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Abstract

We prove the existence and the stability of Cantor families of quasi-periodic, small amplitude solutions of quasi-linear (i.e.
strongly nonlinear) autonomous Hamiltonian differentiable perturbations of KdV. This is the first result that extends KAM theory
to quasi-linear autonomous and parameter independent PDEs. The core of the proof is to find an approximate inverse of the
linearized operators at each approximate solution and to prove that it satisfies tame estimates in Sobolev spaces. A symplectic
decoupling procedure reduces the problem to the one of inverting the linearized operator restricted to the normal directions. For
this aim we use pseudo-differential operator techniques to transform such linear PDE into an equation with constant coefficients
up to smoothing remainders. Then a linear KAM reducibility technique completely diagonalizes such operator. We introduce the
“initial conditions” as parameters by performing a “weak” Birkhoff normal form analysis, which is well adapted for quasi-linear
perturbations.
© 2015 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction and main results

In this paper we prove the existence and stability of Cantor families of quasi-periodic solutions of Hamiltonian
quasi-linear (also called “strongly nonlinear”, e.g. in [25]) perturbations of the KdV equation

Up + Uyxx — OUUy +N4(-x7 U, Uy, Uy, Uyxx) =0, (1.1)

under periodic boundary conditions x € T := R /27w Z, where

Nae, us s, e, thxnx) = =8y [ (B ) 06, 1, 145) = B (B ) (6, 1, ux))] (1.2)
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is the most general quasi-linear Hamiltonian (local) nonlinearity. Note that N contains as many derivatives as the
linear part dy.x. The equation (1.1) is the Hamiltonian PDE u; = 0,V H (1) where V H denotes the LX(T,) gradient
of the Hamiltonian

2
H(u)=/”7x+u3+f(x,u,ux)dx (1.3)
T

on the real phase space

HI(T,) = {u(x)eHl(T,R) : /u(x)dx:O}. (1.4)
T

We assume that the “Hamiltonian density” f € C4(T x R x R; R) for some ¢ large enough, and that

S =1 s, uy) + fre(x,u,ux), (1.5)

where f5(u, u,) denotes the homogeneous component of f of degree 5 and f-¢ collects all the higher order terms.
By (1.5) the nonlinearity Ny vanishes of order 4 at u = 0 and (1.1) may be seen, close to the origin, as a “small”
perturbation of the KdV equation

Us + Uxxx —OuUu, =0, (1.6)

which is completely integrable. Actually, the KdV equation (1.6) may be described by global analytic action-angle
variables, see [21] and the references therein.

A natural question is to know whether the periodic, quasi-periodic or almost periodic solutions of (1.6) persist
under small perturbations. This is the content of KAM theory.

The first KAM results for PDEs have been obtained for 1-d semilinear Schrodinger and wave equations by Kuksin
[23], Wayne [33], Craig—Wayne [12], Poschel [27], see [11,25] and references therein. For PDEs in higher space
dimension the theory has been more recently extended by Bourgain [10], Eliasson—Kuksin [13], and Berti—Bolle [6],
Geng—Xu—You [14], Procesi—Procesi [30,29], Wang [32].

For unbounded perturbations the first KAM results have been proved by Kuksin [24] and Kappeler—Poschel [21]
for KdV (see also Bourgain [9]), and more recently by Liu—Yuan [20], Zhang—Gao—Yuan [34] for derivative NLS, and
by Berti—-Biasco—Procesi [4,5] for derivative NLW. For a recent survey of known results for KdV, we refer to [15].

The KAM theorems in [24,21] prove the persistence of the finite-gap solutions of the integrable KdV (1.6) under
semilinear Hamiltonian perturbations €9, (9, f)(x, u), namely when the density f is independent of u,, so that (1.2)
is a differential operator of order 1 (note that in [25] such nonlinearities are called “quasi-linear” and (1.2) “strongly
nonlinear”). The key point is that the frequencies of KdV grow as ~ j 3 and the difference |j3 — i3] > (j2 +i%)/2,
i # j, so that KdV gains (outside the diagonal) two derivatives. This approach also works for Hamiltonian pseudo-
differential perturbations of order 2 (in space), using the improved Kuksin’s lemma in [20]. However it does not
work for a general quasi-linear perturbation as in (1.2), which is a nonlinear differential operator of the same order
(i.e. 3) as the constant coefficient linear operator dyy. Such a strongly nonlinear perturbation term makes the KAM
question quite delicate because of the possible phenomenon of formation of singularities in finite time, see Lax [19],
Klainerman—Majda [22] for quasi-linear wave equations, see also Section 1.4 of [25]. For example, Kappeler—P6schel
[21] (Remark 3, page 19) wrote: “It would be interesting to obtain perturbation results which also include terms of
higher order, at least in the region where the KAV approximation is valid. However, results of this type are still out of
reach, if true at all”.

This paper gives the first positive answer to KAM theory for quasi-linear PDEs, proving the existence of small
amplitude, linearly stable, quasi-periodic solutions of (1.1)—(1.2), see Theorem 1.1. As a consequence, for most initial
conditions, quasi-linear Hamiltonian perturbations of KdV do not produce formation of singularities in the solutions,
and the KAM phenomenon persists! We mention that, concerning the initial value problem for (1.1)—(1.2), there are no
results even for the local existence theory. On the other hand, the initial conditions selected by the KAM Theorem 1.1
give rise to global in time solutions. We find it interesting because such PDEs are in general ill-posed in Sobolev
spaces.
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We also note that (1.1) does not depend on external parameters. Moreover the KdV equation (1.1) is a completely
resonant PDE, namely the linearized equation at the origin is the linear Airy equation u; + uy,, = 0, which possesses
only the 2 -periodic in time solutions

)=y ujellrelr (1.7)

JEZ\{0}

Thus the existence of quasi-periodic solutions of (1.1) is a purely nonlinear phenomenon (the diophantine frequencies
in (1.9) are O (]&])-close to integers with & — 0) and a perturbation theory is more difficult.
The solutions that we find are localized in Fourier space close to finitely many “tangential sites”

StTi={j,.... v}, S:=8TU(=SH={xj:jeST}, jieN\{0}, Vi=1,...,v. (1.8)

The set S is required to be even because the solutions u« of (1.1) have to be real valued. Moreover, we also assume the
following explicit hypotheses on S:

o (S) ji+ jo+ jz#O0forall ji, jo, j3€S.
o (S2) Bji,.... jae Ssuchthat ji + jo+ j3+ ja#0, j2 + j5 +j3+j3 — (i + o+ ja + ju)> =0.

Theorem 1.1 (KAM for quasi-linear perturbations of KdV). Given v € N, let f € C1 (with q := q(v) large enough)
satisfy (1.5). Then, for all the tangential sites S as in (1.8) satisfying (S1)—(S2), the KdV equation (1.1) possesses
small amplitude quasi-periodic solutions with diophantine frequency vector w := w(§) = (w;) jes+ € R, of the form

u(t, x) = Z 2,/E; cos(wjt + jx) +o(/IED), wji=j>—6&j7", (1.9)

jest

for a “Cantor-like” set of small amplitudes & € RY with density 1 at & = 0. The term o(y/|€]) is small in some
H*-Sobolev norm, s < q. These quasi-periodic solutions are linearly stable.

This result is deduced from Theorem 5.1. It has been announced in [3]. Let us make some comments.

1. The set of tangential sites S satisfying (S1)—(S2) can be iteratively constructed in an explicit way, see the end of
Section 9. After fixing {ji, ..., ju}, in the choice of j, there are only finitely many forbidden values, while all
the other infinitely many values are good choices for j,41. In this precise sense the set S is “generic”.

2. The linear stability of the quasi-periodic solutions is discussed after (9.41). In a suitable set of symplectic coordi-
nates (¥, n, w), ¥ € T", near the invariant torus, the linearized equations at the quasi-periodic solutions assume
the form (9.41), (9.42). Actually there is a complete KAM normal form near the invariant torus (Remark 6.5), see
also [7].

3. A similar result holds for perturbed (focusing/defocussing) mKdV equations

ut+uxxxi8xu3+~/\[4(x7ua Uy, Uy, Uxyy) =0 (1.10)

for tangential sites S which satisfy 2])2—71 Yo jiz ¢ Z. If the density f(u,u,) is independent on x, the result
holds for all the choices of the tangential sites. The KdV equation (1.1) is more difficult than (1.10) because the
nonlinearity is quadratic and not cubic.

An important point is that the fourth order Birkhoff normal form of KdV and mKdV is completely integrable. The
present strategy of proof — that we describe in detail below — is a rather general approach for constructing small
amplitude quasi-periodic solutions of quasi-linear perturbed KdV equations. For example it could be applied
to generalized KdV equations with leading nonlinearity u”, p > 4, by using the normal form techniques of
Procesi—Procesi [29,30]. A further interesting open question concerns perturbations of the finite gap solutions of
KdVv.

Let us describe the strategy of proof of Theorem 1.1. It involves many different arguments that are of wide applica-
bility to other PDEs. Nevertheless we think that a unique abstract KAM theorem applicable to all quasi-linear PDEs
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could not be expected. Indeed the suitable pseudo-differential operators that are required to conjugate the highest order
of the linearized operator to constant coefficients, highly depend on the PDE at hand, see the discussion after (1.11).

Weak Birkhoff normal form. Once the finite set of tangential sites S has been fixed, the first step is to perform
a “weak” Birkhoff normal form (weak BNF), whose goal is to find an invariant manifold of solutions of the third
order approximate KdV equation (1.1), on which the dynamics is completely integrable, see Section 3. Since the KdV
nonlinearity is quadratic, two steps of weak BNF are required. The present Birkhoff map is close to the identity up
to finite dimensional operators, see Proposition 3.1. The key advantage is that it modifies N very mildly, only up to
finite dimensional operators (see for example Lemma 7.1), and thus the spectral analysis of the linearized equations
(that we shall perform in Section 8) is essentially the same as if we were in the original coordinates.

The weak normal form (3.5) does not remove (or normalize) the monomials O (z2). This could be done. However,
we do not perform such stronger normal form (called “partial BNF” in Kuksin—P6schel [26] and Poschel [28]) because
the corresponding Birkhoff map is close to the identity only up to an operator of order O (9, 1, and so it would
produce, in the transformed vector field Ny, terms of order d,, and 9,. A fortiori, we cannot either use the full
Birkhoff normal form computed in [21] for KdV, which completely diagonalizes the fourth order terms, because such
Birkhoff map is only close to the identity up to a bounded operator. For the same reason, we do not use the global
nonlinear Fourier transform in [21] (Birkhoff coordinates), which is close to the Fourier transform up to smoothing
operators of order O (3, Y

The weak BNF procedure of Section 3 is sufficient to find the first nonlinear (integrable) approximation of the
solutions and to extract the “frequency-to-amplitude” modulation (4.10).

In Proposition 3.1 we also remove the terms O (v°), O (v*z) in order to have sufficiently good approximate solutions
so that the Nash—Moser iteration of Section 9 will converge. This is necessary for KdV whose nonlinearity is quadratic
at the origin. These further steps of Birkhoff normal form are not required if the nonlinearity is yet cubic as for mKdV,
see Remark 3.5. To this aim, we choose the tangential sites S such that (S2) holds. We also note that we assume (1.5)
because we use the conservation of momentum up to the homogeneity order 5, see (2.7).

Action-angle and rescaling. At this point we introduce action-angle variables on the tangential sites (Section 4) and,
after the rescaling (4.5), we look for quasi-periodic solutions of the Hamiltonian (4.9). Note that the coefficients of the
normal form N in (4.11) depend on the angles 8, unlike the usual KAM theorems [28,23], where the whole normal
form is reduced to constant coefficients. This is because the weak BNF of Section 3 did nor normalize the quadratic
terms O (z2). These terms are dealt with the “linear Birkhoff normal form” (linear BNF) in Sections 8.4, 8.5. In some
sense here the “partial” Birkhoff normal form of [28] is split into the weak BNF of Section 3 and the linear BNF of
Sections 8.4, 8.5.

The action-angle variables are convenient for proving the stability of the solutions.

The nonlinear functional setting and the approximate inverse. We look for a zero of the nonlinear operator (5.6),
whose unknown is the embedded torus and the frequency w is seen as an “external” parameter. The solution is obtained
by a Nash—Moser iterative scheme in Sobolev scales. The key step is to construct (for w restricted to a suitable
Cantor-like set) an approximate inverse (a la Zehnder [35]) of the linearized operator at any approximate solution.
Roughly, this means to find a linear operator which is an inverse at an exact solution. A major difficulty is that the
tangential and the normal dynamics near an invariant torus are strongly coupled.

The symplectic approximate decoupling. The above difficulty is overcome by implementing the abstract procedure
in Berti—Bolle [7,8] developed in order to prove existence of quasi-periodic solutions for autonomous NLW (and NLS)
with a multiplicative potential. This approach reduces the search of an approximate inverse for (5.6) to the invertibil-
ity of a quasi-periodically forced PDE restricted on the normal directions. This method approximately decouples the
“tangential” and the “normal” dynamics around an approximate invariant torus, introducing a suitable set of symplec-
tic variables (¥, , w) near the torus, see (6.19). Note that, in the first line of (6.19), ¥ is the “natural” angle variable
which coordinates the torus, and, in the third line, the normal variable z is only translated by the component zo(¢) of
the torus. The second line completes this transformation to a symplectic one. The canonicity of this map is proved in
[7] using the isotropy of the approximate invariant torus ig, see Lemma 6.3. The change of variable (6.19) brings the
torus is “at the origin”. The advantage is that the second equation in (6.29) (which corresponds to the action variables
of the torus) can be immediately solved, see (6.31). Then it remains to solve the third equation (6.32), i.e. to invert the
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linear operator L,,. This is a quasi-periodic Hamiltonian perturbed linear Airy equation of the form
I Loh =TI (- 8,h + dxx(@13ch) + 3y (aoh) + dxRh), Yhe Hy, (1.11)

where R is a finite dimensional remainder. The exact form of £,, is obtained in Proposition 7.6.

Reduction of the linearized operator in the normal directions. In Section 8 we conjugate the variable coefficients
operator L, in (7.34), see (1.11), to a diagonal operator with constant coefficients which describes infinitely many
harmonic oscillators

0 +uF; =0, pFi=itmyj’ +mij)+r iR, j ¢S, (1.12)

where the constants m3 — 1, m; € R and sup j |r;?°| are small, see Theorem 8.25. The main perturbative effect to the
spectrum (and the eigenfunctions) of L, is clearly due to the term a;(wt, x)9y ., (see (1.11)), and it is too strong for
the usual reducibility KAM techniques to work directly. The conjugacy of L, with (1.12) is obtained in several steps.
The first task (obtained in Sections 8.1-8.6) is to conjugate L,, to another Hamiltonian operator of H §- with constant
coefficients

Lo:=TI5 (- 8y +m3dyxy +midy + Re) g, my,m3 €R, (1.13)

up to a small bounded remainder R¢ = 0(8)?), see (8.113). This expansion of L, in “decreasing symbols” with
constant coefficients follows [2], and it is somehow in the spirit of the works of Tooss, Plotnikov and Toland [18,17]
in water waves theory, and Baldi [1] for Benjamin—Ono. It is obtained by transformations which are very different
from the usual KAM changes of variables. We underline that the specific form of these transformations depend on
the structure of KdV. For other quasi-linear PDEs the analogous reduction requires different transformations. For the
reduction of (1.11) there are several differences with respect to [2], that we now outline.

Major differences with respect to [2] for transforming (1.11) into (1.13).

1. The first step is to eliminate the x-dependence from the coefficient aj(wt, x)dyx, of the Hamiltonian operator
L. We cannot use the symplectic transformation A defined in (8.1), used in [2], because L,, acts on the normal
subspace H SJ- only, and not on the whole Sobolev space as in [2]. We cannot use the restricted map A, :=
H?AH?, because it is not symplectic. In order to find a symplectic diffeomorphism of H ;— near A, the first
observation is to realize A as the flow map of the time dependent Hamiltonian transport linear PDE (8.3). Thus
we conjugate L,, with the flow map of the projected Hamiltonian equation (8.5). In Lemma 8.2 we prove that it
differs from A for finite dimensional operators. A technical, but important, fact is that the remainders produced
after this conjugation of £, remain of the finite dimensional form (7.7), see Lemma 8.3.

This step may be seen as a quantitative application of the Egorov theorem, see [31], which describes how the
principal symbol of a pseudo-differential operator (here aj(wt, x)0dyx,) transforms under the flow of a linear
hyperbolic PDE (here (8.5)).

2. The operator L, has variable coefficients also at the orders O(g) and O (e2), see (7.34)—(7.35). This is a conse-
quence of the fact that the weak BNF procedure of Section 3 did not touch the quadratic terms O (z%). These terms
cannot be reduced to constants by the perturbative scheme in [2], which applies to terms R such that Ry ~! « 1
where y is the diophantine constant of the frequency vector w (the case in [2] is simpler because the diophantine
constant is y = O(1)). Here, since KdV is completely resonant, such y = 0(g2), see (5.4). These terms are re-
duced to constant coefficients in Sections 8.4—8.5 by means of purely algebraic arguments (linear BNF), which,
ultimately, stem from the complete integrability of the fourth order BNF of the KdV equation (1.6), see [21].

3. The order of the transformations of Sections 8.1-8.7 used to reduce L, is not accidental. The first two steps in
Sections 8.1, 8.2 reduce to constant coefficients the quasi-linear term O (d,y) and eliminate the term O(9yy),
see (8.45) (the second transformation is a time quasi-periodic reparametrization of time). Then, in Section 8.3,
we apply the transformation 7 (8.64) in such a way that the space average of the coefficient dj (¢, -) in (8.65)
is constant. This is done in view of the applicability of the “descent method” in Section 8.6 where we reduce
to constant coefficients the order O(d,) of the operator. All these transformations are composition operators
induced by diffeomorphisms of the torus. Therefore they are well-defined operators of a Sobolev space into it-
self, but their decay norm is infinite! We perform the transformation 7 before the linear Birkhoff normal form
steps of Sections 8.4-8.5, because 7 is a change of variable that preserves the form (7.7) of the remainders
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(it is not evident after the Birkhoff normal form). The Birkhoff transformations are symplectic maps of the form
I+e0(0; 1. Thanks to this property the coefficient d; (¢, x) obtained in step 8.3 is not changed by these Birkhoff
maps. The transformation in Section 8.6 is one step of “descent method” which transforms dj (¢, x)dy into the
constant coefficients differential operator m 0y, up to a zero-order term 0(3)9). The name “descent method”
has been used in looss—Plotnikov—Toland [16—18] to denote the iterative procedure of reduction of a linear dif-
ferential (or pseudo-differential) operator with variable coefficients into one with constant coefficients, at any
finite order of regularization, up to smoother remainders. The required conjugation transformations have the form
Id+ > ar(e, x)dy k where the coefficients can be iteratively computed in decreasing orders. In this paper it is
sufficient to stop at the order 8)9, i.e. to perform only the step of Section 8.6. It is here that we use the assumption
(S1) on the tangential sites, so that the space average of the function g~ is zero, see Lemma 7.5. Actually we
only need that the average of the function in (7.33) is zero. If f5 =0 (see (1.5)) then (S1) is not required. This
completes the task of conjugating L, to L¢ in (1.13).

Diagonalization of (1.13). Finally, in Section 8.7 we apply the abstract reducibility Theorem 4.2 in [2], based on a
quadratic KAM scheme, which completely diagonalizes the linearized operator, obtaining (1.12). The required small-
ness condition (8.115) for Rg holds. Indeed the biggest term in Rg comes from the conjugation of €0, v, (6p(¢), ys(¢))
in (7.35). The linear BNF procedure of Section 8.4 had eliminated its main contribution €d,v. (@, 0). It remains
&0y (vs Bo(@), ys(@)) — ve (o, O)) which has size 0(87_2b y‘l) due to the estimate (6.4) of the approximate solution.
This term enters in the variable coefficients of dj (¢, x)d, and do(¢p, x)a;). The first one had been reduced to the con-
stant operator m1d, by the descent method of Section 8.6. The latter term is an operator of order O (8)?) which satisfies
(8.115). Thus L may be diagonalized by the iterative scheme of Theorem 4.2 in [2] which requires the smallness
condition 0(87_2b)/_2) « 1. This is the content of Section 8.7.

