
Available online at www.sciencedirect.com
ScienceDirect

Ann. I. H. Poincaré – AN 33 (2016) 1589–1638
www.elsevier.com/locate/anihpc

KAM for autonomous quasi-linear perturbations of KdV

Pietro Baldi a, Massimiliano Berti b,∗, Riccardo Montalto b,c

a Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università di Napoli Federico II, Via Cintia, Monte S. Angelo,
80126, Napoli, Italy

b SISSA, Via Bonomea 265, 34136, Trieste, Italy
c Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

Received 16 October 2014; received in revised form 13 July 2015; accepted 22 July 2015

Available online 3 August 2015

Abstract

We prove the existence and the stability of Cantor families of quasi-periodic, small amplitude solutions of quasi-linear (i.e. 
strongly nonlinear) autonomous Hamiltonian differentiable perturbations of KdV. This is the first result that extends KAM theory 
to quasi-linear autonomous and parameter independent PDEs. The core of the proof is to find an approximate inverse of the 
linearized operators at each approximate solution and to prove that it satisfies tame estimates in Sobolev spaces. A symplectic 
decoupling procedure reduces the problem to the one of inverting the linearized operator restricted to the normal directions. For 
this aim we use pseudo-differential operator techniques to transform such linear PDE into an equation with constant coefficients 
up to smoothing remainders. Then a linear KAM reducibility technique completely diagonalizes such operator. We introduce the 
“initial conditions” as parameters by performing a “weak” Birkhoff normal form analysis, which is well adapted for quasi-linear 
perturbations.
© 2015 
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1. Introduction and main results

In this paper we prove the existence and stability of Cantor families of quasi-periodic solutions of Hamiltonian 
quasi-linear (also called “strongly nonlinear”, e.g. in [25]) perturbations of the KdV equation

ut + uxxx − 6uux +N4(x,u,ux,uxx, uxxx) = 0 , (1.1)

under periodic boundary conditions x ∈ T := R/2πZ, where

N4(x,u,ux,uxx, uxxx) := −∂x
[
(∂uf )(x,u,ux)− ∂x((∂ux f )(x,u,ux))

]
(1.2)
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is the most general quasi-linear Hamiltonian (local) nonlinearity. Note that N4 contains as many derivatives as the 
linear part ∂xxx . The equation (1.1) is the Hamiltonian PDE ut = ∂x∇H(u) where ∇H denotes the L2(Tx) gradient 
of the Hamiltonian

H(u) =
∫
T

u2
x

2
+ u3 + f (x,u,ux) dx (1.3)

on the real phase space

H 1
0 (Tx) :=

{
u(x) ∈ H 1(T,R) :

∫
T

u(x)dx = 0
}
. (1.4)

We assume that the “Hamiltonian density” f ∈ Cq(T ×R ×R; R) for some q large enough, and that

f = f5(u,ux)+ f≥6(x,u,ux) , (1.5)

where f5(u, ux) denotes the homogeneous component of f of degree 5 and f≥6 collects all the higher order terms. 
By (1.5) the nonlinearity N4 vanishes of order 4 at u = 0 and (1.1) may be seen, close to the origin, as a “small” 
perturbation of the KdV equation

ut + uxxx − 6uux = 0 , (1.6)

which is completely integrable. Actually, the KdV equation (1.6) may be described by global analytic action-angle 
variables, see [21] and the references therein.

A natural question is to know whether the periodic, quasi-periodic or almost periodic solutions of (1.6) persist 
under small perturbations. This is the content of KAM theory.

The first KAM results for PDEs have been obtained for 1-d semilinear Schrödinger and wave equations by Kuksin 
[23], Wayne [33], Craig–Wayne [12], Pöschel [27], see [11,25] and references therein. For PDEs in higher space 
dimension the theory has been more recently extended by Bourgain [10], Eliasson–Kuksin [13], and Berti–Bolle [6], 
Geng–Xu–You [14], Procesi–Procesi [30,29], Wang [32].

For unbounded perturbations the first KAM results have been proved by Kuksin [24] and Kappeler–Pöschel [21]
for KdV (see also Bourgain [9]), and more recently by Liu–Yuan [20], Zhang–Gao–Yuan [34] for derivative NLS, and 
by Berti–Biasco–Procesi [4,5] for derivative NLW. For a recent survey of known results for KdV, we refer to [15].

The KAM theorems in [24,21] prove the persistence of the finite-gap solutions of the integrable KdV (1.6) under 
semilinear Hamiltonian perturbations ε∂x(∂uf )(x, u), namely when the density f is independent of ux , so that (1.2)
is a differential operator of order 1 (note that in [25] such nonlinearities are called “quasi-linear” and (1.2) “strongly 
nonlinear”). The key point is that the frequencies of KdV grow as ∼ j3 and the difference |j3 − i3| ≥ (j2 + i2)/2, 
i �= j , so that KdV gains (outside the diagonal) two derivatives. This approach also works for Hamiltonian pseudo-
differential perturbations of order 2 (in space), using the improved Kuksin’s lemma in [20]. However it does not
work for a general quasi-linear perturbation as in (1.2), which is a nonlinear differential operator of the same order 
(i.e. 3) as the constant coefficient linear operator ∂xxx . Such a strongly nonlinear perturbation term makes the KAM 
question quite delicate because of the possible phenomenon of formation of singularities in finite time, see Lax [19], 
Klainerman–Majda [22] for quasi-linear wave equations, see also Section 1.4 of [25]. For example, Kappeler–Pöschel 
[21] (Remark 3, page 19) wrote: “It would be interesting to obtain perturbation results which also include terms of 
higher order, at least in the region where the KdV approximation is valid. However, results of this type are still out of 
reach, if true at all”.

This paper gives the first positive answer to KAM theory for quasi-linear PDEs, proving the existence of small 
amplitude, linearly stable, quasi-periodic solutions of (1.1)–(1.2), see Theorem 1.1. As a consequence, for most initial 
conditions, quasi-linear Hamiltonian perturbations of KdV do not produce formation of singularities in the solutions, 
and the KAM phenomenon persists! We mention that, concerning the initial value problem for (1.1)–(1.2), there are no 
results even for the local existence theory. On the other hand, the initial conditions selected by the KAM Theorem 1.1
give rise to global in time solutions. We find it interesting because such PDEs are in general ill-posed in Sobolev 
spaces.



P. Baldi et al. / Ann. I. H. Poincaré – AN 33 (2016) 1589–1638 1591
We also note that (1.1) does not depend on external parameters. Moreover the KdV equation (1.1) is a completely 
resonant PDE, namely the linearized equation at the origin is the linear Airy equation ut +uxxx = 0, which possesses 
only the 2π -periodic in time solutions

u(t, x) =
∑

j∈Z\{0}
uj eij3t eijx . (1.7)

Thus the existence of quasi-periodic solutions of (1.1) is a purely nonlinear phenomenon (the diophantine frequencies 
in (1.9) are O(|ξ |)-close to integers with ξ → 0) and a perturbation theory is more difficult.

The solutions that we find are localized in Fourier space close to finitely many “tangential sites”

S+ := {j̄1, . . . , j̄ν} , S := S+ ∪ (−S+) = {±j : j ∈ S+} , j̄i ∈ N \ {0} , ∀i = 1, . . . , ν . (1.8)

The set S is required to be even because the solutions u of (1.1) have to be real valued. Moreover, we also assume the 
following explicit hypotheses on S:

• (S1) j1 + j2 + j3 �= 0 for all j1, j2, j3 ∈ S.
• (S2) �j1, . . . , j4 ∈ S such that j1 + j2 + j3 + j4 �= 0, j3

1 + j3
2 + j3

3 + j3
4 − (j1 + j2 + j3 + j4)

3 = 0.

Theorem 1.1 (KAM for quasi-linear perturbations of KdV). Given ν ∈ N, let f ∈ Cq (with q := q(ν) large enough) 
satisfy (1.5). Then, for all the tangential sites S as in (1.8) satisfying (S1)–(S2), the KdV equation (1.1) possesses 
small amplitude quasi-periodic solutions with diophantine frequency vector ω := ω(ξ) = (ωj )j∈S+ ∈ Rν , of the form

u(t, x) =
∑
j∈S+

2
√
ξj cos(ωj t + jx)+ o(

√|ξ |), ωj := j3 − 6ξj j
−1 , (1.9)

for a “Cantor-like” set of small amplitudes ξ ∈ Rν+ with density 1 at ξ = 0. The term o(
√|ξ |) is small in some 

Hs -Sobolev norm, s < q . These quasi-periodic solutions are linearly stable.

This result is deduced from Theorem 5.1. It has been announced in [3]. Let us make some comments.

1. The set of tangential sites S satisfying (S1)–(S2) can be iteratively constructed in an explicit way, see the end of 
Section 9. After fixing {j̄1, . . . , j̄n}, in the choice of j̄n+1 there are only finitely many forbidden values, while all 
the other infinitely many values are good choices for j̄n+1. In this precise sense the set S is “generic”.

2. The linear stability of the quasi-periodic solutions is discussed after (9.41). In a suitable set of symplectic coordi-
nates (ψ, η, w), ψ ∈ Tν , near the invariant torus, the linearized equations at the quasi-periodic solutions assume 
the form (9.41), (9.42). Actually there is a complete KAM normal form near the invariant torus (Remark 6.5), see 
also [7].

3. A similar result holds for perturbed (focusing/defocussing) mKdV equations

ut + uxxx ± ∂xu
3 +N4(x,u,ux,uxx, uxxx) = 0 (1.10)

for tangential sites S which satisfy 2
2ν−1

∑ν
i=1 j̄

2
i /∈ Z. If the density f (u, ux) is independent on x, the result 

holds for all the choices of the tangential sites. The KdV equation (1.1) is more difficult than (1.10) because the 
nonlinearity is quadratic and not cubic.
An important point is that the fourth order Birkhoff normal form of KdV and mKdV is completely integrable. The 
present strategy of proof — that we describe in detail below — is a rather general approach for constructing small 
amplitude quasi-periodic solutions of quasi-linear perturbed KdV equations. For example it could be applied 
to generalized KdV equations with leading nonlinearity up, p ≥ 4, by using the normal form techniques of 
Procesi–Procesi [29,30]. A further interesting open question concerns perturbations of the finite gap solutions of 
KdV.

Let us describe the strategy of proof of Theorem 1.1. It involves many different arguments that are of wide applica-
bility to other PDEs. Nevertheless we think that a unique abstract KAM theorem applicable to all quasi-linear PDEs 
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could not be expected. Indeed the suitable pseudo-differential operators that are required to conjugate the highest order 
of the linearized operator to constant coefficients, highly depend on the PDE at hand, see the discussion after (1.11).

Weak Birkhoff normal form. Once the finite set of tangential sites S has been fixed, the first step is to perform 
a “weak” Birkhoff normal form (weak BNF), whose goal is to find an invariant manifold of solutions of the third 
order approximate KdV equation (1.1), on which the dynamics is completely integrable, see Section 3. Since the KdV 
nonlinearity is quadratic, two steps of weak BNF are required. The present Birkhoff map is close to the identity up 
to finite dimensional operators, see Proposition 3.1. The key advantage is that it modifies N4 very mildly, only up to 
finite dimensional operators (see for example Lemma 7.1), and thus the spectral analysis of the linearized equations 
(that we shall perform in Section 8) is essentially the same as if we were in the original coordinates.

The weak normal form (3.5) does not remove (or normalize) the monomials O(z2). This could be done. However, 
we do not perform such stronger normal form (called “partial BNF” in Kuksin–Pöschel [26] and Pöschel [28]) because 
the corresponding Birkhoff map is close to the identity only up to an operator of order O(∂−1

x ), and so it would 
produce, in the transformed vector field N4, terms of order ∂xx and ∂x . A fortiori, we cannot either use the full 
Birkhoff normal form computed in [21] for KdV, which completely diagonalizes the fourth order terms, because such 
Birkhoff map is only close to the identity up to a bounded operator. For the same reason, we do not use the global 
nonlinear Fourier transform in [21] (Birkhoff coordinates), which is close to the Fourier transform up to smoothing 
operators of order O(∂−1

x ).
The weak BNF procedure of Section 3 is sufficient to find the first nonlinear (integrable) approximation of the 

solutions and to extract the “frequency-to-amplitude” modulation (4.10).
In Proposition 3.1 we also remove the terms O(v5), O(v4z) in order to have sufficiently good approximate solutions 

so that the Nash–Moser iteration of Section 9 will converge. This is necessary for KdV whose nonlinearity is quadratic 
at the origin. These further steps of Birkhoff normal form are not required if the nonlinearity is yet cubic as for mKdV, 
see Remark 3.5. To this aim, we choose the tangential sites S such that (S2) holds. We also note that we assume (1.5)
because we use the conservation of momentum up to the homogeneity order 5, see (2.7).

