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Abstract

For s > −1 we compare two natural types of fractional Laplacians (−�)s , namely, the “Navier” and the “Dirichlet” ones.
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1. Introduction

Recall that the Sobolev space Hs(Rn) = Ws
2 (Rn), s ∈R, is the space of distributions u ∈ S ′(Rn) with finite norm

‖u‖2
s =

∫
Rn

(
1 + |ξ |2

)s |Fu(ξ)|2 dξ,

see for instance Section 2.3.3 of the monograph [8]. Here F denotes the Fourier transform

Fu(ξ) = 1

(2π)n/2

∫
Rn

e−iξ ·xu(x) dx.

For arbitrary s ∈R we define fractional Laplacian in Rn by the quadratic form

Qs[u] = ((−�)su,u) :=
∫
Rn

|ξ |2s |Fu(ξ)|2dξ,
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with domain

Dom(Qs) = {u ∈ S ′(Rn) : Qs[u] < ∞}.
Let � be a bounded and smooth domain in Rn. We put

Hs(�) = {
u
∣∣
�

: u ∈ Hs(Rn)
}
,

see [8, Sec. 4.2.1] and the extension theorem in [8, Sec. 4.2.3].
Also we introduce the space

H̃ s(�) = {u ∈ Hs(Rn) : suppu ⊂ �}.
By Theorem 4.3.2/1 of [8], for s − 1

2 /∈ Z this space coincides with Hs
0 (�), that is the closure of C∞

0 (�) in Hs(�), 
while for s − 1

2 ∈ Z one has H̃ s(�) � Hs
0 (�). Moreover, C∞

0 (�) is dense in H̃ s(�).
We introduce the “Dirichlet” fractional Laplacian in � (denoted by (−��)sD) as the restriction of (−�)s . The 

domain of its quadratic form is

Dom(QD
s,�) = {u ∈ Dom(Qs) : suppu ⊂ �}.

Also we define the “Navier” fractional Laplacian as s-th power of the conventional Dirichlet Laplacian in the sense 
of spectral theory. Its quadratic form reads

QN
s,�[u] = ((−��)sNu,u) :=

∑
j
λs

j · |(u,ϕj )|2.
Here, λj and ϕj are eigenvalues and eigenfunctions of the Dirichlet Laplacian in �, respectively, and Dom(QN

s,�)

consists of distributions in � such that QN
s,�[u] < ∞.

It is well known that for s = 1 these operators coincide: (−��)N = (−��)D . We emphasize that, in contrast to 
(−��)sN , the operator (−��)sD is not the s-th power of the Dirichlet Laplacian for s �= 1. In particular, (−��)−s

D is 
not inverse to (−��)sD .

The present paper is the natural evolution of [6], where we compared the operators (−��)sD and (−��)sN for 
0 < s < 1. In the first result we extend Theorem 2 of [6].

Theorem 1. Let s > −1, s /∈N0. Then for u ∈ Dom(QD
s,�), u �≡ 0, the following relations hold:

QN
s,�[u] > QD

s,�[u], if 2k < s < 2k + 1, k ∈ N0; (1)

QN
s,�[u] < QD

s,�[u], if 2k − 1 < s < 2k, k ∈ N0. (2)

Next, we take into account the role of dilations in Rn. We denote by F(�) the class of smooth and bounded 
domains containing �. If �′ ∈ F(�), then any u ∈ Dom(QD

s,�) can be regarded as a function in Dom(QD
s,�′), and 

the corresponding form QD
s,�′ [u] does not change. In contrast, the form QN

s,�′ [u] does depend on �′ ⊃ �. However, 
roughly speaking, the difference between these quadratic forms disappears as �′ → Rn.

Theorem 2. Let s > −1. Then for u ∈ Dom(QD
s,�) the following facts hold:

QD
s,�[u] = inf

�′∈F(�)
QN

s,�′ [u], if 2k < s < 2k + 1, k ∈ N0; (3)

QD
s,�[u] = sup

�′∈F(�)

QN
s,�′ [u], if 2k − 1 < s < 2k, k ∈ N0. (4)

For −1 < s < 0 we also obtain a pointwise comparison result reverse to the case 0 < s < 1 (compare with [6, 
Theorem 1]).