The Nash—Moser iteration. In Section 9 we perform the nonlinear Nash—Moser iteration which finally proves
Theorem 5.1 and, therefore, Theorem 1.1. The optimal smallness condition required for the convergence of the scheme
is & F(¢,0,0) [lsg+uy 2 < 1, see (9.5). It is verified because || X p(¢,0,0)[ls <y €572 (see (5.15)), which, in turn,
is a consequence of having eliminated the terms 0 V%), O(v*z) from the original Hamiltonian (3.1), see (3.5). This
requires the condition (S2).

2. Preliminaries
2.1. Hamiltonian formalism of KdV

The Hamiltonian vector field X iy generated by a Hamiltonian H : HOl (Ty) > Ris Xy (u) :=0,VH(u), because

dHwh = (VHW), h)2p,) = 2(Xp @), h),  Vu,h e H (Ty),

where 2 is the non-degenerate symplectic form

Q(u,v) :=/(a;1u)udx, Vu,v € Hj (Ty), (2.1)
T

and 9 Lu is the periodic primitive of u with zero average. Note that
1
Bxa;l :8;18x:7to, o (u) :=u—2—/u(x)dx. (2.2)
b4
T

A map is symplectic if it preserves the 2-form €2.
We also remind that the Poisson bracket between two functions F, G : H(} (Ty) —> Ris

(Fu), Gu)) :=Q(XF,X(;)=/VF(u)8xVG(u)dx. 2.3)
T

The linearized KdV equation at u is
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hy =0x (0, VH)w)[h] = Xk (h),
where Xk is the KdV Hamiltonian vector field with quadratic Hamiltonian K = %((BMVH Ya)[hl, k) 2r,y =
%(am, H)(u)[h, h]. By the Schwartz theorem, the Hessian operator A := (9, VH)(u) is symmetric, namely AT = A,
with respect to the L?-scalar product.
Dynamical systems formulation. It is convenient to regard the KdV equation also in the Fourier representation
u(x)= > ujetl, u(x) <—> u:= ;) jenoy, U-j=1ibj, (2.4)
JEZ\{0}

where the Fourier indices j € Z \ {0} by the definition (1.4) of the phase space and u_; = ii; because u(x) is real-
valued. The symplectic structure writes

1 1 1 1 I _
inzaduj/\du_jZZGduj/\dM_j, Q(M,U)ZZGMJ‘U_]‘ZZGM]‘U]‘, (2.5)
J#0 j=1 J#0 J#0
the Hamiltonian vector field Xy and the Poisson bracket { F, G} are
[Xp )] =ij@u_ @), Yj#0, (F@),Gw)=—Y ij@_,F)u)@,GC)w). (2.6)
J#0
Conservation of momentum. A Hamiltonian
Huy= Y Hj . juj...uj. u@x)= > ujel (2.7)
1o Jn €Z\{0} JE€Z\{0}

homogeneous of degree n, preserves the momentum if the coefficients Hj, . j, are zero for ji + ...+ j, #0, so
that the sum in (2.7) is restricted to integers such that j; 4 ...+ j, = 0. Equivalently, H preserves the momentum
if {H, M} =0, where M is the momentum M (u) := fT uldx = Zjez\{O} uju_;. The homogeneous components
of degree < 5 of the KdV Hamiltonian H in (1.3) preserve the momentum because, by (1.5), the homogeneous
component f5 of degree 5 does not depend on the space variable x.

Tangential and normal variables. Let ji,..., j, > 1 be v distinct integers, and St:={ji,...,Jv). Let S be the
symmetric set in (1.8), and S :={j € Z \ {0} : j ¢ S} its complementary set in Z \ {0}. We decompose the phase
space as

HY(Ty):= Hs® Hy, Hgs:=span{e/*: jeS}), Hi:={u= Z uje’™ e HJ(Ty)}, (2.8)
jese
and we denote by ITg, H? the corresponding orthogonal projectors. Accordingly we decompose
u=v+z, v:l'[gu::Zujeijx, z:Hé‘u::Zujeijx, (2.9)
J€S jese
where v is called the tangential variable and z the normal one. We shall sometimes identify v = (v;) jes and z =
(zj) jesc. The subspaces Hg and H SJ- are symplectic. The dynamics of these two components is quite different. On Hg

we shall introduce the action-angle variables, see (4.1). The linear frequencies of oscillations on the tangential sites
are

&=i, . J) eN, (2.10)
2.2. Functional setting

Norms. Along the paper we shall use the notation
lulls == llull gs (po+ry == llull g, .11)

to denote the Sobolev norm of functions # = u(¢, x) in the Sobolev space H* (T*1). We shall denote by || |z the
Sobolev norm in the phase space of functions u :=u(x) € H*(T). Moreover || || H will denote the Sobolev norm of
scalar functions, like the Fourier components u ; (¢).
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We fix sg := (v 4+ 2)/2 so that H%(T"*T1) < L®°(T"*1) and the spaces H*(T"*!), s > s0, are an algebra. At the
end of this section we report interpolation properties of the Sobolev norm that will be currently used along the paper.
We shall also denote

H3 (TVTY = {u e HS (T : u(p.) € Hy Yo e T"}, (2.12)
H{(T" = {ue H (") : u(p,) e Hs Vo e T"} . (2.13)

For a function u : Q, - E, w — u(w), where (E, || ||g) is a Banach space and €2, is a subset of R", we define the
sup-norm and the Lipschitz semi-norm

llu(wr) —u(@2)l e

li li
lullg® = lullpy, == sup lu@le, lully = lulgq : (2.14)
wER, wlqéa)z |1 — an|
and, for y > 0, the Lipschitz norm
L L li
Nl PP = Ml = Ml P+ y (2.15)

Llp(y)

If E = H* we simply denote ||u|| . = |Julls L") We shall use the notation

a<sb <= a=<C(s)b forsome constant C(s) > 0.

Matrices with off-diagonal decay. A linear operator can be identified, as usual, with its matrix representation. We
recall the definition of the s-decay norm (introduced in [6]) of an infinite dimensional matrix. This norm is used in [2]
for the KAM reducibility scheme of the linearized operators.

Definition 2.1. The s-decay norm of an infinite dimensional matrix A := (Aéf) 70, b>1,1s

i1,ih€
A2 ;:Z(i)2S( sup |A’2|) (2.16)
iezk f—ia=i

For parameter dependent matrices A := A(w), w € 2, € RV, the definitions (2.14) and (2.15) become

A —A
|A(w)) (@2)ls |A|L1p(y)

’

A" = sup [A(@)]y. AP = A 4+ p AP (2.17)

weR, wl;éwz |1 — |

Such a norm is modeled on the behavior of matrices representing the multiplication operator by a function. Actually,
given a function p € H*(T?), the multiplication operator & > ph is represented by the Toplitz matrix T! =pi_i
and |T|s = ||plls. If p = p(w) is a Lipschitz family of functions, then

L L
715 = || p|| s (2.18)

The s-norm satisfies classical algebra and interpolation inequalities, see [2].

Lemma 2.1. Let A = A(w) and B = B(w) be matrices depending in a Lipschitz way on the parameter w € Q, C R".
Then for all s > sog > b/2 there are C(s) > C(sg) > 1 such that

ABISPY) < C(s)| AP BIP, (2.19)
|AB|LIP(V) < C(s)|A|L1P(V)|B|L1P()/) + C(SO)|A|LIP(V)|B|SLIP()/). (220)
The s-decay norm controls the Sobolev norm, namely
L L L
1ARITPY < C) (1AL Wl + ALY 2 oP). 221)
Let now b :=v + 1. An important sub-algebra is formed by the Toplitz in time matrices defined by
AR = A2~ 1), (2.22)

(h,J1)
whose decay norm (2.16) is
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AR= Y ( sup 1AL @) (2.23)

jeZ,leZ" jl _j2:j
These matrices are identified with the ¢-dependent family of operators

Ap) = (A2 (p)) AZ(p) =" AR (2.24)
leZ”

J1.J2€L°
which act on functions of the x-variable as

A(@) th(x) = Zhjeifx — A(@)h(x) = Z A% (@)h e~ . (2.25)
JEZ J1,72€Z
We still denote by |A(¢)|s the s-decay norm of the matrix in (2.24). As in [2], all the transformations that we shall
construct in this paper are of this type (with j, ji, jo # 0 because they act on the phase space HO1 (Ty)). This observa-
tion allows to interpret the conjugacy procedure from a dynamical point of view, see [2]-Section 2.2. Let us fix some
terminology.

Definition 2.2. We say that:

the operator (Ah)(p, x) := A(p)h(p, x) is SYMPLECTIC if each A(p), ¢ € T, is a symplectic map of the phase
space (or of a symplectic subspace like H SL);

the operator w - 9, — 9, G () is HAMILTONIAN if each G(¢), ¢ € T", is symmetric;

an operator is REAL if it maps real-valued functions into real-valued functions.

As well known, a Hamiltonian operator - 9, — 9 G (¢) is transformed, under a symplectic map .4, into another
Hamiltonian operator w - 9, — 0 E(¢), see e.g. [2]-Section 2.3.

We conclude this preliminary section recalling the following well known lemmata, see Appendix of [2].

Lemma 2.2 (Composition). Assume f € C5(T? x By), By :={y e R™: |yl < 1}. Then Vu € HS (T4, R™) such that
lullLe < 1, the composition operator f(u)(x) = f(x,u(x)) satisfies ||f(u)||s <C|fllcs(lulls + 1) where the con-
stant C depends on s, d. If f € C*12 and ||\u + h||p~ < 1, then

f
| fu+n) - Z “ i |, < Cllfliessa RN (llls + 1Rl Lo lulls) . k=01,
The previous statement also holds replacing || ||s with the norms | |5, co.

Lemma 2.3 (Tame product). For s > so > d /2,

luvlls < C(so)llullsvllsy + CSlullgllvlly, Ve, ve H (T9).
Fors >0,s eN,

luvlls < 3 llullzellvls + Cllullws=lvlo, VYue W *(T9), ve H (TY).

The above inequalities also hold for the norms || ||L1p(y)

Lemma 2.4 (Change of variable). Let p € W5 (T4, R%), s > 1, with || p|| whoe < 1/2. Then the function f(x) =x +
p(x) is invertible, with inverse f~1(y) = y+q(y) where g € WS (T, R?), and ||q||ws. < C||pllws. If. moreover,

Lip(y) _

P = Po depends in a Lipschitz way on a parameter € Q2 C R", and ||DxpyllL~ < 1/2, Yo, then ||qllyse <

C| p||1;;fg’)m. The constant C := C(d, s) is independent of y.

Ifu € H (T4, C), then (uo f)(x) :=u(x + p(x)) satisfies

luo flis = Clllulls +lplwsellully),  lluo f—ulls < CAlpllrellulls+1 4+ I pllwsoellull2),

L Li Li L
o £ISPY < € (Ml 227+ 1 p IR fully ™).

The function u o f~' satisfies the same bounds.
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3. Weak Birkhoff normal form

The Hamiltonian of the perturbed KdV equation (1.1) is H = Hy + H3 4+ H>5 (see (1.3)) where

1
Hy(u) := E/u)zc dx, H3(u) ::/u3dx, H>s5(u) ::/f(x,u,ux)dx, (3.1
T T T
and f satisfies (1.5). According to the splitting (2.9) u =v+z,ve€ Hg, z € HSL, we have
U% Z)zc 3 2 2 3
Hy(u) = ?dx+ ?dx, Hy(u)= [ v’dx+3 [ vizdx+3 | vz®dx+ | Z7dx. (3.2)
T T T T T T

For a finite-dimensional space
E:=Ec:= span{eijx:0<|j|§C}, C>0, (3.3)

let [Tz denote the corresponding L>-projector on E.
The notation R(v¥~7z9) indicates a homogeneous polynomial of degree k in (v, z) of the form

ROW 9z =M[v,...,v,2,...,2], M = k-linear.
—— S——

(k—q) times g times

Proposition 3.1 (Weak Birkhoff normal form). Assume Hypothesis (S2). Then there exists an analytic invertible sym-
plectic transformation of the phase space ®p : HO1 (Ty) — HO1 (Ty) of the form

Gpu)=u—+V@w), V) =¥ (lzu), (3.4)

where E is a finite-dimensional space as in (3.3), such that the transformed Hamiltonian is

H:=Ho®p=Hy+H3+Ha+Hs+H>s, (3.5)
where H» is defined in (3.1),
3 |uif* >
Hoim [ Pdxes [udx, o= =3 YO Haat Haa, Hsim YO RO, (3.6)
24~
T T jes q=2
Hao = 6/ vzIls (35 ') (05 '2)) dx +3/z2no(8x_1v)2dx, Haz:=R(Z), (3.7)

T T

and H=¢ collects all the terms of order at least six in (v, 7).

The rest of this section is devoted to the proof of Proposition 3.1.
First, we remove the cubic terms fT v’ +3 fT v2z from the Hamiltonian H3 defined in (3.2). In the Fourier coordi-
nates (2.4), we have

1 .
H2=§Z]2|uj|2, Hy= Y ujuju. (3.8)
J#0 J1+i2+j3=0

We look for a symplectic transformation ®® of the phase space which eliminates the monomials u it jy of Hj
with at most one index outside S. Note that, by the relation j; + j» + j3 = 0, they are finitely many. We look for o0 .=
(GD;G) )jr=1 as the time-1 flow map generated by the Hamiltonian vector field X 3, with an auxiliary Hamiltonian of
the form

3 . 3)
F )(M) = Z Fj|j2j3uj1uj2uj3 ’
J1t+2+j3=0

The transformed Hamiltonian is
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H® — Hod® = H, + H3(3) + Hf) + H(3)

>5°
1
HyY = Hy+ (Ho, PO, HY = S {(Ha, FOY FO) (s, PO, (3.9)
where Hf’j) collects all the terms of order at least five in (u, uy). By (3.8) and (2.6) we calculate
3 i 23 -3 .3\ - (3)
H3 = Z {1_1(]1 +-]2 +-]3)F]]]2]3}MJIM]2L£]3
Ji+j2+j3=0

Hence, in order to eliminate the monomials with at most one index outside S, we choose

l . . . .
——— if (j1, jo, 3) €A,
FO )iy U2 ) (3.10)
J1J2J3 .
0 otherwise,

where A:= {(j1, j2. j3) € (Z\{OD?: ji+ jo+j3 =0, j{ +j3 + j3 # 0, and at least 2 among ji, ja, j3 belong to S}.
Note that

A= {(jl, J2, 3) € (Z\ {op3: Jj1+ j» + j3 =0, and at least 2 among ji, j2, j3 belong to S} (3.11)
because of the elementary relation
N+ R+i=0 = 45+ =312 #0 (3.12)

being ji, j2, j3 € Z \ {0}. Also note that A is a finite set, actually A C [—2Cy, ZCS]3 where the tangential sites
S € [—Cs, Cs]. As a consequence, the Hamiltonian vector field X ) has finite rank and vanishes outside the finite
dimensional subspace E := E;c, (see (3.3)), namely

Xpoy () =TgXpe (Igu).

Hence its flow & : HO1 (Ty) — HO1 (T,) has the form (3.4) and it is analytic.
By construction, all the monomials of H3 with at least two indices outside S are not modified by the transformation
®® . Hence (see (3.2)) we have

H3(3)=/z3dx+3/vz2dx. (3.13)
T T

We now compute the fourth order term Hf) = Z?:o Hﬁ) in (3.9), where Hfi) is of type R(v*~iz%).
Lemma 3.2. One has (recall the definition (2.2) of mg)

3
Hy) = 5/uzm)[(a;‘v)z]dx, HY) :=6/vzns((a;‘v)(a;‘z))dx+3/z2n0[(a;‘u)2]dx. (3.14)
T T T

Proof. We write H3 = H3 <| + H3(3) where H3 < (u) == [, vidx +3 Jr v2zdx. Then, by (3.9), we get

1
3 3
H;)———{H3,<1,F(3)}+{H3(),F(3)}. 3.15)

By (3.10), (3.12), the auxiliary Hamiltonian may be written as

1 Ui Ui Uj 1
FOW=—3 e =——/(a”v)3dx—/(a*‘v)%a*‘z)dx.
3 &= Ginapan 307 ! !
(1.2, j3)eA T T

Hence, using that the projectors I1g, Hé‘ are self-adjoint and 9 lis skew-selfadjoint,

VD) = o, @, o) + 25 [0 v oy ']} (3-16)
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(we have used that 9 Lo = 9 ! be the definition of ar by, Recalling the Poisson bracket definition (2.3), using that
VHz <1(u) = 3v? 4 6115 (vz) and (3.16), we get

(H3 <1, F¥} = / {3v% + 615 (v2) o { (3; 'v)? + 2MTs[ (B 'v) (8, '2)]} dx
T
=3/v27ro(8x_1v)2dx+12/Hs(vz)l'[s[(a;lv)(ax_lz)]dx+R(v3z). (3.17)
T T

Similarly, since VHL (u) = 322 + 611§ (v2),

(HD, FP) =3 / o7 )2 dx + R@2) + R, (3.18)
T
The lemma follows by (3.15), (3.17), (3.18). O

We now construct a symplectic map ®* such that the Hamiltonian system obtained transforming H, + H3(3) +H f)
possesses the invariant subspace Hg (see (2.8)) and its dynamics on Hy is integrable and non-isochronous. Hence we

have to eliminate the term H, 45,31) (which is linear in z), and to normalize H, ﬁ; (which is independent of z). We need the
following elementary lemma (Lemma 13.4 in [21]).

Lemma 3.3. Let ji, j2, j3, ja € Z such that j1 + j» + j3 + ja=0. Then
BB =301+ )G+ )G+ 73)

Lemma 3.4. There exists a symplectic transformation ®® of the form (3.4) such that

4 3 Iyl 3 3
Y ;=_§Z L+ HY) + HY (3.19)
JjeSs

H® — g3 5 @ — Hy + H3(3) + Hﬁ) + Y

>5 -

where H3(3) is defined in (3.13), Hfz) in (3.14), H‘g) = R(vz?) and Hfg collects all the terms of degree at least five
in (u, uy). -

Proof. We look for a map ®® := (CDZFM))\,: 1 which is the time 1-flow map of an auxiliary Hamiltonian

@y — Q) ey
Fo ) = oz s Wir 4 s ja
Jit+ja+j3+ja=0
at least 3 indices are in S

with the same form of the Hamiltonian H fg +H fl) . The transformed Hamiltonian is

HY :=H®00® =t + HP + H + HY)

=5

HY = {Hy, F9) + HY, (3.20)

where Hgs) collects all the terms of order at least five. We write Hf) = Z?:o H 45,41') where each Hﬁ) if of type
R(v4_izi ). We choose the coefficients

H®
@ R if (j1, jo, Jas ja) € As,
Jridsis T AGE 43 433+ ) (3.21)
0 otherwise,

where

A= {1, oo 3o ja) € @N{OD* 2 ji+ o+ j3+ ja=0, ji + j5 + j3 + ji #0,

and at most one among ji, jo2, j3, ja outside S} .
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By this definition Hﬂ) = 0 because there exist no integers ji, j2, j3 € S, ja € S€ satisfying j; + jo + j3 + ja =0,
jl3 + jz3 + j33 + jf =0, by Lemma 3.3 and the fact that § is symmetric. By construction, the terms Hﬁ) = Hﬁ),
i =2,3,4, are not changed by ®@. Finally, by (3.14)

@ _3 1
H4O:_ Z L Ujujpuiigy, . (322)
' 2
jrmires  13)4)

J1t+j2+j3+ja=0

R+ +E+ii=0

Jitj2, j3+ja#0
If ji + ja+ j3+ja=0and j} + j5 + j5 + jj =0, then (ji + j2)(j1 + j3) (j2 + j3) = 0 by Lemma 3.3. We develop
the sum in (3.22) with respect to the first index j;. Since jj + j» # 0 the possible cases are:

O {i#—h. 3=—j1. ja=—j} or (i) {jo#—j1, 3#—j1, 3=—j2 ja=—h}

Hence, using u_ j = u; (recall (2.4)), and since S is symmetric, we have

! Jujy |7 lu o | Ju [P o2 Juj|* Juj[*
Z U UpUBUT = Z — - = Z .7.,4—2.—2:2,—2, (3.23)

o 3 peSht—n M jges M jes T e

and in the second case (ii)

1 1 1 5 1 9
Z H“]lujzuhujzt = Z Euhuhu*hu*]‘l = Z —lujl ( Z j—2|uj2| ) =0. (3.24)
() JisJ2s 2#EN JES JFL]

Then (3.19) follows by (3.22), (3.23), (3.24). O

Note that the Hamiltonian H, + H3(3) + H f) (see (3.19)) possesses the invariant subspace {z = 0} and the system
restricted to {z = 0} is completely integrable and non-isochronous (actually it is formed by v decoupled rotators). We
shall construct quasi-periodic solutions which bifurcate from this invariant manifold.