Action-angle and rescaling. At this point we introduce action-angle variables on the tangential sites (Section 4) and, 
after the rescaling (4.5), we look for quasi-periodic solutions of the Hamiltonian (4.9). Note that the coefficients of the 
normal form N in (4.11) depend on the angles θ , unlike the usual KAM theorems [28,23], where the whole normal 
form is reduced to constant coefficients. This is because the weak BNF of Section 3 did not normalize the quadratic 
terms O(z2). These terms are dealt with the “linear Birkhoff normal form” (linear BNF) in Sections 8.4, 8.5. In some 
sense here the “partial” Birkhoff normal form of [28] is split into the weak BNF of Section 3 and the linear BNF of 
Sections 8.4, 8.5.

The action-angle variables are convenient for proving the stability of the solutions.
The nonlinear functional setting and the approximate inverse. We look for a zero of the nonlinear operator (5.6), 

whose unknown is the embedded torus and the frequency ω is seen as an “external” parameter. The solution is obtained 
by a Nash–Moser iterative scheme in Sobolev scales. The key step is to construct (for ω restricted to a suitable 
Cantor-like set) an approximate inverse (à la Zehnder [35]) of the linearized operator at any approximate solution. 
Roughly, this means to find a linear operator which is an inverse at an exact solution. A major difficulty is that the 
tangential and the normal dynamics near an invariant torus are strongly coupled.

The symplectic approximate decoupling. The above difficulty is overcome by implementing the abstract procedure 
in Berti–Bolle [7,8] developed in order to prove existence of quasi-periodic solutions for autonomous NLW (and NLS) 
with a multiplicative potential. This approach reduces the search of an approximate inverse for (5.6) to the invertibil-
ity of a quasi-periodically forced PDE restricted on the normal directions. This method approximately decouples the 
“tangential” and the “normal” dynamics around an approximate invariant torus, introducing a suitable set of symplec-
tic variables (ψ, η, w) near the torus, see (6.19). Note that, in the first line of (6.19), ψ is the “natural” angle variable 
which coordinates the torus, and, in the third line, the normal variable z is only translated by the component z0(ψ) of 
the torus. The second line completes this transformation to a symplectic one. The canonicity of this map is proved in 
[7] using the isotropy of the approximate invariant torus iδ, see Lemma 6.3. The change of variable (6.19) brings the 
torus iδ “at the origin”. The advantage is that the second equation in (6.29) (which corresponds to the action variables 
of the torus) can be immediately solved, see (6.31). Then it remains to solve the third equation (6.32), i.e. to invert the 
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linear operator Lω. This is a quasi-periodic Hamiltonian perturbed linear Airy equation of the form

h �→ Lωh := ⊥
S

(
ω · ∂ϕh+ ∂xx(a1∂xh)+ ∂x(a0h)+ ∂xRh

)
, ∀h ∈ H⊥

S , (1.11)

where R is a finite dimensional remainder. The exact form of Lω is obtained in Proposition 7.6.
Reduction of the linearized operator in the normal directions. In Section 8 we conjugate the variable coefficients 

operator Lω in (7.34), see (1.11), to a diagonal operator with constant coefficients which describes infinitely many 
harmonic oscillators

v̇j +μ∞
j vj = 0 , μ∞

j := i(−m3j
3 +m1j)+ r∞

j ∈ iR , j /∈ S , (1.12)

where the constants m3 − 1, m1 ∈ R and supj |r∞
j | are small, see Theorem 8.25. The main perturbative effect to the 

spectrum (and the eigenfunctions) of Lω is clearly due to the term a1(ωt, x)∂xxx (see (1.11)), and it is too strong for 
the usual reducibility KAM techniques to work directly. The conjugacy of Lω with (1.12) is obtained in several steps. 
The first task (obtained in Sections 8.1–8.6) is to conjugate Lω to another Hamiltonian operator of H⊥

S with constant 
coefficients

L6 := ⊥
S

(
ω · ∂ϕ +m3∂xxx +m1∂x +R6

)
⊥

S , m1,m3 ∈R , (1.13)

up to a small bounded remainder R6 = O(∂0
x ), see (8.113). This expansion of Lω in “decreasing symbols” with 

constant coefficients follows [2], and it is somehow in the spirit of the works of Iooss, Plotnikov and Toland [18,17]
in water waves theory, and Baldi [1] for Benjamin–Ono. It is obtained by transformations which are very different 
from the usual KAM changes of variables. We underline that the specific form of these transformations depend on 
the structure of KdV. For other quasi-linear PDEs the analogous reduction requires different transformations. For the 
reduction of (1.11) there are several differences with respect to [2], that we now outline.

Major differences with respect to [2] for transforming (1.11) into (1.13).

1. The first step is to eliminate the x-dependence from the coefficient a1(ωt, x)∂xxx of the Hamiltonian operator 
Lω. We cannot use the symplectic transformation A defined in (8.1), used in [2], because Lω acts on the normal 
subspace H⊥

S only, and not on the whole Sobolev space as in [2]. We cannot use the restricted map A⊥ :=
⊥

S A⊥
S , because it is not symplectic. In order to find a symplectic diffeomorphism of H⊥

S near A⊥, the first 
observation is to realize A as the flow map of the time dependent Hamiltonian transport linear PDE (8.3). Thus 
we conjugate Lω with the flow map of the projected Hamiltonian equation (8.5). In Lemma 8.2 we prove that it 
differs from A⊥ for finite dimensional operators. A technical, but important, fact is that the remainders produced 
after this conjugation of Lω remain of the finite dimensional form (7.7), see Lemma 8.3.
This step may be seen as a quantitative application of the Egorov theorem, see [31], which describes how the 
principal symbol of a pseudo-differential operator (here a1(ωt, x)∂xxx ) transforms under the flow of a linear 
hyperbolic PDE (here (8.5)).

2. The operator Lω has variable coefficients also at the orders O(ε) and O(ε2), see (7.34)–(7.35). This is a conse-
quence of the fact that the weak BNF procedure of Section 3 did not touch the quadratic terms O(z2). These terms 
cannot be reduced to constants by the perturbative scheme in [2], which applies to terms R such that Rγ−1 � 1
where γ is the diophantine constant of the frequency vector ω (the case in [2] is simpler because the diophantine 
constant is γ = O(1)). Here, since KdV is completely resonant, such γ = o(ε2), see (5.4). These terms are re-
duced to constant coefficients in Sections 8.4–8.5 by means of purely algebraic arguments (linear BNF), which, 
ultimately, stem from the complete integrability of the fourth order BNF of the KdV equation (1.6), see [21].

3. The order of the transformations of Sections 8.1–8.7 used to reduce Lω is not accidental. The first two steps in 
Sections 8.1, 8.2 reduce to constant coefficients the quasi-linear term O(∂xxx) and eliminate the term O(∂xx), 
see (8.45) (the second transformation is a time quasi-periodic reparametrization of time). Then, in Section 8.3, 
we apply the transformation T (8.64) in such a way that the space average of the coefficient d1(ϕ, ·) in (8.65)
is constant. This is done in view of the applicability of the “descent method” in Section 8.6 where we reduce 
to constant coefficients the order O(∂x) of the operator. All these transformations are composition operators 
induced by diffeomorphisms of the torus. Therefore they are well-defined operators of a Sobolev space into it-
self, but their decay norm is infinite! We perform the transformation T before the linear Birkhoff normal form 
steps of Sections 8.4–8.5, because T is a change of variable that preserves the form (7.7) of the remainders 
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(it is not evident after the Birkhoff normal form). The Birkhoff transformations are symplectic maps of the form 
I +εO(∂−1

x ). Thanks to this property the coefficient d1(ϕ, x) obtained in step 8.3 is not changed by these Birkhoff 
maps. The transformation in Section 8.6 is one step of “descent method” which transforms d1(ϕ, x)∂x into the 
constant coefficients differential operator m1∂x , up to a zero-order term O(∂0

x ). The name “descent method” 
has been used in Iooss–Plotnikov–Toland [16–18] to denote the iterative procedure of reduction of a linear dif-
ferential (or pseudo-differential) operator with variable coefficients into one with constant coefficients, at any 
finite order of regularization, up to smoother remainders. The required conjugation transformations have the form 
Id +∑k ak(ϕ, x)∂

−k
x where the coefficients can be iteratively computed in decreasing orders. In this paper it is 

sufficient to stop at the order ∂0
x , i.e. to perform only the step of Section 8.6. It is here that we use the assumption 

(S1) on the tangential sites, so that the space average of the function q>2 is zero, see Lemma 7.5. Actually we 
only need that the average of the function in (7.33) is zero. If f5 = 0 (see (1.5)) then (S1) is not required. This 
completes the task of conjugating Lω to L6 in (1.13).

Diagonalization of (1.13). Finally, in Section 8.7 we apply the abstract reducibility Theorem 4.2 in [2], based on a 
quadratic KAM scheme, which completely diagonalizes the linearized operator, obtaining (1.12). The required small-
ness condition (8.115) for R6 holds. Indeed the biggest term in R6 comes from the conjugation of ε∂xvε(θ0(ϕ), yδ(ϕ))
in (7.35). The linear BNF procedure of Section 8.4 had eliminated its main contribution ε∂xvε(ϕ, 0). It remains 
ε∂x
(
vε(θ0(ϕ), yδ(ϕ)) − vε(ϕ, 0)

)
which has size O(ε7−2bγ−1) due to the estimate (6.4) of the approximate solution. 

This term enters in the variable coefficients of d1(ϕ, x)∂x and d0(ϕ, x)∂0
x . The first one had been reduced to the con-

stant operator m1∂x by the descent method of Section 8.6. The latter term is an operator of order O(∂0
x ) which satisfies 

(8.115). Thus L6 may be diagonalized by the iterative scheme of Theorem 4.2 in [2] which requires the smallness 
condition O(ε7−2bγ−2) � 1. This is the content of Section 8.7.

The Nash–Moser iteration. In Section 9 we perform the nonlinear Nash–Moser iteration which finally proves 
Theorem 5.1 and, therefore, Theorem 1.1. The optimal smallness condition required for the convergence of the scheme 
is ε‖F(ϕ, 0, 0)‖s0+μγ

−2 � 1, see (9.5). It is verified because ‖XP (ϕ, 0, 0)‖s ≤s ε
6−2b (see (5.15)), which, in turn, 

is a consequence of having eliminated the terms O(v5), O(v4z) from the original Hamiltonian (3.1), see (3.5). This 
requires the condition (S2).

2. Preliminaries

2.1. Hamiltonian formalism of KdV

The Hamiltonian vector field XH generated by a Hamiltonian H : H 1
0 (Tx) → R is XH(u) := ∂x∇H(u), because

dH(u)[h] = (∇H(u),h)L2(Tx)
= �(XH(u),h) , ∀u,h ∈ H 1

0 (Tx) ,

where � is the non-degenerate symplectic form

�(u,v) :=
∫
T

(∂−1
x u) v dx , ∀u,v ∈ H 1

0 (Tx) , (2.1)

and ∂−1
x u is the periodic primitive of u with zero average. Note that

∂x∂
−1
x = ∂−1

x ∂x = π0 , π0(u) := u− 1

2π

∫
T

u(x)dx . (2.2)

A map is symplectic if it preserves the 2-form �.
We also remind that the Poisson bracket between two functions F , G :H 1

0 (Tx) → R is

{F(u),G(u)} := �(XF ,XG) =
∫
T

∇F(u)∂x∇G(u)dx . (2.3)

The linearized KdV equation at u is
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ht = ∂x (∂u∇H)(u)[h] = XK(h) ,

where XK is the KdV Hamiltonian vector field with quadratic Hamiltonian K = 1
2 ((∂u∇H)(u)[h], h)L2(Tx)

=
1
2 (∂uuH)(u)[h, h]. By the Schwartz theorem, the Hessian operator A := (∂u∇H)(u) is symmetric, namely AT = A, 
with respect to the L2-scalar product.

Dynamical systems formulation. It is convenient to regard the KdV equation also in the Fourier representation

u(x) =
∑

j∈Z\{0}
uj e

ijx , u(x) ←→ u := (uj )j∈Z\{0} , u−j = uj , (2.4)

where the Fourier indices j ∈ Z \ {0} by the definition (1.4) of the phase space and u−j = uj because u(x) is real-
valued. The symplectic structure writes

� = 1

2

∑
j �=0

1

ij
duj ∧ du−j =

∑
j≥1

1

ij
duj ∧ du−j , �(u, v) =

∑
j �=0

1

ij
ujv−j =

∑
j �=0

1

ij
uj vj , (2.5)

the Hamiltonian vector field XH and the Poisson bracket {F, G} are

[XH(u)]j = ij (∂u−j
H)(u) , ∀j �= 0 , {F(u),G(u)} = −

∑
j �=0

ij (∂u−j
F )(u)(∂ujG)(u) . (2.6)

Conservation of momentum. A Hamiltonian

H(u) =
∑

j1,...,jn∈Z\{0}
Hj1,...,jnuj1 . . . ujn, u(x) =

∑
j∈Z\{0}

uj e
ijx, (2.7)

homogeneous of degree n, preserves the momentum if the coefficients Hj1,...,jn are zero for j1 + . . . + jn �= 0, so 
that the sum in (2.7) is restricted to integers such that j1 + . . . + jn = 0. Equivalently, H preserves the momentum 
if {H, M} = 0, where M is the momentum M(u) := ∫

T
u2dx =∑j∈Z\{0} uju−j . The homogeneous components 

of degree ≤ 5 of the KdV Hamiltonian H in (1.3) preserve the momentum because, by (1.5), the homogeneous 
component f5 of degree 5 does not depend on the space variable x.