Theorem 3. Let −1 < s < 0, and let f ∈ Dom(QD
s,�), f ≥ 0 in the sense of distributions, f �≡ 0. Then the following 

relation holds:

(−��)sNf < (−��)sDf. (5)
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Actually, fractional Laplacians of orders s ∈ (−1, 0) play a crucial role in our arguments. In Section 2 we give a 
variational characterization of these operators, “dual” to variational characterization of fractional Laplacians of orders 
s ∈ (0, 1) given in [4] and [7]. Theorems 1–3 are proved in Section 3.

Note that our statements hold in more general setting. Let � be a bounded and smooth domain in a complete 
smooth Riemannian manifold M. Denote by (−��)sN and (−��)sD , respectively, the s-th power of the Dirichlet 
Laplacian in � and the restriction of s-th power of the Dirichlet Laplacian in M to the set of functions supported 
in �. Then proofs of Theorems 1–3 (and of Theorem 1 in [6] as well) run with minimal changes.

2. Fractional Laplacians of negative orders

First, we recall some facts from the classical monograph [8] about the spaces Hs(�) and H̃ s(�).

Proposition 1. (A particular case of [8, Theorem 4.3.2/1].)

1. If 0 < σ < 1
2 then H̃ σ (�) = Hσ

0 (�) = Hσ (�).
2. If σ = 1

2 then H̃ σ (�) is dense in Hσ (�) = Hσ
0 (�).

3. If 1
2 < σ < 1 then H̃ σ (�) = Hσ

0 (�) is a subspace of Hσ(�).

Proposition 2. (A particular case of [8, Theorem 2.10.5/1].) For any σ ∈R (H̃ σ (�))′ = H−σ (�).

As an immediate consequence we obtain

Corollary 1.

1. If 0 < σ < 1
2 then H̃−σ (�) = H−σ (�).

2. If σ = 1
2 then H̃−σ (�) is dense in H−σ (�).

3. If 1
2 < σ < 1 then H−σ (�) is a subspace of H̃−σ (�).

Remark 1. In the one-dimensional case, for 1
2 < σ < 1 the codimension of H−σ (�) in H̃−σ (�) equals 2 since the 

same is codimension of H̃ σ (�) in Hσ (�).

The next statement gives explicit description of domains of quadratic forms under consideration.

Lemma 1. Let 0 < σ < 1. Then

1. Dom(QN−σ,�) = H−σ (�).

2. Dom(QD−σ,�) = H̃−σ (�) if n ≥ 2 or σ < 1
2 .

3. Dom(QD
σ,�) = {u ∈ H̃−σ (�) : Fu(0) = 0} if n = 1 and σ ≥ 1

2 .

Proof. The first statement follows from the relation Dom(QN
σ,�) = H̃ σ (�), see, e.g., [8, Theorems 1.15.3 

and 4.3.2/2], and from Proposition 2.
The second and the third statements follow directly from definition of H̃−σ (�), if we take into account that Fu is 

a smooth function. �
By Lemma 1 and Corollary 1, for 0 < σ ≤ 1

2 we have Dom(QD−σ,�) ⊆ Dom(QN−σ,�) (even Dom(QD−σ,�) =
Dom(QN−σ,�) if 0 < σ < 1

2 ). In the case 1
2 < σ < 1, Dom(QN−σ,�) is a subspace of Dom(QD−σ,�) (for n = 1 this 

follows from Remark 1). However, for arbitrary f ∈ Dom(QD−σ,�) we can consider f as a functional on Hσ (�), put 
f̃ = f |H̃ σ (�) ∈ Dom(QN−σ,�) and define QN−σ,�[f ] := QN−σ,�[f̃ ].

