2(s,X) − b2(s, �X)|
|A−1[X − �X]|

}
dxds

≤
∫
	

min

{
|A−1[b(s,X) − b(s, �X)]|, 1

δ1

(
(Up + Uq)(s,X) + (Up + Uq)(s, �X)

)}
dxds

+
∫
	

min

{
|A−1[b(s,X) − b(s, �X)]|, 1

δ2

(
(Um + Ur)(s,X) + ((Um + Ur))(s, �X)

)}
dxds. (7.6)

Step 5. Decomposition of the functions Up, Uq and Ur. We further decompose the functions Up, Uq and Ur exploiting 
the equi-integrability of p, q and r.

We apply the equi-integrability Lemma 2.4 in L1 + Lq , with the same 1 < q ≤ ∞ as in the assumption on the 
functions γ in (R2). Given ε > 0, we find Cε > 0, a Borel set Aε ⊂ (0, T ) ×R

n1 with finite measure and decomposi-
tions

pi
jk = (pi

jk)
1 + (pi

jk)
2 =: p1 + p2,

qi
jk = (qi

jk)
1 + (qi

jk)
2 =: q1 + q2

and

rijk = (rijk)
1 + (rijk)

2 =: r1 + r2,

so that

‖p1‖L1((0,T )×R
n1 ) ≤ ε, ‖q1‖L1((0,T )×R

n1 ) ≤ ε, ‖r1‖L1((0,T )×R
n1 ) ≤ ε,

‖p2‖Lq((0,T )×R
n1 ) ≤ Cε, ‖q2‖Lq((0,T )×R

n1 ) ≤ Cε, ‖r2‖Lq((0,T )×R
n1 ) ≤ Cε,

and

spt (p2) ⊂ Aε, spt (q2) ⊂ Aε, spt (r2) ⊂ Aε.

We then decompose the functions Up, Uq and Ur from Step 3 as

Up = U(S1, γ 1,p) ≤ U(S1, γ 1,p1) + U(S1, γ 1,p2) =: U1
p + U2

p,

Uq = U(S2, γ 2,q) ≤ U(S2, γ 2,q1) + U(S2, γ 2,q2) =: U1
q + U2

q

and

Ur = U(S4, γ 4, r) ≤ U(S4, γ 4, r1) + U(S4, γ 4, r2) =: U1
r + U2

r .
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Applying Lemma 5.7 to U1
p and U2

p we get

|||U1
p|||M1((0,T )×Bλ) �λ δ1||γ 1||L∞((0,T );Lq(Rn2 ))||p1||L1((0,T )×R

n1 )) �λ δ1ε,

‖U2
p‖Lq((0,T )×Bλ) � δ1||γ 1||L∞((0,T );Lq(Rn2 ))||p2||Lq((0,T )×R

n1 ) � δ1Cε. (7.7)

We have a similar estimate for Uq and Ur:

|||U1
q |||M1((0,T )×Bλ) �λ δ2ε, |||U1

r |||M1((0,T )×Bλ) �λ δ2ε,

‖U2
q‖Lq((0,T )×Bλ) � δ2 Cε, ‖U2

r ‖Lq((0,T )×Bλ) � δ2Cε. (7.8)

Note that we cannot apply such a decomposition to Um, since it is defined as the operator U acting on a measure 
rather than integrable function. We only have the bound

|||Um|||M1((0,T )×Bλ) �λ δ1||m||L1((0,T );M(Rn1 )). (7.9)

We further split the minima according to this decomposition:

�̃δ1,δ2(τ ) �
∫
	

min

{
|A−1[b(s,X) − b(s, �X)]|, 1

δ2
(Um(s,X) + Um(s, �X))

}
dxds

+
∫
	

min

{
|A−1[b(s,X) − b(s, �X)]|, 1

δ2
(U1

r (s,X) + U1
r (s, �X))

}
dxds

+
∫
	

min

{
|A−1[b(s,X) − b(s, �X)]|, 1

δ2
(U2

r (s,X) + U2
r (s, �X))

}
dxds

+
∫
	

min

{
|A−1[b(s,X) − b(s, �X)]|, 1

δ1
((U1

p + U1
q)(s,X) + (U1

p + U1
q)(s, �X))

}
dxds

+
∫
	

min

{
|A−1[b(s,X) − b(s, �X)]|, 1

δ1
((U2

p + U2
q)(s,X) + (U2

p + U2
q)(s, �X))

}
dxds

=
∫
	

ϕ1(s,X, �X) +
∫
	

ϕ2(s,X, �X) +
∫
	

ϕ3(s,X, �X) +
∫
	

ϕ4(s,X, �X) +
∫
	

ϕ5(s,X, �X). (7.10)

Step 6. Estimating the functions ϕj . Let 	′ = (t, τ) × Bλ ⊂ R
N+1. We estimate the first element of each minima in 

Lp: changing variables along the flows we obtain

‖ϕj (s,X, �X)‖Lp(	) ≤ L1/p + �L1/p

δ1
‖b‖Lp(	′) �

1

δ1
(7.11)

for every j = 1, . . . , 5.
We now consider the second elements of the minima. Let us start with ϕ1. Changing variable along the flows and 

using (7.9) we obtain

|||ϕ1(s,X, �X)|||M1(	) ≤ 1

δ2

∣∣∣∣∣∣Um(s,X) + Um(s, �X)
∣∣∣∣∣∣

M1(	)
� 1

δ2
|||Um|||M1(	′) �λ

δ1

δ2
||m||L1((0,T );M(Rn1 )).