Tangential and normal variables. Let j̄1, . . . , j̄ν ≥ 1 be ν distinct integers, and S+ := {j̄1, . . . , j̄ν}. Let S be the 
symmetric set in (1.8), and Sc := {j ∈ Z \ {0} : j /∈ S} its complementary set in Z \ {0}. We decompose the phase 
space as

H 1
0 (Tx) := HS ⊕H⊥

S , HS := span{eijx : j ∈ S}, H⊥
S := {u =

∑
j∈Sc

uj e
ijx ∈ H 1

0 (Tx)
}
, (2.8)

and we denote by S , ⊥
S the corresponding orthogonal projectors. Accordingly we decompose

u = v + z, v = Su :=
∑
j∈S

uj e
ijx, z = ⊥

S u :=
∑
j∈Sc

uj e
ijx , (2.9)

where v is called the tangential variable and z the normal one. We shall sometimes identify v ≡ (vj )j∈S and z ≡
(zj )j∈Sc . The subspaces HS and H⊥

S are symplectic. The dynamics of these two components is quite different. On HS

we shall introduce the action-angle variables, see (4.1). The linear frequencies of oscillations on the tangential sites 
are

ω̄ := (j̄3
1 , . . . , j̄

3
ν ) ∈ Nν. (2.10)

2.2. Functional setting

Norms. Along the paper we shall use the notation

‖u‖s := ‖u‖Hs(Tν+1) := ‖u‖Hs
ϕ,x

(2.11)

to denote the Sobolev norm of functions u = u(ϕ, x) in the Sobolev space Hs(Tν+1). We shall denote by ‖ ‖Hs
x

the 
Sobolev norm in the phase space of functions u := u(x) ∈ Hs(T). Moreover ‖ ‖Hs

ϕ
will denote the Sobolev norm of 

scalar functions, like the Fourier components uj(ϕ).
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We fix s0 := (ν + 2)/2 so that Hs0(Tν+1) ↪→ L∞(Tν+1) and the spaces Hs(Tν+1), s > s0, are an algebra. At the 
end of this section we report interpolation properties of the Sobolev norm that will be currently used along the paper. 
We shall also denote

Hs
S⊥(T

ν+1) := {u ∈ Hs(Tν+1) : u(ϕ, ·) ∈ H⊥
S ∀ϕ ∈ Tν

}
, (2.12)

Hs
S(T

ν+1) := {u ∈ Hs(Tν+1) : u(ϕ, ·) ∈ HS ∀ϕ ∈ Tν
}
. (2.13)

For a function u : �o → E, ω �→ u(ω), where (E, ‖ ‖E) is a Banach space and �o is a subset of Rν , we define the 
sup-norm and the Lipschitz semi-norm

‖u‖sup
E := ‖u‖sup

E,�o
:= sup

ω∈�o

‖u(ω)‖E , ‖u‖lip
E := ‖u‖lip

E,�o
:= sup

ω1 �=ω2

‖u(ω1)− u(ω2)‖E
|ω1 −ω2| , (2.14)

and, for γ > 0, the Lipschitz norm

‖u‖Lip(γ )
E := ‖u‖Lip(γ )

E,�o
:= ‖u‖sup

E + γ ‖u‖lip
E . (2.15)

If E = Hs we simply denote ‖u‖Lip(γ )
Hs := ‖u‖Lip(γ )

s . We shall use the notation

a ≤s b ⇐⇒ a ≤ C(s)b for some constant C(s) > 0 .

Matrices with off-diagonal decay. A linear operator can be identified, as usual, with its matrix representation. We 
recall the definition of the s-decay norm (introduced in [6]) of an infinite dimensional matrix. This norm is used in [2]
for the KAM reducibility scheme of the linearized operators.

Definition 2.1. The s-decay norm of an infinite dimensional matrix A := (A
i2
i1
)i1,i2∈Zb , b ≥ 1, is

|A|2s :=
∑
i∈Zb

〈i〉2s
(

sup
i1−i2=i

|Ai2
i1
|
)2

. (2.16)

For parameter dependent matrices A :=A(ω), ω ∈ �o ⊆Rν , the definitions (2.14) and (2.15) become

|A|sup
s := sup

ω∈�o

|A(ω)|s , |A|lips := sup
ω1 �=ω2

|A(ω1)−A(ω2)|s
|ω1 −ω2| , |A|Lip(γ )

s := |A|sup
s + γ |A|lips . (2.17)

Such a norm is modeled on the behavior of matrices representing the multiplication operator by a function. Actually, 
given a function p ∈ Hs(Tb), the multiplication operator h �→ ph is represented by the Töplitz matrix T i′

i = pi−i′
and |T |s = ‖p‖s . If p = p(ω) is a Lipschitz family of functions, then

|T |Lip(γ )
s = ‖p‖Lip(γ )

s . (2.18)

The s-norm satisfies classical algebra and interpolation inequalities, see [2].

Lemma 2.1. Let A = A(ω) and B = B(ω) be matrices depending in a Lipschitz way on the parameter ω ∈ �o ⊂Rν . 
Then for all s ≥ s0 > b/2 there are C(s) ≥ C(s0) ≥ 1 such that

|AB|Lip(γ )
s ≤ C(s)|A|Lip(γ )

s |B|Lip(γ )
s , (2.19)

|AB|Lip(γ )
s ≤ C(s)|A|Lip(γ )

s |B|Lip(γ )
s0 +C(s0)|A|Lip(γ )

s0 |B|Lip(γ )
s . (2.20)

The s-decay norm controls the Sobolev norm, namely

‖Ah‖Lip(γ )
s ≤ C(s)

(|A|Lip(γ )
s0 ‖h‖Lip(γ )

s + |A|Lip(γ )
s ‖h‖Lip(γ )

s0

)
. (2.21)

Let now b := ν + 1. An important sub-algebra is formed by the Töplitz in time matrices defined by

A
(l2,j2)

(l1,j1)
:= A

j2
j1
(l1 − l2) , (2.22)

whose decay norm (2.16) is
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|A|2s =
∑

j∈Z,l∈Zν

(
sup

j1−j2=j

|Aj2
j1
(l)|)2〈l, j 〉2s . (2.23)

These matrices are identified with the ϕ-dependent family of operators

A(ϕ) := (Aj2
j1
(ϕ)
)
j1,j2∈Z , A

j2
j1
(ϕ) :=

∑
l∈Zν

A
j2
j1
(l)eil·ϕ (2.24)

which act on functions of the x-variable as

A(ϕ) : h(x) =
∑
j∈Z

hj e
ijx �→ A(ϕ)h(x) =

∑
j1,j2∈Z

A
j2
j1
(ϕ)hj2e

ij1x . (2.25)

We still denote by |A(ϕ)|s the s-decay norm of the matrix in (2.24). As in [2], all the transformations that we shall 
construct in this paper are of this type (with j, j1, j2 �= 0 because they act on the phase space H 1

0 (Tx)). This observa-
tion allows to interpret the conjugacy procedure from a dynamical point of view, see [2]-Section 2.2. Let us fix some 
terminology.

Definition 2.2. We say that:
the operator (Ah)(ϕ, x) := A(ϕ)h(ϕ, x) is SYMPLECTIC if each A(ϕ), ϕ ∈ Tν , is a symplectic map of the phase 

space (or of a symplectic subspace like H⊥
S );

the operator ω · ∂ϕ − ∂xG(ϕ) is HAMILTONIAN if each G(ϕ), ϕ ∈ Tν , is symmetric;
an operator is REAL if it maps real-valued functions into real-valued functions.

As well known, a Hamiltonian operator ω · ∂ϕ − ∂xG(ϕ) is transformed, under a symplectic map A, into another 
Hamiltonian operator ω · ∂ϕ − ∂xE(ϕ), see e.g. [2]-Section 2.3.

We conclude this preliminary section recalling the following well known lemmata, see Appendix of [2].

Lemma 2.2 (Composition). Assume f ∈ Cs(Td × B1), B1 := {y ∈ Rm : |y| ≤ 1}. Then ∀u ∈ Hs(Td , Rm) such that 
‖u‖L∞ < 1, the composition operator f̃ (u)(x) := f (x, u(x)) satisfies ‖f̃ (u)‖s ≤ C‖f ‖Cs (‖u‖s + 1) where the con-
stant C depends on s, d . If f ∈ Cs+2 and ‖u + h‖L∞ < 1, then

∥∥f̃ (u+ h)−
k∑

i=0

f̃ (i)(u)

i! [hi]∥∥
s
≤ C‖f ‖Cs+2 ‖h‖kL∞(‖h‖s + ‖h‖L∞‖u‖s) , k = 0,1 .

The previous statement also holds replacing ‖ ‖s with the norms | |s,∞.

Lemma 2.3 (Tame product). For s ≥ s0 > d/2,

‖uv‖s ≤ C(s0)‖u‖s‖v‖s0 +C(s)‖u‖s0‖v‖s , ∀u,v ∈ Hs(Td) .

For s ≥ 0, s ∈N,

‖uv‖s ≤ 3
2 ‖u‖L∞‖v‖s +C(s)‖u‖Ws,∞‖v‖0 , ∀u ∈ Ws,∞(Td) , v ∈ Hs(Td) .

The above inequalities also hold for the norms ‖ ‖Lip(γ )
s .

Lemma 2.4 (Change of variable). Let p ∈ Ws,∞(Td , Rd), s ≥ 1, with ‖p‖W 1,∞ ≤ 1/2. Then the function f (x) = x +
p(x) is invertible, with inverse f−1(y) = y+q(y) where q ∈ Ws,∞(Td , Rd), and ‖q‖Ws,∞ ≤ C‖p‖Ws,∞ . If, moreover, 
p = pω depends in a Lipschitz way on a parameter ω ∈ � ⊂ Rν , and ‖Dxpω‖L∞ ≤ 1/2, ∀ω, then ‖q‖Lip(γ )

Ws,∞ ≤
C‖p‖Lip(γ )

Ws+1,∞ . The constant C := C(d, s) is independent of γ .

If u ∈ Hs(Td , C), then (u ◦ f )(x) := u(x + p(x)) satisfies

‖u ◦ f ‖s ≤ C(‖u‖s + ‖p‖Ws,∞‖u‖1), ‖u ◦ f − u‖s ≤ C(‖p‖L∞‖u‖s+1 + ‖p‖Ws,∞‖u‖2),

‖u ◦ f ‖Lip(γ )
s ≤ C

(‖u‖Lip(γ )
s+1 + ‖p‖Lip(γ )

Ws,∞ ‖u‖Lip(γ )
2

)
.

The function u ◦ f−1 satisfies the same bounds.
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3. Weak Birkhoff normal form

The Hamiltonian of the perturbed KdV equation (1.1) is H = H2 +H3 +H≥5 (see (1.3)) where

H2(u) := 1

2

∫
T

u2
x dx , H3(u) :=

∫
T

u3dx , H≥5(u) :=
∫
T

f (x,u,ux)dx , (3.1)

and f satisfies (1.5). According to the splitting (2.9) u = v + z, v ∈ HS , z ∈ H⊥
S , we have

H2(u) =
∫
T

v2
x

2
dx +

∫
T

z2
x

2
dx, H3(u) =

∫
T

v3dx + 3
∫
T

v2zdx + 3
∫
T

vz2dx +
∫
T

z3dx . (3.2)

For a finite-dimensional space

E := EC := span{eijx : 0 < |j | ≤ C}, C > 0, (3.3)

let E denote the corresponding L2-projector on E.
The notation R(vk−qzq) indicates a homogeneous polynomial of degree k in (v, z) of the form

R(vk−qzq) = M[ v, . . . , v︸ ︷︷ ︸
(k−q) times

, z, . . . , z︸ ︷︷ ︸
q times

], M = k-linear .

Proposition 3.1 (Weak Birkhoff normal form). Assume Hypothesis (S2). Then there exists an analytic invertible sym-
plectic transformation of the phase space �B : H 1

0 (Tx) → H 1
0 (Tx) of the form

�B(u) = u+�(u), �(u) = E�(Eu), (3.4)

where E is a finite-dimensional space as in (3.3), such that the transformed Hamiltonian is

H := H ◦�B = H2 +H3 +H4 +H5 +H≥6 , (3.5)

where H2 is defined in (3.1),

H3 :=
∫
T

z3 dx + 3
∫
T

vz2 dx , H4 := −3

2

∑
j∈S

|uj |4
j2

+H4,2 +H4,3 , H5 :=
5∑

q=2

R(v5−qzq) , (3.6)

H4,2 := 6
∫
T

vzS

(
(∂−1

x v)(∂−1
x z)

)
dx + 3

∫
T

z2π0(∂
−1
x v)2 dx , H4,3 := R(vz3) , (3.7)

and H≥6 collects all the terms of order at least six in (v, z).

