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Abstract

We provide a free discontinuity approach to a class of shape optimization problems involving Robin conditions on the free 
boundary. More precisely, we identify a large family of domains on which such problems are well posed in a way that the extended 
problem can be considered a relaxed version of the corresponding one on regular domains, we prove existence of a solution and 
obtain some qualitative information on the optimal sets.
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1. Introduction

Let D ⊆ R
d be a design region which we assume to be open, bounded and with a Lipschitz boundary. Consider 

B ⊂ D open and with a C1-boundary and g ∈ C1(Rd) such that

0 < c1 ≤ g ≤ c2 on B.

The main concern of the paper is the following shape optimization problem.
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(P) Find Ω with Lipschitz boundary such that B ⊆ Ω ⊆ D and which minimizes the shape functional

J (Ω) := min
u∈W 1,p(Ω)
u=g on B

⎡
⎣∫

Ω

f (x,∇u)dx +
∫

∂Ω

β(x)|u|p dHd−1 + γ |Ω|
⎤
⎦ ,

where p > 1, γ ≥ 0, f : Rd × R
d → [0, +∞[ is continuous, with ξ �→ f (x, ξ) convex and positively p-homo-

geneous, and β : Rd → [0, +∞[ is continuous (Hd−1 stands for the (d − 1)-dimensional Hausdorff measure).

The problem amounts to the determination of the “free boundary” ∂Ω of the optimal domain Ω on which the as-
sociated state function u (which realizes J (Ω)) satisfies a boundary condition of Robin type. In the case p = 2, 
f (x, ξ) = |ξ |2 and β(x) = β , the condition reduces precisely to the classical Robin condition

∂u

∂n
+ βu = 0 on ∂Ω,

where n denotes the unit external normal.
The function u satisfies also extra conditions on ∂Ω coming from optimality. Those new conditions, are referred 

to be overdetermined, but they do not play a fundamental role in our approach to the minimization problem.
In the two dimensional case with f (x, ξ) = A(x)ξ · ξ , γ = 0 and p = 2, the problem can be interpreted as that of 

finding the shape of the membrane with minimal total energy among those with elastic properties given by the elastic 
moduli A(x), prescribed transversal displacement g on the part B , which are elastically supported at the boundary 
(with elastic forces with constant β(x)).

The existence of optimal domains for problem (P) is unclear. In general, there are very few results in shape op-
timization where the existence of an optimal domain can be proved in a “natural” way, i.e. without imposing extra 
restrictive conditions, and the most of them hold for Dirichlet boundary conditions. For Robin b.c., the only analysis 
carried to understand existence concerns the first eigenvalue of the Robin Laplacian. Contrary to Dirichlet b.c., the 
general relaxed form of a Robin problem (i.e., a precise description of the limit of a sequence of Robin problems on 
a sequence of arbitrary, non-smooth, non-uniform domains) is not known. In this paper, we analyze a class of energy 
type functionals generalizing the Bernoulli free boundary problem in a nonlinear framework complemented by elastic 
boundary conditions.

The main result of our paper consists in the identification of a class of admissible domains AB(D) containing the 
Lipschitz ones on which the minimization of J can be carried out and can be considered as a relaxation of the original 
problem.

The class AB(D) and the extension of J to such a class is suggested by the study of the following free discontinuity 
functional

F(u) :=
∫
Rd

f (x,∇u)dx +
∫
Ju

β(x)[(u+)p + (u−)p]dHd−1 + γ |{u > 0}| (1.1)

on the set of functions

FB,g(D) := {u ∈ SBV(Rd) : supp(u) ⊆ D̄, u ≥ 0, u = g on B}.
Here SBV denotes the space of special functions of bounded variation introduced by De Giorgi and Ambrosio [9] to 
deal with image segmentation problems. The link between J and F is obtained easily noticing that if u is the state 
function of the regular domain Ω (which we can assume positive), then the extension of u to Rd by zero outside Ω
yields an element ũ of FB,g(D) such that

F(ũ) =
∫
Ω

f (x,∇u)dx +
∫

∂Ω

β(x)|u|p dHd−1 + γ |Ω| = J (Ω). (1.2)

The surface energy in (1.1) is rather unusual, involving the sum of the p-power of the traces of u. Its form, among the 
many yielding equality (1.2), is suggested by lower semicontinuity issues for the functional F .

We expect that the minimization problem

min
u∈F (D)

F (u) (1.3)

B,g
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should provide information for the shape optimization problem (P), in particular we expect optimal domains being 
given by the supports of optimal functions. Notice that this approach through a problem on functions is similar to 
that employed by Alt and Caffarelli in their pioneering paper [1], where a free boundary problem under Dirichlet 
conditions was studied. So the free discontinuity problem (1.3) is a sort of SBV-counterpart in the context of Robin 
boundary conditions of the problem considered in [1].

Clearly the connection between the free discontinuity problem (1.3) and problem (P) is subordinated to the regu-
larity properties of the optimal functions. We proceed as follows.

First of all, we show that the minimum problem (1.3) is well posed. This is not trivial because the compactness 
properties available for minimizing sequences are not compatible with Ambrosio’s theorem in SBV (see Theo-
rem 2.1). Using standard results in SBV, one shows the existence of a candidate minimizer u such that u ≥ 0 and 
up ∈ SBV(Rd) ∩ L∞(Rd). The SBV-regularity is a consequence of optimality and relies on a bound from below on 
the support of its positivity set (see Theorem 3.5 and [6])

u ≥ α > 0 a.e. on {u > 0}. (1.4)

Such a property is immediately available in the classical context thanks to the Hopf Lemma and the Robin boundary 
condition (see Remark 3.8). In the context of the free discontinuity problems it is a sort of non-degeneracy property, 
coming from optimality.

In view of the bound from below (1.4) and that from above (given by ‖g‖∞), the first two terms in the free 
discontinuity functional F turn out to be estimated from above and below on the minimizer u by the Mumford–Shah 
type functional

MS(u) :=
∫
Rd

f (x,∇u)dx +Hd−1(Ju). (1.5)

In particular the minimality property of u for F entails that (a suitable multiple of) u is an almost-quasi minimizer
of the functional MS (see Proposition 3.11). Such local minimizers are defined as follows: there exist � ≥ 1, α > 0, 
cα > 0 such that for every Bρ(x) ⊂⊂ D, v ∈ SBVloc(D) with v = g on B and {v �= u} ⊆ Bρ(x)∫

Bρ(x)

f (x,∇u)dx +Hd−1(Ju ∩ B̄ρ(x)) ≤
∫

Bρ(x)

f (x,∇v)dx + �Hd−1(Jv ∩ B̄ρ(x)) + cαρd−1+α.

This minimality property is weaker than that considered by De Giorgi, Carriero and Leaci in [10] since it can be 
� > 1. Under suitable assumptions on f , we show (Theorem 2.3) that this weaker minimality still yields the essential 
closedness of Ju in D, i.e.,

Hd−1 ((Ju \ Ju) ∩ D
)= 0.

In the case f (x, ξ) = |ξ |2, under certain supplementary hypotheses and without boundary condition (associated to g), 
such a result was proved by Siaudeau [13] following the lines of [10]. More recently, the same result has been proved 
in [6] on the basis of a monotonicity formula for the Mumford–Shah functional. Here we extend the analysis [10]
to cover more general energy densities f (for which monotonicity is unclear) and to treat boundary data (as in the 
case of [7]). A monotonicity formula similar to [6] can not hold for arbitrary f , but for some particular cases as 
f (x, ξ) = |ξ |p , with p ∈ (1, 2) this can not be trivially excluded. Such a formula relies on a precise estimate from 
below of the ratio

inf
u∈W 1,p(∂BR)

R
∫
∂BR

|∇u|pdHd−1∫
BR

|∇u|pdx
,

for p ∈ (1, 2) and u satisfying 
pu = 0, which, up to our knowledge, is not known.
The analysis of problem (1.3) thus shows that the support of minimizers of F is given by the connected component 

of D \ Ju on which u does not vanish. This set belongs to the family

AB(D) := {Ω open : B ⊆ Ω ⊆ D,∂Ω is Hd−1-countably rectifiable with Hd−1(∂Ω) < +∞},
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which turns out to be the class we are looking for. Indeed we prove in Theorem 3.2 that

min
Ω∈AB(D)

J (Ω),

where the extension of J to irregular domains is given in (3.3) below and is suggested by the free discontinuity 
functional F , is well posed and satisfies

min
Ω∈AB(D)

J (Ω) = inf
Ω Lipschitz

J (Ω),

i.e., the extended problem is a relaxed version of the original one. This last property is a consequence of density results 
in the sense of Cortesani and Toader [8] for the functional F in SBV (see Proposition 3.12).

The regularity of domains in AB(D) is in the weak sense of geometric measure theory: in particular they are open 
sets with finite perimeter and they can admit in principle inner cracks. It is our opinion that the class

{Ω open and bounded in R
d : ∂Ω is Hd−1-countably rectifiable with Hd−1(∂Ω) < +∞},

provides a natural framework for shape optimization problems under Robin conditions. In [5] we employed it to 
deal with the Faber–Krahn inequality of the first eigenvalue and associated semilinear variants (including the case of 
the torsional rigidity) of the Robin–Laplacian: the existence of an optimal domain in the class above permits to use 
geometrical arguments typical of shape optimization problems to show that minimizers are balls.

The paper is organized as follows. In Section 2 we fix the notation employed throughout the paper, and recall some 
basic facts concerning SBV-functions and free discontinuity problems. The main problem and the associated analysis 
outlined above is detailed in Section 3, while Section 4 contains the proof of the essential closedness of the jump sets 
of almost-quasi minimizers of (1.5).

2. Notation and preliminaries

Throughout the paper, Br(x) will denote the open ball of center x ∈R
d and radius r > 0. We will write Br in place 

of Br(0). We say that A ⊂⊂ B if Ā is compact and contained in B . If E ⊂R
d , we will denote its volume by |E|, and 

1E will stand for its characteristic function, i.e., 1E(x) = 1 if x ∈ E and 1E(x) = 0 if x /∈ E. We set ωd := |B1|.
For A ⊆ R

d open set and p ≥ 1, Lp(A) will denote the usual Lebesgue space of p-summable functions, while 
W 1,p(A) will denote the Sobolev space of functions in Lp(A) whose derivative in the sense of distributions is 
p-summable. Moreover ‖u‖∞ will stand for the sup-norm of u, while supp(u) will denote the set {u �= 0}, well 
defined up to zero Lebesgue measure. We will say that {u �= v} ⊆ Bρ(x) if u = v a.e. outside Bρ(x).