(7.12)

Consider ϕ2. Using (7.8) we obtain

|||ϕ2(s,X, �X)|||M1(	) ≤ 1

δ2
|||U1

r (s,X) + U1
r (s, �X)|||M1(	) �

1

δ2
|||U1

r |||M1(	′) �λ ε. (7.13)

For ϕ3 and ϕ5 we neglect the first element of the minimum, since we have directly an estimate on the L1(	) norm. 
Using (7.8) we obtain
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‖ϕ3(s,X, �X)‖L1(	) ≤ 1

δ2
‖U2

r (s,X) + U2
r (s, �X)‖L1(	) �

1

δ2
||U2

r ||L1(	′) �λ Cε. (7.14)

Similarly, using (7.7) and (7.8), we estimate ϕ5 as follows:

||ϕ5(s,X, �X)||L1(	) ≤ 1

δ1
||(U2

p + U2
q)(s,X) + (U2

p + U2
q)(s, �X)||L1(	) �

1

δ1
||(U2

p + U2
q)||L1(	′) �λ

δ2

δ1
Cε.

(7.15)

Finally, using (7.7) and (7.8), we estimate ϕ4:

|||ϕ4(s,X, �X)|||M1(	) ≤ 1

δ1
|||(U1

p + U1
q)(s,X) + (U1

p + U1
q)(s, �X)|||M1(	) �

1

δ1
|||(U1

p + U1
q)|||M1(	′)

�λ

δ1ε + δ2ε

δ1
�λ

δ2

δ1
ε. (7.16)

Step 7. Interpolation. We now apply the Interpolation Lemma 2.2 to estimate the L1(	) norms of ϕ1, ϕ2 and ϕ4.
Using (7.11) and (7.12) we obtain

‖ϕ1(s,X, �X)‖L1(	) �λ

δ1

δ2
‖m‖

[
1 + log

(
δ2

δ2
1‖m‖

)]
. (7.17)

Proceeding similarly and using (7.11), (7.13) and (7.16) we obtain

||ϕ2(s,X, �X)||L1(	) �λ ε

[
1 + log

(
1

δ1ε

)]
(7.18)

and

||ϕ4(s,X, �X)||L1(	) �λ

δ2

δ1
ε

[
1 + log

(
1

δ2ε

)]
. (7.19)

Finally, we sum all the terms in (7.10). Using (7.17), (7.18), (7.14), (7.19) and (7.15), and setting 
δ1

δ2
= α, we get:

�δ1,δ2(τ ) �λ

1

δ1
||b(s, ·) −�b(s, ·)||L1(Bλ×(t,τ )) + α‖m‖

[
1 + log

(
1

δ1α‖m‖
)]

+ ε

[
1 + log

(
1

δ1ε

)]
+ Cε

+ ε

α

[
1 + log

(
1

δ2ε

)]
+ 1

α
Cε. (7.20)

Step 8. The final estimate. By definition of �δ1,δ2 , given γ > 0 we estimate

�δ1,δ2(τ ) ≥
∫

Br∩{|X(τ,x)−�X(τ,x)|>γ }∩Gλ∩�Gλ

log

(
1 + γ

δ2

)
dx

= log

(
1 + γ

δ2

)
LN

(
Br ∩ {|X(τ, x) − �X(τ, x)| > γ } ∩ Gλ ∩ �Gλ

)
. (7.21)

This implies that

LN(Br ∩ {|X(τ, x) − �X(τ, x)| > γ }) ≤ �δ1,δ2(τ )

log
(

1 + γ
δ2

) +LN(Br \ Gλ) +LN(Br \ �Gλ). (7.22)

Combining (7.20) and (7.22) we obtain

LN(Br ∩ {|X(τ, x) − �X(τ, x)| > γ })

≤ Cλ

{ 1
δ1

‖b −�b‖L1

log
(

1 + γ
δ

) +
α‖m‖

[
1 + log

(
1

δ1α‖m‖
)]

log
(

1 + γ
δ

) +
ε
[
1 + log

(
1

δ1ε

)]
log

(
1 + γ

δ

) +
ε
α

[
1 + log

(
1

δ2ε

)]
log

(
1 + γ

δ

)

2 2 2 2
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+
1
α
Cε

log
(

1 + γ
δ2

) + Cε

log
(

1 + γ
δ2

)}+LN(Br \ Gλ) +LN(Br \ �Gλ)

=: 1) + 2) + 3) + 4) + 5) + 6) + 7) + 8). (7.23)

Fix η > 0. By Lemma 3.2, we can choose λ > 0 large enough so that 7) + 8) ≤ 2η/7. Choose α small enough so 
that 2) ≤ η/7. Then choose ε < α2 small enough so that 3) + 4) ≤ 2η/7, since these terms are uniformly bounded as 
δ1, δ2 → 0 and for all ε > 0.

Now λ and ε (and therefore Cε) are fixed. Also α is fixed, but δ1 and δ2 are free to be chosen so long as the ratio 
equals α. Hence, we now choose δ2 small enough, in particular depending on Cε , so that 5) + 6) ≤ 2η/7. This fixes 
all parameters.

Setting

Cγ,r,η = Cλ

δ1 log(1 + γ
δ2

)

we have proved our statement.
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