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Abstract

Cloaking using complementary media was suggested by Lai et al. in [8]. The study of this problem faces two difficulties. Firstly, 
this problem is unstable since the equations describing the phenomenon have sign changing coefficients, hence the ellipticity is 
lost. Secondly, the localized resonance, i.e., the field explodes in some regions and remains bounded in some others as the loss 
goes to 0, might appear. In this paper, we give a proof of cloaking using complementary media for a class of schemes inspired 
from [8] in the quasistatic regime. To handle the localized resonance, we introduce the technique of removing localized singularity 
and apply a three spheres inequality. The proof also uses the reflecting technique in [11]. To our knowledge, this work presents the 
first proof on cloaking using complementary media.
© 2015 
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1. Introduction

Negative index materials (NIMs) were first investigated theoretically by Veselago in [18] and were innovated by 
Nicorovici et al. in [15] and Pendry in [16]. The existence of such materials was confirmed by Shelby, Smith, and 
Schultz in [17]. The study of NIMs has attracted a lot the attention of the scientific community thanks to their many 
possible applications. One of the appealing ones is cloaking. There are at least three ways to do cloaking using NIMs. 
The first one is based on the concept of anomalous localized resonance discovered by Milton and Nicorovici in [10]. 
The second one is based on plasmonic structures introduced by Alu and Engheta in [2]. The last one makes use of 
the concept of complementary media and was suggested by Lai et al. in [8]. In this paper, we concentrate on the last 
method.
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The study of cloaking using complementary media faces two difficulties. Firstly, this problem is unstable since 
the equations describing the phenomenon have sign changing coefficients, hence the ellipticity is lost. Secondly, the 
localized resonance, i.e., the field explodes in some regions and remains bounded in some others as the loss goes to 0, 
might appear, see [8, Figure 2].

In this paper, we give a proof of cloaking using complementary media for a class of schemes inspired by the work 
of Lai et al. in [8] in the quasistatic regime. To handle the localized resonance, we introduce the technique of removing 
localized singularity and apply a three spheres inequality. The proof also uses the reflecting technique in [11]. To our 
knowledge, this work presents the first proof on cloaking using complementary media.

Let us describe how to cloak the region B2r2 \ Br2 for some r2 > 0 in which the medium is characterized by a 
matrix a using complementary media. Here and in what follows given r > 0, Br denotes the ball in Rd (d = 2 or 3) 
centered at the origin of radius r . The assumption on the cloaked region by all means imposes no restriction since any 
bounded set is a subset of such a region provided that the radius and the origin are appropriately chosen. The idea 
suggested by Lai et al. in [8] (for two dimensions) is to construct a complementary medium of a in Br2 \Br1 for some 
0 < r1 < r2. Inspired by their idea, we construct a cloak in two and three dimensions as follows. Our cloak consists of 
two parts. The first one, in Br2 \ Br1 , makes use of complementary media to cancel the effect of the cloaked region. 
The second one, in Br1 , is to fill the space which “disappears” from the cancellation by the homogeneous media. For 
the first part, we slightly change the strategy in [8]. Instead of B2r2 \Br2 , we consider Br3 \Br2 for some r3 > 0 as the 
cloaked region in which the medium is given by the matrix

b =
{

a in B2r2 \ Br2 ,

I in Br3 \ B2r2 .

The complementary medium in Br2 \ Br1 is given by

−(
F−1)

∗b,

where F : Br2 \ B̄r1 → Br3 \ B̄r2 is the Kelvin transform with respect to ∂Br2 , i.e.,

F(x) = r2
2

|x|2 x. (1.1)

Here and in what follows we use the standard notation

T∗b(y) = DT (x)b(x)DT T (x)

J (x)
where x = T −1(y) and J (x) = |detDT (x)|,

for a diffeomorphism T . It follows that

r1 = r2
2/r3. (1.2)

Concerning the second part, the medium in Br1 is given by(
r2

3/r2
2

)d−2
I. (1.3)

The reason for this choice is condition (1.11) (mentioned later in the introduction). Note that in the two dimensional 
case, the medium in Br1 is I , as used in [8], while it is not I in the three dimensional case. The cloaking scheme 
discussed here can be extended for a large class of reflections considered in [11]. The cloaking setting is illustrated in 
Fig. 1.