Next, we recall that in the paper [4] the fractional Laplacian of order σ ∈ (0, 1) in Rn was connected with the 
so-called harmonic extension in n + 2 − 2σ dimensions and with generalized Dirichlet-to-Neumann map (see also 
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[3] for the case σ = 1
2 ). In particular, for any u ∈ H̃ σ (�) the function wD

σ (x, y) minimizing the weighted Dirichlet 
integral

ED
σ (w) =

∞∫
0

∫
Rn

y1−2σ |∇w(x,y)|2 dxdy

over the set

WD
σ (u) =

{
w(x,y) : ED

σ (w) < ∞ , w
∣∣
y=0 = u

}
,

satisfies

QD
σ,�[u] = Cσ

2σ
· ED

σ (wD
σ ), (6)

where the constant Cσ is given by

Cσ := 4σ 	(1 + σ)

	(1 − σ)
.

Moreover, wD
σ (x, y) is the solution of the BVP

−div(y1−2σ ∇w) = 0 in Rn ×R+; w
∣∣
y=0 = u,

and for sufficiently smooth u

(−�)σ u(x) = −Cσ

2σ
· lim
y→0+ y1−2σ ∂yw

D
σ (x, y), x ∈Rn (7)

(we recall that (−��)σDu = (−�)σ u
∣∣
�

).
In [7] this approach was developed in quite general situation. In particular, it was shown that for any u ∈ H̃ σ (�)

the BVP

−div(y1−2σ ∇w) = 0 in � ×R+; w
∣∣
y=0 = u; w

∣∣
x∈∂�

= 0, (8)

has a solution wN
σ (x, y), such that for sufficiently smooth u

(−��)σNu(x) = −Cσ

2σ
· lim
y→0+ y1−2σ ∂yw

N
σ (x, y). (9)

Integrating by parts we see that the function wN
σ (x, y) minimizes the energy integral

EN
σ (w) =

∞∫
0

∫
�

y1−2σ |∇w(x,y)|2 dxdy

over the set

WN
σ,�(u) = {w(x,y) ∈ WD

σ (u) : w
∣∣
x∈∂�

= 0},
and

QN
σ,�[u] = Cσ

2σ
· EN

σ (wN
σ ). (10)

In a similar way, negative fractional Laplacians are connected with generalized Neumann-to-Dirichlet map. 
Namely, let u ∈ Dom(QD−σ,�). We consider the problem of minimizing the functional

ẼD−σ (w) = ED
σ (w) − 2

〈
u,w

∣∣
y=0

〉
over the set WD−σ , that is closure of smooth functions on Rn × R̄+ with bounded support, with respect to ED

σ (·). We 
recall that by Lemma 1 u can be considered as a compactly supported functional on Hσ(Rn), and thus the duality 〈
u, w

∣∣ 〉
is well defined by the result of [4].
y=0
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First, let n > 2σ (this is a restriction only for n = 1). We claim that the Hardy type inequality

ED
σ (w) ≥

(n − 2σ

2

)2
∞∫

0

∫
Rn

y1−2σ w2(x, y)

r2
dxdy (11)

holds for w ∈ WD−σ (here r2 = |x|2 + y2). Indeed, for a smooth function w with bounded support we consider the 
restriction of w to arbitrary ray in Rn ×R+ and write down the classical Hardy inequality

∞∫
0

rn+1−2σ w2
r dr ≥

(n − 2σ

2

)2
∞∫

0

rn−1−2σ w2 dr.

We multiply it by 
(y

r

)1−2σ , integrate over unit hemisphere in Rn+1, and the claim follows.
By (11), a non-zero constant cannot be approximated by compactly supported functions. Thus, the minimizer of 

ẼD−σ is determined uniquely. Denote it by wD−σ (x, y). Then formulae (6) and (7) imply relations

QD−σ,�[u] = − 2σ

Cσ

· ẼD−σ (wD−σ ); (−��)−σ
D u(x) = 2σ

Cσ

wD−σ (x,0), x ∈ �, (12)

that give the “dual” Caffarelli–Silvestre characterization of (−��)−σ
D .