In order to enter in a perturbative regime, we have to eliminate further monomials of H® in (3.19). The minimal
requirement for the convergence of the nonlinear Nash-Moser iteration is to eliminate the monomials R(v°) and
R(v*z). Here we need the choice of the sites of Hypothesis (S2).

Remark 3.5. In the KAM theorems [25,28] (and [30,32]), as well as for the perturbed mKdV equations (1.10), these
further steps of Birkhoff normal form are not required because the nonlinearity of the original PDE is yet cubic.

A difficulty of KdV is that the nonlinearity is quadratic.

We spell out Hypothesis (S2) as follows:

e (S2p). There is no choice of 5 integers ji, ..., js € S such that
it +is=0, ji+..+ji=0. (3.25)
e (S21). There is no choice of 4 integers ji, ..., j4 in S and an integer in the complementary set js € S¢ : = (Z \

{0} \ S such that (3.25) holds.

The homogeneous component of degree 5 of H™® is

@ N “ . .
HYwy= Y H uj..uj.
Jite+js=0
We want to remove from H5(4) the terms with at most one index among ji, ..., js outside S. We consider the auxiliary

Hamiltonian
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g

5 (5) 5 J1---Js
J1 et js=0 Ji T s

at most one index outside S
By Hypotheses (S20), (S21), if j; + ...+ j5 = 0 with at most one index outside S then j13 +...+ j53 #0and F® is
well defined. Let ®© be the time 1-flow generated by X r® . The new Hamiltonian is
H® :=HY 00 =t + HY + H{ + (Hy, FO} + HY + HE) (3.27)
where, by (3.26),

5
5 4 —
HY = (Hy, FO) + HY =Y R ™129).
q=2
Renaming H := HOS, namely H, := Hn("), n=3,4,5,and setting &5 := ®3 6 dW o O3 formula (3.5) follows.
The homogeneous component H5(4) preserves the momentum, see Section 2.1. Hence F© also preserves the mo-

mentum. As a consequence, also H, k(s), k <5, preserve the momentum.
Finally, since F® is Fourier-supported on a finite set, the transformation ®© is of type (3.4) (and analytic), and
therefore also the composition @ p is of type (3.4) (and analytic).

4. Action-angle variables

We now introduce action-angle variables on the tangential directions by the change of coordinates
wj = /& +1jlyj e, ifjes, @1
uj:=2zj, iijSC, ’

where (recall u_; =)

";:—jzgj, §j>0, y—j=Yj, 9_]‘:—9]', Qj,ijR, VjeSs. 4.2)
For the tangential sites ST :={Ji, ..., j,} we shall also denote 05 =0, y;, =yi, & =&,i=1,...v.
The symplectic 2-form €2 in (2.5) (i.e. (2.1)) becomes
v 1 1 v
W:=2}d@i Adyi+ 5 _GSZ\:{O}fdzj ANdz_j = (Z}d@i Ady;) ® Qg1 =dA (4.3)
1= J 1=

where Qg1 denotes the restriction of 2 to H SL (see (2.8)) and A is the contact 1-form on T" x RV x H Lé- defined by
A@,y R xRY x HSJ‘ — R,

~ -~ 1 _
Aw.y0l0,5.2i=—y -0 + 5@, "2 D2 - (4.4)

Instead of working in a shrinking neighborhood of the origin, it is a convenient devise to rescale the “unperturbed
actions” £ and the action-angle variables as
Er—)szé, y|—>82by, 2> ez, 4.5)

Then the symplectic 2-form in (4.3) transforms into £2°)V. Hence the Hamiltonian system generated by  in (3.5)
transforms into the new Hamiltonian system

0=0,He(0,,2), y=—00He(0,y,2), 2t =0 Ve He(0,y,2), He:=e PHoA, (4.6)

where

Ac®.y.2) :=e0:(0,y) +e"z:=2 ) /& + 20D j|y; e e + bz (4.7)

Jjes
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We shall still denote by Xy, = (0yHe, —09 He, 0,V H,) the Hamiltonian vector field in the variables (0, y, z) €
TV x RY x H;-.
We now write explicitly the Hamiltonian H. (0, y, z) in (4.6). The quadratic Hamiltonian H> in (3.1) transforms
into
1
e Hy o0 A, = const + Z j3yj+—/z)26dx, (4.8)

2 2
]ES T

and, recalling (3.6), (3.7), the Hamiltonian H in (3.5) transforms into (shortly writing v, := v, (6, y))

H.0,y,2)=e&)+a) -y+ %/zidx + 8b/z3dx + 38/v522dx 4.9)
T T T
+82{6/vgzl'ls((Sx_lve)(ax_lz))dx +3/zz7ro(3x_1v8)2dx] - %szbzyf.
T T jes
5
+ e R + 83R(v312) + g2t Z 8("_3)(b_1)R(v§_qzq) + 8_2b7'[26(8v5 +eP2)
q=3

where e(£) is a constant, and the frequency-amplitude map is

a(€):=o+e?Af, A:=—6diag(1/j}jcs+ - (4.10)
We write the Hamiltonian in (4.9) as
1
He=N+P, Ny )=a@) y+3(NO22) 1, 4.11)
where
1 _1 1 2 2
E(z\l(e)z, 2) 2 m) = 5((BZVH8)(9, 0.0)[z].2) 12y = 5 [ @xdx+3e [ ve(0,002°dx (4.12)
T T
+82{6/vg(é‘,0)z1'[s((8;]v5(9,0))(8;11))dx+3/12no(8;]v8(9,0))2dx} +...
T T

and P:=H, — \N.
5. The nonlinear functional setting

We look for an embedded invariant torus

TV > T xR” x Hy, ¢ i(p) = 0(), y(9), 2()) CRY

of the Hamiltonian vector field X g, filled by quasi-periodic solutions with diophantine frequency w. We require that
 belongs to the set

Qe :=a([1,2]") ={a(§) : § €[1,2]"} (5.2)
where « is the diffeomorphism (4.10), and, in the Hamiltonian H, in (4.11), we choose
t=a ' (w)=eA"(w-—a). (5.3)

Since any w € € is g2-close to the integer vector @ (see (2.10)), we require that the constant y in the diophantine
inequality

lw-1|>y )77, VIeZ'\ {0}, satisfies y =&>** forsomea > 0. (5.4)
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We remark that the definition of y in (5.4) is slightly stronger than the minimal condition, which is y < ce? with
¢ small enough. In addition to (5.4) we shall also require that w satisfies the first and second order Melnikov-non-
resonance conditions (8.120).

We look for an embedded invariant torus of the modified Hamiltonian vector field X H., = XH, + (0, ¢, 0) which
is generated by the Hamiltonian

He(0,y,2):=He(0,y,2)+¢-0, ¢eR". (5.5)

Note that X g, . is periodic in 6 (unlike H; ;). It turns out that an invariant torus for Xp, . is actually invariant for
Xg,, see Lemma 6.1. We introduce the parameter ¢ € R" in order to control the average in the y-component of the
linearized equations. Thus we look for zeros of the nonlinear operator

F(i,8)=F(, ¢, w,8) :=Doyi(p) — X,  (i(9)) =Doi(p) — Xn(i(@)) — Xp(i(p) +(0,£,0) (5.6)
Dy,0(p) — 3y He (i (¢)) Dy,®(p) — 3y P(i(p))
= Poy(@) + 9 He(i(@) +¢ | = | Duy(9) + 506(NO@)2(9), 2(9)) 127) + 6 P () + ¢
Dyz(p) — 0xV He (i (9)) Dyz(p) — 9 N(0(9)z(p) — 0V P(i(p))

where O (¢) :=6(¢) — ¢ is (27r)"-periodic and we use the short notation
Dy:i=w- 0. (5.7)

The Sobolev norm of the periodic component of the embedded torus

J(@) ==i(p) = (¢,0,0) := (O(p), y(9), 2(¢)), O(p):=0(p) — ¢, (5.8)
is

1305 == 11Oz + Iylag + Nzl (5.9)
where ||z]s := ”Z”Hé,x is defined in (2.11). We link the rescaling (4.5) with the diophantine constant y = ¢>*¢ by
choosing

y=¢?,  b=1+(@/2). (5.10)

Other choices are possible, see Remark 5.2.

Theorem 5.1. Let the tangential sites S in (1.8) satisfy (S1), (S2). Then, for all € € (0, g9), where &g is small enough,
there exists a Cantor-like set C; C 2, with asymptotically full measure as ¢ — 0, namely

Gl
£—0 |Q£|

I, (5.11)

such that, for all w € Cg, there exists a solution i (@) := ico(w, )(¢) of Dyico (@) — Xh, (icc(¢)) = 0. Hence the
embedded torus ¢ = i (@) is invariant for the Hamiltonian vector field X g, ..y with & as in (5.3), and it is filled by
quasi-periodic solutions with frequency w. The torus i~ satisfies

liss () — (@, 0,0) |27 = 0520y~ 1) (5.12)

for some p := pu(v) > 0. Moreover, the torus iso is LINEARLY STABLE.

Theorem 5.1 is proved in Sections 6-9. It implies Theorem 1.1 where the &; in (1.9) are ezéj, &; €[1,2], in
(5.3). By (5.12), going back to the variables before the rescaling (4.5), we get O = 0(56_2”)/_1), Voo = 0(56)/_1),
Zoo = 0(86_b y_l), which, as b — 17, tend to the expected optimal estimates.

Remark 5.2. There are other possible ways to link the rescaling (4.5) with the diophantine constant y = ¢2t¢. The
choice ¥ > &%’ reduces to study perturbations of an isochronous system (as in [23,25,28]), and it is convenient to
introduce £(w) as a variable. The case £?” > y, in particular b = 1, has to be dealt with a perturbation approach of a
non-isochronous system a la Arnold—Kolmogorov.
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We now give the tame estimates for the composition operator induced by the Hamiltonian vector fields X s and
X p in (5.6), that we shall use in the next sections.

We first estimate the composition operator induced by v.(6, y) defined in (4.7). Since the functions y —
VE+20-Dljly, 0 e are analytic for ¢ small enough and |y| < C, the composition Lemma 2.2 implies that,
for all ®,y € H*(T", R"), [I®ll5, Iylls, < 1, setting 6(¢) := ¢ + O(g), [v:(0 (@), y(@)ls <s 1 + IOlls + [I¥lls.

Hence, using also (5.3), the map A, in (4.7) satisfies, for all ||3||EP(V) <1 (see (5.8))

1A (0(9), y(@). 2@ 15 <4 (1 + [T]EPT)y. (5.13)

We now give tame estimates for the Hamiltonian vector fields Xar, Xp, X g, , see (4.11)—(4.12).

Lemma 5.3. Let J(¢) in (5.8) satisfy |I]-PY) < Ce6=20y =1 Then

so+3

19, POISPY <5 e+ e3P, 18e POIPY <, 221+ 13150 (5.14)

IV PO <5 372 40y TR X p )15 < 6072 4 20 (5.15)

1063, P()15™Y <s e* + Sy "IN . 18, VPG IPY) <, €8 4 23R (5.16)

18y P (i) + 362 gy ”?ip(y) < 82+2b+32b+3y_1||3||£“jf2(y) (5.17)

and, for allT:= (@,37,'2),

loyd; X p )T ™Y < €2~ (ISR + 131057 17157 (5.18)

ld; X 1, D] + (0,0, Bxx DI < e (TSR + 1315 17109) (5.19)
142X, DT <5 e (TR ITIGES + 19157 (IR )?). (5.20)

In the sequel we will also use that, by the diophantine condition (5.4), the operator Dajl (see (5.7)) is defined for
all functions u with zero ¢-average, and satisfies

_ _ — Li — Li
105 ulls < CyMullyse, 1D ull PP < Cp =M u) ) (5.21)

6. Approximate inverse

In order to implement a convergent Nash—Moser scheme that leads to a solution of F(i,¢) = 0 our aim is to
construct an approximate right inverse (which satisfies tame estimates) of the linearized operator

di ¢ Flio, 20)[T, C1 = di  F(i0)[T, T1 = Dyl — di X, (o (@) [T1+ (0,7, 0), (6.1)

see Theorem 6.10. Note that d; ; F (io, {o) = d;, F (ip) is independent of &g (see (5.6)).

The notion of approximate right inverse is introduced in [35]. It denotes a linear operator which is an exact right
inverse at a solution (ig, {o) of F (i, £o) = 0. We want to implement the general strategy in [7,8] which reduces the
search of an approximate right inverse of (6.1) to the search of an approximate inverse on the normal directions only.

It is well known that an invariant torus ig with diophantine flow is isotropic (see e.g. [7]), namely the pull-back
1-form i A is closed, where A is the contact 1-form in (4.4). This is tantamount to say that the 2-form W (see (4.3))
vanishes on the torus io(T") (i.e. WV vanishes on the tangent space at each point ig(¢) of the manifold io(T")), because
igW =igd A =di;jA. For an “approximately invariant” torus io the 1-form i§A is only “approximately closed”. In
order to make this statement quantitative we consider

-5k - T 1 -1
iSA =) ar@)der.  arg) = (8,601 30(0); + 5 P 20). 37 200D 2m) (6.2)
k=1

and we quantify how small is
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iW=digh=Y  A(@)de ndgj,  Ayj(p) = dpaj(p) — g ar(p). (6.3)

1<k<j<v

Along this section we will always assume the following hypothesis (which will be verified at each step of the Nash—
Moser iteration):

e ASSUMPTION. The map w > ig(w) is a Lipschitz function defined on some subset 2, C 2., where €2, is defined
in (5.2), and, for some u := u(t,v) > 0,

13l 0) < ce® Pyt 1 ZIgP Y < ce® %,y =69 bi=1+4(a/2), ac(0,1/6), (64)
where Jo(¢) :=ig(¢) — (¢, 0, 0), and
Z(p) == (21, Z2, Z3)(p) := F (i, S0) (¢) = @ - Iplo(p) — X H, ; (i0(9)) - (6.5)

Lemma 6.1. |o|MPY) < C||Z||gp(y). If F(io, £o) = 0 then £y =0, namely the torus iy is invariant for X g, .

Proof. It is proved in [7] the formula
‘= f ~[3,50()1" Z1(9) + [8,00(@)1" Z2(9) — [3p20(@))" 8, ' Z3(p) dg .

"JI‘V
Hence the lemma follows by (6.4) and usual algebra estimate. O

We now quantify the size of iSW in terms of Z. Directly from (6.2) and (6.3) one has || Ag; ||£“ip()/) <s ||30||17f2(y).
Moreover, Ay; also satisfies the following bound.
Lemma 6.2. The coefficients Ayj(¢) in (6.3) satisfy
Li - Li Li Li
1A IS <oy T IZIESY L + 1ZI55T 130l 5 ) - (6.6)

Proof. We estimate the coefficients of the Lie derivative Lw(i{’)‘W) =) ke j Dy,Agj(p)der Adgj. Denoting by e,
the k-th versor of R we have

Dy Arj = LoligW)(@)ley, e;1=W(3pZ(@)ey, dpio(@le;) +W(dgio(p)ey, dpZ(p)e;)
(see [7]). Hence

Lip(y) Lip(y) Lip(y)  ~ ,Lip(y)
1D Ak 1P < 1ZIZPY + 121 130l P (6.7)

The bound (6.6) follows applying D;l and using (5.21). O

As in [7] we first modify the approximate torus i to obtain an isotropic torus is which is still approximately
invariant. We denote the Laplacian Ay :=Y"/_, 8(%,(.

Lemma 6.3 (Isotropic torus). The torus is(¢) := (6p(@), ys(¢), zo(@)) defined by

=30+ 0,00@) @), pi@) =AD" 8y Akj(p) (6.8)
k=1

is isotropic. If (6.4) holds, then, for some o := o (v, T),

Li ~ nLi
Ilys — yolls ™7 < 1301127, 6.9)
Li — Li Li ~ nLi
lys = Yol <5 y = HIZIZRY 4 1210 13015 ) (6.10)
. Li Li — —1,~ pLi Li
1F s, sl <, 1ZIGED + 2=y 3ol 2z R 6.11)

10: [is 1Ml <s 15 + 1 Tolls+o I11ls - (6.12)
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In the paper we denote equivalently the differential by 9; or d;. Moreover we denote by ¢ := o (v, T) possibly
different (larger) “loss of derivatives” constants.

Proof. In this proof we write || ||; to denote || ||£ip(y). The proof of the isotropy of is is in [7]. The estimate (6.9)
follows by (6.8), (6.2), (6.3), (6.4). The estimate (6.10) follows by (6.8), (6.6), (6.4) and the tame bound for the inverse
I [8¢90]’T lIs <s 1+ IJolls+1. It remains to estimate the difference (see (5.6) and note that X nr does not depend on y)

0

F(is, ¢o) — F (o, ¢o) = (Dw()’5 - }’0)> + Xp(is) — Xp(io) . (6.13)
0

Using (5.16), (5.17), we get |8, X p (i) |ls <5 €22 4+ €213 ]ls43. Hence (6.9), (6.10), (6.4) imply

IX p(is) — XpGo)lls <s 1 Zls+o + &2y " T0lls10 1 Z g0 - (6.14)

Differentiating (6.8) we have

Doy (ys — ¥0) = [3,00(@)1 ™ Diup () + (Do [300(0)1 ) p () (6.15)
and D,,p;j(¢) = A;l > k=1 0¢; DAk (9). Using (6.7), we deduce that

1104601~ Dwplls <s 1 Z1Is+1 + 1 Zllsg+11Tolls+1 - (6.16)

To estimate the second term in (6.15), we differentiate Z1(¢) = D,00(¢) — @ — (3y P)(io(¢)) (which is the first
component in (5.6)) with respect to ¢. We get D,,d,60(¢) = 9,(3y P)(io(@)) + 9, Z1 (¢). Then, by (5.14),

IDuldp0017 s <s &* + &*1T0lls+2 + 1 Z 541 - (6.17)
Since Dy, [3,00(9)1™ T = —[0,600(0)] ™ (D[940 ()17 ) [0500 ()1~ , the bounds (6.17), (6.6), (6.4) imply

I(Dul[8,6001" D plls <5 €722y "M Zllsto + 1T0lls40 1 Zllsp+o - (6.18)

In conclusion (6.13), (6.14), (6.15), (6.16), (6.18) imply (6.11). The bound (6.12) follows by (6.8), (6.3), (6.2),
(6.4). O

In order to find an approximate inverse of the linearized operator d; ; F (is) we introduce a suitable set of symplectic
coordinates nearby the isotropic torus is. We consider the map Gs : (¥, n, w) — (0, y, z) of the phase space T" x
RY x Hg- defined by

) v Bo(¥) .
(y) = Gj ( n ) = | ys(¥) + [y 001~ Tn + [(B0Z0) Go(¥)] 37w (6.19)
z w zo0(¥) +w

where 2o(0) :=z0(0, 1(9)). It is proved in [7] that G is symplectic, using that the torus is is isotropic (Lemma 6.3).
In the new coordinates, is is the trivial embedded torus (v, n, w) = (¥, 0, 0). The transformed Hamiltonian K :=
K, n,w, go) is (recall (5.5))

1
K :=H; g 0Gs =00(¥) - So+ Koo(¥) + Kio(¥) - n+ (Kot (¥), w) 21y + EKzo(W)ﬂ 1

1
+ (Kll(lﬁ)ﬁ, w)LZ(T) + E(KOZ(w)w7 w)Lz(T) + K23(‘¢‘9 n, w) (6.20)

where K>3 collects the terms at least cubic in the variables (1, w). At any fixed v, the Taylor coefficient Koo(v¥) € R,

Kio(y) eRY, Ko1(¢) € H;- (it is a function of x € T), K»9(v) is a v x v real matrix, Kop () is a linear self-adjoint

operator of H Sl and K11 (¢): RV - H SL Note that the above Taylor coefficients do not depend on the parameter .
The Hamilton equations associated to (6.20) are
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Iﬁ Klo(l//)+K20(lﬁ)77+K Ww + 9, K>3(1/f 7, w)
3¢90(1ﬂ) Co—ax/fKoo(lﬁ)— [9y K1o(y)]T 77— [9y Ko1 (¥)1T
_31/r( Koo -+ (K (¥)n. w2 epy + 5 (Koo () w, w)Lz(T)+K>3(W 1, w))
W = 0x (Ko1 (¥) + K11 (¥)n + Koa(¥)w + Vo, K=3(%, 1, w))

where [y K19(y)]7 is the v x v transposed matrix and [dy Koi1 (¥)17, K[, () : Hf- — R” are defined by the duality
relation (8,/,K01(w)[1ﬁ], w)2 = 1@ . [81/,K01(1p)]Tw, Vlﬁ eR,we HSL, and similarly for K. Explicitly, for all
w € H¢, and denoting ¢ the k-th versor of R,

6.21)

v v

K@w=Y (K[i@w-¢g)e, = (w, Kii(¥)e) e €R”. (6.22)

k=1 k=1

In the next lemma we estimate the coefficients Ko, K10, Ko1 in the Taylor expansion (6.20). Note that on an exact
solution we have Z = 0 and therefore Koo(1/) = const, Ko = w and Ko; =0.