To study the problem correctly, one should allow some loss in the medium and study the limit as the loss goes to 0. 
With the loss, the medium is characterized by sδA where

A =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

b in Br3 \ Br2 ,

F−1∗ b in Br2 \ Br1 ,(
r2

3 /r2
2

)d−2
I in Br1 ,

I otherwise,

(1.4)
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Fig. 1. The cloaked region in Br3 \ Br2 consists of two parts: a in B2r2 \ Br2 (grey and green regions), which is the original object, and I in 
Br3 \ B2r2 . The cloaking device contains two parts. The first part −F∗b (the red, orange, and pink regions) in Br2 \ Br1 is the complementary 
medium of b: the red part is complementary to the grey part, the orange part is the complementary to the green part, and the pink part is the com-
plementary to I -layer. The second part (r2

3 /r2
2 )d−2I (the blue region) is to fill the space which disappears by the cancellation. (For interpretation 

of the references to color in this figure, the reader is referred to the web version of this article.)

and

sδ =
{

−1 + iδ in Br2 \ Br1,

1 otherwise.
(1.5)

Physically, the imaginary part of sδA is the loss of the medium (more precisely the loss of the medium of negative 
index in Br2 \ Br1 ). Here and in what follows, we assume that,

1

�
|ξ |2 ≤ 〈a(x)ξ, ξ 〉 ≤ �|ξ |2 ∀ ξ ∈R

d, for a.e. x ∈ B2r2 \ Br2 , (1.6)

for some � ≥ 1. Here and in what follows 〈·, ·〉 denotes the Euclidean scalar product in Rd . We require in addition 
that

b is Lipschitz.

This paper deals with the bounded setting equipped the zero Dirichlet boundary condition in the quasistatic regime. 
Let � be a smooth open subset of Rd (d = 2, 3) such that Br3 ⊂⊂ �. Given f ∈ L2(�), let uδ , u ∈ H 1

0 (�) be 
respectively the unique solution to

div(sδA∇uδ) = f in �, (1.7)

and

�u = f in �. (1.8)

Here is the main result of this paper.

Theorem 1. Let d = 2, 3, f ∈ L2(�) with suppf ⊂ � \Br3 and let u, uδ ∈ H 1
0 (�) be the unique solution to (1.7) and 

(1.8) respectively. There exists � > 0, depending only on r2, �, and the Lipschitz constant of b such that if r3 > �r2
then

uδ → u weakly in H 1(� \ Br3) as δ → 0. (1.9)

For an observer outside Br3 , the medium in Br3 looks like the homogeneous one by (1.9) (see also (1.8)): one has 
cloaking.
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One can verify that medium s0A is of reflecting complementary property, a concept introduced in [11, Definition 1], 
by considering diffeomorphism G :Rd \ B̄r3 → Br3 \ {0} which is the Kelvin transform with respect to ∂Br3 , i.e.,

G(x) = r2
3 x/|x|2. (1.10)

It is important to note that

G∗F∗A = I in Br3 (1.11)

since G ◦ F(x) = (r2
3 /r2

2 )x. This is the reason behind the choice of A in (1.3).
The proof of Theorem 1 is based on two crucial ingredients. The first one is a three spheres inequality. The second 

one is the technique of removing localized singularity introduced in this paper.2 The proof of Theorem 1 is inspired 
by the approach in [11] where the reflecting technique is used. The removing singularity technique is used in [12,13]
to study superlensing and cloaking via anomalous localized resonance.

NIMs have been studied extensively recently see [3–7,9–11,14] and references therein. In [3] and [7], Ammari et 
al. and Kohn et al. studied the blow up of the power (∼ δ‖uδ‖2

H 1 ) for a general core-shell structure with piecewise 
constant coefficients. Without the core, it is shown in [14] that there is no connection between the blow up of the 
power and the localized resonance in general. In the works mentioned, the localized resonance was considered only 
in the cases where the settings are simple enough so that the separation of variables can be applied.

The paper is organized as follows. In Section 2, we state and prove several useful lemmas which are used in the 
proof of Theorem 1. The proof of Theorem 1 is presented in Section 3.

2. Preliminaries

In this section, we present some lemmas which will be used in the proof of Theorem 1. The first one is on a three 
spheres inequality for Lipschitz matrix-valued functions.