Finally we will use the following notation: for a, b ∈ R

a ∧ b := min{a, b} and a ∨ b := max{a, b}.

2.1. Functions of bounded variation

Let A ⊆R
d be an open set. We say that u ∈ BV(A) if u ∈ L1(A) and its derivative in the sense of distributions is a 

finite Radon measure on A, i.e., Du ∈Mb(A; Rd). BV(A) is called the space of functions of bounded variation on A. 
BV(A) is a Banach space under the norm ‖u‖BV(A) := ‖u‖L1(A) + ‖Du‖Mb(A;Rd ). We refer the reader to [2] for an 
exhaustive treatment of the space BV.

Concerning the fine properties, a function u ∈ BV(A) (or better every representative of u) is a.e. approximately 
differentiable on A, with approximate gradient ∇u ∈ L1(A; Rd). Moreover, the jump set Ju is a Hd−1-countably 
rectifiable set, i.e., Ju ⊆ ∪i∈NMi up to a Hd−1-negligible set, with Mi a C1-hypersurface in Rd . The measure Du

admits the following representation for every Borel set B ⊆ A:

Du(B) =
∫
B

∇udx +
∫

Ju∩B

(u+ − u−)νu dHd−1 + Dcu(B),

where νu(x) is the normal to Ju at x, and Dcu is singular with respect to the Lebesgue measure and concentrated 
outside Ju. Dcu is usually referred to as the Cantor part of Du. u± are the upper and lower approximate limits of 
u at x. The normal νu coincides Hd−1-a.e. on Ju with the normal to the hypersurfaces Mi . The direction of νu(x) is 
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chosen in such a way that u±(x) is the approximate limit of u at x on the sets {y ∈ R
d : νu(x) · (y −x) ≷ 0}. Moreover, 

u± coincide Hd−1-almost everywhere on Ju with the traces γ ±(u) of u on Ju which are defined by the following 
Lebesgue-type limit quotient relation

lim
r→0

1

rd

∫
B±

r (x)

|u(x) − γ ±(u)(x)|dx = 0

where B±
r (x) := {y ∈ Br(x) : νu(x) · (y − x) ≷ 0} (see [2, Remark 3.79]).

If A is bounded and with a Lipschitz boundary, then BV(A) ↪→ Ld/d−1(A). Moreover, the following compactness 
result holds: if (un)n∈N is bounded in BV(A), there exist u ∈ BV(A) and a subsequence (unk

)k∈N such that

unk
→ u strongly in L1(A)

and

Dunk
→ Du weakly* in the sense of measures.

We say in this case that unk

∗
⇀ u weakly* in BV(A).

We say that u ∈ SBV(A) if u ∈ BV(A) and Dcu = 0. SBV(A) is called the space of special functions of bounded 
variation on A. This space is very useful in free discontinuity problems in view of the following compactness and 
lower-semicontinuity result due to L. Ambrosio (see [2, Theorems 4.7–4.8]).

Theorem 2.1. Let A ⊂R
d be open and bounded, p ∈]1, +∞[, and let (un)n∈N be a sequence in SBV(A) such that

sup
n

∫
A

|∇un|p dx +Hd−1(Jun) + ‖un‖∞ < +∞.

Then there exist u ∈ SBV(A) with ∇u ∈ Lp(A; Rd) and a subsequence (unk
)k∈N such that

unk
→ u strongly in L1(A),

∇unk
⇀ ∇u weakly in Lp(A;Rd)

and

Hd−1(Ju) ≤ lim inf
n→+∞Hd−1(Jun).

In the following we will use the notation

SBVp(A) := {u ∈ SBV(A) : ∇u ∈ Lp(A;Rd) and Hd−1(Ju) < +∞}.

2.2. Regularity results for almost-quasi minimizers of free discontinuity problems

Let Ω ⊆ R
d be an open set, and let Ω ′ ⊆ R

d be open with Ω ⊆ Ω ′ and such that Ω ′ \ Ω has a C1-boundary. Let 
g ∈ C1(Rd). For u ∈ SBVloc(Ω

′) with u = g on Ω ′ \ Ω , let us consider the free discontinuity functional

F(u) :=
∫
Ω ′

f (x,∇u)dx +Hd−1(Ju). (2.1)

We assume that f : Ω ′ ×R
d → [0, +∞[ satisfies the following assumptions.

(H1) f is continuous and there exist L > 0 and p > 1 such that for every x ∈ Ω ′, ξ ∈R
d and t > 0

f (x, tξ) = tpf (x, ξ), L−1|ξ |p ≤ f (x, ξ) ≤ L|ξ |p.

(H2) For every x ∈ Ω ′, the map ξ �→ f (x, ξ) is convex.
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(H3) There exists μ > 0 such that for every x0 ∈ Ω ′, ϕ ∈ C1
c (B1) and ξ ∈ R

d ,∫
B1

[f (x0, ξ + ∇ϕ) − f (x0, ξ)]dx ≥ μ

∫
B1

(|ξ |2 + |∇ϕ|2) p−2
2 |∇ϕ|2 dx.

We are interested in the following notion of local minimality.

Definition 2.2 (Almost-quasi minimality). Let u ∈ SBVp

loc(Ω
′) be such that u = g on Ω ′ \ Ω . We say that u is an 

almost-quasi minimizer for the functional F in (2.1) with boundary condition g if there exist � ≥ 1, α > 0 and cα > 0
such that for every ball Bρ(x0) ⊂⊂ Ω ′

∫
Bρ(x0)

f (x,∇u)dx +Hd−1(Ju ∩ B̄ρ(x0)) ≤
∫

Bρ(x0)

f (x,∇v)dx + �Hd−1(Jv ∩ B̄ρ(x0)) + cαρd−1+α

for every v ∈ SBVp

loc(Ω
′), v = g on Ω ′ \ Ω , and such that {v �= u} ⊆ Bρ(x0).

The following result will be pivotal in our analysis. It states that the jump set of almost-quasi minimizers enjoys 
the Ahlfors regularity à la De Giorgi–Carriero–Leaci [10], i.e., it is essentially closed.

Theorem 2.3 (Essential closedness of the jump set). Let Ω ⊆ Ω ′ ⊆ R
d be open and such that Ω ′ \ Ω has a 

C1-boundary. Let g ∈ C1(Rd) and let f : Ω ′ ×R
d → [0, +∞[ satisfy (H1)–(H3). Let u ∈ SBVp

loc(Ω
′) be an almost-

quasi minimizer for the functional (2.1) with boundary condition g according to Definition 2.2.
Given Ω̃ ⊂⊂ Ω ′, there exist ε0 > 0 and ρ0 > 0 depending on Ω̃ such that for every x ∈ Ju, x ∈ Ω̃ and ρ < ρ0

1

ε0
ρd−1 ≥ Hd−1(Ju ∩ Bρ(x)) ≥ ε0ρ

d−1. (2.2)

In particular

Hd−1 ((Ju \ Ju) ∩ Ω ′)= 0,

i.e., the jump set of u is essentially closed in Ω ′.

For � = 1, f = |ξ |2 and Ω ′ = Ω , i.e., for quasi minimizers for the original Mumford–Shah functional, the previous 
property reduces to the celebrated of De Giorgi, Carriero and Leaci [10]. Their approach has then be adapted to cover 
more general energy densities: the case of p-homogeneous functions f (ξ) can be found e.g. in [2, Chapter 7]. The 
case with boundary conditions has been dealt by Carriero and Leaci in [7].

Ahlfors regularity for � > 1 without boundary conditions has been proved by Siaudeau in [13] along the lines 
of [10], but in the presence of some supplementary a priori hypotheses, and also in [6] on the basis of a general 
monotonicity formula for the Mumford–Shah functional.

We will give the proof of Theorem 2.3 in Section 4: the main difference with respect to [13] is that we consider 
a weaker setting with more general energy densities f and we take into account boundary conditions, and so our 
contribution is essentially technical. The reader already acquainted with the ideas of [10] and of [7] could skip the 
proof of Theorem 2.3 without prejudice.

2.3. A density result for free discontinuity functionals

We will make use of a density result in SBV due to Cortesani and Toader [8]. In order to formulate the statement, 
we will say that u ∈ SBV(Ω) with Ω open set in Rd has polyhedral jumps if Ju ∩ Ω is the intersection with Ω of the 
union of a finite number of (d − 1)-dimensional simplexes. The density result is the following (see [8, Theorem 3.1]).

Theorem 2.4. Let Ω ⊆ R
d be open and with Lipschitz boundary, and let p > 1. Let u ∈ SBV(Ω) ∩ L∞(Ω) be such 

that ∇u ∈ Lp(Ω; Rd) and Hd−1(Ju) < +∞.
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There exists (un)n∈N such that the following items hold true for every n ∈N.

(a) Hd−1
(
(Jun \ Jun) ∩ Ω

)= 0.
(b) Jun is polyhedral in Ω .
(c) un ∈ Wk,∞(Ω \ Jun) for every k ≥ 1.

Moreover

un → u strongly in L1(Ω),

∇un → ∇u strongly in Lp(Ω;Rd),

and

lim sup
n→+∞

∫
Jun∩A

ϕ(x,u+
n ,u−

n , νun) dHd−1 ≤
∫

Ju∩A

ϕ(x,u+, u−, νu) dHd−1

for every open set A ⊂⊂ Ω and every upper semicontinuous function ϕ : Ω × R × R × Sd−1 → [0, +∞[ such that 
ϕ(x, a, b, ν) = ϕ(x, b, a, −ν) for every x ∈ Ω , a, b ∈R and ν ∈ Sd−1.