Lemma 6.4. Assume (6.4). Then there is o := o (1, v) such that

Lip(y) ) Lip(y) Lip(y) 2b—1_, —1 Lip(y) ,,~ Lip(y)
13y Kool + 1 K10 — 0l + 1 Kot [I5PY <, 1ZIEEY + 2=y~ Z 22D 30 22

Proof. Let F(is, ¢o) := Zs :== (Z1,s, Z2.5, Z3,5). By a direct calculation as in [7] (using (6.20), (5.6))
dy Koo(W) = —[3y 801" (S0 — Z2,5 — [y ys1[0y 001" Z1.s + [(B6Z0) Go(¥ )T 8, ' Z3 5
+ [(B620) B0 ()] 3 By 20 (W [By 00 (W]~ Z15)
Kio(¥) = — [3y00(W)] ' Z1 5(¥),
Kor(W) = =08, Z3.5 + 85 'y 20(¥) [y 00 ()] ' Zy 5 () .
Then (6.4), (6.10), (6.11) and Lemma 6.1 (use also Lemma 2.4) imply the lemma. O

Remark 6.5. If F(ip, o) = 0 then o = 0 by Lemma 6.1, and Lemma 6.4 implies that (6.20) simplifies to K =
const+w-n+ %KZO(W)’? N+ (Kll(w)rh w)LZ(T) + %(KOZ(l/f)ws w)LZ(T) + KZ3~

We now estimate Ky, K11 in (6.20). The norm of K»q is the sum of the norms of its matrix entries.

Lemma 6.6. Assume (6.4). Then

Li Li
IKao + 362215 ip(y) <, 22 4 25, IIYE’Y) (6.23)
) -1 L() 2b—1~L‘() Lip(y)
1Kl < €3yl 130l Inlls™” (6.24)
Lip(y) 5,,—1 L() g2b—1 Lip(y) Lip(y)
KT w7 <, 5y w20 + e 3ol B w2 (6.25)
In particular | K>o + 382b1||L1p(y) < Ceby~ !, and
) 5.,—1 Lip(y) Lip(y) 5.,—1 L()
1Kl < cedy Ml 1k wlg?” < cedy ~wlgP”
Proof. To shorten the notation, in this proof we write || || for || || Slp ) We have

K20(9) = [8,00 (@)1 Byy He (5 (0)[3,60 (@)1~ = [8,60(0)]1™ 8y P (i () [0,600 ()]~
Then (5.17), (6.4), (6.9) imply (6.23). Now (see also [7])
K11(p) = 3y Vo He (is (0))[9,00 (@)1~ — 871 (3970) (60(9)) (3yy He ) (i (9))[3500 ()1~ T
U2 8, V. Pis(@)[9,00 ()T — 87" (3970) (B0(9)) (Byy P) (i (9))[8,00(0)] ™"
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therefore, using (5.16), (5.17), (6.4), (6.9), we deduce (6.24). The bound (6.25) for KlT1 follows by (6.22) and
(6.24). O

Under the linear change of variables

v 3y 00(p) 0 0 "
DGs(p,0,0) (ﬁ) = <3xzfya(<ﬁ) [3y00()1 T —[(3020)(90(<P))]T3;1> <ﬁ) (6.26)
w 9y z0(p) 0 1 w

the linearized operator d; ; F (is) transforms (approximately, see (6.46)) into the operator obtained linearizing (6.21)
at (Y, n, w,¢) =(¢,0,0, {) (with 9; ~ D,,), namely

Doy — amo(go)[& 1— K2 ()7 — K, (9)®
D + [3y 00 ()17 T+ 3w[3w90(§0) [V, Col + 3wwKoo(<ﬂ)[1ﬁ] + [0y K10(@) 175 + [y Kot (@)1 @ | . (6.27)
Dy — 3:{8y Kot (@) [V + K11(9)7 + Koz (9) W)

We now estimate the induced composition operator.

Lemma 6.7. Assume (6.4) and letT:= (¥, 7, ). Then

IDG5(p,0,0)[T]lls + 1DGs(9, 0,0~ [T1lls <s ITlls + ITolso [7l5y
ID*G (g, 0,0)[1, 221l <s I lls E2lls + 73 I 7215 + 1T0 o 173 llsp 7215 (6.28)

L
for some o := o (v, T). Moreover the same estimates hold if we replace the norm || ||s with || ||s P,

Proof. The estimate (6.28) for DGs(p, 0,0) follows by (6.26) and (6.9). By (6.4), [[(DGs(p,0,0) — Dills, <
Ceb72by—1 715y < I7llsy/2. Therefore DGs(p, 0, 0) is invertible and, by Neumann series, the inverse satisfies (6.28).
The bound for D>G follows by differentiating DG5. O

In order to construct an approximate inverse of (6.27) it is sufficient to solve the equation

_ 5 DoV — Kao(9)7 — K}, () g1
DLy, 7, w, ¢]: D7+ [3¢90(<P)]T (gz) (6.29)
wa_ axKll((P)ﬁ_ 8xK02(§0)w 83

which is obtained by neglecting in (6.27) the terms 9y, K19, 9y Koo, 9y Koo, 0y Ko1 and 8,/,[81/,90(<p)]T[-, Zo] (which
are naught at a solution by Lemmata 6.4 and 6.1).

First we solve the second equation in (6.29), namely D, = g2 — [81/,90(<p)]TE. We chooseE so that the p-average
of the right hand side is zero, namely

7= (g) (6.30)

(we denote (g) := (2m)~" [, g(@)dg). Note that the p-averaged matrix ([dy60]") = (I + [0y ©9]") = I because
Oo(¢) = ¢ + Op(p) and Oy (¢) is a periodic function. Therefore

7:=D," (g2 — [Bybo(@)1(g2)) + (@, (M eR”, (6.31)

where the average (77) will be fixed below. Then we consider the third equation
Low=g3+dKi1(p), Lo=w-3—dKo(p). (6.32)

e INVERSION ASSUMPTION. There exists a set Qo0 C 2, such that for all w € Q, for every function g €
H;ir“ (TV+1) there exists a solution h := L)lge H;L (TV+1Y) of the linear equation L,h = g which satisfies

L — Li — Li L
125 g5 < o)y~ (el B + ey 130l 2 g ™) (6.33)

for some p := p(r,v) > 0.
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—1~_ Lip(»)
Remark 6.8. The term ey~ || Joll;5,

e(19ol 2 + Ilys Iy 2”) (which is bounded by €| Jol; " by (6.9)), see Lemma 8.24.

arises because the remainder Rg in Section 8.6 contains the term

By the above assumption there exists a solution

W =L, [g3+ 0:K11(9)7] (6.34)
of (6.32). Finally, we solve the first equation in (6.29), which, substituting (6.31), (6.34), becomes

Dot = g1 + M1 (@) (M) + Ma(9) g2 + M3(9) g3 — Ma(9)[3y601" (g2) , (6.35)
where

Mi(p) = Kx(@) + K[ (@)L, 0:K11(p) . Ma9):=Mi (@)D, . Mi(p):=K{ (p)L," . (6.36)

In order to solve the equation (6.35) we have to choose (1) such that the right hand side in (6.35) has zero average. By
Lemma 6.6 and (6.4), the ¢p-averaged matrix (M) = —3e21 4 0(810)/_3). Therefore, for ¢ small, (M) is invertible
and (M)~ "= 0(e %) = 0(y~ 1) (recall (5.10)). Thus we define

(@) = —(M1) " [(g1) + (Mag2) + (M3g3) — (Ma[dy 601" ) (g2)]. (6.37)
With this choice of (77) the equation (6.35) has the solution
¥ =D, g1 + Mi(9) (W) + Ma()g2 + M3(p)gs — Ma(9)[3y601" (g2)]. (6.38)

In conclusion, we have constructed a solution (1:0\, 7, W, ?) of the linear system (6.29).

PropositiOE 6.9. Aﬁsume (6.42 and (9\.33). Then, Yo € Q, Vg := (g1, 82, &3), the system (6.29) has a solution
D~ lg := (Y, 7, W, ) where (Y, 7, W, {) are defined in (6.38), (6.31), (6.37), (6.34), (6.30) satisfying

_ Li _ Li — Li Li
D~ <y (gl + ey T 130l E Igllsnn). (6.39)

Proof. Recalling (6.36), by Lemma 6.6, (6.33), (6.4) we get ||[Mah|ls, + (IM3h|ls, < Cllhllsy+o- Then, by (6.37)
and (My)~! = 0(e=%) = 0(y~"), we deduce |(7)|"PP) < Cy~"glhY and (6.31), (5.21) imply |7 <,

. ] so+o
y~! (Ilgllﬁfy) + ||jo||5+g||g||£gp(y)). The bound (6.39) is sharp for w because L‘;lgg in (6.34) is estimated using

(6.33). Finally @ satisfies (6.39) using (6.38), (6.36), (6.33), (5.21) and Lemma 6.6. O

Finally we prove that the operator

To:= (DGs)(¢,0,0) oD~ o (DGs)(¢,0,0)"" (6.40)

is an approximate right inverse for d; ; F(ip) where 55(1&,7), w, ) = (Gg(w, n,w), C) is the identity on the
¢ -component. We denote the norm || (v, 7, w, £)[|5PY := max{|| (¥, n, w)||5'PY, ¢ |LPO)}.

Theorem 6.10 (Approximate inverse). Assume (6.4) and the inversion assumption (6.33). Then there exists u :=
u(t,v) > 0 such that, for all w € Qu, for all g 1= (g1, 82, 83), the operator Ty defined in (6.40) satisfies

Li _ Li —1,~ pLi Li
IToglls ™" <5y M (g1 + e~ 130l E g I5n ). (6.41)

It is an approximate inverse of d; ; F (ip), namely

Il(d;.¢ F (io) o To — Dg|/HP”)

_ _ . Li Li . Li
< ey 2(||f(zo, s gl Y + {1F o, co) 152

_ . Li ~ pLi Li
+ ey~ 1 F (o, o) e 130l Hg it ). (6.42)
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Proof. We denote || |, instead of || [[-P". The bound (6.41) follows from (6.40), (6.39), (6.28). By (5.6), since X’
does not depend on y, and i;s differs from iy only for the y component, we have

di ¢ FGo)[T, T 1 — di ¢ Flis)[T,C 1= d;i X p(is)[T] — di X p (i0) [ ]
1

_ / 3ydi X (B0, 0 + s (s — y0), 20)ys — yo.Tds = &[T E1.  (643)
0
By (5.18), (6.9), (6.10), (6.4), we estimate

1607, s <5 27y~ (1 2o Pl + 1Z s [Flsyto + 1 Z sy T [ Fo 54 ) (6.44)

where Z := F(ip, &) (recall (6.5)). Note that &7, E] is, in fact, independent of E Denote the set of variables
(¥, n, w) =:u. Under the transformation G, the nonlinear operator F in (5.6) transforms into

F(Gsu()), ) = DGs(u(@))(Douly) — Xk (u(@),£)), K =He;o0Gs, (6.45)
see (6 21). leferentlatmg (6.45) at the tr1v1al torus us(p) = Ggl(i,;)(w) = (¢,0,0), at ¢ = ¢, in the directions
@.2) = (DG3(up)~'[71,8) = DGs(us) "' 7,7 1, we get

di. F(i5)[7,21= DGs(us) (Dol — du,c Xk (u5, S)[T, ¢ 1) + E1[7, 2 1, (6.46)

&[T, ¢ 1= D*Gs(us)[DGs(up) ™' Flis, o), DGs(us) ™' [T1], (6.47)
where dy ; Xk (us, £o) is expanded in (6.27). In fact, & is independent of E We split

— dy e Xk (s, 60)[Q 1 =D[A, T 1+ Rz[T. T 1,
where D[U, E] is defined in (6.29) and
—3y K10(9)[¥]
Rz[9.7.1.21:= | 3y18460@)1" [V co] + dyy Koo (@)1 + [y Kro (@)1 7 + [0y Kor ()1 (6.48)
—0x {0y Ko1(@)[¥]}
(Rz is independent ofE). By (6.43) and (6.46),

di c Flio) = DGs(us) oD o DGs(us) ™' + &+ &1+ &, & = DGs(us) o Rz 0 DGs(us) ™. (6.49)

By Lemmata 6.4, 6.7, 6.1, and (6.11), (6.4), the terms &1, & (see (6.47), (6.49), (6.48)) satisfy the same bound (6.44)
as & (in fact even better). Thus the sum & := &y + &1 + &, satisfies (6.44). Applying Ty defined in (6.40) to the right
in (6.49), since D o Dl=1 (see Proposition 6.9), we get d; ; F(ip) o To — I = £ o Ty. Then (6.42) follows from
(6.41) and the bound (6.44) for £. O

7. The linearized operator in the normal directions

The goal of this section is to write an explicit expression of the linearized operator £, defined in (6.32), see
Proposition 7.6. To this aim, we compute %(Koz(w)w, W)y, wEH Sl, which collects all the components of (H; o
Gs) (¥, 0, w) that are quadratic in w, see (6.20).

We first prove some preliminary lemmata.

Lemma 7.1. Let H be a Hamiltonian of class CZ(HO1 (Ty),R) and consider a map ®(u) := u + ¥V (u) satisfying
V(y) =T gV (I1gu), for all u, where E is a finite dimensional subspace as in (3.3). Then

9u[V(H o ®)])[h] = (8, VH) (P u))[h] + Rw)[h], (7.1)

where R(u) has the “finite dimensional” form

R =Y (h,gj) 2p x5 W) (7.2)

ljl=C
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with x;j(u) = evx or giu) = e*_ The remainder R(u) = Ro(u) + R1(u) + Ro(u) with

Ro(u) := (0, VH)(P(u)) 0,V (), Ri(w) = [0, 4% @) [, VH(® )],
Ra(u) = [0, W )] (3, V H) (P (1)) 3 P (). (7.3)

Proof. By a direct calculation,
V(H o ®)(u) = [®' )] VH(®u)) = VH(® 1)) + [V )" VH(®(u)) (7.4)

where @' (u) := (3, ®)(u) and [ ]7 denotes the transpose with respect to the L? scalar product. Differentiating (7.4),
we get (7.1) and (7.3).
Let us show that each R, has the form (7.2). We have

W) =MW [pwle . [V@)]" =TV Tgu)] TE. (7.5)
Hence, setting A := (3, VH)(® (u))[1g V' (Igu), we get
Ro@)[h] = AlMghl= > hjA@E )= " (h.g;)12m X
ljl=C ljil=C
with g; 1= €'/*, x; := A(e"/¥). Similarly, using (7.5), and setting A := [¥'(T1gu)]" T1£ (3, VH) (P (1)) P’ (u), we get
Ro)[h] =T g[Ah]= > (Ah,e7) 2y = Y (h, AT e o pyel™
ljl=C ljil=c
which has the form (7.2) with g; := AT (/%) and x ji= /¥ Differentiating the second equality in (7.5), we see that
Ri(w)[h]=Tg[AR], Ah:=0,{V (Tgu) Y gh, T(VH)(®w))],
which has the same form of R, and so (7.2). O

Lemma 7.2. Let H(u) := f?l‘ fw)X w)dx where X(u) = g X (ITgu) and f(u)(x) := f(u(x)) is the composition
operator for a function of class C*. Then

(3, VH)w)[h] = f" )X () h + R(u)[h] (7.6)
where R(u) has the form (7.2) with x;(u) = v or giu) = elvx,

Proof. A direct calculation proves that VH (u) = f'(u)X (u) + X' (u) [ f ()], and (7.6) follows with R(u)[h] =
F @)X @]+ 84X @)}k, £@)]+ X' @) T [f'u)h], which has the form (7.2). O

We conclude this section with a technical lemma used from the end of Section 8.3 about the decay norms of “finite
dimensional operators”. Note that operators of the form (7.7) (that will appear in Section 8.1) reduce to those in (7.2)
when the functions g;(7), x;(t) are independent of .

Lemma 7.3. Let R be an operator of the form
1
Ri= 3 [ (0 50) oyt 0. a7
lj1I=CYy

where the functions g;(t), x;j(v) € H®, © € [0, 1] depend in a Lipschitz way on the parameter w. Then its matrix
s-decay norm (see (2.16)—(2.17)) satisfies

Li Li Li Li Li
RIS <0 37 supy o {16 @I g @157 + 1 P llg @1}
ljl=C

Proof. For each t € [0, 1], the operator & > (h, g;(t)) x; (1) is the composition x;(7) o I1p o g;(t) of the multipli-
cation operators for g;(z), x;(tr) and h > Tlph := fT hdx. Hence the lemma follows by the interpolation estimate
(2.20) and (2.18). O
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7.1. Composition with the map G

In the sequel we shall use that Js := Js(¢; ®) :=is(¢; ) — (¢, 0, 0) satisfies, by (6.9) and (6.4),

Lip(y)

o) < eyt (7.8)

135l

We now study the Hamiltonian K := Hy 0 G5 = ¢ 2?H o A, o G defined in (6.20), (4.6).
Recalling (4.7) and (6.19) the map A, o G has the form

Aso Gs(Pronw) =& Y \J& + 207D jIlys (W) + L + Law]; P 4 6 (zo(p) +w) (7.9)
jes
where
Li(y) =[dy60(¥)]" ", La(y):= [(3920)(90(1//))]T3;1 : (7.10)
By Taylor’s formula, we develop (7.9) in w at n =0, w =0, and we get A, o G5(¥,0, w) = Ts(¥) + T1 (¥)w +
L) [w, w] + T>3(¥, w), where
Ts(¥) := (Ae 0 G5)(¥, 0,0) = evs(¥) + °20(¥) ,

v = 3\ J&) + 20D jlLys ()] SR (7.11)

jes

is the approximate isotropic torus in phase space (it corresponds to ig in Lemma 6.3),
2D jILa ()] e
j 2e + 2001,
107D PILa (w0
818; + e20D | jllys W11 ¢

Ti(y)w=¢ e+ ebw="1U ()w + Pw (7.12)

) [w, wl=—&y U= e U () [w, w] (7.13)

jes
and 7>3(y, w) collects all the terms of order at least cubic in w. In the notation of (4.7), the function vs(¥) in (7.11) is
vs(¥) = v (Bo(¥), ys(¥)). The terms Uy, U, = O(1) in €. Moreover, using that L, () in (7.10) vanishes as zo = 0,

they satisfy

IU1wlls = 1Tsllsllwllsy + 1Tsllsollwlls ,  1U2[w, wllls < (1Tsllsl1Tslls lwllg, + 1Tsll5, Nwllso llwlls (7.14)
and also in the || ||l“lp(y)—norm.

By Taylor’s formula H(u + h) = H(u) + (VH)(w), h) 2 (1) + %((8,, VH)w)hL, h) 2 ery + O (h3). Specifying at
u=Ts(y) and h = T1(Y)w + Tr(Y)[w, w] + T>3(¢, w), we obtain that the sum of all the components of K =
e 2 (HoA, o Gs)(¥, 0, w) that are quadratic in w is

1 1

5 (Koow, w)2p) = e" P (VH)(Ty), Talw, w]) 20y + s—QbE«BMVH)(Ta)[le], Tiw)2r) -
Inserting the expressions (7.12), (7.13) we get

Koa(¥)w = (8, VH)(Ts)[w] 4 26710, VH) (Ts) [Uw] + 2O DU T (8, VH) (T)[Uyw]

+ 223U [w, 1T (VH)(Ty). (7.15)
Lemma 7.4.
(Ko2(¥)w, w) 27y = (0 VH)(T3)[w], w) 1207y + (RWIw, w) 27 (7.16)
where R(yr)w has the “finite dimensional” form
R@w="Y" (w,gj(¥)) ) xj (%) (7.17)

ljl=C
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where, for some 0 :=0 (v, 7) > 0,

Li Li Li Li Li
1 15D 1P g 15D 150 < 21351500 (7.18)

18; g, [T s 1 Nlso + 1182807 s 15 s =+ 1€ 5o 1185 x5 L85 4 11 115185 2 12 s
<s " MNsto + €27 Ts 510 1 T lspt0 » (7.19)

and, as usual, i = (0, y,z7) (see (5.1)), T= @, 3,2).