Lemma 1 (Three spheres inequality). Let d = 2, 3, 0 < R1 < R2 < R3 and let M be a Lipschitz matrix-valued function 
defined in BR3 such that M is uniformly elliptic in BR3 , M(0) = I , and M(x) = I for x ∈ BR3 \ BR2/2. Let v ∈
H 1(BR3) be a solution to the equation

div(M∇v) = 0 in BR3 .

Then for all 0 < α < 1, there exists R∗ depending only on R1, R2, and the Lipschitz and ellipticity constants of M
such that, for R3 > R∗,

‖v‖L2(BR2 ) ≤ C‖v‖α
L2(BR1 )

‖v‖1−α

L2(BR3 )
, (2.1)

for some positive constant C independent of v.

Proof. By [1, Theorem 2.3 and (2.10)], there exists a constant 0 < β < 1 which depends only on R1 and R2 such that

‖v‖L2(BR2 ) ≤ C‖v‖β

L2(BR1 )
‖v‖1−β

L2(B2R2 )
. (2.2)

Here and in what follows in this proof, C denotes a positive constant which is independent of v and can change from 
one place to another. We claim that

N(v,2R2) ≤ CN(v,R2/2)γ N(v,R3/2)1−γ , (2.3)

where

N(v, r) := ‖v‖H 1/2(∂Br )
+ ‖∂rv‖H−1/2(∂Br )

2 The terminology “oscillation” has been frequently used in the physics literature to mention the localized resonance. Here we use the standard 
terminology from mathematics community: “singularity”. Both of them would be fine if one looks at the removed term ûδ defined in (3.31) in the 
proof of Theorem 1.
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and

γ = ln
[
R3/(4R2)

]/
ln

[
R3/R2

]
.

The proof of (2.3) can be proceeded as follows. We only consider the case d = 2, the case d = 3 follows similarly. 
Since �v = 0 in BR3 \ BR2/2, one can represent v in BR3 \ BR2/2 as follows

v(x) =
∑
n≥0

∑
±

(an,±rn,± + bnr
−n)e±inθ

for an,±, bn,± ∈ C (n ≥ 0) with the convention a0,+ = a0,− = b0,+ = b0,−. For R2/2 ≤ r ≤ R3, we have

N(v, r)2 ∼
∑
n≥0

∑
±

(n + 1)
(|an,±|2r2n + |bn,±|2r−2n

)
.

Here for two nonnegative quantities τ1 and τ2, τ1 ∼ τ2 means that τ1 ≤ Cτ2 and τ2 ≤ Cτ1. It follows that, for R2/2 ≤
r1 < r2 < r3 ≤ R3,

N(v, r2) ≤ CN(v, r1)
λN(v, r3)

1−λ,

where λ = λ(r1, r2, r3) := ln(r3/r1)/ ln(r3/r2). We obtain claim (2.3).
A combination of (2.2) and (2.3) yields

‖v‖L2(BR2 ) ≤ C‖v‖
β

1−γ (1−β)

L2(BR1 )
‖v‖

(1−β)(1−γ )
1−γ (1−β)

L2(BR3 )
. (2.4)

Here we use the fact that

‖v‖L2(B2R2 ) ≤ CN(v,2R2), N(v,R2/2) ≤ C‖v‖L2(BR2 ), and N(v,R3/2) ≤ C‖v‖L2(BR3 ).

By taking R3 large enough so that γ is close to 1, (1−β)(1−γ )
1−γ (1−β)

is close to 0. The conclusion follows. �
The second lemma of this section is standard and its proof is left to the reader.

Lemma 2. Let d ≥ 2, α, β > 0, D ⊂⊂ � be two smooth open subsets of Rd , and f ∈ L2(�), g ∈ H 1/2(∂�), and 
h ∈ H−1/2(∂D). Assume that v ∈ H 1(� \ ∂D) is such that

�v = f in � \ ∂D, v = 0 on ∂�, (2.5)

and

[v] = g on ∂D, and [∂ηv] = h on ∂D. (2.6)

We have

‖v‖H 1(�\D) + ‖v‖H 1(D) ≤ C
(
‖f ‖L2(�) + ‖g‖H 1/2(∂D) + ‖h‖H−1/2(∂D)

)
, (2.7)

for some positive constant C independent of f , g, and h.