3. A free boundary problem with Robin conditions

With the notations of Section 2, let Ω ′ = R
d and f : Rd × R

d → [0, +∞[ satisfy the assumptions (H1), (H2), 
(H3). Let β :Rd → [0, +∞[ be a continuous function such that

∀x ∈R
d : 0 < β1 ≤ β(x) ≤ β2 < +∞ (3.1)

for some positive constants β1, β2. Let D ⊆ R
d be a design region which we assume to be an open bounded set with 

a Lipschitz boundary. Consider B ⊂ D open and with C1-boundary, and g ∈ C1(Rd) such that

0 < c1 ≤ g ≤ c2 on B. (3.2)

For every domain Ω with Lipschitz boundary such that B ⊆ Ω ⊆ D, let us consider the shape functional

J (Ω) := min
u∈W 1,p(Ω)
u=g on B

⎡
⎣∫

Ω

f (x,∇u)dx +
∫

∂Ω

β(x)|u|p dHd−1

⎤
⎦+ γ |Ω|,

where γ ∈ [0, +∞[.
We are interested in the minimization of J among all admissible domains. Unfortunately, the existence of domains 

which minimize J is unclear, due to the lack of compactness properties for minimizing sequences of Lipschitz sets.
In order to achieve the existence of optimal domains, following [5] we relax the previous problem to the family of 

sets

AB(D) := {Ω open : B ⊆ Ω ⊆ D,∂Ω is Hd−1-countably rectifiable with Hd−1(∂Ω) < +∞}
by setting for Ω ∈AB(D)

J (Ω) := min
u∈W 1,p(Ω)∩L∞(Ω)

u=g on B

⎡
⎣∫

Ω

f (x,∇u)dx +
∫

∂Ω

β(x)[|u+|p + |u−|p]dHd−1

⎤
⎦+ γ |Ω|. (3.3)

To make sense of the previous expression, notice that if we extend u to zero outside Ω , we obtain a function of 
bounded variation on Rd such that Ju ⊆ ∂Ω : u± are thus the traces of u on ∂Ω in the sense of BV-theory, which 
turn out to be well defined up to a Hd−1-negligible set. Notice that we admit two traces since the geometry of Ω is 
compatible with the presence of inner cracks. If Ω is regular, then the previous expression for J coincides clearly 
with the classical one.
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Remark 3.1. The existence of a minimizer u in the definition (3.3) of J such that

0 ≤ u ≤ ‖g‖∞
is easily proved. Indeed, if (un)n∈N is a minimizing sequence, by truncation we may assume 0 ≤ un ≤ ‖g‖∞. If 
u ∈ W 1,p(Ω) is a limit point of the sequence in the weak topology, then it is a minimizer since∫

Ω

f (x,∇u)dx ≤ lim inf
n→+∞

∫
Ω

f (x,∇un)dx

and, using a standard slicing argument (see e.g. [5, Lemma 6.16])∫
∂Ω

β(x)[|u+|p + |u−|p]dHd−1 ≤ lim inf
n→+∞

∫
∂Ω

β(x)[|u+
n |p + |u−

n |p]dHd−1.

The main result of the paper is the following.

Theorem 3.2. Let D ⊆ R
d be an open, bounded set with Lipschitz boundary, let f : Rd × R

d → [0, +∞[ satisfy 
(H1)–(H3), and let β : Rd → [0, +∞[ satisfy (3.1). Given B ⊂ D open and with a C1-boundary, and g ∈ C1(Rd)

satisfying (3.2), the shape optimization problem

min
Ω∈AB(D)

J (Ω) (3.4)

admits a solution Ω̃ , which moreover satisfies

J (Ω̃) = inf
Ω∈AB(D)

Ω is Lipschitz

J (Ω). (3.5)

Theorem 3.2 thus proves that the new shape optimization problem (3.4) is well posed and it is a relaxed version of 
the original one on regular domains.

In order to address problem (3.4) we consider the free discontinuity functional

F(u) :=
∫
Rd

f (x,∇u)dx +
∫
Ju

β(x)[(u+)p + (u−)p|]dHd−1 + γ |{u > 0}| (3.6)

on the set

FB,g(D) := {u ∈ SBV(Rd) : supp(u) ⊆ D̄, u ≥ 0, u = g on B}.
The basic idea is that the minimization of F defined on functions should be easier than that of J defined on sets. 
Moreover we expect to recover an optimal domain by considering the support {u > 0} of an optimal function u. The 
key point for this to hold true is to show that minimizers of (3.6) are regular enough to guarantee that their support 
belongs to AB(D).

Existence of minimizers for (3.6) on FB,g(D) is by no means obvious, since coercivity properties of minimizing 
sequences are not compatible with the usual compactness in SBV given by Ambrosio’s theorem. Let indeed (un)n∈N
be a minimizing sequence. By truncation, is not restrictive to assume

0 ≤ un ≤ ‖g‖∞.

Then we get by comparing with g1D∫
D

|∇un|p dx +
∫

Jun

|u+
n |p + |u−

n |p dHd−1 ≤ C, (3.7)

with C independent of n. We thus see that no bounds on the Hd−1-measure of the jump sets are available, so that a 
direct application of Ambrosio’s theorem is forbidden.
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We have however the following compactness result.

Proposition 3.3. There exists u ∈ L∞(Rd) with u ≥ 0, supp(u) ⊆ D̄ and up ∈ SBV(Rd) such that, up to a subse-
quence,

un → u a.e. in R
d .

Moreover for every v ∈FB,g(D)∫
Rd

f (x,∇u)dx +
∫
Ju

β(x)[(u+)p + (u−)p]dHd−1 + γ |{u > 0}| ≤ F(v)

(notice that u is approximately differentiable a.e. since up ∈ SBV(Rd)).

Proof. By the chain rule in BV we get that wn := u
p
n ∈ SBV(Rd) with

∇wn = pu
p−1
n ∇un.

In view of (3.7) and since un ≤ ‖g‖∞ we obtain

sup
n

|Dwn|(Rd) < +∞.

Up to a subsequence we get

wn → w strongly in L1(Rd) (3.8)

for some w ∈ BV(Rd) with w ≥ 0 and supp(w) ⊆ D̄. Notice that Ambrosio’s theorem can be applied locally to wn ∨ ε

for every ε > 0. We thus get w ∨ ε ∈ SBVloc(R
d) for every ε > 0, so that w ∈ SBV(Rd).

We set

u := w1/p,

so that the first part of the statement is proved.
Let us come to the minimality property of u. Notice that the sequence ((un − ε)+)n∈N satisfies the assumptions of 

Ambrosio’s compactness theorem for every ε > 0. By the lower semicontinuity for surface energies [4, Theorem 2.12]
we get in view of the arbitrariness of ε∫

Ju

β(x)[(u+)p + (u−)p]dHd−1 ≤ lim inf
n→+∞

∫
Jun

β(x)[(u+
n )p + (u−

n )p]dHd−1. (3.9)

If up to a subsequence

∇un ⇀ � weakly in Lp(Rd ;Rd)

we deduce from (3.8) and the equality ∇(un − ε)+ = ∇un1{un≥ε} that

� = ∇u a.e. on {u > 0}.
By lower semicontinuity we have∫

Rd

f (x,∇u)dx ≤
∫
Rd

f (x,�)dx ≤ lim inf
n→+∞

∫
Rd

f (x,∇un)dx. (3.10)

Since we also have

|{u > 0}| ≤ lim inf
n→∞ |{un > 0}|,

the minimality follows collecting (3.9) and (3.10). �
The function provided by the previous proposition does not a priori belong to FB,g(D) since the SBV-regularity is 

unclear. In order to address such an issue, we introduce the following notion of subsolution.
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Definition 3.4 (Subsolution). We say that u ∈FB,g(D) is a subsolution for the functional

u �→
∫
Rd

f (x,∇u)dx +
∫
Ju

β(x)[(u+)p + (u−)p]dHd−1 (3.11)

if for every v ∈FB,g(D) with 0 ≤ v ≤ u we have

F(u) ≤ F(v).

Clearly, for every γ ≥ 0 any minimizer given by Proposition 3.3 is also a subsolution in the sense defined above. 
The following non-degeneracy result for subsolutions, which is related to the Hopf principle (see Remark 3.8), holds 
true.

Theorem 3.5 (Bound from below). Let u be a subsolution for (3.11). Then there exists α > 0 such that

u ≥ α a.e. on {u > 0}. (3.12)

Proof. Let ε < c1 (defined in (3.2)) be such that u1{u>ε} ∈ SBV(Rd). Then such a function belongs to FB,g(D), so 
that, by comparison with u∫

Rd

f (x,∇u)dx +
∫
Ju

β(x)[(u+)p + (u−)p]dHd−1

≤
∫

{u>ε}
f (x,∇u)dx +

∫
{u−<ε≤u+}∩Ju

β(x)(u+)p dHd−1+

+
∫

{ε≤u−<u+}∩Ju

β(x)[(u+)p + (u−)p]dHd−1 +
∫

∂e{u>ε}\Ju

β(x)εp dHd−1

where ∂e{u > ε} stands for the essential boundary of the set {u > ε}, i.e., the points with density neither zero nor one 
(see [2, Definition 3.60]).

By the assumptions on f and β we deduce

L−1
∫

{u≤ε}
|∇u|p dx + β1

∫
{u−<u+≤ε}∩Ju

[(u−)p + (u+)p]dHd−1 ≤ β2ε
pHd−1(∂e{u > ε} \ Ju)

which entails for a.e. 0 < δ < ε∫
{u≤ε}

|∇u|p dx + Lβ1δ
pHd−1(∂e{δ < u < ε} ∩ Ju) ≤ Lβ2ε

pHd−1(∂e{u > ε} \ Ju).

Setting

E(ε) :=
∫

{u<ε}
|∇u|p dx, γ (δ, ε) := Hd−1(∂e{δ < u < ε} ∩ Ju),

and h(ε) := Hd−1(∂e{u ≥ ε} \ Ju), (3.13)

we deduce thus that for a.e. 0 < δ < ε < c1

E(ε) + Lβ1δ
pγ (δ, ε) ≤ Lβ2ε

ph(ε). (3.14)

Let η > 0 and set

εi := 5
η + 2−i

η and δi := 2
η − 2−i

η. (3.15)

6 6 3 6
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We have for i → +∞
εi → e∞ := 5

6
η and δi → δ∞ := 2

3
η.

Setting

Ω(δ, ε) := {δ < u < ε}, (3.16)

we will see that there exists η0 > 0 small enough such that for η < η0

∣∣∣∣Ω
(

2

3
η,

5

6
η

)∣∣∣∣
5
6 η∫

2
3 η

h(s) ds = 0. (3.17)

Since in view of the isoperimetric inequality we have

|Ω(δ, ε)| d−1
d ≤ Cd(h(ε) + h(δ) + γ (δ, ε)), (3.18)

relation (3.17) together with (3.14) entails that∣∣∣∣Ω
(

2

3
η,

5

6
η

)∣∣∣∣= 0.

Since η < η0 is arbitrary, we get that

u ≥ 5

6
η0 a.e. on supp(u).

The proof of (3.17) will be the outcome of an iteration scheme which resembles under certain aspects the iteration à 
la De Giorgi in the study of elliptic regularity. We divide the proof in several steps.