Proof. Since Uy = I1gU; and U, = IlgU,, the last three terms in (7.15) have all the form (7.17) (argue as in
Lemma 7.1). We now prove that they are also small in size.
The contributions in (7.15) from Hj are better analyzed by the expression

1
e Hy 0 Ac 0 Gy, n, w) =const+ D P [ys() + Lin + La@w]; + /(zo(w) +w)ydx
jES+ T

which follows by (4.8), (6.19), (7.10). Hence the only contribution to (Kpow, w) is fT w% dx. Now we con-
sider the cubic term H3 in (3.6). A direct calculation shows that for u = v + z, VH3s(u) = 3z2 + 6H§(vz), and
0, VHi(w)[Ujw] = 6H§(zU1w) (since Uyw € Hy). Therefore

VH3(Ts) = 36?023 + 66" g (v520), 8, VH3(T3)[Uyw] = 6e°TI5 (20 Uyw). (7.20)
By (7.20) one has ((3, VH3)(Ts)[Uyw], Ulw)Lz(T) =0, and since also U = T15U>,

"0, VHA(Ty) U w] 4 e Usw, 1T VH;(T5) = 662~ T (zoUyw) + 363 Usw, 1723 (7.21)
These terms have the form (7.17) and, using (7.14), (6.4), they satisfy (7.18).

Finally we consider all the terms which arise from Hs>4 = 0(144). The operators b1y, VH=>4(T5)Uy,

e20-DUT (3, VH=4)(T3) U1, e273UT VH-4(T5) have the form (7.17) and, using | Tl5*" < e(1 + 135]5"7),

(7.14), (6.4), the bound (7.18) holds. Notice that the biggest term is *~19, VH>4(Ts)U].
By (6.12) and using explicit formulae (7.10)—(7.13) we get estimate (7.19). O

The conclusion of this section is that, after the composition with the action-angle variables, the rescaling (4.5),
and the transformation G, the linearized operator to analyze is H SL > w > (3, VH)(Ts)[w], up to finite dimensional
operators which have the form (7.17) and size (7.18).

7.2. The linearized operator in the normal directions

In view of (7.16) we now compute ((3,, VH)(Ts)[w], w)Lz(T), we Hg-, where H = H o ® g and ® p is the Birkhoff
map of Proposition 3.1. It is convenient to estimate separately the terms in

H=Ho®p=(Hy+ H3)oPp+ H>50Pp (7.22)

where H;, H3, H>5 are defined in (3.1).
We first consider H>5 o ®p. By (3.1) we get VH=5(u) = mo[(9y f)(x, u, ux)] — 9x{(0u, f)(x, u, uy)}, see (2.2).
Since the Birkhoff transformation ® p has the form (3.4), Lemma 7.1 (at u = T3, see (7.11)) implies that

04V (Hz5 0 @) (T5)[h] = (3, V Hz5)(®p(T5))[1] + Ru.s (T5)[h]

= 0x (r1(T5)0xh) + ro(Ts)h + Ru.s(Ts)[h] (7.23)

where the multiplicative functions ro(7s), 1 (T5) are
ro(Ts) == oo(P 5 (T5)), 00 (1) := Ouu f)(x, u, ux) — O {Buu, ) (X, 1, ux)}, (7.24)
ri(Ts) == o1(Pp(T5)), o1(u) == =y, ), u, uy), (7.25)

the remainder Ry, (1) has the form (7.2) with x; = eljx 1jx

o(v,7) >0,

or g; = e* and, using (7.3), it satisfies, for some o :=
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y . L L ~ L
1 12 [ [P0 g [P0 5 JHP) < g 3,00

”X] s+2
18: & (s s + 118 T sg Nl xj 1l + ||g,-||so||al~x,~[?]||s + llgjl1s18: x; T L5,
<5 &' (IMNls1o + 1Ts 52Tl s042)-

Now we consider the contributions from (H> + H3) o ®p. By Lemma 7.1 and the expressions of Hp, H3 in (3.1) we
deduce that

0uV(Hy 0 @p)(T5)[h] = —0xxh + Ru, (T5)[h], 9,V (H3 0 ®p)(Ts)[h] = 6Pp(Ts)h + Ruy(Ts)[h],

where ® g (Ts) is a function with zero space average, because ®p : HO1 (Ty) — HOl (T) (Proposition 3.1) and Ry, (1),
R u; (u) have the form (7.2). By (7.3), the size (Ru, + Ru;)(Ts) = O(s). We expand

(Ru, + Ru)(T5) =eR1 + e*Ra+R-2,
where 7~2>2 has size 0(82), and we get, Vh € HL,

M9, V((Hy + H3) 0 @) (T5)[h] = —drch + Mg (6@ (T5)h) + Mg (sR1 + 6" Ra + Ro2)[h]. (7.26)
We also develop the function ® g(75) is powers of €. Expand ® g (1) = u + W2 (u) + W>3(u), where W2 (1) is quadratic,
Weos3(u) = O (u?), and both map HO1 (Ty) — HO1 (Ty). Atu = Ts = gvs + ePzg we get

p(T5) = Ts + o (T5) + W=3(T5) = evs + 2 W (vs) +§ (7.27)
where g := ePz0 + Wa(Ts) — e2Ws (vs) + W= 3(T5) has zero space average and it satisfies

L L o~ ~
PO < 4T3 10T <o (Il + 135115 1L,
In particular, its low norm |7 ]|, Lip(y) <50 e0by 1 = o(?).
We need an exact expression of the terms of order ¢ and €2 in (7.26). We compare the Hamiltonian (3.5) with
(7.22), noting that (H>5 0 ®p)(u) = 0(u5) because f satisfies (1.5) and ®p(#) = O (u). Therefore

415

(Hy+ H3) o ®p = Hy +Hz + Ha + O(u),
and the homogeneous terms of (H> + H3) o ®p of degree 2, 3, 4 in u are Ha, H3, Ha respectively. As a consequence,
the terms of order ¢ and &2 in (7.26) (both in the function ®5(Ts) and in the remainders R, R,) come only from
Hy + H3 + Ha. Actually they come from Ha, H3 and Ha 2 (see (3.6), (3.7)) because, at u = Ts = gvs + gbz, for all
heHy,

M (3, VHa) (T3)[h] = N5 (3, VHa 2) (T)[h] + 0(e?) .
A direct calculation based on the expressions (3.6), (3.7) shows that, for all h € H &

M5 (3, V(Hy + M3 + Ha)) (T5)[h] = —0xrh + 66TTg (vsh) + 66" T (20h) + £ T {670[(3; ' v5)*1h

+ 6vsTTs[(0; ' v5) (3 ' h)] — 60 {(9; ' vs) Ts[vshl}} + o(e?). (7.28)

Thus, comparing the terms of order ¢, &2 in (7.26) (using (7.27)) with those in (7.28) we deduce that the operators
R1, R, and the function W, (vs) are

R1=0, Ralh]=6vsTIs[(d;  vs) (@5 h)] — 68, {05 'vs)Ts[vshl}, Wa(vs) = 7ol (35 'vs)?]. (7.29)
In conclusion, by (7.22), (7.26), (7.23), (7.27), (7.29), we get, for all h € Hg. ,
M 0, VH(Ty)[h] = —dxch + T [ (66v5 + £26m0[ (3 'v5)*1 + =2 + p=4)h]
+ M50, (r1 (T3)dch) + £ TIs Ralh] + T Roolh] (7.30)

where rq is defined in (7.24), R, in (7.29), the remainder R-, := 7~2>2 + Rpu.5(Ts) and the functions (using also
(7.24), (7.25), (1.5)),

g2 1= 6G + & ((uu f5) (vs, (V8)x) — x{ Buu, f5) (v, (v8)x)}) (7.31)
P4 :=ro(T5) — [ (B f5) (s, (V5)x) — dx{ (B, f5) (Vs (V5):)}] .- (7.32)
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Lemma 7.5. [.q-2dx =0.

Proof. We already observed that g has zero x-average as well as the derivative 9, {(9,u, f5)(v, vy)}. Finally

b Tt . .
(Buu f5) (v, vx) = Z CirjaiaVi "/’21)1'361(]l PERT . y= Z vje (7.33)
J1:J2,J3€S jes

for some coefficient ¢, j, j;, and therefore it has zero average by hypothesis (S1). O
By Lemma 7.4 and the results of this section (in particular (7.30)) we deduce:

Proposition 7.6. Assume (7.8). Then the Hamiltonian operator L, has the form, Vh € H g L(TvF),
Loh = w - dh — 3 Kooh = TT5 (@ - 3ph + dxx (a1dch) + 3y (aoh) — £28, Rah — 3, Rh) (7.34)
where R, is defined in (7.29), Ry :=R~2 + R(¥) (with R(Y) defined in Lemma 7.4), the functions

ay:=1—ri(Ts), ao:=—(ep1+e*pr+qea+p=4), p1i=6vs, poi=6mol(dy vs)’], (7.35)

the function g is defined in (7.31) and satisfies fT qs=2dx =0, the function p>4 is defined in (7.32), ry in (7.25), Ts
and vs in (7.11). For px = p1, p2,

1pls™ P <, T 135057, 18 prlTllls <o 1Tss1 + 135 lset 1 Tl so1 (7.36)
g2l <o &3 + e 1Ts 1P WaigoalT e <o & (Tt + 1Tsles1 Tllsp1) (7.37)
lar — 15 <, 0+ 131507) . Naian [Tl <5 € (41 + 135041 Tl sos1) (7.38)
Ipsals™®? <y et + 2T 19 poalTls <5 €72 (Wlss2 + 175 5521 Ts502) (7.39)

where Js(¢) = (B0(@) — @, ys(¢), z0(@)) corresponds to Ts. The remainder Ry has the form (7.2) with

L L L
115D + 1 1P <o 1+ 13050 18ig 171 + 180T <s [llsto + 1Tsllsto [ Tllsoro  (7.40)
and also Ry has the form (7.2) with

L L ~ nLi
1P I P + 11 I PY) < 3 + 235 B (7.41)
188 ST 1 Fllso + 198507 Mo ¢ F s+ 1Mo 185 F LT + g s 105 T2 T s
<5 & MMlsto + & N Ts 510 1 T g0 - (7.42)

The bounds (7.40), (7.41) imply, by Lemma 7.3, estimates for the s-decay norms of R, and R.. The linearized
operator L, := L, (w, is(w)) depends on the parameter w both directly and also through the dependence on the torus
is(w). We have estimated also the partial derivative 9; with respect to the variables i (see (5.1)) in order to control,
along the nonlinear Nash—Moser iteration, the Lipschitz variation of the eigenvalues of £, with respect to @ and the
approximate solution is.

8. Reduction of the linearized operator in the normal directions

The goal of this section is to conjugate the Hamiltonian operator L, in (7.34) to the diagonal operator L, defined
in (8.121). The proof is obtained applying different kind of symplectic transformations. We shall always assume (7.8).

8.1. Change of the space variable

The first task is to conjugate L, in (7.34) to £ in (8.31), which has the coefficient of d,, independent on the
space variable. We look for a ¢-dependent family of symplectic diffeomorphisms ®(¢) of H 5‘ which differ from

AL =TIg ATy, (Ah) (9, %) = (1+ Be(p, x)h(p, x + B, X)), (8.1)
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up to a small “finite dimensional” remainder, see (8.6). Each A(¢) is a symplectic map of the phase space, see
[2]-Remark 3.3. If || 8| y1.0 < 1/2 then A is invertible, see Lemma 2.4, and its inverse and adjoint maps are

(A7) (@, y) == 1+ By(p, Y,y + B0, ),  (ATh) (@, y) =h(p,y + B(p, y)) (8.2)

where x =y + B(¢, y) is the inverse diffeomorphism (of T) of y = x + (¢, x).

The restricted maps A (¢) : H SJ- - H SJ- are not symplectic. In order to find a symplectic diffeomorphism near
A (p), the first observation is that each A(¢p) can be seen as the time 1-flow of a time dependent Hamiltonian PDE.
Indeed A(g) (for simplicity we skip the dependence on ¢) is homotopic to the identity via the path of symplectic
diffeomorphisms

ur> (I+foulx +18(x)), t€l[0,1],
which is the trajectory solution of the time dependent, linear Hamiltonian PDE
Bx)
1+ 18:(x)’

with value u(x) at t =0 and Au = (1 + By (x))u(x + B(x)) at T = 1. The equation (8.3) is a transport equation. Its
associated characteristic ODE is

0ru =0y (b(t, x)u), b(r,x):= (8.3)

d
Tox=—b(r.x). (8.4)

We denote its flow by ™%, namely y ™7 (y) is the solution of (8.4) with ™% (y) = y. Each ™7 is a diffeomor-
phism of the torus T.

Remark 8.1. Let y — y + B(z,y) be the inverse diffeomorphism of x > x + 78 (x). Differentiating the identity
B(z,y) +tB(y + B(z,y)) =0 with respect to t it results that y*(y) := y&T(y) =y + B(z, y).

Then we define a symplectic map ® of H SL as the time-1 flow of the Hamiltonian PDE
dru = 535 (b(T, x)u) = dx (b(z, x)u) — Mgdy (b(r, X)), ue Hy . (8.5)

Note that H?Bx (b(7, x)u) is the Hamiltonian vector field generated by % fT b(r, x)u?dx restricted to HSL. ‘We denote
by @7 the flow of (8.5), namely ®™7 (i) is the solution of (8.5) with initial condition &% (1g) = ug. The flow
is well defined in Sobolev spaces H ; 1 (Ty) for b(z, x) smooth enough (standard theory of linear hyperbolic PDE:s,

see e.g. Section 0.8 in [31]). It is natural to expect that the difference between the flow map @ := ®%! and A isa
“finite-dimensional” remainder of the size of .

Lemma 8.2. For || Bl yysy+1.0 small, there exists an invertible symplectic transformation ® = A +Re of H ; 1, where
A isdefined in (8.1) and R is a “finite-dimensional” remainder
1

Roh = Z/(h, 8j (‘L’))LZ(T)X‘/ (t)dt + Z (h’ wj)Lz(T)eijx 56
€50 jes

for some functions x(t), g;j(t), ¥; € H® satisfying
IVills s 18 (Dlls <s IBllws+2 s X (Olls <s L+ [1Bllws+1., VT €[0, 1]. (8.7)
Furthermore, the following tame estimates holds

1= Alls <5 IRl + 1Bllwss2e0lBllsy . Vh € HS, (8.8)

Proof. Let w(t, x) := (®Tug)(x) denote the solution of (8.5) with initial condition ®°(w) = ug € Hﬁ-. The difference

(AJ_—dD)uo:l'Ié‘,Auo—w(l,-):Auo—w(1,~)—H5Auo, VuoEij‘, (8.9)
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and
MsAug = TIs(A = DIguo =Y (0. ¥;) ame’™ .y = (AT = Del/*. (8.10)
jes
We claim that the difference

1
Auo —w(l, x) = (1 + B (x)) /(1 + () M50 (b(w(T) ] (¥ (x + B(x))) d (8.11)
0

where y ¥ (y) := yO*T(y) is the flow of (8.4). Indeed the solution w(t, x) of (8.5) satisfies

I {w(T, y" (M)} =ba(z, ¥y  (M)w(z, y" () — [Msdx (b(Dw ()] (¥ " (»)) .-
Then, by the variation of constant formula, we find

T

A ] O R R LR XCOO) D]
0

Since d,y ¥ (y) solves the variational equation 9; (3, y*(y)) = —by(zr,y* (¥))(3,y*(y)) with Byyo(y) =1 we have
that

elo et ONds — (3,37 () T = 14 1B, (x) (8.12)

by Remark 8.1, and so we derive the expression
w(t, x) = (1+ fﬁx(X)){uo(x +16(x)) — /(1 + 5B () [Msd (B(s)w ()] (v (x + T,B(X)))dS} .
0

Evaluating at T = 1, formula (8.11) follows. Next, we develop (recall w(t) = ®% (ug))
[Msd: b@wENIX) =Y (0, 8/(D) 2y’ 8j () :==(@) [b(r)dre ], (8.13)
jes
and (8.11) becomes

1

Aug —w(l, )= _/Z (u() ’ gj(t))LZ(']I)Xj(tv Jdrt, (8.14)
0 Jjes
where
X (T, %) = —(1 4 Br () (1 + Ty (x)) "LtV 6B, (8.15)

By (8.9), (8.10), (8.11), (8.14) we deduce that = A + Rg asin (8.6).

We now prove the estimates (8.7). Each function ¥ ; in (8.10) satisfies |||y <s l|Bllws., see (8.2). The bound
lx;(@lls <s 1+ IBllys+1.00 follows by (8.15). The tame estimates for g;(r) defined in (8.13) are more difficult
because require tame estimates for the adjoint (®%)7, Vz € [0, 1]. The adjoint of the flow map can be represented as
the flow map of the “adjoint” PDE

32 =T {b(r, x)3, M5z} =b(r,x)dz — Ms(b(r,x)dz), z€Hy, (8.16)

where —Hé‘b(‘t, x)0y is the Lz—adjoint of the Hamiltonian vector field in (8.5). We denote by W7 the flow of (8.16),
namely W™ (v) is the solution of (8.16) with W™ (v) = v. Since the derivative d; (P (up), ¥ " (v)) 2.1y =0, VT,
we deduce that (™ (ug), ¥ (v)) 2(1) = (D% (up), W’O'O(v))Lz(T), namely (recall that W™ % (v) = v) the adjoint

@) =w™0 v e(o,1]. (8.17)
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Thus it is sufficient to prove tame estimates for the flow W™ 7. We first provide a useful expression for the solution
z(t,x) := W™ T(v) of (8.16), obtained by the methods of characteristics. Let ™7 (y) be the flow of (8.4). Since

dzz(t, ™7 () = —[Ms(b(T)dx 2(D)(y ™" (y)) we get
70
(T, YT (y) = v(y) +/[Hs(b(S)axZ(S)](VTO’S(y))dS, vVt €0, 1].
T
Denoting by y = x + o (7, x) the inverse diffeomorphism of x =y (y) =y + o (7, y), we get

7
WO T () =z(t,x) =v(x +0(1,x)) + /[Hs(b(S)axz(S)](V")’s (x+o(r,x)))ds

70
=v(x+o(r X))+ [ Y (@), pj(©)kj(s,x)ds =v(x +0(t, %)) + Rev, (8.18)
T JES
where p;(s) := =0y (b(s)el™), icj(s, x) := €77 F0 (1) and

70

(Rev)(x) == | D (W™ (v), pj())p2emkj(s, x)ds .
T JES

Since [lo(z, ) llwsoo, [0 (T, )lws.e <s [Bllws+1. (recall also (8.3)), we derive [|pjlls <5 lBllws+2.0c, llKjlls < 1+
[1Bllws+1.0c and [lu(x + o (7, X)) lls <s lvlls + I Bllws+1.0l[vlse, YT € [0, 1]. Moreover

IRzvlls <5 suprefo, W™ T @)lIs I Bllyysot2.00 4+ uprepo, 11 () llso 1Bl ys+2.00 -
Therefore, for all T € [0, 1],

W ulls <5 vlls 4+ [Bllws+100 0]l + Supr o, 11 { 1Y 0T vls 1Bl ysor200 + 1O 0[5l Bllyss200} . (8.19)
For s = s9 it implies

supzefo, V™" (@) llsy <so 10llsg (1 + 1Bl yyso+1.00) + 8uPzefo 171%™ (W) Lo Il Bll s 2.00
and so, for || Bl yysp+2.00 < c(s0) small enough,

sup, o, 1 1™ T ()llsy <so Vs - (8.20)
Finally (8.19), (8.20) imply the tame estimate

supzepo, 1™ T Wy <s vlls + 11 Bllws+2e0V]ls - (8.21)

By (8.17) and (8.21) we deduce the bound (8.7) for g; defined in (8.13). The tame estimate (8.8) for ® follows by that
of A and (8.7) (use Lemma 2.4). The estimate for ®~! follows in the same way because ®~! = &1 is the backward
flow. O

We conjugate L, in (7.34) via the symplectic map ® = 4| +Ro of Lemma 8.2. We compute (split H§ =1—1TIly)

Lo® = ®D,, + M5 A(b3dyyy + badyy + b1dy + bo)II5 + Ry, (8.22)
where the coefficients are
bi(p, y) == AT[a1(1 + B,)°] ba(g, y) i= AT [2(a))« (1 + Bx)? + 6a1 B (1 + )] (8.23)
2
bi(p,y) = AT[(Dw,B) +3a; 1’_3:% +4ai Brxx +6(a1)x Brx + (@) xx (1 + Br) +ao(l + ﬂx>] (8.24)
. T (Dwﬂx) IBXXXX ﬂxxx ﬂxx IBXX
bo(o, )= AT a2 @y by S (o] (8.25)
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and the remainder
Ry = —TIg0 (e Ra + Ry AL — T (a1dxrx + 2(a1)x0cx + ((@1)xx + a0)dx + (a0), ) s ATl
+[Dw, Rol + (Lo — Du)Ro - (8.26)

The commutator [D,,, Re] has the form (8.6) with Dy,g; or D, x;, D,V; instead of x;, g;, ¥; respectively. Also
the last term (L, — Dy, )R e in (8.26) has the form (8.6) (note that L, — D,, does not contain derivatives with respect
to ). By (8.22), and decomposing I = ITg + I1¢, we get

Lo® = ®(Dy + badyyy + badyy + b1y + bo) g + R , (8.27)
Rir = {TI§(A— DITs — Ro |} (b3dyyy + badyy + b1y + bo)[I5 + Ry . (8.28)
Now we choose the function 8 = B(¢, x) such that

ar (g, x)(1 + B (@, x)° = b3(p) (8.29)

so that the coefficient b3 in (8.23) depends only on ¢ (note that AT b3 (¢)] = b3(¢)). The only solution of (8.29) with
zero space average is (see e.g. [2]-Section 3.1)

1 -3
pi=a o mi=ba@) @ P =1 bae)i= (5 @ ax) (8.30)
T

Applying the symplectic map ®~! in (8.27) we obtain the Hamiltonian operator (see Definition 2.2)

L1:=L,® =TI5(w-dy + b3(9)dyyy + b1dy + bo) 5 + Ry (8.31)
where R := ®'R;;. We used that, by the Hamiltonian nature of £, the coefficient b, = 2(b3), (see [2]-Remark 3.5)
and so, by the choice (8.30), we have by =2(b3), = 0. In the next lemma we analyze the structure of the remainder ;.