Here and in what follows, v
∣∣+, v

∣∣−, and [v] on ∂D denote the trace of a function v from the exterior, interior of D, 
and v

∣∣+ − v
∣∣− on ∂D respectively. Similarly, the notations M∇v · η∣∣+, M∇v · η∣∣−, and [M∇v · η] are used on ∂D

for an appropriate matrix M and an appropriate function v, where η is the normal unit vector directed to the exterior 
of D.

The following lemma which is a consequence of [11, Lemma 4] is used in the proof of Theorem 1.

Lemma 3. Let d ≥ 2, 0 < R1 < R2 < R3 with R3 = R2
2/R1, a ∈ [L∞(BR3\R2)]d×d be a matrix valued function, and 

K : BR2 \ B̄R1 → BR3 \ B̄R2 be the Kelvin transform with respect to ∂BR2 , i.e.,

K(x) = R2
2x/|x|2.
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For v ∈ H 1(BR2 \ BR1), define w = v ◦ F−1. Then

div(a∇v) = 0 in BR2 \ BR1

if and only if

div(K∗a∇w) = 0 in BR3 \ BR2 .

Moreover,

w = v and K∗a∇w · η = −a∇v · η on ∂BR2 .

3. Proof of Theorem 1

Let A be a matrix valued function defined in Br3 such that A = A = b in Br3 \ Br2 , A(0) = I , and A is Lipschitz. 
Take � > 4 large enough such that (2.1) holds for

α = 2/3, (3.1)

with M =A, R1 = r2, R2 = 4r2, and R3 = r3. Then

‖v‖L2(B4r2 ) ≤ ‖v‖α
L2(Br2 )

‖v‖1−α

L2(Br3 )
, (3.2)

for v ∈ H 1(Br3) which satisfies div(A∇v) = 0 in Br3 .
Multiplying (1.7) by ūδ and integrating on �, we obtain∫

�

〈sδA∇uδ,∇uδ〉 = −
∫
�

f ūδ.

Considering the imaginary part and the real part, we have∫
�

|∇uδ|2 ≤ Cδ−1‖f ‖L2(�)‖uδ‖L2(�\Br3 ). (3.3)

In this proof, C denotes a positive constant changing from one place to another but independent of δ and f . Since 
uδ = 0 on ∂�, it follows that

‖uδ‖L2(�) ≤ C‖∇uδ‖L2(�).

We derive from (3.3) that

‖uδ‖H 1(�) ≤ Cδ−1/2‖f ‖1/2
L2(�)

‖uδ‖1/2
L2(�\Br3 )

(3.4)

and

‖uδ‖H 1(�) ≤ Cδ−1‖f ‖L2(�). (3.5)

As in [11], let u1,δ be the reflection of uδ through ∂Br2 by F , i.e.,

u1,δ = uδ ◦ F−1 in R
d \ B̄r2 . (3.6)

Applying Lemma 3 and using the fact that F∗A = A in Br3 \ Br2 , we obtain

u1,δ = uδ

∣∣+ on ∂Br2 and (1 − iδ)A∇u1,δ · η = A∇uδ · η∣∣+ on ∂Br2 . (3.7)

Define Uδ in Br3 as follows

Uδ =
{

uδ − u1,δ in Br3 \ Br2 ,

0 in Br .
(3.8)
2
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Using the fact that F∗A = A in Br3 \ Br2 and applying Lemma 3, we derive from (3.6), (3.7), and (3.8) that Uδ ∈
H 1(Br3),

div(A∇Uδ) = 0 in Br3 \ ∂Br2 , and [A∇Uδ · η] = − iδ

1 − iδ
A∇uδ · η∣∣+ on ∂Br2 . (3.9)

It is clear from (3.4), (3.6), and (3.8) that

‖Uδ‖H 1(Br3 ) ≤ Cδ−1/2‖f ‖1/2
L2(�)

‖uδ‖1/2
L2(�\Br3 )

. (3.10)

Let wδ ∈ H 1
0 (Br3) be the unique solution to

div(A∇wδ) = 0 in Br3 \ ∂Br2 and [A∇wδ · η] = − iδ

1 − iδ
A∇uδ · η∣∣+ on ∂Br2 . (3.11)

Then

‖wδ‖H 1(Br3 ) ≤ Cδ‖A∇uδ · η∣∣+‖H−1/2(∂Br2 ). (3.12)

Since

‖A∇uδ · η∣∣+‖H−1/2(∂Br2 ) ≤ C‖uδ‖H 1(�),

it follows from (3.4) and (3.12) that

‖wδ‖H 1(Br3 ) ≤ Cδ1/2‖f ‖1/2
L2(�)