Step 1: The main inequalities. Let us set for i ∈N

ai :=
εi∫

δi

h(s) ds and bi := |Ω(δi, εi)|,

where h is defined in (3.13), while Ω(δ, ε) is given in (3.16).
We claim that there exist c1, c2 > 0 depending only on d , p and β such that for every i ≥ 1⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ai ≤ c12ib

1
dp′
i−1ai−1

bi ≤
c2

(
2

d
d−1

)i

η
d

d−1
a

d
d−1
i−1 ,

(3.19)

where p′ := p/(p − 1).
Let us start with the second inequality. For every η/2 < δ < ε < η, the isoperimetric inequality (3.18) together with 

inequality (3.14) entails

|Ω(δ, ε)| d−1
d ≤ Cd,β(1 + 2p)[h(ε) + h(δ)], (3.20)

where Cd,β := Cdβ2/β1. Integrating in ε between [εi, εi−1] we get

εi−1∫
εi

|Ω(δ, ε)| d−1
d dε ≤ Cd,β(1 + 2p)

⎡
⎣ εi−1∫

εi

h(ε) dε + h(δ)(εi−1 − εi)

⎤
⎦ ,

so that, recalling the definition of εi in (3.15)
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|Ω(δ, εi)| d−1
d

[
1

6
2−i+1η − 1

6
2−iη

]
≤ Cd,β(1 + 2p)

⎡
⎣ εi−1∫

εi

h(ε) dε + h(δ)

(
1

6
2−i+1η − 1

6
2−iη

)⎤⎦ .

Integrating in δ on [δi−1, δi] we deduce

|Ω(δi, εi)| d−1
d

[
1

6
2−i+1η − 1

6
2−iη

]2

≤ Cd,β(1 + 2p)

[
1

6
2−i+1η − 1

6
2−iη

]⎡⎢⎣
εi−1∫
εi

h(ε) dε +
δi∫

δi−1

h(δ) dδ

⎤
⎥⎦ .

We get

|Ω(δi, εi)| d−1
d ≤ Cd,β(1 + 2p)

6 · 2i

η

⎡
⎢⎣

εi−1∫
εi

h(ε) dε +
δi∫

δi−1

h(δ) dδ

⎤
⎥⎦ ,

so that the second inequality in (3.19) follows.
Let us come to the first inequality. Notice that for every η/2 < δ < ε < η, the coarea formula, inequality (3.20), 

and the main inequality (3.14) entail

ε∫
δ

h(s) ds =
∫

Ω(δ,ε)

|∇u|dx ≤ |Ω(δ, ε)| 1
p′

⎛
⎜⎝ ∫

Ω(δ,ε)

|∇u|p dx

⎞
⎟⎠

1
p

≤ |Ω(δ, ε)| 1
p′ (Lβ2)

1
p εh(ε)

1
p = |Ω(δ, ε)| 1

p′d |Ω(δ, ε)| d−1
p′d (Lβ2)

1
p εh(ε)

1
p

≤ |Ω(δ, ε)| 1
p′d [Cd,β(1 + 2p)] 1

p′ [h(ε) + h(δ)] 1
p′ (Lβ2)

1
p εh(ε)

1
p

≤ |Ω(δ, ε)| 1
p′d [Cd,β(1 + 2p)(Lβ2)

p′
p ] 1

p′ ε[h(ε) + h(δ)].
Integrating in ε on [εi, εi−1] we get

εi−1∫
εi

⎡
⎣ ε∫

δ

h(s) ds

⎤
⎦dε ≤ [Cd,β(1 + 2p)(Lβ2)

p′
p ] 1

p′ |Ω(δ, εi−1)|
1

p′d εi−1

⎡
⎣ εi−1∫

εi

h(ε) dε + h(δ)[εi−1 − εi]
⎤
⎦

so that

εi∫
δ

h(s) ds

[
1

6
2−iη

]
≤ [Cd,β(1 + 2p)(Lβ2)

p′
p ] 1

p′ |Ω(δ, εi−1)|
1

p′d εi−1

⎡
⎣ εi−1∫

εi

h(ε) dε + h(δ)
1

6
2−iη

⎤
⎦ .

Integrating now in δ on [δi−1, δi] we obtain

εi∫
δi

h(s) ds

[
1

6
2−iη

]2

≤ [Cd,β(1 + 2p)(Lβ2)
p′
p ] 1

p′ |Ω(δi−1, εi−1)|
1

p′d εi−1

[
1

6
2−iη

]⎡⎢⎣
εi−1∫
εi

h(ε) dε +
δi∫

δi−1

h(δ)dδ

⎤
⎥⎦

which imply the first inequality in (3.19) since εi−1 ≤ η.

Step 2: Combining the main inequalities. We claim that we can find α > 0 such that setting

Ui := aα
i bi
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we have for i ≥ 1

Ui ≤ c̃

η
d

d−1

AiUϑ
i−1 (3.21)

where c̃, A > 0, and ϑ > 1.
Indeed using (3.19) we have for α > 0 and i ≥ 1

aα
i bi ≤ cα

1 c2

η
d

d−1

[2α+ d
d−1 ]ib

α
dp′
i−1a

α+ d
d−1

i−1 .

Writing{
α + d

d−1 = ϑα
α

p′d = ϑ

we obtain

α =
1 +

√
1 + 4

p′(d−1)

2
p′d

(3.22)

and

ϑ =
1 +

√
1 + 4

p′(d−1)

2
> 1,

so that inequality (3.21) follows

Step 3: Decay for E(ε). We claim that there exists ε0 > 0 and c0 > 0 such that for ε ≤ ε0

E(ε) ≤ c0ε
p. (3.23)

Indeed from the inequality E(ε) ≤ Lβ2ε
ph(ε) we infer using the coarea formula

εE(ε) ≤
2ε∫

ε

E(s) ds ≤
2ε∫

ε

Lβ2s
ph(s) ds ≤ Lβ22pεp

2ε∫
ε

h(s) ds

= Lβ22pεp

∫
Ω(ε,2ε)

|∇u|dx ≤ Lβ22pεp

⎛
⎜⎝ ∫

Ω(ε,2ε)

|∇u|p dx

⎞
⎟⎠

1
p

|Ω(ε,2ε)| 1
p′

so that

E(ε) ≤ Lβ22pεp−1|Ω(ε,2ε)| 1
p′ E(2ε)

1
p .

Let ε0 > 0 be such that

Lβ22p|Ω(0,2ε0)|
1
p′ ≤ 1.

Then for ε ≤ ε0 we have

E(ε) ≤ εp−1E(2ε)
1
p

and (3.23) is a consequence of Lemma 3.6 below.

Step 4: Conclusion. Using the notation of Step 3, we claim that we can find η so small that

U0 ≤
(

c̃
d

d−1

)− 1
ϑ−1

A
− 1

(ϑ−1)2 = c̃− 1
ϑ−1 A

− 1
(ϑ−1)2 ηα, (3.24)
η
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where α is given in (3.22). Then it is easily seen by induction that Ui ≤ A− i
ϑ−1 U0 so that

lim
i→+∞Ui = 0,

and equality (3.17), concluding the proof of the theorem.
In order to verify that (3.24) can be achieved for η small enough, we write

U0 =
∣∣∣Ω (η

2
, η
)∣∣∣
⎡
⎢⎣

η∫
η/2

h(s) ds

⎤
⎥⎦

α

=
∣∣∣Ω (η

2
, η
)∣∣∣
⎡
⎢⎣ ∫
Ω
( η

2 ,η
) |∇u|dx

⎤
⎥⎦

α

≤
∣∣∣Ω (η

2
, η
)∣∣∣ [E(η)

1
p

∣∣∣Ω (η

2
, η
)∣∣∣ 1

p′
]α

=
∣∣∣Ω (η

2
, η
)∣∣∣1+ α

p′
E(η)

α
p

so that thanks to the decay for E(η) obtained in Step 3 we deduce

U0 ≤ Ĉ0

∣∣∣Ω (η

2
, η
)∣∣∣1+ α

p′
ηα

for some Ĉ0 > 0. Then (3.24) is achieved if η is so small that

Ĉ0

∣∣∣Ω (η

2
, η
)∣∣∣1+ α

p′ ≤ c̃− 1
ϑ−1 A

− 1
(ϑ−1)2 . �

In the previous proof, we made use of the following simple lemma.

Lemma 3.6. Let ϕ : [0, +∞[→ [0, +∞[ be a monotone function such that for every r ≤ r0

ϕ(r) ≤ (2r)αϕ(2r)β,

where r0, α > 0 and 0 < β < 1. Then there exists C > 0 such that for r ≤ r0

ϕ(r) ≤ Cr
α

1−β .

Proof. Let r ≤ r0 and m ∈N such that r0
2 < 2mr ≤ r0. We can write

ϕ(r) ≤ (2r)αϕ(2r)β ≤ (2r)α[(4r)αϕ(4r)β ]β
≤ · · · ≤ [21+2β+3β2+···+mβm−1

r1+β+β2+···+βm−1 ]αϕ(2mr)β
m

≤ C̃r
α

1−β r
− βmα

1−β ≤ Ĉr
α

1−β

(
2−m−1r0

)− βmα
1−β ≤ Cr

α
1−β ,

and the result follows. �
Remark 3.7. An inspection of the previous proof shows that the estimate from below on the support is a consequence 
of the following inequality (according to the notation introduced above)

E(ε) + c1δ
pγ (δ, ε) ≤ c2ε

ph(ε) for a.e. 0 < δ < ε ≤ ε0,

where c1, c2 > 0, which is a consequence of the comparison between u and u1{u≥ε} (ε0 smaller than the constants 
appearing in (3.2)).

Remark 3.8 (Bound from below and the Hopf Lemma). In the classical setting with p = 2, f (x, ξ) = |ξ |2 and 
β(x) = β , the bound from below of u on the associated regular domain Ω is a consequence of the classical Hopf 
lemma in view of the Robin condition at the boundary. Let indeed the subsolution u ∈ W 1,2(Ω), u ≥ 0, be associated 
to Ω . We get easily that u is subharmonic in Ω . Let x0 be a minimum point of u on Ω \ B . We can assume x0 ∈ ∂Ω , 
otherwise the bound from below is trivial. Since by Hopf Lemma ∂u

∂ν
(x0) < 0, the Robin condition entails

βu(x0) = −∂u

∂ν
(x0) > 0

so that u ≥ u(x0) > 0 on Ω .
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Remark 3.9. In the case p = 2 and γ > 0, the result of Theorem 3.5 was proved in [6] for subsolutions of

u �→
∫
Rd

|∇u|2 dx + β

∫
Ju

[(u+)2 + (u−)2]dHd−1 + γ |{u > 0}|, (3.25)

where β > 0. In this paper, based on an iteration technique à la De Giorgi, we also cover the limit case γ = 0.