The rest of this section is devoted to the proof of Proposition 3.1.
First, we remove the cubic terms 

∫
T
v3 + 3 

∫
T
v2z from the Hamiltonian H3 defined in (3.2). In the Fourier coordi-

nates (2.4), we have

H2 = 1

2

∑
j �=0

j2|uj |2, H3 =
∑

j1+j2+j3=0

uj1uj2uj3 . (3.8)

We look for a symplectic transformation �(3) of the phase space which eliminates the monomials uj1uj2uj3 of H3
with at most one index outside S. Note that, by the relation j1 +j2 +j3 = 0, they are finitely many. We look for �(3) :=
(�t

F (3) )|t=1 as the time-1 flow map generated by the Hamiltonian vector field XF(3) , with an auxiliary Hamiltonian of 
the form

F (3)(u) :=
∑

j1+j2+j3=0

F
(3)
j1j2j3

uj1uj2uj3 .

The transformed Hamiltonian is
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H(3) := H ◦�(3) = H2 +H
(3)
3 +H

(3)
4 +H

(3)
≥5 ,

H
(3)
3 = H3 + {H2,F

(3)}, H
(3)
4 = 1

2
{{H2,F

(3)},F (3)} + {H3,F
(3)}, (3.9)

where H(3)
≥5 collects all the terms of order at least five in (u, ux). By (3.8) and (2.6) we calculate

H
(3)
3 =

∑
j1+j2+j3=0

{
1 − i(j3

1 + j3
2 + j3

3 )F
(3)
j1j2j3

}
uj1uj2uj3 .

Hence, in order to eliminate the monomials with at most one index outside S, we choose

F
(3)
j1j2j3

:=
{

1
i(j3

1 +j3
2 +j3

3 )
if (j1, j2, j3) ∈A ,

0 otherwise,
(3.10)

where A := {(j1, j2, j3) ∈ (Z \ {0})3 : j1 + j2 + j3 = 0, j3
1 + j3

2 + j3
3 �= 0, and at least 2 among j1, j2, j3 belong to S

}
. 

Note that

A= {(j1, j2, j3) ∈ (Z \ {0})3 : j1 + j2 + j3 = 0, and at least 2 among j1, j2, j3 belong toS
}

(3.11)

because of the elementary relation

j1 + j2 + j3 = 0 ⇒ j3
1 + j3

2 + j3
3 = 3j1j2j3 �= 0 (3.12)

being j1, j2, j3 ∈ Z \ {0}. Also note that A is a finite set, actually A ⊆ [−2CS, 2CS]3 where the tangential sites 
S ⊆ [−CS, CS]. As a consequence, the Hamiltonian vector field XF(3) has finite rank and vanishes outside the finite 
dimensional subspace E := E2CS

(see (3.3)), namely

XF(3) (u) = EXF(3) (Eu) .

Hence its flow �(3) : H 1
0 (Tx) → H 1

0 (Tx) has the form (3.4) and it is analytic.
By construction, all the monomials of H3 with at least two indices outside S are not modified by the transformation 

�(3). Hence (see (3.2)) we have

H
(3)
3 =

∫
T

z3 dx + 3
∫
T

vz2 dx . (3.13)

We now compute the fourth order term H(3)
4 =∑4

i=0 H
(3)
4,i in (3.9), where H(3)

4,i is of type R(v4−izi).

Lemma 3.2. One has (recall the definition (2.2) of π0)

H
(3)
4,0 := 3

2

∫
T

v2π0[(∂−1
x v)2]dx , H

(3)
4,2 := 6

∫
T

vzS

(
(∂−1

x v)(∂−1
x z)

)
dx + 3

∫
T

z2π0[(∂−1
x v)2]dx . (3.14)

Proof. We write H3 = H3,≤1 +H
(3)
3 where H3,≤1(u) :=

∫
T
v3dx + 3 

∫
T
v2z dx. Then, by (3.9), we get

H
(3)
4 = 1

2

{
H3,≤1 ,F

(3)}+ {H(3)
3 ,F (3)} . (3.15)

By (3.10), (3.12), the auxiliary Hamiltonian may be written as

F (3)(u) = −1

3

∑
(j1,j2,j3)∈A

uj1uj2uj3

(ij1)(ij2)(ij3)
= −1

3

∫
T

(∂−1
x v)3dx −

∫
T

(∂−1
x v)2(∂−1

x z)dx .

Hence, using that the projectors S , ⊥
S are self-adjoint and ∂−1

x is skew-selfadjoint,

∇F (3)(u) = ∂−1
x

{
(∂−1

x v)2 + 2S

[
(∂−1

x v)(∂−1
x z)

]}
(3.16)
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(we have used that ∂−1
x π0 = ∂−1

x be the definition of ∂−1
x ). Recalling the Poisson bracket definition (2.3), using that 

∇H3,≤1(u) = 3v2 + 6S(vz) and (3.16), we get

{H3,≤1,F
(3)} =

∫
T

{
3v2 + 6S(vz)

}
π0
{
(∂−1

x v)2 + 2S

[
(∂−1

x v)(∂−1
x z)

]}
dx

= 3
∫
T

v2π0(∂
−1
x v)2 dx + 12

∫
T

S(vz)S[(∂−1
x v)(∂−1

x z)]dx +R(v3z) . (3.17)

Similarly, since ∇H
(3)
3 (u) = 3z2 + 6⊥

S (vz),

{H(3)
3 ,F (3)} = 3

∫
T

z2π0(∂
−1
x v)2 dx +R(v3z)+R(vz3) . (3.18)

The lemma follows by (3.15), (3.17), (3.18). �
We now construct a symplectic map �(4) such that the Hamiltonian system obtained transforming H2+H

(3)
3 +H

(3)
4

possesses the invariant subspace HS (see (2.8)) and its dynamics on HS is integrable and non-isochronous. Hence we 
have to eliminate the term H(3)

4,1 (which is linear in z), and to normalize H(3)
4,0 (which is independent of z). We need the 

following elementary lemma (Lemma 13.4 in [21]).

Lemma 3.3. Let j1, j2, j3, j4 ∈ Z such that j1 + j2 + j3 + j4 = 0. Then

j3
1 + j3

2 + j3
3 + j3

4 = −3(j1 + j2)(j1 + j3)(j2 + j3).

Lemma 3.4. There exists a symplectic transformation �(4) of the form (3.4) such that

H(4) := H(3) ◦�(4) = H2 +H
(3)
3 +H

(4)
4 +H

(4)
≥5 , H

(4)
4 := −3

2

∑
j∈S

|uj |4
j2

+H
(3)
4,2 +H

(3)
4,3 , (3.19)

where H(3)
3 is defined in (3.13), H(3)

4,2 in (3.14), H(3)
4,3 = R(vz3) and H(4)

≥5 collects all the terms of degree at least five 
in (u, ux).

Proof. We look for a map �(4) := (�t
F (4) )|t=1 which is the time 1-flow map of an auxiliary Hamiltonian

F (4)(u) :=
∑

j1+j2+j3+j4=0
at least 3 indices are in S

F
(4)
j1j2j3j4

uj1uj2uj3uj4

with the same form of the Hamiltonian H(3)
4,0 +H

(3)
4,1 . The transformed Hamiltonian is

H(4) := H(3) ◦�(4) = H2 +H
(3)
3 +H

(4)
4 +H

(4)
≥5 , H

(4)
4 = {H2,F

(4)} +H
(3)
4 , (3.20)

where H(4)
≥5 collects all the terms of order at least five. We write H(4)

4 =∑4
i=0 H

(4)
4,i where each H(4)

4,i if of type 
R(v4−izi). We choose the coefficients

F
(4)
j1j2j3j4

:=
⎧⎨⎩

H
(3)
j1j2j3j4

i(j3
1 + j3

2 + j3
3 + j3

4 )
if (j1, j2, j3, j4) ∈ A4 ,

0 otherwise,

(3.21)

where

A4 := {(j1, j2, j3, j4) ∈ (Z \ {0})4 : j1 + j2 + j3 + j4 = 0, j3
1 + j3

2 + j3
3 + j3

4 �= 0,

and at most one among j1, j2, j3, j4 outsideS
}
.
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By this definition H(4)
4,1 = 0 because there exist no integers j1, j2, j3 ∈ S, j4 ∈ Sc satisfying j1 + j2 + j3 + j4 = 0, 

j3
1 + j3

2 + j3
3 + j3

4 = 0, by Lemma 3.3 and the fact that S is symmetric. By construction, the terms H(4)
4,i = H

(3)
4,i , 

i = 2, 3, 4, are not changed by �(4). Finally, by (3.14)

H
(4)
4,0 = 3

2

∑
j1,j2,j3,j4∈S

j1+j2+j3+j4=0
j3

1 +j3
2 +j3

3 +j3
4 =0

j1+j2 , j3+j4 �=0

1

(ij3)(ij4)
uj1uj2uj3uj4 . (3.22)

If j1 + j2 + j3 + j4 = 0 and j3
1 + j3

2 + j3
3 + j3

4 = 0, then (j1 + j2)(j1 + j3)(j2 + j3) = 0 by Lemma 3.3. We develop 
the sum in (3.22) with respect to the first index j1. Since j1 + j2 �= 0 the possible cases are:

(i)
{
j2 �= −j1, j3 = −j1, j4 = −j2

}
or (ii)

{
j2 �= −j1, j3 �= −j1, j3 = −j2, j4 = −j1

}
.

Hence, using u−j = ūj (recall (2.4)), and since S is symmetric, we have

∑
(i)

1

j3j4
uj1uj2uj3uj4 =

∑
j1,j2∈S,j2 �=−j1

|uj1 |2|uj2 |2
j1j2

=
∑

j,j ′∈S

|uj |2|uj ′ |2
jj ′ +

∑
j∈S

|uj |4
j2

=
∑
j∈S

|uj |4
j2

, (3.23)

and in the second case (ii)∑
(ii)

1

j3j4
uj1uj2uj3uj4 =

∑
j1,j2,j2 �=±j1

1

j1j2
uj1uj2u−j2u−j1 =

∑
j∈S

1

j
|uj |2

( ∑
j2 �=±j

1

j2
|uj2 |2

)
= 0 . (3.24)

Then (3.19) follows by (3.22), (3.23), (3.24). �
Note that the Hamiltonian H2 + H

(3)
3 + H

(4)
4 (see (3.19)) possesses the invariant subspace {z = 0} and the system 

restricted to {z = 0} is completely integrable and non-isochronous (actually it is formed by ν decoupled rotators). We 
shall construct quasi-periodic solutions which bifurcate from this invariant manifold.

In order to enter in a perturbative regime, we have to eliminate further monomials of H(4) in (3.19). The minimal 
requirement for the convergence of the nonlinear Nash–Moser iteration is to eliminate the monomials R(v5) and 
R(v4z). Here we need the choice of the sites of Hypothesis (S2).

Remark 3.5. In the KAM theorems [25,28] (and [30,32]), as well as for the perturbed mKdV equations (1.10), these 
further steps of Birkhoff normal form are not required because the nonlinearity of the original PDE is yet cubic. 
A difficulty of KdV is that the nonlinearity is quadratic.

We spell out Hypothesis (S2) as follows:

• (S20). There is no choice of 5 integers j1, . . . , j5 ∈ S such that

j1 + . . .+ j5 = 0 , j3
1 + . . .+ j3

5 = 0 . (3.25)

• (S21). There is no choice of 4 integers j1, . . . , j4 in S and an integer in the complementary set j5 ∈ Sc := (Z \
{0}) \ S such that (3.25) holds.

The homogeneous component of degree 5 of H(4) is

H
(4)
5 (u) =

∑
j1+...+j5=0

H
(4)
j1,...,j5

uj1 . . . uj5 .

We want to remove from H(4)
5 the terms with at most one index among j1, . . . , j5 outside S. We consider the auxiliary 

Hamiltonian
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F (5) =
∑

j1+...+j5=0
at most one index outside S

F
(5)
j1...j5

uj1 . . . uj5 , F
(5)
j1...j5

:= H
(5)
j1...j5

i(j3
1 + . . .+ j3

5 )
. (3.26)

By Hypotheses (S20), (S21), if j1 + . . .+ j5 = 0 with at most one index outside S then j3
1 + . . .+ j3

5 �= 0 and F (5) is 
well defined. Let �(5) be the time 1-flow generated by XF(5) . The new Hamiltonian is

H(5) := H(4) ◦�(5) = H2 +H
(3)
3 +H

(4)
4 + {H2,F

(5)} +H
(4)
5 +H

(5)
≥6 (3.27)

where, by (3.26),

H
(5)
5 := {H2,F

(5)} +H
(4)
5 =

5∑
q=2

R(v5−qzq) .