‖uδ‖1/2
L2(�\Br3 )

. (3.13)

Define

Vδ = Uδ − wδ in Br3 . (3.14)

Then Vδ ∈ H 1(Br3) is a solution to

div(A∇Vδ) = 0 in Br3 . (3.15)

Using (3.2), we obtain

‖Vδ‖L2(B4r2 ) ≤ C‖Vδ‖α
L2(Br2 )

‖Vδ‖1−α

L2(Br3 )
. (3.16)

From (3.8) and (3.14), we have

Vδ = −wδ in Br2 .

We derive from (3.13) that

‖Vδ‖L2(Br2 ) ≤ Cδ1/2‖f ‖1/2
L2(�)

‖uδ‖1/2
L2(�\Br3 )

. (3.17)

On the other hand, from (3.10), (3.13), and (3.14), we have

‖Vδ‖L2(Br3 ) ≤ Cδ−1/2‖f ‖1/2
L2(�)

‖uδ‖1/2
L2(�\Br3 )

. (3.18)

A combination of (3.16), (3.17), and (3.18) yields

‖Vδ‖2
L2(B4r2 )

≤ Cδ(2α−1)‖f ‖L2(�)‖uδ‖L2(�\Br3 ).

Since �Vδ = 0 in B4r2 \ B2r2 , it follows that

‖Vδ‖2
H 1/2(∂B3r2 )

+ ‖∂rVδ‖2
H−1/2(∂B3r2 )

≤ Cδ(2α−1)‖f ‖L2(�)‖uδ‖L2(�\Br3 ). (3.19)

A combination of (3.8), (3.13), (3.14), and (3.19) implies

‖uδ − u1,δ‖2
H 1/2(∂B )

+ ‖∂ruδ − ∂ru1,δ‖2
H−1/2(∂B )

≤ Cδ2β‖f ‖L2(�)‖uδ‖L2(�\Br ), (3.20)

3r2 3r2 3
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where, by (3.1),

β := (2α − 1)/2 = 1/6 > 0. (3.21)

As in [11], let u2,δ be the reflection of u1,δ through ∂Br3 by G, i.e.,

u2,δ = u1,δ ◦ G−1 in Br3 .

We have

�u1,δ = 0 in Br3 \ B3r2 and �u2,δ = 0 in Br3 , (3.22)

by (1.11).
We next consider the case d = 2 and the case d = 3 separately.

Case 1: d = 2. From (3.22), one can represent u1,δ and u2,δ as follows

u1,δ = c0 + d0 ln r +
∞∑

n=1

∑
±

(cn,±rn + dn,±r−n)e±inθ in Br3 \ B3r2 , (3.23)

and

u2,δ = e0 +
∞∑

n=1

∑
±

en,±rne±inθ in Br3, (3.24)

for c0, d0, e0, cn,±, dn,±, en,± ∈C (n ≥ 1). We derive from (3.4) that

|e0|2 +
∞∑

n=1

∑
±

n|en,±|2r2n
3 ≤ Cδ−1‖f ‖L2(�)‖uδ‖L2(�\Br3 ). (3.25)

Using the fact that G∗F∗A = I and applying Lemma 3, we have

u1,δ = u2,δ on ∂Br3 and (1 − iδ)∂ηu1,δ

∣∣− = ∂ηu2,δ on ∂Br3 . (3.26)

A combination of (3.23), (3.24), and (3.26) yields

cn,±rn
3 + dn,±r−n

3 = en,±rn
3 , cn,±rn

3 − dn,±r−n
3 = 1

1 − iδ
en,±rn

3 for n ≥ 1, (3.27)

and

c0 = e0, d0 = 0. (3.28)

We derive from (3.27) that

cn,± = 2 − iδ

2(1 − iδ)
en,± and dn,± = −iδ

2(1 − iδ)
r2n

3 en,± for n ≥ 1. (3.29)

From (3.28) and (3.29), we obtain

u1,δ − u2,δ =
∞∑

n=1

∑
±

iδ

2(1 − iδ)

(
rn − r2n

3

rn

)
en,±e±inθ . (3.30)

We now introduce the technique of removing localized singularity. Set

ûδ :=
∞∑

n=1

∑
±

−iδ

2(1 − iδ)
en,±

r2n
3

rn
e±inθ in R

2 \ B3r2 . (3.31)