We can now show that the free discontinuity problem is well posed.

Theorem 3.10. Let u be the function given by Proposition 3.3. Then u ∈ FB,g(D), and it is a minimizer for the free 
discontinuity functional F in (3.6).

Proof. The SBV regularity of u follows by the chain rule formula in BV in view of the lower bound (3.12) and of the 
fact up ∈ SBV(Rd). The minimality is a consequence of Proposition 3.3. �

The following result is fundamental to prove some regularity for minimizers of F .

Proposition 3.11 (Almost-quasi minimality). Let u be a minimizer of F on FB,g(D) with 0 ≤ u ≤ ‖g‖∞. Then there 
exists α > 0 with

u > α a.e. on supp(u) (3.26)

and such that function (2β1)
1/pαu is an almost-quasi minimizer of the Mumford–Shah functional

MS(u) :=
∫
D

f (x,∇u)dx +Hd−1(Ju)

on D with Dirichlet condition u = g on B according to Definition 2.2.

Proof. The existence of α > 0 satisfying (3.26) is a consequence Theorem 3.5. Coming to almost-quasi minimality, 
let Bρ(x) ⊂ D and v ∈ SBVloc(D) be such that v = g on B and {v �= u} ⊆ Bρ(x) ⊆ D. Let us consider

w := (v ∧ ‖g‖∞) ∨ 0.

Clearly w ∈ SBV(D) with {w �= u} ⊆ Bρ(x) and still w = g on B . Comparing u and w we get∫
Bρ(x)

f (x,∇u)dx + 2β1α
pHd−1(Ju ∩ B̄ρ(x))

≤
∫

Bρ(x)

f (x,∇w)dx + 2β2‖g‖p∞Hd−1(Jw ∩ B̄ρ(x)) + γωdrd

so that ∫
Bρ(x)

f (x,∇u)dx + 2β1α
pHd−1(Ju ∩ B̄ρ(x))

≤
∫

Bρ(x)

f (x,∇v)dx + 2β2‖g‖p∞Hd−1(Jv ∩ B̄ρ(x)) + γωdrd,

and the result follows. �
We complete our analysis of the free discontinuity functional F with the following density result.

Proposition 3.12. Given v ∈ FB,g(D) ∩ L∞(Rd) with Hd−1(Jv) < +∞, for every ε > 0 there exists w ∈ FB,g(D) ∩
L∞(Rd) with Jw ⊂⊂ D \ B , Hd−1(Jw) < +∞, and such that

F(w) ≤ F(v) + ε.
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Proof. We can assume that g ∈ C1
c (D) with g ≥ 0. Let ε1 > 0 to be fixed below, and let U ⊂⊂ D \ B̄ open such that

Hd−1(Jv ∩ (D \ U)) < ε1.

Since D \ B̄ has Lipschitz boundary, for every x ∈ ∂D ∪ ∂B we can find an orthogonal coordinate system y = (y′, yd)

with origin at x, two numbers r, s > 0, and a Lipschitz function f x : Rd−1 →R such that setting

V x
r,s := {|y′| < r, |yd | < s}

we have V x
r,s ∩ U = ∅ and

(D \ B̄) ∩ V x
r,s = {y ∈ V x

r,s : yd < f x(y′)}.
We can also assume that for ξ > 0 small enough

{|y′| < r,f x(y′) − ξ < yd < f x(y′) + ξ} ⊆ V x
r,s .

By compactness, we can cover ∂D ∪ ∂B with a finite number of neighborhoods V1, . . . , Vm of the type Vi := V
xi
ri ,si , 

and associated function fi . Moreover it is not restrictive to assume that the Hd−1-measure of the part of ∂D on which 
the Vi ’s overlap is less than ε1. Let ψ1, . . . , ψm be a partition of unity for ∂D subordinated to the Vi’s. We write

v = ψ1v + · · · + ψmv + (1 − ψ1 − · · · − ψm)v := v1 + · · · + vm + v0.

Notice that v0 = v on U , and that vi has compact support in Vi (so that we can assume that they are defined on the 
entire Rd for the operations performed below).

We proceed to approximate each vi by “pushing inside” the jumps occurring at the boundary. Given ξ > 0 small, 
we consider

v
ξ
i (y) :=

{
vi(y

′, yd + ξ) if yd < fi(y
′) − ξ

(ψig)(y′, fi(y
′)) if yd ≥ fi(y

′) − ξ.

Let us consider

vξ := v
ξ
1 + · · · + vξ

m + v0.

By construction, vξ ∈ SBV(Rd) ∩ L∞(Rd) with the jump set with finite Hd−1-measure, and well contained in D, 
being vξ Lipschitz regular in a neighborhood of ∂D.

Concerning the behavior of the functional F , for ξ → 0 we get that the volume energy of vξ and the measure of its 
support are arbitrarily closed to that of v. As for the surface energy, which we denote by E s , thanks to the continuity 
of β(x) we get with obvious notation

E s(vξ ) ≤ E s(v0,U) + E s(v, ∂D ∪ ∂B) + Cε1,

where C depends only on m, g and ‖v‖∞. The last term takes into account the jumps in (D \ B̄) \ U , and the 
possible interference of the vξ

i obtained by the translation of the vi’s. The result thus follows if Cε1 < ε and ξ is small 
enough. �

We are now in a position to prove the main result of the paper.

Proof of Theorem 3.2. Let u be a minimizer of F on FB,g(D) with 0 ≤ u ≤ ‖g‖∞: its existence is secured by 
Proposition 3.10. Thanks to Proposition 3.11 and to Theorem 2.3, we deduce that

Hd−1 ((Ju \ Ju) ∩ D
)= 0, (3.27)

i.e., the jump set of u is essentially closed in D. Moreover the lower bound (3.26) entails

Hd−1(Ju) < +∞. (3.28)

Let Ω be given by the connected component of D \ Ju on which u does not vanish (we have just one component 
by minimality). Recalling (3.28), and since

∂Ω ⊆ (
Ju ∩ D

)∪ ∂D,
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we get that Ω ∈AB(D). Moreover∫
∂Ω\Ju

[(u+)p + (u−)p]dHd−1 = 0. (3.29)

Indeed thanks to (3.27)

Hd−1 ((∂Ω \ Ju) ∩ D) = 0,

while

u± = 0 Hd−1-a.e. on (∂Ω \ Ju) ∩ ∂D

since, being D Lipschitz, we have u− = 0 Hd−1-a.e. on ∂D.
Since

u|Ω ∈ W 1,p(Ω),

and taking into account (3.29), we conclude that

J (Ω) ≤
∫
Ω

f (x,∇u)dx +
∫

∂Ω

β(x)[|u+|p + |u−|p]dHd−1 = F(u). (3.30)

Let us prove that Ω is a minimizer of the shape optimization problem (3.4). Let us consider Ω̃ ∈ AB(D) with 
associated function v ∈ W 1,p(Ω̃) ∩ L∞(Ω̃) which realizes J (Ω̃). By extending v to zero outside Ω̃ we get v ∈
FB,g(D), Jv ⊆ ∂Ω̃ , and

F(v) =
∫
Rd

f (x,∇v)dx +
∫
Jv

β(x)[|v+|p + |v−|p]dHd−1

≤
∫
Ω̃

f (x,∇v)dx +
∫

∂Ω̃

β(x)[|v+|p + |v−|p]dHd−1 = J (Ω̃)

so that in view of (3.30) we infer J (Ω) ≤ J (Ω̃) and the optimality of Ω follows. Moreover we infer J (Ω) = F(u).
Let us finally prove the “relaxation condition” (3.5). By Proposition 3.12, for every ε > 0 we can find w ∈

FB,g(D) ∩ L∞(Rd) with Jw well contained in D \ B and with finite Hd−1-measure, and such that

F(w) < F(u) + ε.

By the density result Theorem 2.4, truncating and using a cut-off function to accommodate the Dirichlet condition 
on B , we can find wk ∈ FB,g(D) ∩ L∞(Rd) with Jwk

⊂⊂ D \ B essentially closed and polyhedral (i.e., given by the 
union of the intersection with D of a finite number of (d − 1)-simplexes), wk is of class W 1,p on D \ J̄wk

for every k, 
and such that

wk → w strongly in Lp(D),

∇wk → ∇w strongly in Lp(D;Rd),

and

F(wk) → F(w).

Note that the convergence for the measure of the supports can be obtained by replacing wk given by Theorem 2.4, if 
necessary, by (wk − ηk)+ for suitable ηk → 0.

If we enlarge the jump set creating small holes Hk with polyhedral boundary, we get that the domain

Ωk := D \ Hk ∈AB(D)
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is Lipschitz regular. The restriction of wk to Ωk is moreover an admissible function to compute J (Ωk). We can thus 
consider the holes so small and k so large that

J (Ωk) ≤
∫
Ωk

f (x,∇wk)dx +
∫

∂Ωk

β(x)|wk|p dHd−1 ≤ F(wk) + ε ≤ J (u) + 2ε.

Now the result follows by letting ε = εn → 0 and selecting the associated k = kn. �
4. Essential closedness of the jump set of almost-quasi minimizers of free discontinuity functionals

The present section is devoted to the proof of Theorem 2.3. As explained in Section 2, we follow the approach a la 
De Giorgi–Carriero–Leaci [10] along the lines of [2, Chapter 7]. The main point is to recover a decay lemma for the 
energy (see Theorem 4.8). This is achieved through a contradiction argument in which the analysis of sequences of 
almost-quasi minimizers with vanishing jump set play a key role. As in the classical setting, we need to prove that our 
weaker minimality still entails that they converge to a function without jump which is a local minimizer of the volume 
energy.

We divide the section in several parts. In Subsection 4.1 we collect some regularity results for local minimizers 
of integral functionals. In Subsection 4.2 we prove some technical lemmas concerning the behavior of almost-quasi 
minimizers on the unit ball with vanishing jump set. In Subsection 4.3 we prove the basic decay lemma, while Sub-
section 4.4 contains the proof of Theorem 2.3.

4.1. Regularity results for local minimizers of integral functionals

We will need suitable gradient bound estimates for local minimizers of the bulk energy. Let f : Rd → [0, +∞]. 
For every r ≤ 1 and u ∈ W 1,p(Br), let

F(u,Br) :=
∫
Br

f (∇u)dx.

Definition 4.1 (Local minimizers). Let r > 0. We say that u ∈ W 1,p(Br) is a local minimizer of F(·, Br) if

F(u,Br) ≤ F(v,Br)

for every v ∈ W 1,p(Br) with {u �= v} ⊂⊂ Br .