Renaming H := H(5), namely Hn := H
(n)
n , n = 3, 4, 5, and setting �B := �(3) ◦�(4) ◦�(5), formula (3.5) follows.

The homogeneous component H(4)
5 preserves the momentum, see Section 2.1. Hence F (5) also preserves the mo-

mentum. As a consequence, also H(5)
k , k ≤ 5, preserve the momentum.

Finally, since F (5) is Fourier-supported on a finite set, the transformation �(5) is of type (3.4) (and analytic), and 
therefore also the composition �B is of type (3.4) (and analytic).

4. Action-angle variables

We now introduce action-angle variables on the tangential directions by the change of coordinates{
uj :=√ξj + |j |yj eiθj , if j ∈ S ,

uj := zj , if j ∈ Sc ,
(4.1)

where (recall u−j = uj )

ξ−j = ξj , ξj > 0 , y−j = yj , θ−j = −θj , θj , yj ∈ R , ∀j ∈ S . (4.2)

For the tangential sites S+ := {j̄1, . . . , j̄ν} we shall also denote θj̄i := θi , yj̄i := yi , ξj̄i := ξi , i = 1, . . . ν.
The symplectic 2-form � in (2.5) (i.e. (2.1)) becomes

W :=
ν∑

i=1

dθi ∧ dyi + 1

2

∑
j∈Sc\{0}

1

ij
dzj ∧ dz−j = ( ν∑

i=1

dθi ∧ dyi
)⊕�S⊥ = d� (4.3)

where �S⊥ denotes the restriction of � to H⊥
S (see (2.8)) and � is the contact 1-form on Tν ×Rν × H⊥

S defined by 
�(θ,y,z) : Rν ×Rν ×H⊥

S → R,

�(θ,y,z)[θ̂ , ŷ, ẑ] := −y · θ̂ + 1

2
(∂−1

x z, ẑ)L2(T) . (4.4)

Instead of working in a shrinking neighborhood of the origin, it is a convenient devise to rescale the “unperturbed 
actions” ξ and the action-angle variables as

ξ �→ ε2ξ , y �→ ε2by , z �→ εbz . (4.5)

Then the symplectic 2-form in (4.3) transforms into ε2bW . Hence the Hamiltonian system generated by H in (3.5)
transforms into the new Hamiltonian system

θ̇ = ∂yHε(θ, y, z) , ẏ = −∂θHε(θ, y, z) , zt = ∂x∇zHε(θ, y, z) , Hε := ε−2bH ◦Aε (4.6)

where

Aε(θ, y, z) := εvε(θ, y)+ εbz := ε
∑√

ξj + ε2(b−1)|j |yj eiθj eijx + εbz . (4.7)

j∈S
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We shall still denote by XHε = (∂yHε, −∂θHε, ∂x∇zHε) the Hamiltonian vector field in the variables (θ, y, z) ∈
Tν ×Rν ×H⊥

S .
We now write explicitly the Hamiltonian Hε(θ, y, z) in (4.6). The quadratic Hamiltonian H2 in (3.1) transforms 

into

ε−2bH2 ◦Aε = const +
∑
j∈S+

j3yj + 1

2

∫
T

z2
x dx , (4.8)

and, recalling (3.6), (3.7), the Hamiltonian H in (3.5) transforms into (shortly writing vε := vε(θ, y))

Hε(θ, y, z) = e(ξ)+ α(ξ) · y + 1

2

∫
T

z2
xdx + εb

∫
T

z3dx + 3ε
∫
T

vεz
2dx (4.9)

+ ε2
{

6
∫
T

vεzS

(
(∂−1

x vε)(∂
−1
x z)

)
dx + 3

∫
T

z2π0(∂
−1
x vε)

2 dx
}

− 3

2
ε2b
∑
j∈S

y2
j

+ εb+1R(vεz
3)+ ε3R(v3

ε z
2)+ ε2+b

5∑
q=3

ε(q−3)(b−1)R(v5−q
ε zq)+ ε−2bH≥6(εvε + εbz)

where e(ξ) is a constant, and the frequency-amplitude map is

α(ξ) := ω̄ + ε2Aξ , A := −6 diag{1/j }j∈S+ . (4.10)

We write the Hamiltonian in (4.9) as

Hε =N + P , N (θ, y, z) = α(ξ) · y + 1

2

(
N(θ)z, z

)
L2(T)

, (4.11)

where

1

2

(
N(θ)z, z

)
L2(T)

:= 1

2

(
(∂z∇Hε)(θ,0,0)[z], z)

L2(T)
= 1

2

∫
T

z2
xdx + 3ε

∫
T

vε(θ,0)z2dx (4.12)

+ ε2
{

6
∫
T

vε(θ,0)zS

(
(∂−1

x vε(θ,0))(∂−1
x z)

)
dx + 3

∫
T

z2π0(∂
−1
x vε(θ,0))2dx

}
+ . . .

and P := Hε −N .

5. The nonlinear functional setting

We look for an embedded invariant torus

i : Tν → Tν ×Rν ×H⊥
S , ϕ �→ i(ϕ) := (θ(ϕ), y(ϕ), z(ϕ)) (5.1)

of the Hamiltonian vector field XHε filled by quasi-periodic solutions with diophantine frequency ω. We require that 
ω belongs to the set

�ε := α([1,2]ν) = {α(ξ) : ξ ∈ [1,2]ν} (5.2)

where α is the diffeomorphism (4.10), and, in the Hamiltonian Hε in (4.11), we choose

ξ = α−1(ω) = ε−2A−1(ω − ω̄) . (5.3)

Since any ω ∈ �ε is ε2-close to the integer vector ω̄ (see (2.10)), we require that the constant γ in the diophantine 
inequality

|ω · l| ≥ γ 〈l〉−τ , ∀l ∈ Zν \ {0} , satisfies γ = ε2+a for some a > 0 . (5.4)
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We remark that the definition of γ in (5.4) is slightly stronger than the minimal condition, which is γ ≤ cε2 with 
c small enough. In addition to (5.4) we shall also require that ω satisfies the first and second order Melnikov-non-
resonance conditions (8.120).

We look for an embedded invariant torus of the modified Hamiltonian vector field XHε,ζ = XHε + (0, ζ, 0) which 
is generated by the Hamiltonian

Hε,ζ (θ, y, z) := Hε(θ, y, z)+ ζ · θ , ζ ∈ Rν . (5.5)

Note that XHε,ζ is periodic in θ (unlike Hε,ζ ). It turns out that an invariant torus for XHε,ζ is actually invariant for 
XHε , see Lemma 6.1. We introduce the parameter ζ ∈ Rν in order to control the average in the y-component of the 
linearized equations. Thus we look for zeros of the nonlinear operator

F(i, ζ ) := F(i, ζ,ω, ε) := Dωi(ϕ)−XHε,ζ (i(ϕ)) =Dωi(ϕ)−XN (i(ϕ))−XP (i(ϕ))+ (0, ζ,0) (5.6)

:=
⎛⎝ Dωθ(ϕ)− ∂yHε(i(ϕ))

Dωy(ϕ)+ ∂θHε(i(ϕ))+ ζ

Dωz(ϕ)− ∂x∇zHε(i(ϕ))

⎞⎠=
⎛⎝ Dω�(ϕ)− ∂yP (i(ϕ))

Dωy(ϕ)+ 1
2∂θ (N(θ(ϕ))z(ϕ), z(ϕ))L2(T) + ∂θP (i(ϕ))+ ζ

Dωz(ϕ)− ∂xN(θ(ϕ))z(ϕ)− ∂x∇zP (i(ϕ))

⎞⎠
where �(ϕ) := θ(ϕ) − ϕ is (2π)ν -periodic and we use the short notation

Dω := ω · ∂ϕ . (5.7)

The Sobolev norm of the periodic component of the embedded torus

I(ϕ) := i(ϕ)− (ϕ,0,0) := (�(ϕ), y(ϕ), z(ϕ)) , �(ϕ) := θ(ϕ)− ϕ , (5.8)

is

‖I‖s := ‖�‖Hs
ϕ
+ ‖y‖Hs

ϕ
+ ‖z‖s (5.9)

where ‖z‖s := ‖z‖Hs
ϕ,x

is defined in (2.11). We link the rescaling (4.5) with the diophantine constant γ = ε2+a by 
choosing

γ = ε2b , b = 1 + (a/2) . (5.10)

Other choices are possible, see Remark 5.2.

Theorem 5.1. Let the tangential sites S in (1.8) satisfy (S1), (S2). Then, for all ε ∈ (0, ε0), where ε0 is small enough, 
there exists a Cantor-like set Cε ⊂ �ε , with asymptotically full measure as ε → 0, namely

lim
ε→0

|Cε|
|�ε| = 1 , (5.11)

such that, for all ω ∈ Cε , there exists a solution i∞(ϕ) := i∞(ω, ε)(ϕ) of Dωi∞(ϕ) − XHε(i∞(ϕ)) = 0. Hence the 
embedded torus ϕ �→ i∞(ϕ) is invariant for the Hamiltonian vector field XHε(·,ξ) with ξ as in (5.3), and it is filled by 
quasi-periodic solutions with frequency ω. The torus i∞ satisfies

‖i∞(ϕ)− (ϕ,0,0)‖Lip(γ )
s0+μ = O(ε6−2bγ−1) (5.12)

for some μ := μ(ν) > 0. Moreover, the torus i∞ is LINEARLY STABLE.

Theorem 5.1 is proved in Sections 6–9. It implies Theorem 1.1 where the ξj in (1.9) are ε2ξj , ξj ∈ [1, 2], in 
(5.3). By (5.12), going back to the variables before the rescaling (4.5), we get �∞ = O(ε6−2bγ−1), y∞ = O(ε6γ−1), 
z∞ = O(ε6−bγ−1), which, as b → 1+, tend to the expected optimal estimates.

Remark 5.2. There are other possible ways to link the rescaling (4.5) with the diophantine constant γ = ε2+a . The 
choice γ > ε2b reduces to study perturbations of an isochronous system (as in [23,25,28]), and it is convenient to 
introduce ξ(ω) as a variable. The case ε2b > γ , in particular b = 1, has to be dealt with a perturbation approach of a 
non-isochronous system à la Arnold–Kolmogorov.
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We now give the tame estimates for the composition operator induced by the Hamiltonian vector fields XN and 
XP in (5.6), that we shall use in the next sections.

We first estimate the composition operator induced by vε(θ, y) defined in (4.7). Since the functions y �→√
ξ + ε2(b−1)|j |y, θ �→ eiθ are analytic for ε small enough and |y| ≤ C, the composition Lemma 2.2 implies that, 

for all �, y ∈ Hs(Tν, Rν), ‖�‖s0, ‖y‖s0 ≤ 1, setting θ(ϕ) := ϕ + �(ϕ), ‖vε(θ(ϕ), y(ϕ))‖s ≤s 1 + ‖�‖s + ‖y‖s . 
Hence, using also (5.3), the map Aε in (4.7) satisfies, for all ‖I‖Lip(γ )

s0 ≤ 1 (see (5.8))

‖Aε(θ(ϕ), y(ϕ), z(ϕ))‖Lip(γ )
s ≤s ε(1 + ‖I‖Lip(γ )

s ) . (5.13)

We now give tame estimates for the Hamiltonian vector fields XN , XP , XHε , see (4.11)–(4.12).