Define3

3 We remove ûδ from uδ in Br3 \ B3r2 . Function ûδ contains high modes and creates a trouble for estimating uδ − u2,δ on ∂B3r2 (to obtain an 
estimate for uδ ). However this term can be negligible for large |x| = r3 since r−n is small for large r . This is the reason for the choice of ûδ and 
this also explains the terminology: “removing localized singularity”.
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Wδ =

⎧⎪⎨
⎪⎩

uδ in � \ Br3 ,

uδ − ûδ in Br3 \ B3r2 ,

u2,δ in B3r2 .

It is clear from (3.22) that

�Wδ = f in � \ (∂Br3 ∪ ∂B3r2). (3.32)

We claim that

‖ûδ‖H 1/2(∂Br3 ) + ‖∂r ûδ‖H−1/2(∂Br3 ) = o(1)‖f ‖L2(�) + o(1)‖uδ‖L2(�\Br3 ). (3.33)

Here and in what follows we use the standard notation: o(1) denotes a quantity which converges to 0 as δ → 0. Indeed, 
from (3.25), we have

∞∑
n=1

∑
±

nδ2|en,±|2r2n
3 ≤ Cδ‖f ‖L2(�)‖uδ‖L2(�\Br3 ) ≤ o(1)‖f ‖2

L2 + o(1)‖uδ‖2
L2(�\Br3 )

. (3.34)

Hence (3.33) follows. We derive from (3.33) that

‖[Wδ]‖H 1/2(∂Br3 ) + ‖[∂rWδ]‖H−1/2(∂Br3 ) = o(1)‖f ‖L2(�) + o(1)‖uδ‖L2(�\Br3 ). (3.35)

We next consider the transmission conditions for Wδ on ∂B3r2 . Since

[Wδ] = uδ − ûδ − u2,δ on ∂B3r2 ,

it follows from (3.30) and (3.31) that

[Wδ] = (uδ − u1,δ) +
∞∑

n=1

∑
±

iδ

2(1 − iδ)
(3r2)

nen,±einθ on ∂B3r2 .

This implies

C‖[Wδ]‖2
H 1/2(∂B3r2 )

≤ ‖uδ − u1,δ‖2
H 1/2(∂B3r2 )

+
∞∑

n=1

∑
±

δ2n|en,±|2r2n
3

(3r2)
2n

r2n
3

. (3.36)

We derive from (3.20) and (3.25) that

C‖[Wδ]‖2
H 1/2(∂B3r2 )

≤ δ2β‖f ‖L2(�)‖uδ‖L2(�\BR) + δ‖f ‖L2(�)‖uδ‖L2(�\Br3 );
which yields

|[Wδ]‖2
H 1/2(∂B3r2 )

= o(1)‖f ‖2
L2(�)

+ o(1)‖uδ‖2
L2(�\Br3 )

. (3.37)

Similarly,

‖[∂rWδ]‖2
H−1/2(∂B3r2 )

= o(1)‖f ‖2
L2(�)

+ o(1)‖uδ‖2
L2(�\Br3 )

. (3.38)

Applying Lemma 2 and using (3.35), (3.37), and (3.38), we have

‖Wδ‖H 1(
�\(∂Br3∪∂B3r2 )

) ≤ C‖f ‖L2,

for small δ.
Without loss of generality, one may assume that Wδ → W weakly in H 1

(
� \ (∂Br3 ∪ ∂B3r2)

)
as δ → 0. From 

(3.35), (3.37), and (3.38), we have

W ∈ H 1
0 (�) and �W = f in �.
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Hence W = u. Since the limit W is unique, the convergence holds for the whole family (Wδ) as δ → 0. The proof is 
complete in two dimensions.

Case 2: d = 3. The proof in the three dimensional case follows similarly as the one in the two dimensional case. 
We just note here that, in three dimensions, u1,δ and u2,δ can be represented, by (3.22), as follows

u1,δ = c0 + d0

r
+

∞∑
n=1

n∑
k=−n

(cn,kr
n + dn,kr

−n−1)Y k
n (x/|x|) in Br3 \ Br2

and

u2,δ = e0 +
∞∑

n=1

n∑
k=−n

en,kr
nY k

n (x/|x|) in Br3 .

The proof is complete. �
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