The following result has been proved in [11, Theorem 2.2].

Theorem 4.2 (Interior gradient bound). Assume that f : Rd → R is a continuous function satisfying (H1) and (H2). 
Let u ∈ W 1,p(B1) be a local minimizer of F(·, B1). Then u is locally Lipschitz in B1, and there exists a constant 
C0 = C0(d, p, L, μ) > 0 such that

sup
Bρ/2

|∇u|p ≤ C0

ρd

∫
Bρ

|∇u|p dx for every ρ ≤ 1.

We need an analogous result for the case with boundary conditions. Let us introduce, for δ ≥ 0,

Hδ := {x = (x′, xd) ∈R
d : xd > −δ},

and for every r ≤ 1 and u ∈ W 1,p(Br), let

F0,δ(u,Br) :=

⎧⎪⎨
⎪⎩
∫
Br

f (∇u)dx if u = 0 a.e. in Br \ Hδ,

+∞ otherwise.

The definition of local minimizers is adapted to F0,δ , taking into account the boundary condition. The following result 
has been proved in [3, Theorem 3.8].
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Theorem 4.3 (Boundary gradient bound). Assume that δ ∈ [0, 1/2] and that f : Rd → R is a continuous function 
satisfying (H1) and (H2). Let u ∈ W 1,p(B1) be a local minimizer of F0,δ(·, B1). Then, for each R0 < 1, there exists 
a constant C′

0 = C′
0(d, p, L, μ, R0, ‖∇u‖p) > 0 (independent of δ) such that u is locally Lipschitz continuous in B1

and

sup
Bρ/2

|∇u|p ≤ C′
0

⎛
⎜⎝ 1

ρd

∫
Bρ

|∇u|p dx + 1

⎞
⎟⎠ for every ρ ≤ R0.

4.2. Some lemmas on the unit ball

In the footsteps of [2, Chapter 7], we study the behavior of sequences of functions in SBV(B1) with vanishing jump 
set which satisfy a suitable minimality property for the functional (2.1).

More precisely, let fn : B1 ×R
d → [0, +∞[ be a Caratheodory function with

fn(x, ξ) ≤ L(1 + |ξ |p) (4.1)

ξ �→ fn(x, ξ) is convex for a.e. x ∈ B1, (4.2)

and such that

fn → f∞ uniformly on the compact sets of B1 ×R
d . (4.3)

Here L > 0 and p > 1. We are interested in the behavior of a sequence (un)n∈N in SBV(B1) which satisfy the mini-
mality property∫

Br

fn(x,∇un)dx + cnHd−1(Jun ∩ B̄r )

≤
∫
Br

fn(x,∇v)dx + �cnHd−1(Jv ∩ B̄r ) + Dn(r) (4.4)

for every v ∈ SBV(B1) with {v �= un} ⊆ Br and r ∈ [0, 1]. Here � ≥ 1, cn ≥ 0 and Dn : [0, 1] → R
+ is such that

Dn → 0 pointwise. (4.5)

Following [10], we will make use of a suitable truncation of a function in SBV(B1). For every s ∈ [0, ωd ], let us set

u∗(s,B1) := inf{t ∈R : |{u < t}| ≥ s}.
If (

2γdHd−1(Ju)
) d

d−1
<

ωd

2
,

where γd is the constant appearing in the relative isoperimetric inequality, let

τ−(u,B1) := u∗
((

2γdHd−1(Ju)
) d

d−1
,B1

)
and

τ+(u,B1) := u∗
(

ωd −
(

2γdHd−1(Ju)
) d

d−1
,B1

)
.

Notice that τ−(u, B1) ≤ m ≤ τ+(u, B1) for every median m of u, i.e.,

|{x ∈ B1 : u(x) < t}| ≤ ωd

2
for every t < m

and

|{x ∈ B1 : u(x) > t}| ≤ ωd

2
for every t > m.

The following result holds true (see [10, Theorem 3.5] and [2, Proposition 7.5]).
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Lemma 4.4. Let (un)n∈N be a sequence in SBV(B1) such that

sup
n

∫
B1

|∇u|p dx < +∞ and lim
n→+∞Hd−1(Jun) = 0

for some p > 1, and let mn be medians of un. Then there exists a subsequence (unk
)k∈N and u ∈ W 1,p(B1) such that

unk
− mnk

→ u a.e. in B1.

Moreover the truncated function

ūnk
:= (

unk
∨ τ−(unk

,B1)
)∧ τ+(unk

,B1) (4.6)

satisfies

ūnk
− mnk

→ u strongly in Lp(B1)

and

|{unk
�= ūnk

}| ≤ 2
(

2γdHd−1(Junk
)
) d

d−1
. (4.7)

We begin with the following lemma.

Lemma 4.5. Let fn satisfy (4.1) and let (un)n∈N be a sequence in SBV(B1) satisfying the minimality property (4.4)
and such that

sup
n

⎡
⎢⎣∫

B1

|∇un|p dx + cnHd−1(Jun)

⎤
⎥⎦< +∞ and Hd−1(Jun) → 0. (4.8)

Then there exists E ⊆ [0, 1] with |[0, 1] \ E| = 0 such that, up to a subsequence, the truncated functions ūn defined in 
(4.6) still satisfy the minimality property (4.4) for every r ∈ E, with Dn replaced by D̃n : E → R

+ such that D̃n → 0
pointwise.

Proof. Thanks to Lemma 4.4, in view of assumption (4.8), we have

cn|{un �= ūn}| ≤ γdcn

(
Hd−1(Jun)

) d
d−1 → 0.

Since

|{un �= ūn}| =
1∫

0

Hd−1({un �= ūn} ∩ ∂Br)dr

we deduce that, up to a subsequence, for a.e. r ∈ [0, 1]
cnHd−1({un �= ūn} ∩ ∂Br) → 0.

Let us consider now v ∈ SBV(B1) with {v �= ūn} ⊆ Br , where r satisfies the previous property. Comparing un with 
w := v1Br + un1B1\Br we get∫

Br

fn(x,∇un)dx + cnHd−1(Jun ∩ B̄r )

≤
∫
Br

fn(x,∇v)dx + �cnHd−1(Jv ∩ Br) + �cnHd−1({v �= un} ∩ ∂Br) + Dn(r)

≤
∫
Br

fn(x,∇v)dx + �cnHd−1(Jv ∩ B̄r ) + �cnHd−1({un �= ūn} ∩ ∂Br) + Dn(r).
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Since in view of (4.1)∫
Br

fn(x,∇ūn) dx + cnHd−1(Jūn ∩ B̄r )

≤
∫
Br

fn(x,∇un)dx + cnHd−1(Jun ∩ B̄r ) + L|{un �= ūn}|,

we conclude∫
Br

fn(x,∇ūn) dx + cnHd−1(Jūn ∩ B̄r ) ≤
∫
Br

fn(x,∇v)dx + �cnHd−1(Jv ∩ B̄r ) + D̃n(r)

where

D̃n(r) := L|{un �= ūn}| + �cnHd−1({un �= ūn} ∩ ∂Br) + Dn(r) → 0,

and the result follows. �
Lemma 4.6. Let fn satisfy (4.1), (4.2) and (4.3). Let (un)n∈N be a sequence in SBV(B1) satisfying the minimality 
property (4.4) such that

sup
n

∫
B1

|∇un|p dx < +∞, Hd−1(Jun) → 0, (4.9)

sup
n

⎡
⎢⎣∫

B1

fn(x,∇un)dx + cnHd−1(Jun)

⎤
⎥⎦< +∞ (4.10)

and

un → u ∈ W 1,p(B1) pointwise a.e.

Then u is a local minimizer in W 1,p(B1) of the functional

v �→
∫
B1

f∞(x,∇v)dx,

and for every r ∈ [0, 1]
lim

n→+∞

∫
Br

fn(x,∇un)dx =
∫
Br

f∞(x,∇u)dx and lim
n→+∞ cnHd−1(Jun ∩ B̄r ) = 0. (4.11)

Proof. Let ūn denote the truncation of un according to (4.6). We have thanks to (4.7), (4.9) and (4.10)

cn|{ūn �= un}| = cn

1∫
0

Hd−1({ūn �= un} ∩ ∂Br) dr → 0. (4.12)

By Helly’s theorem, up to a subsequence we can assume that for every r ∈ (0, 1)

lim
n→+∞

⎡
⎢⎣∫

Br

fn(x,∇ūn) dx + cnHd−1(Jūn ∩ B̄r )

⎤
⎥⎦= α(r),

where α : [0, 1] → [0, +∞[ is an increasing function.
In view of Lemma 4.4 we get easily

ūn → u strongly in Lp(B1), (4.13)
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and

|{ūn �= un}| → 0. (4.14)

Following [12, Theorem 2.6] we have∫
Br

f∞(x,∇u)dx ≤ lim inf
n→+∞

∫
Br

fn(x,∇ūn) dx. (4.15)

Indeed, by Chacon biting lemma (see e.g. [2, Lemma 3.52]), there exists a decreasing family of Borel sets Ak ⊂ B1
with |Ak| → 0 as k → ∞ and such that

(|∇un|p1B1\Ak
)n∈N is equintegrable.