Lemma 5.3. Let I(ϕ) in (5.8) satisfy ‖I‖Lip(γ )
s0+3 ≤ Cε6−2bγ−1. Then

‖∂yP (i)‖Lip(γ )
s ≤s ε

4 + ε2b‖I‖Lip(γ )
s+1 , ‖∂θP (i)‖Lip(γ )

s ≤s ε
6−2b(1 + ‖I‖Lip(γ )

s+1 ) (5.14)

‖∇zP (i)‖Lip(γ )
s ≤s ε

5−b + ε6−bγ−1‖I‖Lip(γ )
s+1 , ‖XP (i)‖Lip(γ )

s ≤s ε
6−2b + ε2b‖I‖Lip(γ )

s+3 (5.15)

‖∂θ∂yP (i)‖Lip(γ )
s ≤s ε

4 + ε5γ−1‖I‖Lip(γ )
s+2 , ‖∂y∇zP (i)‖Lip(γ )

s ≤s ε
b+3 + ε2b−1‖I‖Lip(γ )

s+2 (5.16)

‖∂yyP (i)+ 3ε2bIRν‖Lip(γ )
s ≤s ε

2+2b + ε2b+3γ−1‖I‖Lip(γ )
s+2 (5.17)

and, for all ̂ı := (�̂, ̂y, ̂z),

‖∂ydiXP (i)[̂ı ]‖Lip(γ )
s ≤s ε

2b−1(‖̂ı‖Lip(γ )
s+3 + ‖I‖Lip(γ )

s+3 ‖̂ı‖Lip(γ )
s0+3

)
(5.18)

‖diXHε(i)[̂ı ] + (0,0, ∂xxx ẑ)‖Lip(γ )
s ≤s ε

(‖̂ı‖Lip(γ )
s+3 + ‖I‖Lip(γ )

s+3 ‖̂ı‖Lip(γ )
s0+3

)
(5.19)

‖d2
i XHε (i)[̂ı, ı̂ ]‖Lip(γ )

s ≤s ε
(
‖̂ı‖Lip(γ )

s+3 ‖̂ı‖Lip(γ )
s0+3 + ‖I‖Lip(γ )

s+3 (‖̂ı‖Lip(γ )
s0+3 )2

)
. (5.20)

In the sequel we will also use that, by the diophantine condition (5.4), the operator D−1
ω (see (5.7)) is defined for 

all functions u with zero ϕ-average, and satisfies

‖D−1
ω u‖s ≤ Cγ−1‖u‖s+τ , ‖D−1

ω u‖Lip(γ )
s ≤ Cγ−1‖u‖Lip(γ )

s+2τ+1 . (5.21)

6. Approximate inverse

In order to implement a convergent Nash–Moser scheme that leads to a solution of F(i, ζ ) = 0 our aim is to 
construct an approximate right inverse (which satisfies tame estimates) of the linearized operator

di,ζF(i0, ζ0)[̂ı , ζ̂ ] = di,ζF(i0)[̂ı , ζ̂ ] =Dω̂ı − diXHε(i0(ϕ))[ ı̂ ] + (0, ζ̂ ,0) , (6.1)

see Theorem 6.10. Note that di,ζF(i0, ζ0) = di,ζF(i0) is independent of ζ0 (see (5.6)).
The notion of approximate right inverse is introduced in [35]. It denotes a linear operator which is an exact right 

inverse at a solution (i0, ζ0) of F(i0, ζ0) = 0. We want to implement the general strategy in [7,8] which reduces the 
search of an approximate right inverse of (6.1) to the search of an approximate inverse on the normal directions only.

It is well known that an invariant torus i0 with diophantine flow is isotropic (see e.g. [7]), namely the pull-back 
1-form i∗0� is closed, where � is the contact 1-form in (4.4). This is tantamount to say that the 2-form W (see (4.3)) 
vanishes on the torus i0(Tν) (i.e. W vanishes on the tangent space at each point i0(ϕ) of the manifold i0(Tν)), because 
i∗0W = i∗0d� = di∗0�. For an “approximately invariant” torus i0 the 1-form i∗0� is only “approximately closed”. In 
order to make this statement quantitative we consider

i∗0� =
ν∑

k=1

ak(ϕ)dϕk , ak(ϕ) := −([∂ϕθ0(ϕ)]T y0(ϕ)
)
k
+ 1

2
(∂ϕk z0(ϕ), ∂

−1
x z0(ϕ))L2(T) (6.2)

and we quantify how small is
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i∗0W = d i∗0� =
∑

1≤k<j≤ν

Akj (ϕ)dϕk ∧ dϕj , Akj (ϕ) := ∂ϕkaj (ϕ)− ∂ϕj ak(ϕ) . (6.3)

Along this section we will always assume the following hypothesis (which will be verified at each step of the Nash–
Moser iteration):

• ASSUMPTION. The map ω �→ i0(ω) is a Lipschitz function defined on some subset �o ⊂ �ε , where �ε is defined 
in (5.2), and, for some μ := μ(τ, ν) > 0,

‖I0‖Lip(γ )
s0+μ ≤ Cε6−2bγ−1, ‖Z‖Lip(γ )

s0+μ ≤ Cε6−2b, γ = ε2+a, b := 1 + (a/2) , a ∈ (0,1/6), (6.4)

where I0(ϕ) := i0(ϕ) − (ϕ, 0, 0), and

Z(ϕ) := (Z1,Z2,Z3)(ϕ) := F(i0, ζ0)(ϕ) = ω · ∂ϕi0(ϕ)−XHε,ζ0
(i0(ϕ)) . (6.5)

Lemma 6.1. |ζ0|Lip(γ ) ≤ C‖Z‖Lip(γ )
s0 . If F(i0, ζ0) = 0 then ζ0 = 0, namely the torus i0 is invariant for XHε .

Proof. It is proved in [7] the formula

ζ0 =
∫
Tν

−[∂ϕy0(ϕ)]T Z1(ϕ)+ [∂ϕθ0(ϕ)]T Z2(ϕ)− [∂ϕz0(ϕ)]T ∂−1
x Z3(ϕ) dϕ .

Hence the lemma follows by (6.4) and usual algebra estimate. �
We now quantify the size of i∗0W in terms of Z. Directly from (6.2) and (6.3) one has ‖Akj‖Lip(γ )

s ≤s ‖I0‖Lip(γ )
s+2 . 

Moreover, Akj also satisfies the following bound.

Lemma 6.2. The coefficients Akj (ϕ) in (6.3) satisfy

‖Akj‖Lip(γ )
s ≤s γ

−1(‖Z‖Lip(γ )
s+2τ+2 + ‖Z‖Lip(γ )

s0+1 ‖I0‖Lip(γ )
s+2τ+2

)
. (6.6)

Proof. We estimate the coefficients of the Lie derivative Lω(i
∗
0W) :=∑k<j DωAkj (ϕ)dϕk ∧ dϕj . Denoting by ek

the k-th versor of Rν we have

DωAkj = Lω(i
∗
0W)(ϕ)[ek, ej ] =W

(
∂ϕZ(ϕ)ek, ∂ϕi0(ϕ)ej

)+W
(
∂ϕi0(ϕ)ek, ∂ϕZ(ϕ)ej

)
(see [7]). Hence

‖DωAkj‖Lip(γ )
s ≤s ‖Z‖Lip(γ )

s+1 + ‖Z‖Lip(γ )
s0+1 ‖I0‖Lip(γ )

s+1 . (6.7)

The bound (6.6) follows applying D−1
ω and using (5.21). �

As in [7] we first modify the approximate torus i0 to obtain an isotropic torus iδ which is still approximately 
invariant. We denote the Laplacian �ϕ :=∑ν

k=1 ∂
2
ϕk

.

Lemma 6.3 (Isotropic torus). The torus iδ(ϕ) := (θ0(ϕ), yδ(ϕ), z0(ϕ)) defined by

yδ := y0 + [∂ϕθ0(ϕ)]−T ρ(ϕ) , ρj (ϕ) := �−1
ϕ

ν∑
k=1

∂ϕj Akj (ϕ) (6.8)

is isotropic. If (6.4) holds, then, for some σ := σ(ν, τ),

‖yδ − y0‖Lip(γ )
s ≤s ‖I0‖Lip(γ )

s+σ , (6.9)

‖yδ − y0‖Lip(γ )
s ≤s γ

−1{‖Z‖Lip(γ )
s+σ + ‖Z‖Lip(γ )

s0+σ ‖I0‖Lip(γ )
s+σ

}
, (6.10)

‖F(iδ, ζ0)‖Lip(γ )
s ≤s ‖Z‖Lip(γ )

s+σ + ε2b−1γ−1‖I0‖Lip(γ )
s+σ ‖Z‖Lip(γ )

s0+σ , (6.11)

‖∂i[iδ][̂ı]‖s ≤s ‖̂ı‖s + ‖I0‖s+σ ‖̂ı‖s . (6.12)
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In the paper we denote equivalently the differential by ∂i or di . Moreover we denote by σ := σ(ν, τ) possibly 
different (larger) “loss of derivatives” constants.

Proof. In this proof we write ‖ ‖s to denote ‖ ‖Lip(γ )
s . The proof of the isotropy of iδ is in [7]. The estimate (6.9)

follows by (6.8), (6.2), (6.3), (6.4). The estimate (6.10) follows by (6.8), (6.6), (6.4) and the tame bound for the inverse 
‖[∂ϕθ0]−T ‖s ≤s 1 + ‖I0‖s+1. It remains to estimate the difference (see (5.6) and note that XN does not depend on y)

F(iδ, ζ0)−F(i0, ζ0) =
( 0
Dω(yδ − y0)

0

)
+XP (iδ)−XP (i0) . (6.13)

Using (5.16), (5.17), we get ‖∂yXP (i)‖s ≤s ε
2b + ε2b−1‖I‖s+3. Hence (6.9), (6.10), (6.4) imply

‖XP (iδ)−XP (i0)‖s ≤s ‖Z‖s+σ + ε2b−1γ−1‖I0‖s+σ‖Z‖s0+σ . (6.14)

Differentiating (6.8) we have

Dω(yδ − y0) = [∂ϕθ0(ϕ)]−TDωρ(ϕ)+ (Dω[∂ϕθ0(ϕ)]−T )ρ(ϕ) (6.15)

and Dωρj (ϕ) = �−1
ϕ

∑ν
k=1 ∂ϕjDωAkj (ϕ). Using (6.7), we deduce that

‖[∂ϕθ0]−TDωρ‖s ≤s ‖Z‖s+1 + ‖Z‖s0+1‖I0‖s+1 . (6.16)

To estimate the second term in (6.15), we differentiate Z1(ϕ) = Dωθ0(ϕ) − ω − (∂yP )(i0(ϕ)) (which is the first 
component in (5.6)) with respect to ϕ. We get Dω∂ϕθ0(ϕ) = ∂ϕ(∂yP )(i0(ϕ)) + ∂ϕZ1(ϕ). Then, by (5.14),

‖Dω[∂ϕθ0]T ‖s ≤s ε
4 + ε2b‖I0‖s+2 + ‖Z‖s+1 . (6.17)

Since Dω[∂ϕθ0(ϕ)]−T = −[∂ϕθ0(ϕ)]−T
(
Dω[∂ϕθ0(ϕ)]T

)[∂ϕθ0(ϕ)]−T , the bounds (6.17), (6.6), (6.4) imply

‖(Dω[∂ϕθ0]−T )ρ‖s ≤s ε
6−2bγ−1‖Z‖s+σ + ‖I0‖s+σ‖Z‖s0+σ . (6.18)

In conclusion (6.13), (6.14), (6.15), (6.16), (6.18) imply (6.11). The bound (6.12) follows by (6.8), (6.3), (6.2), 
(6.4). �

In order to find an approximate inverse of the linearized operator di,ζF(iδ) we introduce a suitable set of symplectic 
coordinates nearby the isotropic torus iδ . We consider the map Gδ : (ψ, η, w) → (θ, y, z) of the phase space Tν ×
Rν ×H⊥

S defined by(
θ

y

z

)
:= Gδ

(
ψ

η

w

)
:=
⎛⎝ θ0(ψ)

yδ(ψ)+ [∂ψθ0(ψ)]−T η + [(∂θ z̃0)(θ0(ψ))
]T

∂−1
x w

z0(ψ)+w

⎞⎠ (6.19)

where z̃0(θ) := z0(θ
−1
0 (θ)). It is proved in [7] that Gδ is symplectic, using that the torus iδ is isotropic (Lemma 6.3). 

In the new coordinates, iδ is the trivial embedded torus (ψ, η, w) = (ψ, 0, 0). The transformed Hamiltonian K :=
K(ψ, η, w, ζ0) is (recall (5.5))

K := Hε,ζ0 ◦Gδ = θ0(ψ) · ζ0 +K00(ψ)+K10(ψ) · η + (K01(ψ),w)L2(T) + 1

2
K20(ψ)η · η

+ (K11(ψ)η,w
)
L2(T)

+ 1

2

(
K02(ψ)w,w

)
L2(T)

+K≥3(ψ,η,w) (6.20)

where K≥3 collects the terms at least cubic in the variables (η, w). At any fixed ψ , the Taylor coefficient K00(ψ) ∈ R, 
K10(ψ) ∈ Rν , K01(ψ) ∈ H⊥

S (it is a function of x ∈ T), K20(ψ) is a ν × ν real matrix, K02(ψ) is a linear self-adjoint 
operator of H⊥

S and K11(ψ) : Rν → H⊥
S . Note that the above Taylor coefficients do not depend on the parameter ζ0.