In case n = 1 ≤ 2σ the above argument needs some modification. Namely, the minimizer wD−σ (x, y) in this case is 
defined up to an additive constant. However, by Lemma 1 we have

Fu(0) ≡ 〈
u,1

〉 = 0.

Therefore, ẼD−σ (wD−σ ) does not depend on the choice of the constant, and the first relation in (12) holds. The second 
equality in (12) also holds if we choose the constant such that wD−σ (x, 0) → 0 as |x| → ∞.

Remark 2. Note that for sufficiently smooth u the function wD−σ solves the Neumann problem

−div(y1−2σ ∇w) = 0 in Rn ×R+; lim
y→0+ y1−2σ ∂yw = −u. (13)

Analogously, formulae (10) and (9) imply the “dual” Stinga–Torrea characterization of (−��)−σ
N . Namely, the 

function wN−σ (x, y) minimizing the functional

ẼN−σ (w) = EN
σ (w) − 2

〈
u,w

∣∣
y=0

〉
over the set

WN−σ,�(u) = {w(x,y) ∈WD−σ : w
∣∣
x /∈�

= 0},
satisfies

QN−σ,�[u] = − 2σ

Cσ

· ẼN−σ (wN−σ ); (−��)−σ
N u(x) = 2σ

Cσ

wN−σ (x,0). (14)

Remark 3. Formula (14) shows that wN−σ is the Stinga–Torrea extension of Cσ

2σ
(−��)−σ

N u. Similarly, from (12) we 
conclude that wD−σ is the Caffarelli–Silvestre extension of Cσ

2σ
(−�)−σ u but not of Cσ

2σ
(−��)−σ

D u. This is due to the 

fact, already noticed in the introduction, that (−��)−σ
D is not the inverse of (−��)σD .

Remark 4. The representation of (−�)−σu via solution of the problem (13) was used in [2]. Similar representation of 
(−��)−σ

N u via solution of corresponding mixed boundary value problem was used earlier in [5]. However, variational 
characterizations of negative fractional Laplacians (the first parts of formulae (12) and (14)) which play key role in 
what follows, are given for the first time.
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3. Proofs of main theorems

We start by recalling an auxiliary result.

Lemma 2. Let s > 1. Then

Dom(QD
s,�) = H̃ s(�) = Dom(QN

s,�) for s < 3/2;
Dom(QD

s,�) = H̃ s(�)� Dom(QN
s,�) for s ≥ 3/2.

Proof. For QD
s,� the conclusion follows directly from its definition. For QN

s,� this fact is well known for s ∈ N; in 
general case it follows immediately from [8, Theorem 1.17.1/1] and [8, Theorem 4.3.2/1]. �
Proof of Theorem 1. We split the proof in three parts.

1. Let 0 < s < 1. Then the relation (1) is proved in [6, Theorem 2].
2. Let −1 < s < 0. We define σ = −s ∈ (0, 1) and construct extensions wD−σ and wN−σ as described in Section 2.
We evidently have WN−σ,� ⊂WD−σ and ẼN−σ = ẼD−σ

∣∣
WN−σ,�

. Therefore, (12) and (14) provide

QN
s,�[u] = − 2σ

Cσ

· inf
w∈WN−σ,�

ẼN−σ (w) ≤ − 2σ

Cσ

· inf
w∈WD−σ

ẼD−σ (w) = QD
s,�[u].

To complete the proof, we observe that for u �≡ 0 the function wN−σ cannot be a solution of the homogeneous 
equation in (8) in the whole half-space, since such a solution is analytic in the half-space. Thus, it cannot provide 

inf
w∈WD−σ

ẼD−σ (w), and (2) follows.

3. Now let s > 1, s /∈ N. We put k = � s+1
2 � and define for u ∈ H̃ s(�)

v = (−�)ku ∈ H̃ s−2k(�), s − 2k ∈ (−1,0) ∪ (0,1).