Lemma 8.3. The operator R has the form (7.7).

Proof. The remainders R; and Rj; have the form (7.7). Inde_:ed R2, R4 in (8.26) have the form (7.2) (see Propo-
sition 7.6) and the term IMgAw = Zjes(ATe”x, w)Lz(T)e‘” has the same form. By (8.6), the terms of Ry,
Ry which involves the operator R¢ have the form (7.7). All the operations involved preserve this structure: if
Rrw = x(t)(w, (7)) 2(1), T € [0, 1], then

R Mgw = x(1)(IM5g(1), w) 2.  ReAw = x (1) (A" (), w)2py.  dxRew = 3 (1)(8(T), w) 2y -

M Rew = (T x (D) (@(0), w2y, ARrw = (Ax () (g (1), w) 2y

O Rew = (@7 ¥ (1)) (g(T), w) 27
(the last equality holds because o 1( flw)=f (go)CD_l(w) for all function f(¢)). Hence R has the form (7.7)
where x;(7) € HSL forallt €[0,1]. O

We now put in evidence the terms of order ¢, €2, ..., in by, bo, R1, recalling that a; — 1 = 0(83) (see (7.38)),
ap= 0 (¢) (see (7.35)—(7.39)), and B = 0(83) (proved below in (8.35)). We expand b in (8.24) as

by =—¢ep) —&2p2 — g2+ Do + 4Brxx + (@1)ax + b1.54 (8.32)

where by >4 = 0(&%) is defined by difference (the precise estimate is in Lemma 8.5).
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Remark 8.4. The function D, has zero average in x by (8.30) as well as (a1)xx, Bxxx-

Similarly, we expand by in (8.25) as

bo = —e(p1)x — 2(P2)x — (§=2)x + DBy + Brxxx + bo.>4 (8.33)

where by >4 = O(&%) is defined by difference.
Using the equalities (8.28), (8.26) and Mg AITE = IMg(A — 1)1'I§ we get

R = CD_IRH = —82H§8x7€2 + Ry (8.34)

where R is defined in (7.29) and we have renamed R, the term of order 0(82) in R1. The remainder R, in (8.34)
has the form (7.7).

Lemma 8.5. There is 0 = o (t, v) > 0 such that

IBIS™Y <, A+ 1Ts15°7), 19:BIT s <5 €3 (Tlsso + 1Tslst0 Tl g0 ) - (8.35)
b3 — 1157 <5 e 4+ P2 351200 19:ba [Ty <5 €772 (ITlls0 + 1540 Tl so40) (8.36)
b1 5alls™7) + l1bo 54 lSPY) <y &t + 242 35 1P (8.37)
19;1,=4[T1lls + 19:b0,2a[Tlls <5 €77 (D540 + 1 Ts st [T 59+ )- (8.38)
The transformations ®, ®~' satisfy
o= AP < 1aIEY + 1351 R 1R (8.39)
18: @ )T < Whllso [Tl + W llsgro [Tlsro 4 15115 I llsgrr [Tspvor - (8.40)

Moreover the remainder R, has the form (7.7), where the functions x;(t), g;(t) satisfy the estimates (7.41)~(7.42)
uniformly in T € [0, 1].

Proof. The estimates (8.35) follow by (8.30), (7.38), and the usual interpolation and tame estimates in Lemmata
2.2-2.4 (and Lemma 5.13) and (7.8). For the estimates of b3, by (8.30) and (7.35) we consider the function r; defined
in (7.25). Recalling also (3.4) and (7.11), the function

r1(Ts) = &3 Ouu, f5) (s, (8)x) + 11,54, 71,54 :=r1(T5) — & @uyu, f5)(vs, (V5)x) -

Hypothesis (S1) implies, as in the proof of Lemma 7.5, that the space average fT(E)uX u, f5)(vs, (vs)x)dx = 0. Hence
the bound (8.36) for b3 — 1 follows. For the estimates on ®, ®~1 we apply Lemma 8.2 and the estimate (8.35) for S.
We estimate the remainder R in (8.34), using (8.26), (8.28) and (7.41)—(7.42). O

8.2. Reparametrization of time

The goal of this section is to make constant the coefficient of the highest order spatial derivative operator dyyy, by
a quasi-periodic reparametrization of time. We consider the change of variable

(Bw) (g, y) = w(p +wa(),y),  (B7'h)(®,y) :=h® +wa(®),y),

where ¢ = ¥ + wa () is the inverse diffeomorphism of ¥ = ¢ + wa(p) in T'. By conjugation, the differential
operators become

B ' -3,B=p®w-3, B '9yB=3,, p:=B '(1+w- da). (8.41)
By (8.31), using also that B and B~ commute with l'[§, we get
B™'LiB=Tg[pw - 3y + (B~ 'b3)dyyy + (B~'b1)d, + (B~ 'bo)IT5 + B~ R B. (8.42)

We choose « such that
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(B™'b3) @) =m3p(®), m3zeR, namely b3(p) =m3(1+w-d,a(p)) (8.43)

(recall (8.41)). The unique solution with zero average of (8.43) is

1
0(@) = ——(w-8)) " (b3 —m)(),  myi= f by(@)dy . (8.44)
m3 (2m)Y
']1‘\}
Hence, by (8.42),
B 'LiB=pLy,  Lo=T5(w- 8y +m3dyyy +c1dy + o) [Ig + Ry (8.45)
c1:=p YB b)), co:=p Y (B by, Ry :=p 'B"'RB. (8.46)

The transformed operator £; in (8.45) is still Hamiltonian, since the reparametrization of time preserves the Hamilto-
nian structure (see Section 2.2 and Remark 3.7 in [2]).

We now put in evidence the terms of order &, e, ... in ¢y, cp. To this aim, we anticipate the following estimates:
p() =14+0(@EY, a=0(E*y 1), my=1+0(*, B~' —I = O(«) (in low norm), which are proved in Lemma 8.7
below. Then, by (8.32)—(8.33), we expand the functions c1, ¢ in (8.46) as

ci1=—ep1—&*pr— B lgar4+e(p1 — B 'p)) +€X(p2— BT p2) + Do+ 4Brax + (@1)ax + 1,54, (8.47)
co=—e(p)x —2(p2)x — (B~ q=2)x +e(p1 — B~ p)x +%(p2 — B~ p2)x + (DuPB)x + Brxax + 0,24
(8.48)

where c| >4, co,>4 = 0(84) are defined by difference.

Remark 8.6. The functions e(p; — B~ 'p1) = O(e7y ") and €2(ps — B~ pr) = 0(®y 1), see (8.53). For the
reducibility scheme, the terms of order 8)9 with size O(e7y 1) are perturbative, since £y 2 < 1.

The remainder PR, in (8.46) has still the form (7.7) and, by (8.34),

Ry :=—p 'B7I9R B =—¢T150, Ry + Rs (8.49)

where R, is defined in (7.29) and we have renamed R, the term of order o(s2) in R,.

Lemma 8.7. There is 0 = o (v, t) > 0 (possibly larger than o in Lemma 8.5) such that

Imy — 1|HP0) < ce*, 19imalT] < Ce? 2T spt0 (8.50)
Li _ _ Li o~ _
el <g ety =1+ &2 TSR gl Ty <y €2y T (Wt + 13550 [Tllsgt0) s (8:51)
Li Li ~ ~
o — 1P <g et + 2315097 19ipT My <5 6”2 (I0Nls10 + 1T llsto [Tl sp-40) (8.52)

ok — B~ pells™P <o ety T+ et 2y T3 RY k=12 (8.53)
19; (px — B~ p[T1ls <5 €2y 7 (I1lls10 + 1Ts 510 [Tlsp40) — (8.54)
1B~ goally®P <, &3 + P35 IR, (8.55)

18: (B~ g=2)[Tlls <s & (ITllso + 1554 o0 - (8.56)

The terms c1 >4, co,>4 satisfy the bounds (8.37)—(8.38). The transformations B, B! satisfy the estimates (8.39),
(8.40). The remainder Ry has the form (7.7), and the functions g (t), x () satisfy the estimates (7.41)—(7.42) for all
T €0, 1]

Proof. (8.50) follows from (8.44), (8.36). The estimate |||y <s 84j/_l + eb+2y_1 I35 |ls+o and the inequality for 9;
in (8.51) follow by (8.44), (8.36), (8.50). For the first bound in (8.51) we also differentiate (8.44) with respect to the
parameter w. The estimates for p follow from p — 1 = B~ (b3 —m3)/m3. O
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8.3. Translation of the space variable

In view of the next linear Birkhoff normal form steps (whose goal is to eliminate the terms of size ¢ and £?), in the
expressions (8.47), (8.48) we split p1 = p1 + (p1 — p1), p2 = p2 + (p2 — p2) (see (7.35)), where

p1 = 60, P2 1= 6mo[ (37 10)?], g, x) =Y &Vl (8.57)
jes
and £ : S — Z" is the odd injective map (see (1.8))
0:S—>7", L(J):=e, L—J)=—LJ)=—e, i=1,...,v, (8.58)
denoting by ¢; = (0, ..., 1, ..., 0) the i-th vector of the canonical basis of R".

Remark 8.8. All the functions pi, p2, p1 — p1, p2 — p2 have zero average in x.

We write the variable coefficients ¢y, co of the operator £, in (8.45) (see (8.47), (8.48)) as

cl=—ep1 —&*pr+qe, + 1,4, co=—e(p1)x — £2(P2)x + qey + €054 (8.59)

where we define

dc; =4 +4Bxxx + (@)xx s qey '=qx + Brxxxs (8.60)
g:=e(pr—B ' p)+e(pi—p)+e(p2— B~ p)+&*(p2— p2) — B g2+ Do (8.61)

Remark 8.9. The functions ¢.,, ¢, have zero average in x (see Remarks 8.8, 8.4 and Lemma 7.5).

Lemma 8.10. The functions py — p, k =1,2 and q.,, m =0, 1, satisfy

15e — pells™7 < 1350157, 18 (i — polTlls <s 7 + 1351151 (8.62)
0
Li _ Li —~+ Li
g, 1577 <o &3y~ + el TSI 10ige, [T <5 (Tl + 1Ts 1540 Tllsp 0 ) - (8.63)

Proof. The bound (8.62) follows from (8.57), (7.35), (7.11), (7.8). Then use (8.62), (8.53)—(8.56), (8.35), (7.38) to
prove (8.63). The biggest term comes from e(p; — p1). O

We now apply the transformation 7 defined in (8.64) whose goal is to remove the space average from the coefficient
in front of 9,.
Consider the change of the space variable z =y + p(&) which induces on H ; L (TV+1) the operators

(Tw)@, y) :=w@, y+p@), (T 'B@2)=h@z—p@)) (8.64)

(which are a particular case of those used in Section 8.1). The differential operator becomes 7 'w - 9y T = w - 9y +
{w- 3y p()}., T~! 9,7 =09,. Since T, T~ commute with H?, we get

L3:=T 'LoT =g (0 dp +m3d,.. +d1d; + do) 5 + R, (8.65)
di =T 'eD+w-9sp,  do:=T 'co, R3:=T 'RT. (8.66)
We choose
1 ~1 1
= / cidddy, p:=(w-dy) (ml - E/cldy), (8.67)
v+ T

so that 5= [1.dy (%, z) dz = m; for all ¥ € T". Note that, by (8.59),

1
/m(z?, y)dy=/61‘z4(19, vdy, w-dp)=m;— Z/Q,zﬂﬁy y)dy (8.68)
T T T
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because pi, p2, g, have all zero space-average. Also note that 93 has the form (7.7). Since 7 is symplectic, the
operator £3 in (8.65) is Hamiltonian.

Remark 8.11. We require Hypothesis (S1) so that the function g~ has zero space average (see Lemma 7.5). If g-»
did not have zero average, then p in (8.67) would have size 0(53)/_1) (see (7.31)) and, since 7T—! — I = 0(53)/_1),
the function d in (8.71) would satisfy do = O(¢*y ). Therefore it would remain a term of order 8)? which is not
perturbative for the reducibility scheme of Section 8.7.

We put in evidence the terms of size &, e2in dy, d1, Rs. Recalling (8.60), (8.59), we split

dy=—epy—’pa+di. do=—e(p)y— e (p)x+do. Rz=—e"TI50: R+ R (8.69)
where 7_22 is obtained replacing vs with v in R, (see (7.29)), and

di=e(pr—T 'p)+e2(Ppr—T ' p2) + T (ge, +c1,24) - dyp, (8.70)

do:=e(pr =T 'p)x + (P2 — T p2)x + T (qey + co.24), (8.71)

R =T "RT + €50, (R — T~ RoT) + 2§ 0, (Ra — Ra), (8.72)

and R is defined in (8.49). We have also used that 7~ commutes with 3, and with Hé‘.

Remark 8.12. The space average % Jr di(8,2)dz = % Jrdi(¥,2)dz=m; forall 9 € T".

Lemma 8.13. There is 0 := o (v, T) > 0 (possibly larger than in Lemma 8.7) such that

Imy|MPY) < et 19mi[T]] < Ce 2 Tsps0 (8.73)
Li _ —1y~ yLi ~ _ ~

IpIEPY) <g ety = 4 P 2 T 1ER) 18 plT s <5 €212 T (0llsto + 13540 i), (8.74)

~ . Li — ~ Li ~

Il < &y~ 4+ el T2 10l Tl <s €(ITlls10 + 1T5 540 lsp40) (8.75)

for k =0, 1. Moreover the matrix s-decay norm (see (2.16))

~ Li ~ Li N~ —1~
IRLSPY) < &3 4 21T 10 RalTs <5 2T lsto + 827 1Ts o [Tl o - (8.76)

The transformations T, T ! satisfy (8.39), (8.40).

Proof. The estimates (8.73), (8.74) follow by (8.67), (8.59), (8.68), and the bounds for ¢y >4, co,>4 in Lemma 8.7.
The estimates (8.75) follow similarly by (8.63), (8.68), (8.74). The estimates (8.76) follow because TR, T satisfies

the bounds (7.41) like R, does (use Lemma 7.3 and (8.74)) and [2TT9, (Ra — Ra)[FPY <, 621351529, O
It is sufficient to estimate ﬁ* (which has the form (7.7)) only in the s-decay norm (see (8.76)) because the next
transformations will preserve it. Such norms are used in the reducibility scheme of Section 8.7.

8.4. Linear Birkhoff normal form. Step 1

Now we eliminate the terms of order & and &2 of £3. This step is different from the reducibility steps that we
shall perform in Section 8.7, because the diophantine constant y = 0(e?) (see (5.4)) and so terms O(g), O(&2) are
not perturbative. This reduction is possible thanks to the special form of the terms B, €288, defined in (8.77): the
harmonics of ¢B;, and €27 in (8.93), which correspond to a possible small divisor are naught, see Corollary 8.17, and
Lemma 8.21. In this section we eliminate the term ¢83;. In Section 8.5 we eliminate the terms of order &2.

Note that, since the previous transformations ®, B, 7 are O (84)/’1 )-close to the identity, the terms of order ¢ and
&2 in L3 are the same as in the original linearized operator.

We first collect all the terms of order & and &2 in the operator £3 defined in (8.65). By (8.69), (7.29), (8.57) we
have, renaming ¥ = ¢, z = x,

£3 = Hé_(w . 390 + m3axxx + EBI + 8282 +d~18x +j0)né_ + ﬁ*
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where dy, dy, R are defined in (8.70)—(8.72) and (recall also (2.2))
Bih:= =63, (0h), Bah:=—63,{0T1s[(d; ' D)8 h] + hmo[(d; ' 0)*1} + 6m0{ (3, '0)TTs[0R]}. (8.77)

Note that By and B, are the linear Hamiltonian vector fields of H SL generated, respectively, by the Hamiltonian
z—>3 fT vz2 in (3.6), and the fourth order Birkhoff Hamiltonian Hapin (3.7)atv=10.
We transform L3 by a symplectic operator @1 : Hy, (T"*!) — H, (T"*1) of the form
AZ R . [;‘k_3
Oy 1= exp(eAn) = Iy +eAr + 3271 +&34, A= ; TA’{ , (8.78)
>

where A1 (p)h = Z,’, jrese (A1)§/(<p)hj/eijx is a Hamiltonian vector field. The map & is symplectic, because it is the
time-1 flow of a Hamiltonian vector field. Therefore

L3®) — &1 TT5 (Do + M3, Mg = g (6{Dyy A1 + m3[0cxr, A1l + Bi)
FEABIAL+ By + mislieer, AT+ 5 (D,AD)
+d1dy + R3) Mg (8.79)
where
Ry :=d3:(®1 — 1) +do®1 + R,y + &> Ba(®1 — 1)
+ &3 Dy A1 + m3[dxax, A1l + %BlA%HBlZl}. (8.80)

Remark 8.14. R3 has no longer the form (7.7). However R3 = 0(8)?) because A; = 0(8;1) (see Lemma 8.19), and
therefore ®; — IHSL = 0(8;1). Moreover the matrix decay norm of R3 is o(e?).

In order to eliminate the order ¢ from (8.79), we choose

s
i@ T ms (=)

ifo-1+j%—72#0,  j jes lez. (8.81)

otherwise,

(AD] (1) =

This definition is well posed. Indeed, by (8.77) and (8.57),

B (1) = {5611\/51'—1/ ifj—jes, 1=tG—Jj) (8.82)

otherwise.
In particular (B1)§,(l) =0 unless |/| < 1. Thus, for w -l + j/3 — j3 # 0, the denominators in (8.81) satisfy
-1 +m3(j” = jH =Im3@- 1+ = j°) + (@ — m3d) - 1|
> m3lld- 14 = | = lo —maalll| = 1/2, V| <1, (8.83)

for & small, because the nonzero integer | - [ + i3 = j31=>1,(850), and w = &+ O(g?).
Aq defined in (8.81) is a Hamiltonian vector field like B;.

Remark 8.15. This is a general fact: the denominators & j x :=i(w - + m3(k3 — j3)) satisfy 8; j x =8 k,; and an

operator G (¢) is self-adjoint if and only if its matrix elements satisfy Gk = Gi (—1), see [2]-Remark 4.5. In a more
intrinsic way, we could solve the homological equation of this Birkhoff step directly for the Hamiltonian function
whose flow generates ®;.

Lemma8.16.If j, j € S¢, j— j € S, 1 =0(j — j'), then & -1 + j'3 — j3=3jj'(j' — j) #0.
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Proof. Wehave -l = - £(j —j') = (j — j')° because j — j' € S (see (2.10) and (8.58)). Note that j, j' # 0 because
J,j €S and j— j #0because j —j ' €S. O

Corollary 8.17. Let j, j' € S<. If @ -1+ j'3 — j3 =0 then (Bl)jﬁ’(l) =0.