Then for every m ∈N

lim inf
n→+∞

∫
Br

fn(x,∇ūn) dx ≥ lim inf
n→+∞

∫
[Br\Ak]∩Mn,m

fn(x,∇ūn) dx

≥ lim inf
n→+∞

∫
Br\Ak

f∞(x,∇ūn) dx − lim sup
n→+∞

∫
[Br\Ak]\Mn,m

L(1 + |∇ūn|p) dx − e(m)

where

Mn,m := {x ∈ B1 : |∇ūn| ≤ m}
and e(m) → 0. Then, thanks to (4.13) and in view of the lower semicontinuity result [2, Theorem 5.29] we get

lim inf
n→+∞

∫
Br\Ak

f∞(x,∇ūn) dx ≥
∫

Br\Ak

f∞(x,∇u)dx,

so that (4.15) follows by letting m → +∞ and then k → +∞.
In view of (4.15) and (4.14), for every r ∈ (0, 1) we obtain∫

Br

f∞(x,∇u)dx ≤ lim inf
n→+∞

∫
Br

fn(x,∇ūn) dx ≤ lim inf
n→+∞

∫
Br

fn(x,∇un)dx (4.16)

Let us consider v ∈ W 1,p(B1) and r ∈ (0, 1) such that {v �= u} ⊆ Br . Considering the measures

μn := cnHd−1�Jūn,

we can assume up to a subsequence that

μn
∗
⇀ μ weakly∗ in the sense of measures (4.17)

for some finite positive measure μ on B1. Let us consider

r < r ′ < r ′′ < 1

with

μ(∂Br ′) = 0 and r ′′ ∈ E,

where E ⊆ [0, 1] is given by Lemma 4.5. Let ϕ ∈ C∞
c (B1) be a cut-off function between Br ′ and Br ′′ , and let us 

compare ūn with ϕv + (1 − ϕ)ūn. Since r ′′ ∈ E we can write∫
Br′′

fn(x,∇ūn) dx + cnHd−1(Jūn ∩ B̄r ′′)

≤
∫

B ′′

fn(x,ϕ∇v + (1 − ϕ)∇ūn + ∇ϕ(v − ūn)) dx
r
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+ �cnHd−1 (Jūn ∩ (B̄r ′′ \ Br ′)
)+ D̃n(r

′′)

≤
∫

Br′

fn(x,∇v)dx +
∫

Br′′ \Br′

L̃
(
1 + |∇v|p + |∇ūn|p + |∇ϕ|p|v − ūn|p

)
dx

+ �cnHd−1 (Jūn ∩ (B̄r ′′ \ Br ′)
)+ D̃n(r

′′),

where L̃ > 0 is independent of n. Letting n → +∞ we get using the uniform convergence of fn to f∞ and (4.17)

lim inf
n→+∞

⎡
⎢⎣∫
Br′′

fn(x,∇ūn) dx + cnHd−1(Jūn ∩ B̄r ′′)

⎤
⎥⎦

≤
∫

Br′

f∞(x,∇v)dx + L̃

∫
Br′′ \Br′

(1 + |∇v|p) dx + �μ(B̄r ′′ \ Br ′).

Letting r ′′ → r ′, and since μ(∂Br ′) = 0 we deduce

α(r ′) ≤
∫

Br′

f∞(x,∇v)dx.

Moreover, thanks to (4.16), for r ′ → r we obtain∫
Br

f∞(x,∇u)dx ≤ α(r) ≤
∫
Br

f∞(x,∇v)dx.

We conclude that u is a local minimizer in W 1,p(B1) for

v �→
∫
B1

f∞(x,∇v)dx,

and that for every r ∈ (0, 1) (take v = u)

α(r) =
∫
Br

f∞(x,∇u)dx.

We note that the previous equality together with (4.15) entails that for every r ∈ (0, 1)

lim
n→+∞

∫
Br

fn(x,∇ūn) dx =
∫
Br

f∞(x,∇u)dx and lim
n→+∞ cnHd−1(Jūn ∩ B̄r ) = 0. (4.18)

In order to obtain (4.11), we need to replace ūn with un. Let r̃ > r be such that according to relation (4.12)

cnHd−1 ({ūn �= un} ∩ ∂Br̃ ) → 0. (4.19)

Comparing un with ūn1Br̃
+ un1B1\Br̃

we get∫
Br̃

fn(x,∇un)dx + cnHd−1(Jun ∩ B̄r̃ )

≤
∫
Br̃

fn(x,∇ūn) dx + �cnHd−1(Jūn ∩ Br̃) + �cnHd−1 ({ūn �= un} ∩ ∂Br̃ ) + Dn(r̃)
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so that recalling (4.16), (4.18) and (4.19)

∫
Br

f∞(x,∇u)dx ≤ lim inf
n→+∞

⎡
⎢⎣∫

Br

fn(x,∇un)dx + cnHd−1(Jun ∩ B̄r )

⎤
⎥⎦

≤ lim sup
n→+∞

⎡
⎢⎣∫

Br

fn(x,∇un)dx + cnHd−1(Jun ∩ B̄r )

⎤
⎥⎦≤

∫
Br̃

f∞(x,∇u)dx,

from which (4.11) follows letting r̃ → r . �
We need now to adapt the previous lemma to the case with boundary conditions. Let ϕn : Rd−1 →R be a sequence 

of continuous functions, and let

Tn := {x = (x′, xd) ∈ B1 : xd ≤ ϕn(x
′)}.

Assume that (ϕn)n∈N is locally uniformly converging to the constant function −δ, with δ ∈ [0, 1). Let (gn)n∈N be a 
sequence in C1(B̄1) such that

‖gn‖∞ + ‖∇gn‖∞ → 0. (4.20)

Let (un)n∈N be a sequence in SBV(B1) with un = gn on Tn, which satisfy the minimality property∫
Br

fn(x,∇un)dx + cnHd−1(Jun ∩ B̄r )

≤
∫
Br

fn(x,∇v)dx + �cnHd−1(Jv ∩ B̄r ) + Dn(r) (4.21)

for every v ∈ SBV(B1) with v = gn on Tn, {v �= un} ⊆ Br , r ∈ [0, 1], and with Dn satisfying (4.5). Let finally F∞
0,δ :

W 1,p(B1) → [0, +∞[ be given by

F∞
0,δ(u) :=

{∫
B1

f∞(x,∇u) if u = 0 on {x ∈ B1 : xd < −δ}
+∞ otherwise.

We say that u is a local minimizer of F∞
0,δ if for every v ∈ W 1,p(B1) with v = 0 on {x ∈ B1 : xd < −δ} and {v �=

u} ⊂⊂ B1 we have F∞
0,δ(u) ≤ F∞

0,δ(v).
The following lemma holds true.

Lemma 4.7. Let (un)n∈N be a sequence in SBV(B1) with un = gn on Tn, and satisfying the almost-quasi minimality 
property (4.21). Assume that

sup
n

∫
B1

|∇un|p dx < +∞, Hd−1(Jun) → 0,

sup
n

⎡
⎢⎣∫

B1

fn(x,∇un)dx + cnHd−1(Jun)

⎤
⎥⎦< +∞

and

un → u ∈ W 1,p(B1) pointwise a.e.

Then u is a local minimizer in W 1,p(B1) of the functional F∞
0,δ and for every r ∈ [0, 1]

lim
n→+∞

∫
Br

fn(x,∇un)dx =
∫
Br

f∞(x,∇u)dx and lim
n→+∞ cnHd−1(Jun ∩ B̄r ) = 0. (4.22)
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Proof. If we set vn := un − gn, we get easily that for n large enough

v̄n = 0 on Tn.

Setting

ūn := gn + v̄n

we have

ūn → u strongly in Lp(B1)

and

(1 + cn)|{ūn �= un}| → 0.

We can then follow the proofs of lemma and of Lemma 4.6 to get the conclusion: it suffices to note that every 
v ∈ W 1,p(B1) with v = 0 on {x ∈ B1 : xd ≤ −δ}, in view of (4.20), there exists vn ∈ W 1,p(B1) with vn = gn on Tn

and such that vn → v strongly in W 1,p(B1). �
4.3. The decay lemma

For every ball Bρ(x0) ⊂⊂ Ω ′ let us write

F(u,Bρ(x0)) :=
∫
Bρ

f (x,∇u)dx +Hd−1(Ju ∩ Bρ).

Let us denote by Devg,�(u, Bρ(x0)) the infimum of those constants D such that∫
Bρ(x0)

f (x,∇u)dx +Hd−1(Ju ∩ B̄ρ(x0)) ≤
∫

Bρ(x0)

f (x,∇v)dx + �Hd−1(Jv ∩ B̄ρ(x0)) + D

for every v ∈ SBVp(Ω ′) with v = g on Ω ′ \ Ω and such that {v �= u} ⊆ Bρ(x0).
The decay lemma with boundary conditions which we will use is the following.

Lemma 4.8 (Decay). Assume that f satisfies assumptions (H1)–(H3). For every τ ∈ (0, 1) and Ω̃ ⊂⊂ Ω ′ there exist 
ε(τ, Ω̃), ϑ(τ, Ω̃), ρ(τ, Ω̃), χ(τ, Ω̃) > 0 such that if u ∈ SBVp(Ω ′) with u = g on Ω ′ \ Ω , x ∈ Ω̃ , ρ < ρ(τ, Ω̃), 
Bρ(x) ⊂⊂ Ω ′,

Hd−1(Ju ∩ Bρ(x)) ≤ ε(τ, Ω̃)ρd−1 and Devg,�(u,Bρ(x)) ≤ ϑ(τ, Ω̃)F (u,Bρ(x))

then

F(u,Bτρ(x)) ≤ C1τ
d max{F(u,Bρ(x)),χ(τ, Ω̃)ρd [LipBρ(x)g]p},

where C1 > 0 depends only on the dimension d and on the constants L, μ, p associated to f .

Proof. It suffices to consider the case τ ∈ (0, 1/4) (otherwise we can choose C1 = 4d ). Let C1 > 0 to be fixed below. 
By contradiction, let us assume that there exist

τ ∈ (0,1), εn → 0, ϑn → 0, ρn → 0, χn → +∞, xn ∈ Ω̃

such that Bρn(xn) ⊂⊂ Ω ′,

Hd−1(Ju ∩ Bρn(xn)) = εnρ
d−1
n , Devg,�(u,Bρn(xn)) = ϑnF(u,Bρn(xn)),

and

F(u,Bτρn(xn)) > C1τ
d max{F(u,Bρn(xn)),χnρ

d
n [LipB (x )g]p}. (4.23)
ρn n
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We consider the rescaled function vn ∈ SBVp(B1) given by

vn(y) := ρ

1−p
p

n c
1
p
n u(xn + ρny), (4.24)

where

cn := ρd−1
n

F (un,Bρn(xn))
.

We thus get∫
B1

fn (y,∇vn(y)) dy + cnHd−1(Jvn) = 1, (4.25)

where

fn(y, ξ) := f (xn + ρny, ξ) ,

and

sup
n

∫
B1

|∇vn|p dy < +∞ and Hd−1(Jvn) → 0. (4.26)

If we define gn starting from g as in (4.24), we get∫
Bτ

fn (y,∇vn(y)) dy + cnHd−1(Jvn ∩ B̄τ ) > C1τ
d max{1, χn[LipB1

gn]p} ≥ C1τ
d, (4.27)

so that in particular

LipB1
gn ≤ 1

[C1τdχn]1/p
→ 0. (4.28)

Finally vn satisfies the minimality property (4.21), with respect to the region Tn corresponding to (Ω ′ \Ω) ∩Bρn(xn), 
the given datum gn, and Dn(r) = ϑn for every r ∈ [0, 1].

Up to a subsequence, we may assume that xn → x∞ ∈ Ω̃ , so that

fn(y, ξ) → f (x∞, ξ) uniformly on compact subsets of B1 ×R
d .