Note that v �≡ 0 if u �≡ 0. Then we have

QN
s,�[u] = QN

s−2k,�[v], QD
s,�[u] = QD

s−2k,�[u],
and the conclusion follows from cases 1 and 2. �
Proof of Theorem 2. Here we again distinguish three cases.

1. Let 0 < s < 1. Then the relation (3) is proved in [6, Theorem 3].
2. Let −1 < s < 0. We define σ = −s ∈ (0, 1) and proceed similarly to the proof of [6, Theorem 3]. It is sufficient 

to prove the statement for u ∈ C∞
0 (�).

For �′ ⊃ � we have WN−σ,� ⊂ WN
−σ,�′ . By (14), the quadratic form QN

s,�[u] is monotone increasing with respect 
to the domain inclusion. Taking (2) into account, we obtain

QD
s,�[u] > QN

s,�′ [u] ≥ QN
s,�[u]. (15)

Denote by w = wD−σ the Caffarelli–Silvestre extension of Cσ

2σ
(−�)−σ u, described in Section 2. Next, for any y ≥ 0

let φR(·, y) be the harmonic extension of w(·, y) on the ball BR , that is,

−�φR(·, y) = 0 in BR; φh(·, y) = w(·, y) on ∂BR .

Finally, for x ∈ BR and y ≥ 0 we put

wR(x, y) = w(x,y) − φR(x, y) .

It is shown in the proof of [6, Theorem 3] that there exists a sequence Rh → ∞ such that

EN
σ (wRh

) ≤ ED
σ (w) + o(1).

Further, since (−��)−σ
D u vanishes at infinity, for any multi-index β we evidently have DβφRh

(·, 0) → 0 locally 
uniformly as Rh → ∞. This gives 

〈
u, φRh

(·, 0)
〉 = o(1), and we obtain by (12) and (14)
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QN
s,BRh

[u] ≥ − 2σ

Cσ

· ẼN−σ (wRh
)

≥ − 2σ

Cσ

· ẼD
σ (w) − o(1) = QD

s,�[u] − o(1) . (16)

The relation (3) readily follows by comparing (15) and (16).
3. For s > 1, s /∈N, the conclusion follows from cases 1 and 2 just as in the proof of Theorem 1. �

Remark 5. Assume that 0 ∈ � and put α� = {αx : x ∈ �}. The above proof shows that

QD
s,�[u] = lim

α→∞QN
s,α�[u] for any u ∈ H̃ s(�).

Now put uα(x) = α
n−2s

2 u(αx). Then the scaling gives

QD
s,�[uα] ≡ QD

s,�[u] = lim
α→∞QN

s,�[uα] for any u ∈ H̃ s(�).

Proof of Theorem 3. First, let f ∈ C∞
0 (�). We define σ = −s ∈ (0, 1) and construct extensions wD−σ and wN−σ

described in Section 2. Making the change of the variable t = y2σ , we rewrite the BVP (13) for wD−σ (x, t) as follows:

�xw
D−σ + 4σ 2t

2σ−1
σ ∂2

t tw
D−σ = 0 in Rn ×R+; ∂tw

D−σ

∣∣
t=0 = − f

2σ
. (17)

Since wD−σ vanishes at infinity, wD−σ (x, t) > 0 for t > 0 by the maximum principle. Moreover, by [1, Theorem 1.4]
(the boundary point lemma) we have wD−σ (x, 0) > 0.

Further, the function wN−σ satisfies the equalities (17) in � ×R+. Since wN−σ

∣∣
x /∈�

= 0, we infer that the function

W(x, t) := wD−σ (x, t) − wN−σ (x, t)

meets the following relations:

�xW + 4σ 2t
2σ−1

σ ∂2
t tW = 0 in � ×R+; ∂tW

∣∣
t=0 = 0; W

∣∣
x∈∂�

> 0.

Again, [1, Theorem 1.4] gives W(x, 0) > 0, which gives (5) in view of (12) and (14).
For f ∈ H̃ s(�) the statement holds by approximation argument. �
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