Proof. If (Bl)j/(l) #0then j — j € S,1=4€(j — j') by (8.82). Hence & -1 + j'3 — j3 #0by Lemma 8.16. O

By (8.81) and the previous corollary, the term of order ¢ in (8.79) is
M (DoA1 +m3[dcrx, Al + Bi) g =0. (8.84)
We now estimate the transformation Aj.
Lemma 8.18. (i) Foralll € Z", j, j' € S¢,
[ADT Ol CAil -+~ AT oM <e 21 +1D 7" (8.85)

(if) (Al)j:,(l) =0foralll €Z’, j, j' € S€ such that |j — j'| > Cs, where Cs := max{|j|: j € S}.
Proof. (i) We already noted that (Al)j:/(l) =0, V|l| > 1. Since |w| < |®| + 1, one has, for |I| <1, j # j,

. . . . L. . 1. . . .
@ L4m3(j = I = mal 1] = Pl =l 12 2G4 7 —lel 2 2G4+, VG724 =G
for some constant C > 0. Moreover, recalling that also (8.83) holds, we deduce that for j # j’,
AT D #0 = o l+ma(? = )= c(jl+17D* (8.86)

On the other hand, if j = j/, j € §¢, the matrix (Al)ﬁ(l) =0, VIl €Z", because (Bl)j:(l) =0 by (8.82) (recall that
0 ¢ S). Hence (8.86) holds for all j, j'. By (8.81), (8.86), (8.82) we deduce the first bound in (8.85). The Lipschitz
bound follows similarly (use also |j — j'| < Cs). (ii) follows by (8.81)~(8.82). O

The previous lemma means that A = O (|9 |=1). More precisely we deduce that
Lemma 8.19. [A13, P71+ 13,4, /HPY) < ¢ (s).

Proof. Recalling the definition of the (space—time) matrix norm in (2.23), since (Al)j:f (I) = 0 outside the set of
indices |/| <1, |j1 — j2| < Cs, we have

i 2
A= ) (_Sup 4|j1||(A1)§f(l)|) 1, j)® <C(s)
ll<1,|jl<cs J1=72=)

by Lemma 8.18. The estimates for |A1d,|s and the Lipschitz bounds follow similarly. O

It follows that the symplectic map @ in (8.78) is invertible for ¢ small, with inverse

_ . . Sn—l . . . )
& =exp(—eAD = Iy +eh1, A=) ——(AD" LAY 10, AP <0k 88D

n>1

n!

Since A; solves the homological equation (8.84), the e-term in (8.79) is zero, and, with a straightforward calculation,
the £2-term simplifies to B, + %[Bl, A1]. We obtain the Hamiltonian operator

L4:= @] ' L30) = I5(Dyy + m3dyrx +didy +e2{Ba + LBy, A1l} + Ry)TT5 (8.88)
Ry:= (@] — DIF[2(Bo + 3 [B1, A1) +d13, ]+ @ 'TIg R . (8.89)
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We split A defined in (8.81), (8.82) into A = A+ Zl where, forall j, j' € S¢,1 € Z",

6jVEi-ir

G TelHiT-lA0 s 1=t =), (8.90)

(An] )=

R : i ¢ vocand - /
and (Al)/. (!) := 0 otherwise. By Lemma 8.16, for all j, j' € S, [l € Z", (Al)j ) = 7T=D if j—j eSS, 1=

£(j — j"), and (Al)j/(l) = 0 otherwise, namely (recall the definition of v in (8.57))
Ajh =20g[(0;'9)(0; 'h)].  Yhe H (T"). (8.91)

The difference is

6jE—{@—a) -1+ m3— ("3 =3}

AN = A — AL ()= 8.92
(A1) (D)= (A 1); D (w~l—|—m3(j/3—j3))(c?)~l+j’3—j3) (8.92)
for j,j'e S j—j €S, 1=44(—]j),and (X1)§,(l) = 0 otherwise. Then, by (8.88),
L4 =TI5 (D + m30cxx + d10x +°T + Ry) T, (8.93)
where
1 - g2 ~ -
Tt=32+§[51,A1], R4 := 7[31,A1]+R4. (8.94)

The operator T is Hamiltonian like B,, B, Al (the commutator of two Hamiltonian vector fields is Hamiltonian).

Lemma 8.20. There is 0 = o (v, T) > 0 (possibly larger than in Lemma 8.13) such that

Li — ~ i ~
IRals™" <, &3y~ el T 120 19; Ral Tl <5 & (ITllst0 + 1T lsto [Tllspto) - (8.95)

Proof. We first estimate [B1, Aj] = (B10; ") (8, A1) — (A19,)(37 ' Br). By (8.92), |o — @] < Ce? (as w € Q¢ in (5.2))
and (8.50), arguing as in Lemmata 8.18, 8.19, we deduce that |;fl 8x|£“1p(y) + |8XX1 |]§lp(y) <, €% By (8.77) the norm
IBa 1 [FPY) 4918, |LP0) < C(s). Hence £2|[By, A11[sP") <, &*. Finally (8.94), (8.89), (8.87), (8.80), (8.75),

(8.76), and the interpolation estimate (2.20) imply (8.95). O
8.5. Linear Birkhoff normal form. Step 2

The goal of this section is to remove the term 27 from the operator £4 defined in (8.93). We conjugate the
Hamiltonian operator £4 via a symplectic map

2(k—2)

~ o~ &

Oy i=exp(e?Ag) = Iy +e* Ay +eAy,  Ayi= > TA’; (8.96)
k>2 :

where Az (p) = Zj’j,ese(Az)j:/(w)hj/eif" is a Hamiltonian vector field. We compute

L4®) — D115 (Dyy + m30ixx) My = M (e*{Dyy Az + m3[dyx. A2l + T} + didy + Rs)y (8.97)
Rs := M {e*(DyA2) + m3[0yxx, A2l) + (d10y + €2T) (P2 — 1) + RyD2} T+ . (8.98)
We define
(A (1) = —- /1) if @14+ 3— 340,  (A)) (1):=0 otherwise. (8.99)
I i@ 1+m3G% = ) i

This definition is well posed. Indeed, by (8.94), (8.82), (8.90), (8.77), the matrix entries Tjj/(l) =0forall |j — j'| >
2Cgs,1 € Z¥, where Cs := max{|j|, j € S}. Also Tjj,(l) =0forall j, j' € ¢, |I| > 2 (see also (8.100), (8.103), (8.104)
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below). Thus, arguing like in (8.83), if @ - + j'3 — j3 #0, then |w - +m3(j'3 — j3)| = 1/2. The operator A, is a
Hamiltonian vector field because 7" is Hamiltonian and by Remark 8.15.
Now we prove that the Birkhoff map @, removes completely the term &7 .

Lemma 8.21. Let j, j € SC. If & -1 + j'3 — j> =0, then ij/(l) =0.

Proof. By (8.77), (8.91) we get BjAjh = —120,{vI15[(3; '0)(8; ']}, A1B1h = —12IT5[(3; ' 9)IT5 (Vh)] for all
h € HS , whence, recalling (8.57), for all j, j' € §¢,1 € Z",

sL

(B1. A () = 12i 3 R NIy (8.100)

= T Qb
J1.J2€S. ji+ja=j—J’
J eS8 L(jD+E(a)=l

If ([Bi, Al])?(l) # 0 there are ji, jo € S such that j; + jo=j — j/, j'+ jo € S, £(j1) + £(j2) = 1. Then

_ . . - . - . . (8.58 .
o+ —PF=atGyra-tG+i =P = B0 (8.101)

Thus, if @ -1 + j'3 — j> =0, Lemma 3.3 implies (j; + j2)(j1 + j) (2 + j) = 0. Now ji + j/, jo + j' # 0 because
Ji,j2 €S8, j' € S and S is symmetric. Hence j; + jo» = 0, which implies j = j’ and [ = 0 (the map £ in (8.58) is
odd). In conclusion, if @ - [ + j’3 — j3 = 0, the only nonzero matrix entry ([B1, Al])j. ) is

B A0 =240 Y g0 (8.102)

J2€S, ja+jese
Now we consider B, in (8.77). Split B, = By + By + B3, where Bjh := —63x{17H5[(8;117)3;1h]}, Byh =
—68x{hno[(8x_11—))2]}, Bs3h = 6710{1'15(17h)8x_113}. Their Fourier matrix representation is

Z vV Eii&) ’

i/

(B () =6ij

J1.72€S, it+j'es Ju
im0 G+ )=
(B2)] (1) =6ij 3 Veih, (8.103)
J1:2€S, jit+j2#0 172
jr+i=i—i G+ G)=
(B3)) (=6 3 VS e e, (8.104)
12

J1.J2€S, jit+j'€S
Jitia=j—j €(j)+L(j2)=I
We study the terms Bj, By, B3 separately. If (Bl)j:/(l) #0, there are ji, j, € S suchthat j1 + jo=j—j', j1+j €S,

1=£(j1) —i—ﬁ(jz) and (8.101) holds. Thus, if @ - + j’3 — j3 =0, Lemma 3.3 implies (j ~|—j2)(j1 + /NG +j) =0,
and, since j’ € §¢ and S is symmetric, the only p0551b111ty is j1 + jo = 0. Hence j = j’, [ = 0. In conclusion, if

@-1+j3—j3=0,the only nonzero matrix element (Bl)j ) is

BlO)=6i Y & (8.105)
J1€S, j1+jes
By the same arguments, if (Bz)j:/(l) #0and @ -1+ j'3 — j3 =0 we find (j; + j2)(j1 + j)(j2 + j') =0, which is
impossible because also j; + j» # 0. Finally, arguing as for By, if @ - [ + j’3 — j3 =0, then the only nonzero matrix
element (B3)§ ) is

B =6i Y & (8.106)

J1€S, j1+j€S
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From (8.102), (8.105), (8.106) we deduce that, if @ - [ + j’3 — j3 = 0, then the only nonzero elements (%[Bl, All+
B + B3)§’(l) must be for (I, j, j/) = (0, j, j). In this case, we get

1 _ . . . . , .
S (B, AD30) + (B (0) + (B3 (0) =120 ) Sy oy S (8.107)
J1€S / J1€S )1 Jj1€8 J1
Jitjese Jit+jes

because the case ji + j =0 is impossible (j; € S, j € S¢ and S is symmetric), and the function S > j; — &;,/j1 €R
is odd. The lemma follows by (8.94), (8.107). O
The choice of A, in (8.99) and Lemma 8.21 imply that
15 (D Az + m3[8xxx, A2l + T)II5 = 0. (8.108)

Lemma 8.22. |9, A»|-P) 44,9, 1P < ¢ (s).

Proof. First we prove that the diagonal elements Tjj () =0 for all I € Z". For | = 0, we have already proved that
Tj] (0) =0 (apply Lemma 8.21 with j = j’, I = 0). Moreover, in each term [, Al], B1, B>, B3 (see (8.100), (8.103),
(8.104)) the sum is over j; + jo=j — j/, I =£(j1) + £(j2). If j = j’, then j; + j, =0, and [ = 0. Thus Tj](l) =
T]:’ (0) = 0. For the off-diagonal terms j # j’ we argue as in Lemmata 8.18, 8.19, using that all the denominators
-1 +m3(j" = ) = e(ljl+1j'D% O

For ¢ small, the map ®; in (8.96) is invertible and &, = exp(—szAz). Therefore (8.97), (8.108) imply
Ls:= &) Lq®) = T3 (Dyy + m35xx +d18x + Rs)TE, (8.109)
Rs:= (&, — DI5d 3, + @5 'TI§Rs. (8.110)

Since Aj is a Hamiltonian vector field, the map &, is symplectic and so L5 is Hamiltonian.

Lemma 8.23. Rj satisfies the same estimates (8.95) as Ry (with a possibly larger o ).

Proof. Use (8.110), Lemma 8.22, (8.75), (8.98), (8.95) and the interpolation inequalities (2.18), (2.20). O
8.6. Descent method

The goal of this section is to transform Ls in (8.109) so that the coefficient of d, becomes constant. We conjugate
L5 via a symplectic map of the form

~ A 1
. Loa—=Iywml i -\l . Lo a—Iypkl
S == exp(Ig (wd; ))M§ = & (1 +wd; 3 + S, S.:Zﬁ[ﬂs(u}i)x IS, (8.111)
k>2

where w : T'*! — R is a function. Note that nﬁ(wa; 1)H§- is the Hamiltonian vector field generated by
—% T w(a;lh)de, he HSL. Recalling (2.2), we calculate

L58 — STI§ (Dyy + m3dyxx +m1d) s = Ms (B3mswy +dy —m1)d, s + Re,

Re = N5 {Bm3wyy + di [T§w — myw)mo + (Dpw) + m3wyry +di MFwy)d; ' + (DoS)

o+ m3[Bcxs O]+ d10:S — m 189, + RsS) T4 (8.112)

where I§6 collects all the terms of order at most 3)?. By Remark 8.12, we solve 3m3w, + cfl — m1 = 0 by choosing
w = —(3m3)_18x_1 (di1 — my). For ¢ small, the operator S is invertible and, by (8.112),

Lo:=8"L58 =5 (Dy + m3dxx +m1d) 5 + R,  Re:=S 'Rg. (8.113)

Since S is symplectic, L¢ is Hamiltonian (recall Definition 2.2).
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Lemma 8.24. There is 0 = o (v, T) > 0 (possibly larger than in Lemma 8.23) such that

Li _ Li o~ ~
ST — TP < Sy e TR 18,8 Tl <5 e (Tllsto + 1Tsllsto [Tl spo)-

The remainder R satisfies the same estimates (8.95) as Ry.

Proof. By (8.75), (8.73), (8.50), [w[|s? <, &5y~ + ¢[|35]|5*"", and the lemma follows by (8.111). Since & =

_ o 4y, Li Li Li
0(3;2) the commutator [3yyy. ST= 0(89) and [[yxr, ST <, [wll Y w7, O

8.7. KAM reducibility and inversion of L,

The coefficients m3, m; of the operator Lg in (8.113) are constants, and the remainder Rg is a bounded operator
of order 8)? with small matrix decay norm, see (8.116). Then we can diagonalize L¢ by applying the iterative KAM
reducibility Theorem 4.2 in [2] along the sequence of scales

Np:=NX', n=0,1,2,..., x:=3/2, No>0. (8.114)
In Section 9, the initial Ny will (slightly) increase to infinity as ¢ — 0, see (9.5). The required smallness condition
(see (4.14) in [2]) is (written in the present notations)
C Li _
N0°|R6|S(;5_(g)y < (8.115)

where 8 := 7t + 6 (see (4.1) in [2]), T is the diophantine exponent in (5.4) and (8.120), and the constant Cp :=
Co(t,v) > 0 is fixed in Theorem 4.2 in [2]. By Lemma 8.24, the remainder Rg¢ satisfies the bound (8.95), and using
(7.8) we get (recall (5.10))

IRely 2% < CeT=2y =l =Ce¥2, Rl Yy < Ce! T (8.116)
We use that w in (7.8) is assumed to satisfy u > o +  where o := o (7, v) is given in Lemma 8.24.

Theorem 8.25 (Reducibility). Assume that w +— ig(w) is a Lipschitz function defined on some subset 2, C Q2 (recall
(5.2)), satisfying (7.8) with u > o + B where o := o (t, v) is given in Lemma 8.24 and B := Tt + 6. Then there exists
8o € (0, 1) such that, if

NSe™ 2y 2 = N1 30 <8y, =6, ae(0,1/6), (8.117)
then:
(i) (Eigenvalues). For all w € Q; there exists a sequence
/L;?O(w) = ;,L?O(a), is(w)) == i( —m3(w) > +n~11(a))j) +r;-’°(a)), jese, (8.118)
where m3, m coincide with the coefficients m3, m1 of Lg in (8.113) for all w € 2, and
ity — 1P i [MP0) < €t pRHP0) < c¥2 e st (8.119)

for some C > 0. All the eigenvalues p,?o are purely imaginary. We define, for convenience, ug°(w) := 0.
(it) (Conjugacy). For all w in the set

2y1j° = K|
"

there is a real, bounded, invertible linear operator ®.o(w) : H;L (Tt > H;l (T, with bounded inverse

Q% = ¥ (is) ::’a)er: liw -1+ pP (@) — uf*(@)| = Yl eZ', j,keSCU{O}} (8.120)

<I>gol (w), that conjugates Lg in (8.113) to constant coefficients, namely

Loo(w) := dDgol (@) 0 Le(@) 0 Poo (@) =w - 0y + Doo(@), Doolw) := diagjesc{uﬁo(a))}. (8.121)
The transformations @, CID(;O1 are close to the identity in matrix decay norm, with
Li — Li — —1y~ yLi
(oo — 11705 + 100 — 110 <, %y 72 ey 1351, (8.122)

-1

Moreover @, O

are symplectic, and Lo is a Hamiltonian operator.
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Proof. The proof is the same as the one of Theorem 4.1 in [2], which is based on Theorem 4.2, Corollaries 4.1, 4.2
and Lemmata 4.1, 4.2 of [2]. A difference is that here w € R”, while in [2] the parameter A € R is one-dimensional.
The proof is the same because Kirszbraun’s Theorem on Lipschitz extension of functions also holds in RV (see, e.g.,
Lemma A.2 in [27]). The bound (8.122) follows by Corollary 4.1 of [2] and the estimate of R¢ in Lemma 8.24. We also
use the estimates (8.50), (8.73) for 9;m3, d;m1 which correspond to (3.64) in [2]. Another difference is that here the
sites j € §¢ C Z \ {0} unlike in [2] where j € Z. We have defined ug° := 0 so that also the first Melnikov conditions

(8.123) are included in the definition of QiZ O

Remark 8.26. Theorem 4.2 in [2] also provides the Lipschitz dependence of the (approximate) eigenvalues ,u7 with
respect to the unknown ip(¢), which is used for the measure estimate Lemma 9.3.

All the parameters w € Qgg satisfy (specialize (8.120) for k = 0)
i1+ pF @) 2201077, VL, jeSe, (8.123)

and the diagonal operator L is invertible.
In the following theorem we finally verify the inversion assumption (6.33) for L,,.

Theorem 8.27 (Inversion of L,). Assume the hypotheses of Theorem 8.25 and (8.117). Then there exists oy :=
o1(t,v) > 0 such that, Vo € Qg’é (is) (see (8.120)), for any function g € H;j_rg' (T*Y) the equation Loh = g has
a solutionh = L,'g € H;L (TV+Y), satisfying

_ Li _ Li _ Li Li
12, gl <5 (g IEPY 4+ 6y~ 130152 11152 . (8.124)

s+o1 s+o1

Proof. Collecting Theorem 8.25 with the results of Sections 8.1-8.6, we have obtained the (semi)-conjugation of the
operator L, (defined in (7.34)) to Lo (defined in (8.121)), namely

Lo=M LM, M :=DBpT® 028D, My := PBT D 928D, (8.125)

where p means the multiplication operator by the function p defined in (8.41). By (8.123) and Lemma 4.2 of [2] we
deduce that ||£gol g||SLip(y) <,y ! ||g||£‘f2(:i |- In order to estimate M3, ./\/tl_1 , we recall that the composition of tame
maps is tame, see Lemma 6.5 in [2]. Now, ©, &~ are estimated in Lemma 8.5, B, B~! and pinLemma8.7, T, 7!
in Lemma 8.13. The decay norms |1 ]*7, |71 [FPY) 1@, PP 1971 HPY) < C(5) by Lemmata 8.19, 8.22. The

decay norm of S, S~ is estimated in Lemma 8.24, and @, CIDgO1 in (8.122). The decay norm controls the Sobolev
norm by (2.21). Thus, by (8.125),

Lip(y) 1, Lip() Lipt) | —1 g LiPG) 1 Lip()
IMahll™ + IMT RIS < RIS + ey~ T35 05 5 1R

s+3 s+o+3
and (8.124) follows, using also (6.9). O
9. The Nash—Moser nonlinear iteration

In this section we prove Theorem 5.1. It will be a consequence of the Nash—-Moser Theorem 9.1 below.
Consider the finite-dimensional subspaces

E,:={3()=(0,y,2)(p): ©=11,0, y=T,y, z=I,z}

where N, := Né(n are introduced in (8.114), and IT,, are the projectors (which, with a small abuse of notation, we
denote with the same symbol)

M,0(p) = Y O’ Ty := Y ye'’ where®)=)Y 01"’ y@) =) ye'?,
I]<Nn [[]<Nn lezv lezY

I,z(p, x) := Z leei(l~<ﬂ+jx)7 where z(¢, x) = Z leei(l‘<ﬂ+jx)' 9.1)
[, )| <Nn leZ,jese
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We define l'IL := I — I1,,. The classical smoothing properties hold: for all ¢, s > 0,

ITLINEPY) < NPT | Vi) e B, T3P < N3P | va(w) € HS T 9.2)

We define the constants

pu1:=3u+9, a:=3pu;+1, ap = (e —3u)/2, 9.3)

=3 +p ) +1 Bri=6u +3p" 1 +3 0<p<i (9.4)
) ) Cl(l +a) )

where ;= u(t, v) is the “loss of regularity” defined in Theorem 6.10 (see (6.41)) and C; is fixed below.