The Hamilton equations associated to (6.20) are
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⎧⎪⎪⎨⎪⎪⎩
ψ̇ = K10(ψ)+K20(ψ)η +KT

11(ψ)w + ∂ηK≥3(ψ,η,w)

η̇ = −[∂ψθ0(ψ)]T ζ0 − ∂ψK00(ψ)− [∂ψK10(ψ)]T η − [∂ψK01(ψ)]T w
− ∂ψ

( 1
2K20(ψ)η · η + (K11(ψ)η,w)L2(T) + 1

2 (K02(ψ)w,w)L2(T) +K≥3(ψ,η,w)
)

ẇ = ∂x
(
K01(ψ)+K11(ψ)η +K02(ψ)w + ∇wK≥3(ψ,η,w)

) (6.21)

where [∂ψK10(ψ)]T is the ν × ν transposed matrix and [∂ψK01(ψ)]T , KT
11(ψ) : H⊥

S →Rν are defined by the duality 
relation (∂ψK01(ψ)[ψ̂], w)L2 = ψ̂ · [∂ψK01(ψ)]T w, ∀ψ̂ ∈ Rν, w ∈ H⊥

S , and similarly for K11. Explicitly, for all 
w ∈ H⊥

S , and denoting ek the k-th versor of Rν ,

KT
11(ψ)w =

ν∑
k=1

(
KT

11(ψ)w · ek
)
ek =

ν∑
k=1

(
w,K11(ψ)ek

)
L2(T)

ek ∈Rν . (6.22)

In the next lemma we estimate the coefficients K00, K10, K01 in the Taylor expansion (6.20). Note that on an exact 
solution we have Z = 0 and therefore K00(ψ) = const, K10 = ω and K01 = 0.

Lemma 6.4. Assume (6.4). Then there is σ := σ(τ, ν) such that

‖∂ψK00‖Lip(γ )
s + ‖K10 −ω‖Lip(γ )

s + ‖K01‖Lip(γ )
s ≤s ‖Z‖Lip(γ )

s+σ + ε2b−1γ−1‖Z‖Lip(γ )
s0+σ ‖I0‖Lip(γ )

s+σ .

Proof. Let F(iδ, ζ0) := Zδ := (Z1,δ, Z2,δ, Z3,δ). By a direct calculation as in [7] (using (6.20), (5.6))

∂ψK00(ψ) = −[∂ψθ0(ψ)]T (ζ0 −Z2,δ − [∂ψyδ][∂ψθ0]−1Z1,δ + [(∂θ z̃0)(θ0(ψ))]T ∂−1
x Z3,δ

+ [(∂θ z̃0)(θ0(ψ))]T ∂−1
x ∂ψz0(ψ)[∂ψθ0(ψ)]−1Z1,δ

)
,

K10(ψ) = ω − [∂ψθ0(ψ)]−1Z1,δ(ψ) ,

K01(ψ) = −∂−1
x Z3,δ + ∂−1

x ∂ψz0(ψ)[∂ψθ0(ψ)]−1Z1,δ(ψ) .

Then (6.4), (6.10), (6.11) and Lemma 6.1 (use also Lemma 2.4) imply the lemma. �
Remark 6.5. If F(i0, ζ0) = 0 then ζ0 = 0 by Lemma 6.1, and Lemma 6.4 implies that (6.20) simplifies to K =
const +ω · η + 1

2K20(ψ)η · η + (K11(ψ)η, w
)
L2(T)

+ 1
2

(
K02(ψ)w, w

)
L2(T)

+K≥3.

We now estimate K20, K11 in (6.20). The norm of K20 is the sum of the norms of its matrix entries.

Lemma 6.6. Assume (6.4). Then

‖K20 + 3ε2bI‖Lip(γ )
s ≤s ε

2b+2 + ε2b‖I0‖Lip(γ )
s+σ (6.23)

‖K11η‖Lip(γ )
s ≤s ε

5γ−1‖η‖Lip(γ )
s + ε2b−1‖I0‖Lip(γ )

s+σ ‖η‖Lip(γ )
s0 (6.24)

‖KT
11w‖Lip(γ )

s ≤s ε
5γ−1‖w‖Lip(γ )

s+2 + ε2b−1‖I0‖Lip(γ )
s+σ ‖w‖Lip(γ )

s0+2 . (6.25)

In particular ‖K20 + 3ε2bI‖Lip(γ )
s0 ≤ Cε6γ−1, and

‖K11η‖Lip(γ )
s0 ≤ Cε5γ−1‖η‖Lip(γ )

s0 , ‖KT
11w‖Lip(γ )

s0 ≤ Cε5γ−1‖w‖Lip(γ )
s0 .

Proof. To shorten the notation, in this proof we write ‖ ‖s for ‖ ‖Lip(γ )
s . We have

K20(ϕ) = [∂ϕθ0(ϕ)]−1∂yyHε(iδ(ϕ))[∂ϕθ0(ϕ)]−T = [∂ϕθ0(ϕ)]−1∂yyP (iδ(ϕ))[∂ϕθ0(ϕ)]−T .

Then (5.17), (6.4), (6.9) imply (6.23). Now (see also [7])

K11(ϕ) = ∂y∇zHε(iδ(ϕ))[∂ϕθ0(ϕ)]−T − ∂−1
x (∂θ z̃0)(θ0(ϕ))(∂yyHε)(iδ(ϕ))[∂ϕθ0(ϕ)]−T

(4.11)= ∂y∇zP (iδ(ϕ))[∂ϕθ0(ϕ)]−T − ∂−1
x (∂θ z̃0)(θ0(ϕ))(∂yyP )(iδ(ϕ))[∂ϕθ0(ϕ)]−T ,



P. Baldi et al. / Ann. I. H. Poincaré – AN 33 (2016) 1589–1638 1609
therefore, using (5.16), (5.17), (6.4), (6.9), we deduce (6.24). The bound (6.25) for KT
11 follows by (6.22) and 

(6.24). �
Under the linear change of variables

DGδ(ϕ,0,0)

(
ψ̂

η̂

ŵ

)
:=
(
∂ψθ0(ϕ) 0 0
∂ψyδ(ϕ) [∂ψθ0(ϕ)]−T −[(∂θ z̃0)(θ0(ϕ))]T ∂−1

x

∂ψz0(ϕ) 0 I

)(
ψ̂

η̂

ŵ

)
(6.26)

the linearized operator di,ζF(iδ) transforms (approximately, see (6.46)) into the operator obtained linearizing (6.21)
at (ψ, η, w, ζ ) = (ϕ, 0, 0, ζ0) (with ∂t �Dω), namely⎛⎝ Dωψ̂ − ∂ψK10(ϕ)[ψ̂ ] −K20(ϕ)̂η −KT

11(ϕ)ŵ

Dωη̂ + [∂ψθ0(ϕ)]T ζ̂ + ∂ψ [∂ψθ0(ϕ)]T [ψ̂, ζ0] + ∂ψψK00(ϕ)[ψ̂] + [∂ψK10(ϕ)]T η̂ + [∂ψK01(ϕ)]T ŵ
Dωŵ − ∂x{∂ψK01(ϕ)[ψ̂] +K11(ϕ)̂η +K02(ϕ)ŵ}

⎞⎠ . (6.27)

We now estimate the induced composition operator.

Lemma 6.7. Assume (6.4) and let ̂ı := (ψ̂, ̂η, ̂w). Then

‖DGδ(ϕ,0,0)[ ı̂ ]‖s + ‖DGδ(ϕ,0,0)−1[ ı̂ ]‖s ≤s ‖̂ı‖s + ‖I0‖s+σ ‖̂ı‖s0 ,

‖D2Gδ(ϕ,0,0)[̂ı1, ı̂2]‖s ≤s ‖̂ı1‖s ‖̂ı2‖s0 + ‖̂ı1‖s0 ‖̂ı2‖s + ‖I0‖s+σ ‖̂ı1‖s0 ‖̂ı2‖s0 (6.28)

for some σ := σ(ν, τ). Moreover the same estimates hold if we replace the norm ‖ ‖s with ‖ ‖Lip(γ )
s .

Proof. The estimate (6.28) for DGδ(ϕ, 0, 0) follows by (6.26) and (6.9). By (6.4), ‖(DGδ(ϕ, 0, 0) − I )̂ı‖s0 ≤
Cε6−2bγ−1‖̂ı‖s0 ≤ ‖̂ı‖s0/2. Therefore DGδ(ϕ, 0, 0) is invertible and, by Neumann series, the inverse satisfies (6.28). 
The bound for D2Gδ follows by differentiating DGδ . �

In order to construct an approximate inverse of (6.27) it is sufficient to solve the equation

D[ψ̂, η̂, ŵ, ζ̂ ] :=
⎛⎝ Dωψ̂ −K20(ϕ)̂η −KT

11(ϕ)ŵ

Dωη̂ + [∂ψθ0(ϕ)]T ζ̂
Dωŵ − ∂xK11(ϕ)̂η − ∂xK02(ϕ)ŵ

⎞⎠=
(
g1
g2
g3

)
(6.29)

which is obtained by neglecting in (6.27) the terms ∂ψK10, ∂ψψK00, ∂ψK00, ∂ψK01 and ∂ψ [∂ψθ0(ϕ)]T [·, ζ0] (which 
are naught at a solution by Lemmata 6.4 and 6.1).

First we solve the second equation in (6.29), namely Dωη̂ = g2 − [∂ψθ0(ϕ)]T ζ̂ . We choose ̂ζ so that the ϕ-average 
of the right hand side is zero, namely

ζ̂ = 〈g2〉 (6.30)

(we denote 〈g〉 := (2π)−ν
∫
Tν g(ϕ)dϕ). Note that the ϕ-averaged matrix 〈[∂ψθ0]T 〉 = 〈I + [∂ψ�0]T 〉 = I because 

θ0(ϕ) = ϕ +�0(ϕ) and �0(ϕ) is a periodic function. Therefore

η̂ := D−1
ω

(
g2 − [∂ψθ0(ϕ)]T 〈g2〉

)+ 〈̂η〉 , 〈̂η〉 ∈ Rν , (6.31)

where the average 〈̂η〉 will be fixed below. Then we consider the third equation

Lωŵ = g3 + ∂xK11(ϕ)̂η , Lω := ω · ∂ϕ − ∂xK02(ϕ) . (6.32)

• INVERSION ASSUMPTION. There exists a set �∞ ⊂ �o such that for all ω ∈ �∞, for every function g ∈
H

s+μ

S⊥ (Tν+1) there exists a solution h :=L−1
ω g ∈ Hs

S⊥(T
ν+1) of the linear equation Lωh = g which satisfies

‖L−1
ω g‖Lip(γ )

s ≤ C(s)γ−1(‖g‖Lip(γ )
s+μ + εγ−1‖I0‖Lip(γ )

s+μ ‖g‖Lip(γ )
s0

)
(6.33)

for some μ := μ(τ, ν) > 0.
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Remark 6.8. The term εγ−1‖I0‖Lip(γ )
s+μ arises because the remainder R6 in Section 8.6 contains the term 

ε(‖�0‖Lip(γ )
s+μ + ‖yδ‖Lip(γ )

s+μ ) (which is bounded by ε‖I0‖Lip(γ )
s+μ by (6.9)), see Lemma 8.24.

By the above assumption there exists a solution

ŵ := L−1
ω [g3 + ∂xK11(ϕ)̂η ] (6.34)

of (6.32). Finally, we solve the first equation in (6.29), which, substituting (6.31), (6.34), becomes

Dωψ̂ = g1 +M1(ϕ)〈̂η〉 +M2(ϕ)g2 +M3(ϕ)g3 −M2(ϕ)[∂ψθ0]T 〈g2〉 , (6.35)

where

M1(ϕ) := K20(ϕ)+KT
11(ϕ)L−1

ω ∂xK11(ϕ) , M2(ϕ) := M1(ϕ)D−1
ω , M3(ϕ) := KT

11(ϕ)L−1
ω . (6.36)

In order to solve the equation (6.35) we have to choose 〈̂η〉 such that the right hand side in (6.35) has zero average. By 
Lemma 6.6 and (6.4), the ϕ-averaged matrix 〈M1〉 = −3ε2bI +O(ε10γ−3). Therefore, for ε small, 〈M1〉 is invertible 
and 〈M1〉−1 = O(ε−2b) = O(γ−1) (recall (5.10)). Thus we define

〈̂η〉 := −〈M1〉−1[〈g1〉 + 〈M2g2〉 + 〈M3g3〉 − 〈M2[∂ψθ0]T 〉〈g2〉]. (6.37)

With this choice of 〈̂η〉 the equation (6.35) has the solution

ψ̂ := D−1
ω [g1 +M1(ϕ)〈̂η〉 +M2(ϕ)g2 +M3(ϕ)g3 −M2(ϕ)[∂ψθ0]T 〈g2〉]. (6.38)

In conclusion, we have constructed a solution (ψ̂, ̂η, ̂w, ̂ζ ) of the linear system (6.29).