It is not restrictive to assume x∞ ∈ Ω (otherwise for n large we have u = g on Bρn(xn), and the result is trivial). We 
now divide three cases.

Case 1 Assume that Tn = ∅ for n large. Thanks to Lemma 4.4 and Lemma 4.6, and since the energy is invariant under 
the addition of a constant, we may assume that

vn → v ∈ W 1,p(B1) pointwise a.e.

with v local minimizer of w �→ ∫
B1

f (x∞, ∇w(y)) dy on W 1,p(B1), and such that every r ∈ [0, 1]

lim
n→+∞

∫
Br

fn (y,∇vn(y)) dy =
∫
Br

f (x∞,∇v(y)) dy and lim
n→+∞ cnHd−1(Jvn ∩ B̄r ) = 0.

In particular∫
f (x∞,∇v(y)) dy = 1.
B1
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However, by Theorem 4.2 v is Lipschitz continuous with

sup
B1/2

|∇v|p ≤ C0

ωd

∫
B1

f (x∞,∇v)dy ≤ C0

ωd

,

where C0 = C0(d, p, L, μ). Hence we get∫
Bτ

f (x∞,∇v(y)) dy ≤ L

∫
Bτ

|∇v|p dy ≤ Lωdτd sup
B1/4

|∇v|p ≤ LC0τ
d .

We get a contradiction with (4.27) if we choose C1 > LC0.

Case 2 Assume that Tn �= ∅ for n large. Since ρn → 0, we get x∞ ∈ ∂(Ω ′ \ Ω). Since Ω ′ \ Ω has C1-boundary, there 
exists a coordinate system such that, up to a subsequence,

Tn = {y = (y′, yd) ∈ B1 : yd ≤ ϕn(y
′)}

for some ϕn ∈ C1(Rd−1) locally uniformly converging to a constant −δ, with δ ∈ [0, 1] (see e.g. [3, Lemma 6.4]).
Thanks to (4.26) and to Lemma 4.4, there exists v ∈ W 1,p(B1) such that up to a subsequence (not relabeled)

vn − mn → v a.e. in B1,

where mn denotes a median of vn.
Assume now that 0 ≤ δ ≤ 1

2 . In view of (4.28), we conclude that v is constant on {y = (y ′, yd) ∈ B1 : yd ≤ −δ}. It 
is not restrictive (since the energies are invariant by addition of a constant) to assume that mn = 0,

v = 0 on {y = (y′, yd) ∈ B1 : yd ≤ −δ}
and that

vn → v a.e. in B1.

By Lemma 4.7 we deduce that v is a local minimizer of the functional F∞
0,δ associated to the energy density f (x∞, ξ),

lim
n→+∞

∫
Bτ

fn (y,∇vn(y)) dy =
∫
Bτ

f (x∞,∇v)dy, lim
n→+∞ cnHd−1(Jvn ∩ B̄τ ) = 0

and ∫
B1

f (x∞,∇v)dy = 1.

In view of Theorem 4.3, v is locally Lipschitz in B1, and there exists a constant C′
0 = C′

0(d, p, L, μ) such that

sup
Bτ

|∇v|p ≤ C′
0

⎡
⎢⎣∫

B1

|∇v|p dx + 1

⎤
⎥⎦ .

Consequently we have

∫
Bτ

f (x∞,∇v)dy ≤ LC′
0

⎡
⎢⎣∫

B1

|∇v|p dx + 1

⎤
⎥⎦ωdτd

and we get a contradiction with (4.27) if

C1 > L(L + 1)C′
0ωd.

Let now 1
2 < δ ≤ 1. Then for n large enough

Tn ∩ B1/2 = ∅.
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By Lemma 4.6 we infer that v is a local minimizer of F∞ associated to f (x∞, ξ) on B1/2,

lim
n→+∞

∫
Br

fn (y,∇vn(y)) dy =
∫
Br

f (x∞,∇v)dx, lim
n→+∞Hd−1(Jvn ∩ B̄r ) = 0

for every 0 ≤ r ≤ 1/2 and∫
B1/2

f (x∞,∇v)dx ≤ 1.

Since v is Lipschitz continuous thanks to Theorem 4.2 with

sup
B1/4

|∇v|p ≤ C̃0

ωd

∫
B1/2

f (x∞,∇v)dy ≤ C̃0

ωd

,

where C̃0 = C̃0(d, p, L, μ), we get as τ ≤ 1/4∫
Bτ

f (x∞,∇v(y)) dy ≤ L

∫
Bτ

|∇v|p dy ≤ Lωdτd sup
B1/4

|∇v|p ≤ LC̃0τ
d .

We get a contradiction with (4.27) if we choose C1 > LC̃0. The proof is now concluded. �
4.4. Proof of Theorem 2.3

By comparing u with u1Bρ(x) for Bρ(x) ⊂⊂ Ω ′, we get easily that

Hd−1(Ju ∩ Bρ(x)) ≤ �ωdρd−1 + cαρd−1+α ≤ (�ωd + 1)ρd−1

for ρ small enough (depending only on α and cα). Let Ω̃ ⊂⊂ Ω ′ be fixed. We claim that we can find ε0, ρ0 > 0
depending on Ω̃ such that the relations

x ∈ Ω̃, Bρ(x) ⊂⊂ Ω ′ and Hd−1(Ju ∩ Bρ(x)) ≤ ε0ρ
d−1 for some ρ < ρ0

entails

lim
r→0

∫
Br(x)

|∇u|p dx +Hd−1(Ju ∩ Br(x))

rd−1
= 0. (4.29)

Then the thesis follows since thanks to [10, Theorem 3.6] relation (4.29) implies x /∈ Ju. We can thus achieve inequal-
ity (2.2) by reducing ε0 if necessary.

In order to prove (4.29), it is not restrictive to assume ρ0 < 1. We will use the almost-quasi minimality property of 
Definition 2.2 only on balls with radius ρ < ρ0, so that we can assume without loss of generality that α ≤ 1.

We proceed as follows. Let τ ∈ (0, 1) be such that

C1τ
d ≤ τd− α

2 , (4.30)

where C1 is the constant given by the Decay Lemma 4.8. Let σ ∈ (0, 1) to be fixed below. We claim that there exists 
ρ0 > 0 such that if for some ρ < ρ0

Hd−1(Ju ∩ Bρ(x)) ≤ ε(σ )ρd−1

then

F(u,Bστhρ) ≤ ε(τ )τ
αh
2 (στhρ)d−1. (4.31)

Here ε(τ ) and ε(σ ) are the numbers associated to τ , σ and Ω̃ according to the Decay Lemma 4.8. From this inequality, 
relation (4.29) easily follows, and the thesis is proved by choosing ε0 = ε(σ ).
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We prove (4.31) by induction. In what follows, Lg will denote the Lipschitz constant of g on Ω̃ . For h = 0 it reads

F(u,Bσρ) ≤ ε(τ )(σρ)d−1. (4.32)

If

Devg,�(u,Bρ(x)) ≤ ϑ(σ)F (u,Bρ(x)),

we get according to Lemma 4.8, and using the almost-quasi minimality property of u in comparison with g1Bρ(x) +
u1Ω ′\Bρ(x)

F (u,Bσρ(x)) ≤ C1σ
d max{F(u,Bρ(x)),χ(σ )ρd [LipBρ(x)g]p}

≤ C1σ
d max{ωdρdL[LipBρ(x)g]p + dωdρd−1 + cαρd−1+α,χ(σ )ρd [LipBρ(x)g]p}

≤ (ρσ )d−1C1σ max{ωdρLL
p
g + dωd + cαρα,χ(σ )ρL

p
g } ≤ ε(τ )(σρ)d−1

provided that

ρ0 ≤ min

{
1

χ(σ)
,1

}
(4.33)

and

C1σ max{ωdLL
p
g + dωd + cα,L

p
g } ≤ ε(τ ). (4.34)

If on the other hand

Devg,�(u,Bρ(x)) > ϑ(σ)F (u,Bρ(x))

then by the minimality property of u

F(u,Bσρ(x)) ≤ F(u,Bρ(x)) ≤ 1

ϑ(σ)
Devg,�(u,Bρ) ≤ cαρd−1+α

ϑ(σ )
≤ ε(τ )(σρ)d−1

provided that

cαρα
0 < ε(τ)ϑ(σ )σ d−1. (4.35)

Relation (4.32) is now completely proved.
Assume now that (4.31) holds true. We want to see that

F(u,Bστh+1ρ) ≤ ε(τ )τ
α(h+1)

2 (στh+1ρ)d−1. (4.36)

From (4.31) we infer that

Hd−1(Ju ∩ Bστhρ) ≤ ε(τ )(στhρ)d−1.

If

Devg,�(u,Bστhρ(x)) ≤ ϑ(τ)F (u,Bστhρ)

then by the Decay Lemma 4.8

F(u,Bστh+1ρ) ≤ C1τ
d max{F(u,Bστhρ),χ(τ )(στhρ)dL

p
g }

≤ C1τ
d max{ε(τ )τ

αh
2 (στhρ)d−1, χ(τ )(στhρ)dL

p
g }

= C1τ
d(στhρ)d−1τ

αh
2 max{ε(τ ),χ(τ)στ

(2−α)h
2 ρL

p
g }.

If

χ(τ)ρ0L
p
g ≤ ε(τ ), (4.37)
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and since α ≤ 1, we infer taking into account also (4.30)

F(u,Bστh+1ρ) ≤ ε(τ )τ d− α
2 (στhρ)d−1τ

αh
2 = ε(τ )τ 1−ατ

α(h+1)
2 (στh+1ρ)d−1

≤ ε(τ )τ
α(h+1)

2 (στh+1ρ)d−1.

If on the contrary

Devg,�(u,Bστhρ(x)) > ϑ(τ)F (u,Bστhρ)

we have using the minimality property of u

F(u,Bστh+1ρ(x)) ≤ F(u,Bστhρ(x)) ≤ 1

ϑ(τ)
Devg,�(u,Bστhρ(x)) ≤ 1

ϑ(τ)
cα(στhρ)d−1+α

= cα(στhρ)α

ϑ(τ)

(στh+1ρ)d−1

τd−1
≤ ε(τ )τ

α(h+1)
2 (στh+1ρ)d−1

provided that

cαρα
0 ≤ ε(τ )ϑ(τ)τ d−1+ α

2 . (4.38)

Relation (4.36) thus follows.
Summarizing, we conclude that (4.31) holds true provided that σ satisfies (4.34) and ρ0 satisfies (4.33), (4.35), 

and (4.38). The proof is now concluded.
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