Theorem 9.1 (Nash—Moser). Assume that f € C1 with g > S :=50+ B1 + 1 + 3. Let T > v + 2. Then there exist
C1 > max{u; + «, Co} (where Co := Co(t, v) is the one in Theorem 8.25), §g := 8o(t, v) > 0 such that, if

Nty 2 < sy, yi=et = Ny:=(ey™)’, b.:=6-2b, 9.5)

then, for all n > 0:

(P1),, there exists a function (3,,8,) : Gn € Qe = Ep—1 X RY, 0 > (J,(w), & (w)), (Jo, ¢o) :=0, E_1 := {0},
satisfying |5, |MPY) < C|F U I,

L _ L
13l %) < Cuebry ™ IFUDIETY) 5 < Cue 9.6)

where Uy, := (in, ¢n) with i,(¢) = (¢, 0,0) 4+ J,,(¢). The sets G,, are defined inductively by:

Go={weQ :|o-1|>2y ()", VI Z"\ {0},

: i oo (; oo v 2wl =R )
Guvr =0 €Gy ¢ w1+ w2 ) — nP Gl = T2 ke sTU o). 1e 2. 9.7)
where y;, .—y(l +27™) and uoo(a)) —,uoo(a) in(w)) are defined in (8.118) (and pug°(w) = 0).

The differences ffn =T, — Ju_1 (Where we set fio :=0) is defined on G, and satisfy

~ L — ~ ,Li _ —
315 < Caebry ™ ITalRY < Cug®yTIN L V> 1 9.8)

(P2 [IFU) 52T < CueP* N where we set N_y :=1.
(P3), (High norms). |3, 1,7} < Coey "INE_| and | F(UDIRY) < Cueb*NE_
(P4),, (Measure). The measure of the “Cantor-like” sets G, satisfies

12:\ Gol < Cxe® Dy, |Gu\ Gu1| = CL®DyN L. (9.9)

All the Lip norms are defined on G,, namely || ||Llp(y) Il ||L1p(y).

Proof. To simplify notations, in this proof we denote || ||“P%) by || ||. We first prove (P1, 2, 3),.

STEP 1: Proof of (P1,2,3)o. Recalling (5.6) we have || F(Up)lls = [|F(¢,0,0,0)|s = | Xp(p,0,0)| < e572F
by (5.15). Hence (recall that b, = 6 — 2b) the smallness conditions in (P1)o—(P3)¢ hold taking C, := Cy(so + B1)
large enough.

STEP 2: Assume that (P1,2, 3), hold for some n > 0, and prove (P1, 2,3),+1. By (9.5) and (9.4),

NC1 h*—i-l NC1 1— 3a=81—3a—pC|(1+a)<80

for ¢ small enough, and the smallness condition (8.117) holds. Moreover (9.6) imply (6.4) (and so (7.8)) and
Theorem 8.27 applies. Hence the operator L, := L, (w, i,(w)) defined in (6.32) is invertible for all w € G,
and the last estimate in (8.124) holds. This means that the assumption (6.33) of Theorem 6.10 is verified with
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Qoo = Gn+1. By Theorem 6.10 there exists an approximate inverse T, (w) := To(w, i, (w)) of the linearized oper-
ator L, (w) :=d; ¢ F (w, iy (w)), satisfying (6.41). Thus, using also (9.5), (9.6),
ITuglls <5 ¥ (Igllstre + &Y 1T st llso+12) (9.10)
ITngllsy <so ¥~ g5+ (9.11)
and, by (6.42), using also (9.6), (9.5), (9.2),
I(Ln o Ty — 1)glls <5 €7y 2(IF U g I g st + 1F U U512 1€ s e
+ &y Tl IF U)o l18llso410) » (9.12)
I(Ln o T = 1)gllsy <50 € ¥ 2N F U llsg-t10 18 llso1
<50 827y (ML F Ui s + 1T F (U sg-t10) 1€ s
<50 7YY TENE(IF WU sy + Ny PUF U st 18 gt - (9.13)
Then, for all w € G, 1, n > 0, we define
Ups1 :=Up + Hys1y  Hys1 := Ongts tng1) i= =, Ty, F(Uy,) € E, x R, 9.14)

where ﬁn(fi, ¢):=(I1,3,¢) with I, in (9.1). Since L, :=d; : F(in), we write F(Uy41) = F(Uy) + Ly Hyy1 + O,
where

On:=0W,, Hyv1), QWU,,H)=FU,+H)—FU, —L,H, HecE,xR" (9.15)
Then, by the definition of H,1 in (9.14), and writing ﬁ,f(ﬁ, Z) = (H,{J, 0), we have

F(Ups1) = F(Uyp) = LT, T T, F(Uy) + Qn = F(Uy) — Ly Ty, F(Uy) + L TIET, T, F(Uy) 4 O
= ]:(Un) - HnLnTan}_(Un) + (Lnﬁi_ - H;J[Ln)Tan]:(Un) + Qn

=T-F(Uy) + Ry + On + 0, (9.16)
where
Ry := (L,TIF —TIL,)T, 1, F(U,), Q! = —T,(L,T, — DI, F(U,). (9.17)
Lemma 9.2. Define
wp =6y IFUllsy> B =6y 1Tnllsgrp, + ¥ 2 NFUn)llsgrp, - (9.18)

Then there exists K := K (so, B1) > 0 such that, for all n > 0, setting (11 :=3u + 9 (see (9.3)),

1
ni+5—8
Wy+1 < KNy !

+
'By+ KNMw?, B, <KN, ’B,. (9.19)

Proof. We estimate separately the terms Q, in (9.15) and Q),, R, in (9.17).
Estimate of Qn. By (9.15), (5.6), (5.20) and (9.6), (9.2), we have the quadratic estimates

1QWa. H)lls <5 &(ITlls+31Tllsg+3 + 1Tnlls+3113112, 45) (9.20)
1QUn. H)llsy <go eNSITIZ, . Y3 €E,. 9.21)

Now by the definition of H, in (9.14) and (9.2), (9.10), (9.11), (9.6), we get

D41 Iso+p: <so+1 NG HIF U sorpy + €7 2NF Ui lsorne i Tnllsorpy + 7 HHIF U llsgrp: )
<5048 N HNF U llsorp, + 1Tnllso+p:) (9.22)
||3n+1||s0 <50 ¥ NEIF U s, - (9.23)
Then the term Q,, in (9.15) satisfies, by (9.20), (9.21), (9.22), (9.23), (9.5), (9.6), (P2)n, (9.3),
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1Qnllso+p1 <sotp No“T2y (v "HNF W llsosp1 + 13nllso481) » (9.24)
1Qnllsy <so Na“+osy IF WU, - (9.25)

Estimate of Q). The bounds (9.12), (9.13), (9.2), (9.3), (9.6) imply
100 o1 <so481 €Y NI (IF U llso+8, + &7~ 1Tnllsor IF Un)llso ) » (9.26)
10,115 <50 €227 Y 2N (IF Un) sy + Ny PUIF Ui llsgtp0 ) IF Un) s - (9.27)

Estimate of R,. For H := (3,7) we have (L,T1- — T1L,)H = [D,, 113 = [I1,,, D, 13 where D, :=d; Xy, (in) +
(0,0, dxxx). Thus Lemma 5.3, (9.6), (9.2) and (5.19) imply

Lo TE = TR L) H Ly <sorpr N7 P53 (1305041 —se + 1T llso 1T so3) (9.28)
(L TTE — T L) Hllsg+p <s NP3 (13 1sg11—p + 1T llsgp1—e 1T 15043 - (9.29)
Hence, applying (9.10), (9.28), (9.29), (9.5), (9.6), (9.2), the term R,, defined in (9.17) satisfies
I Rullsy <sotp1 NETOTPLey THIF WU llsgrp + ellTnllso+p1) » (9.30)
I Rullsg+p, <sorpr NETOEy TMIFWUnllsgrp + ellTnllsorpr) - (9.31)
Estimate of F (Uy,+1). By (9.16) and (9.24), (9.25), (9.26), (9.27), (9.30), (9.31), (9.5), (9.6), we get
IFWnsDllso Zsorpr NP1 ey T NF WU lsgrpy + €l Tnllsoss) + N ey IFUDIG, - (9.32)
IFUns D llsor8; Ssorpr NEEY HF U lsor, + ellTnllsorp) - (9.33)

where @1 :=3u +9. R
Estimate of J,+1. Using (9.22) the term J,,+1 = J, + J,+41 1s bounded by

1Tt 1548 <so+8 NEUTnllsorpy + ¥ IF U llsgsp,) - (9.34)
Finally, recalling (9.18), the inequalities (9.19) follow by (9.32)-(9.34), (9.6) and sy~ = N)/” < N,/*. O

Proof of (P3)n+1. By (9.19) and (P3),,

41 41
Buy1 <KNy ' 7B, <2C,KeP 1y AN, TPNS | < €ty TINE (9.35)

+
provided 2K N, - N”f | < 1,Vn > 0. This inequality holds by (9.4), taking Ny large enough (i.e. £ small enough).
By (9.18), the bound B, 11 < Cye?*t1y~2N* implies (P3),41.

Proof of (P2),+1. Using (9.19), (9.18) and (P2),, (P3),, we get

+1- +1
Wap1 <KNy' 7 g, +KNMwE<KN, ? ﬁ'zc*ab*“y—zzvk + KNM(Cueb Ty 72N )2

which is < CeP+1y 2N % provided that

+ +
ak Ny TTTITENG <1, 2K Cueb RNt N2 <y > 0, (9.36)
The inequalities in (9.36) hold by (9.3)-(9.4), (9.5), C1 > u1 + «, taking §p in (9.5) small enough. By (9.18), the
inequality w, 11 < Cxe?+1y 2N implies (772)n+1
Proof of (P1),+1. The bound (9.8) for 31 follows by (9.14), (9.10) (for s = so + u) and || F(Uo)llsg421 =
IF(@,0,0,0) lso+21 <so+2u € b+ The bound (9.8) for J,,+1 follows by (9.2), (9.23), (P2)n, (9.3). It remains to prove
that (9.6) holds at the step n + 1. We have

n+1
1Tn1llsorn < D W3kl < Coe®y ™Y N < Cuey ™! (9.37)
k=1 k>1

for Ny large enough, i.e. ¢ small. Moreover, using (9.2), (P2),+1, (P3)n+1, (9.3), we get
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IF UntDllsgrpt3 < NEPUNF U llsg + NEPBPUNF Ui ) s+,
< C*gb*Nr/lL+3fol + C*Eb*N#+3*ﬂ1+K < C*Eb* ;

which is the second inequality in (9.6) at the step n + 1. The bound |41 |“PY) < C||F(U,41) ||£‘in(y) is a consequence
of Lemma 6.1 (it is not inductive).

STEP 3: Prove (P4), foralln > 0. Foralln >0,
G\Gui= |J Rl (9.38)
1€2, j.keSeU{0)

where

Riji(in) = {@ € Gy i1+ u$(in) — u>n)| < 2l = K1) 77} (9.39)
Notice that Ryj(i,) =@ if j =k, so that we suppose in the sequel that j # k.

Lemma 9.3. For alln > 1, |l| < N, _1, the set Ryjx(in) € Ryjx(in—1).
Proof. Like Lemma 5.2 in [2] (with w in the role of A, and N,,_; instead of N,;)). O

By definition, Ry (in) € G, (see (9.39)) and Lemma 9.3 implies that, for all n > 1, |I| < N,_1, the set Rz (i) €
Ryjk(in—1). On the other hand R;jx (i,—1) NG, =@ (see (9.7)). As a consequence, for all || < N,_1, Rk (i) =¥ and,
by (9.38),

Gn \ Guy1 C U Rije(in)  Vn=1. (9.40)
|l|>Ny—1, j,keScU{0}

Lemma 9.4. Let n > 0. If Ryji(in) # @ then |I| = C|j3 — k3| = 1C(j? + k?) for some C > 0.

Proof. Like Lemma 5.3 in [2]. The only difference is that w is not constrained to a fixed direction. Note also that
173 = K3 = (2 +kH/2.¥j £k O

By usual arguments (e.g. see Lemma 5.4 in [2]), using Lemma 9.4 and (8.119) we have:
Lemma 9.5. For all n > 0, the measure |Ryjx (iy)| < Ce2v=Dy .

By (9.38) and Lemmata 9.4, 9.5 we get

. Ce2=Dy / 2=1)
G0\ Gil < > |lek(lo)|§ZW§C8 y.

1€z |jl.k|=ClV/2 lez’
For n > 1, by (9.40),

Ce20-Dy,

1 2(w=1) Ar—1
7{1)“1 <(C’e YN,

G\ Gngt| < > |Rijilin)l <)

11> No—1,11, k| <CI11/2 [1]>Np—1

because T > v + 2. The estimate |2, \ Go| < Ce>~Dy is elementary. Thus (9.9) is proved. O

Proof of Theorem 5.1 concluded. Theorem 9.1 implies that the sequence (J,, ;) is well defined for w € G :=
Lip(y)
S0+/’Lagoc ’

and, by (P2),, for all w € G, ixo (@) := (¢, 0, 0) + T (@), is a solution of

Nn>0Gn, that J, is a Cauchy sequence in || || see (9.8), and |§n|Lip(V) — 0. Therefore J,, converges to a limit

. Lip(y)
Joo 1IN norm || ”S()E-u,,goo

. . Li — —
Flis,00=0 with [|Jcll )7 < Ce 2y~
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by (9.6) (recall that b, := 6 — 2b). Therefore ¢ — i (@) is an invariant torus for the Hamiltonian vector field X g,
(see (5.5)). By (9.9),

196\ Gool <196\ Gol + D _1Ga \ Gui1] <2C:&™ Dy + Co® Dy YN < ca2 Yy

n>0 n>1

The set Q. in (5.2) has measure |Q2.| = O (g%"). Hence |2 \ Gool/|2:] = 0 as & — 0 because y = 0(g2), and
therefore the measure of C, := G satisfies (5.11).

In order to complete the proof of Theorem 5.1 we show the linear stability of the solution i (wt). By Section 6
the system obtained linearizing the Hamiltonian vector field Xy, at a quasi-periodic solution i, (wt) is conjugated to
the linear Hamiltonian system

v = Ky (wt)n + K (0w
7 =0 941
W — 0y Kp(wh)w = 9x K1 (wt)n

(recall that the torus i, is isotropic and the transformed nonlinear Hamiltonian system is (6.21) where Koo, K10,

Ko1 = 0, see Remark 6.5). In Section 8 we have proved the reducibility of the linear system w — 9, Koo (wt)w,
conjugating the last equation in (9.41) to a diagonal system

i)j~|—,u?°vj=fj(wt), jese, M?OGiR, (9.42)
see (8.121), and f (¢, x) =3 e fj (p)el* e Hy, (TV*+1). Thus (9.41) is stable. Indeed the actions n(r) = no € R,
Vt € R. Moreover the solutions of the non-homogeneous equation (9.42) are
o0 ~ ~ fjl eiw‘lt
vi(t =c>e“-/t+v't, where v;(t) := —_
jO=c; j(©) (0 ,;ZVIWHM?‘J

is a quasi-periodic solution (recall that the first Melnikov conditions (8.123) hold at a solution). As a consequence
(recall also u‘j?o € iR) the Sobolev norm of the solution of (9.42) with initial condition v(0) = vj(0)e/* e
H%(T,), so < s, does not increase in time. O

JjEeSe

Construction of the set S of tangential sites. We finally prove that, for any v > 1, the set S in (1.8) satisfying
(S1)—(S2) can be constructed inductively with only a finite number of restriction at any step of the induction.

First, fix any integer j; > 1. Then the set J; := {£j} trivially satisfies (S1)—(S2). Then, assume that we have fixed
n distinct positive integers ji, ..., Jn, # > 1, such that the set J, := {£]1, ..., L J,} satisfies (S1)—(S2). We describe
how to choose another positive integer j,1, which is different from all j € J,, such that J, 1 := J, U {£j,+1} also
satisfies (S1), (S2).

Let us begin with analyzing (S1). A set of 3 elements ji, j2, j3 € Jy+1 can be of these types: (i) all “old” elements
J1, J2, J3 € Jn; (i) two “old” elements ji, jo» € J, and one “new” element j3 = 03j,+1, 03 = *£1; (iii) one “old”
element j; € J, and two “new” elements j» = 02 j,+1, j3 = 03]u+1, With 02,03 = £1; (iv) all “new” elements
ji = O’,‘j_n+], o; = :f:l, i = 1, 2, 3.

In case (i), the sum j; + j» + j3 is nonzero by inductive assumption. In case (i), j; + j» + j3 is nonzero provided
Jn+1 € {j1+ j2: j1, j2 € Ju}, which is a finite set. In case (iii), for oo + 03 =0 the sum jj + j» + jz = jj is trivially
nonzero because 0 ¢ J,,, while, for oo + 03 # 0, the sum jj + jo + jz = j1 + (02 +03) Ju+1 Z 01if juy1 ¢ {%j cjen},
which is a finite set. In case (iv), the sum j| + jo + j3 = (01 + 02 + 03) Jn+1 7 0 because j,+1 > land o1 + 07+ 03 €
{£1, £3}.

Now we study (S2) for the set J,,41. Denote, in short, b := jf + j23 + j33 + jf —(1+p+ 3+ 03

A set of 4 elements ji, jo, j3, ja € Jy41 can be of 5 types: (i) all “old” elements ji, j2, j3, ja € Jyu; (ii) three
“old” elements ji, ja, j3 € J, and one “new” element j4 = 04 j,+1, 04 = £1; (iii) two “old” element ji, j» € J, and
two “new” elements jz = 03,41, ja = 04 Jn+1, With 03,04 = %1; (iv) one “old” element j; € J, and three “new”
elements j; = o ju+1,0; = £1,i =2,3,4; (v) all “new” elements j; =o; jy4+1,0i =x1,i =1,2,3,4.

In case (i), b # 0 by inductive assumption.

In case (ii), assume that j; 4+ jo» + j3 + ja # 0, and calculate

b==30j1+ j2+ j3) it — 3Gt + o+ j3)20afust + i + 35 + 3 — G+ 22+ 331 = pji s jssos Unt1)-
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This is nonzero provided pj, j,, 3,00 (Jnt1) # 0 for all ji, j2, j3 € Jy, 04 = £1. The polynomial pj, j,. j5,0, 1S DEVEr
identically zero because either the leading coefficient —3(j; + j» + j3) # O (and, if one uses (S3), this is always the
case), or, if ji + jo + j3 =0, then j13 + j;’ + j; # 0 by (3.12) (using also that 0 ¢ J,).

In case (iii), assume that j; + ...+ ja = j1 + j2 + (03 + 04) Ju+1 # 0, and calculate

b==3aj, —3a(ji + j2)Jr — 301+ 22t — 12U+ 2) = @Gy o ns 1)

where a := 03 +04. We impose that g, j, « (Ju+1) # Oforall ji, j2 € J,, a € {£2, 0}. The polynomial g}, j, « is never
identically zero because either the leading coefficient —3« # 0, or, for o« = 0, the constant term — j j>(j; + j2) # 0
(recall that O ¢ J,, and j; + j» + @ Ju+1 # 0).

In case (iv), assume that j; + ...+ js = j1 + o ju+1 # 0, where o := 02 + 03 + 04 € {1, 3}, and calculate

b=afur1rjanit)s 7o) i= (1 —ab)x? = 3ajix — 3.

The polynomial 7, o is never identically zero because ji # 0. We impose 7}, o (Jut1) 7 0 for all j; € Jy, a €
{£1, £3}.

In case (v), assume that j| +... 4+ ju = o ju41 # 0, with o ;=01 + ... 4+ 04 # 0, and calculate b = a (1 — ozz)jsJrl .
This is nonzero because j,1+1 > 1 and @ € {£2, +4}.

We have proved that, in choosing j,,+1, there are only finitely many integers to avoid.
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