Proposition 6.9. Assume (6.4) and (6.33). Then, ∀ω ∈ �∞, ∀g := (g1, g2, g3), the system (6.29) has a solution 
D−1g := (ψ̂, ̂η, ̂w, ̂ζ ) where (ψ̂, ̂η, ̂w, ̂ζ ) are defined in (6.38), (6.31), (6.37), (6.34), (6.30) satisfying

‖D−1g‖Lip(γ )
s ≤s γ

−1(‖g‖Lip(γ )
s+μ + εγ−1‖I0‖Lip(γ )

s+μ ‖g‖Lip(γ )
s0+μ

)
. (6.39)

Proof. Recalling (6.36), by Lemma 6.6, (6.33), (6.4) we get ‖M2h‖s0 + ‖M3h‖s0 ≤ C‖h‖s0+σ . Then, by (6.37)

and 〈M1〉−1 = O(ε−2b) = O(γ−1), we deduce |〈̂η〉|Lip(γ ) ≤ Cγ−1‖g‖Lip(γ )
s0+σ and (6.31), (5.21) imply ‖η̂‖Lip(γ )

s ≤s

γ−1
(‖g‖Lip(γ )

s+σ + ‖I0‖s+σ‖g‖Lip(γ )
s0

)
. The bound (6.39) is sharp for ŵ because L−1

ω g3 in (6.34) is estimated using 
(6.33). Finally ψ̂ satisfies (6.39) using (6.38), (6.36), (6.33), (5.21) and Lemma 6.6. �

Finally we prove that the operator

T0 := (DG̃δ)(ϕ,0,0) ◦D−1 ◦ (DGδ)(ϕ,0,0)−1 (6.40)

is an approximate right inverse for di,ζF(i0) where G̃δ(ψ, η, w, ζ ) := (
Gδ(ψ, η, w), ζ

)
is the identity on the 

ζ -component. We denote the norm ‖(ψ, η, w, ζ )‖Lip(γ )
s := max{‖(ψ, η, w)‖Lip(γ )

s , |ζ |Lip(γ )}.

Theorem 6.10 (Approximate inverse). Assume (6.4) and the inversion assumption (6.33). Then there exists μ :=
μ(τ, ν) > 0 such that, for all ω ∈ �∞, for all g := (g1, g2, g3), the operator T0 defined in (6.40) satisfies

‖T0g‖Lip(γ )
s ≤s γ

−1(‖g‖Lip(γ )
s+μ + εγ−1‖I0‖Lip(γ )

s+μ ‖g‖Lip(γ )
s0+μ

)
. (6.41)

It is an approximate inverse of di,ζF(i0), namely

‖(di,ζF(i0) ◦ T0 − I )g‖Lip(γ )
s

≤s ε
2b−1γ−2

(
‖F(i0, ζ0)‖Lip(γ )

s0+μ ‖g‖Lip(γ )
s+μ + {‖F(i0, ζ0)‖Lip(γ )

s+μ

+ εγ−1‖F(i0, ζ0)‖Lip(γ )
s0+μ ‖I0‖Lip(γ )

s+μ

}‖g‖Lip(γ )
s0+μ

)
. (6.42)



P. Baldi et al. / Ann. I. H. Poincaré – AN 33 (2016) 1589–1638 1611
Proof. We denote ‖ ‖s instead of ‖ ‖Lip(γ )
s . The bound (6.41) follows from (6.40), (6.39), (6.28). By (5.6), since XN

does not depend on y, and iδ differs from i0 only for the y component, we have

di,ζF(i0)[ ı̂, ζ̂ ] − di,ζF(iδ)[ ı̂, ζ̂ ] = diXP (iδ)[ ı̂ ] − diXP (i0)[ ı̂ ]

=
1∫

0

∂ydiXP (θ0, y0 + s(yδ − y0), z0)[yδ − y0, ı̂ ]ds =: E0[ ı̂, ζ̂ ] . (6.43)

By (5.18), (6.9), (6.10), (6.4), we estimate

‖E0[ ı̂, ζ̂ ]‖s ≤s ε
2b−1γ−1

(
‖Z‖s0+σ ‖̂ı‖s+σ + ‖Z‖s+σ ‖̂ı‖s0+σ + ‖Z‖s0+σ ‖̂ı‖s0+σ ‖I0‖s+σ

)
(6.44)

where Z := F(i0, ζ0) (recall (6.5)). Note that E0[̂ı, ̂ζ ] is, in fact, independent of ζ̂ . Denote the set of variables 
(ψ, η, w) =: u. Under the transformation Gδ , the nonlinear operator F in (5.6) transforms into

F(Gδ(u(ϕ)), ζ ) = DGδ(u(ϕ))
(
Dωu(ϕ)−XK(u(ϕ), ζ )

)
, K = Hε,ζ ◦Gδ , (6.45)

see (6.21). Differentiating (6.45) at the trivial torus uδ(ϕ) = G−1
δ (iδ)(ϕ) = (ϕ, 0, 0), at ζ = ζ0, in the directions 

(̂u, ̂ζ ) = (DGδ(uδ)
−1[ ̂ı ], ̂ζ ) = DG̃δ(uδ)

−1[ ̂ı, ̂ζ ], we get

di,ζF(iδ)[ ı̂, ζ̂ ] = DGδ(uδ)
(
Dωû− du,ζXK(uδ, ζ0)[̂u, ζ̂ ])+ E1[ ı̂, ζ̂ ] , (6.46)

E1[ ı̂, ζ̂ ] := D2Gδ(uδ)
[
DGδ(uδ)

−1F(iδ, ζ0), DGδ(uδ)
−1[ ı̂ ]] , (6.47)

where du,ζXK(uδ, ζ0) is expanded in (6.27). In fact, E1 is independent of ̂ζ . We split

Dωû− du,ζXK(uδ, ζ0)[̂u, ζ̂ ] =D[̂u, ζ̂ ] +RZ [̂u, ζ̂ ],
where D[̂u, ̂ζ ] is defined in (6.29) and

RZ[ψ̂, η̂, ŵ, ζ̂ ] :=
⎛⎝ −∂ψK10(ϕ)[ψ̂]

∂ψ [∂ψθ0(ϕ)]T [ψ̂, ζ0] + ∂ψψK00(ϕ)[ψ̂] + [∂ψK10(ϕ)]T η̂ + [∂ψK01(ϕ)]T ŵ
−∂x{∂ψK01(ϕ)[ψ̂]}

⎞⎠ (6.48)

(RZ is independent of ̂ζ ). By (6.43) and (6.46),

di,ζF(i0) = DGδ(uδ) ◦D ◦DG̃δ(uδ)
−1 + E0 + E1 + E2 , E2 := DGδ(uδ) ◦RZ ◦DG̃δ(uδ)

−1 . (6.49)

By Lemmata 6.4, 6.7, 6.1, and (6.11), (6.4), the terms E1, E2 (see (6.47), (6.49), (6.48)) satisfy the same bound (6.44)
as E0 (in fact even better). Thus the sum E := E0 + E1 + E2 satisfies (6.44). Applying T0 defined in (6.40) to the right 
in (6.49), since D ◦ D−1 = I (see Proposition 6.9), we get di,ζF(i0) ◦ T0 − I = E ◦ T0. Then (6.42) follows from 
(6.41) and the bound (6.44) for E . �
7. The linearized operator in the normal directions

The goal of this section is to write an explicit expression of the linearized operator Lω defined in (6.32), see 
Proposition 7.6. To this aim, we compute 1

2(K02(ψ)w, w)L2(T), w ∈ H⊥
S , which collects all the components of (Hε ◦

Gδ)(ψ, 0, w) that are quadratic in w, see (6.20).

We first prove some preliminary lemmata.

Lemma 7.1. Let H be a Hamiltonian of class C2(H 1
0 (Tx), R) and consider a map �(u) := u + �(u) satisfying 

�(u) = E�(Eu), for all u, where E is a finite dimensional subspace as in (3.3). Then

∂u
[∇(H ◦�)

]
(u)[h] = (∂u∇H)(�(u))[h] +R(u)[h] , (7.1)

where R(u) has the “finite dimensional” form

R(u)[h] =
∑ (

h,gj (u)
)
L2(T)

χj (u) (7.2)

|j |≤C
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with χj (u) = eijx or gj (u) = eijx . The remainder R(u) =R0(u) +R1(u) +R2(u) with

R0(u) := (∂u∇H)(�(u))∂u�(u), R1(u) := [∂u{� ′(u)T }][·,∇H(�(u))],
R2(u) := [∂u�(u)]T (∂u∇H)(�(u))∂u�(u). (7.3)

Proof. By a direct calculation,

∇(H ◦�)(u) = [�′(u)]T ∇H(�(u)) = ∇H(�(u))+ [� ′(u)]T ∇H(�(u)) (7.4)

where �′(u) := (∂u�)(u) and [ ]T denotes the transpose with respect to the L2 scalar product. Differentiating (7.4), 
we get (7.1) and (7.3).

Let us show that each Rm has the form (7.2). We have

� ′(u) = E�
′(Eu)E , [� ′(u)]T = E[� ′(Eu)]T E . (7.5)

Hence, setting A := (∂u∇H)(�(u))E�
′(Eu), we get

R0(u)[h] = A[Eh] =
∑

|j |≤C

hjA(eijx) =
∑

|j |≤C

(h,gj )L2(T)χj

with gj := eijx , χj := A(eijx). Similarly, using (7.5), and setting A := [� ′(Eu)]T E(∂u∇H)(�(u))�′(u), we get

R2(u)[h] = E[Ah] =
∑

|j |≤C

(Ah, eijx)L2(T)e
ijx =

∑
|j |≤C

(h,AT eijx)L2(T)e
ijx ,

which has the form (7.2) with gj := AT (eijx) and χj := eijx . Differentiating the second equality in (7.5), we see that

R1(u)[h] = E[Ah] , Ah := ∂u{� ′(Eu)
T }[Eh,E(∇H)(�(u))] ,

which has the same form of R2 and so (7.2). �
Lemma 7.2. Let H(u) := ∫

T
f (u)X(u)dx where X(u) = EX(Eu) and f (u)(x) := f (u(x)) is the composition 

operator for a function of class C2. Then

(∂u∇H)(u)[h] = f ′′(u)X(u)h+R(u)[h] (7.6)

where R(u) has the form (7.2) with χj (u) = eijx or gj (u) = eijx .

Proof. A direct calculation proves that ∇H(u) = f ′(u)X(u) + X′(u)T [f (u)], and (7.6) follows with R(u)[h] =
f ′(u)X′(u)[h] + ∂u{X′(u)T }[h, f (u)] +X′(u)T [f ′(u)h], which has the form (7.2). �

We conclude this section with a technical lemma used from the end of Section 8.3 about the decay norms of “finite 
dimensional operators”. Note that operators of the form (7.7) (that will appear in Section 8.1) reduce to those in (7.2)
when the functions gj (τ ), χj (τ ) are independent of τ .

Lemma 7.3. Let R be an operator of the form

Rh =
∑

|j |≤C

1∫
0

(
h , gj (τ )

)
L2(T)

χj (τ ) dτ , (7.7)

where the functions gj (τ ), χj (τ ) ∈ Hs , τ ∈ [0, 1] depend in a Lipschitz way on the parameter ω. Then its matrix 
s-decay norm (see (2.16)–(2.17)) satisfies

|R|Lip(γ )
s ≤s

∑
|j |≤C

supτ∈[0,1]
{‖χj (τ )‖Lip(γ )

s ‖gj (τ )‖Lip(γ )
s0 + ‖χj (τ )‖Lip(γ )

s0 ‖gj (τ )‖Lip(γ )
s

}
.

Proof. For each τ ∈ [0, 1], the operator h �→ (h, gj (τ ))χj (τ ) is the composition χj (τ ) ◦ 0 ◦ gj (τ ) of the multipli-
cation operators for gj (τ ), χj (τ ) and h �→ 0h := ∫

T
hdx. Hence the lemma follows by the interpolation estimate 

(2.20) and (2.18). �
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7.1. Composition with the map Gδ

In the sequel we shall use that Iδ := Iδ(ϕ; ω) := iδ(ϕ; ω) − (ϕ, 0, 0) satisfies, by (6.9) and (6.4),

‖Iδ‖Lip(γ )
s0+μ ≤ Cε6−2bγ−1 . (7.8)

We now study the Hamiltonian K := Hε ◦Gδ = ε−2bH ◦Aε ◦Gδ defined in (6.20), (4.6).
Recalling (4.7) and (6.19) the map Aε ◦Gδ has the form

Aε ◦Gδ(ψ,η,w) = ε
∑
j∈S

√
ξj + ε2(b−1)|j |[yδ(ψ)+L1(ψ)η +L2(ψ)w]j ei[θ0(ψ)]j eijx + εb(z0(ψ)+w) (7.9)

where

L1(ψ) := [∂ψθ0(ψ)]−T , L2(ψ) := [(∂θ z̃0)(θ0(ψ))
]T

∂−1
x . (7.10)

By Taylor’s formula, we develop (7.9) in w at η = 0, w = 0, and we get Aε ◦ Gδ(ψ, 0, w) = Tδ(ψ) + T1(ψ)w +
T2(ψ)[w, w] + T≥3(ψ, w), where

Tδ(ψ) := (Aε ◦Gδ)(ψ,0,0) = εvδ(ψ)+ εbz0(ψ) ,

vδ(ψ) :=
∑
j∈S

√
ξj + ε2(b−1)|j |[yδ(ψ)]j ei[θ0(ψ)]j eijx (7.11)

is the approximate isotropic torus in phase space (it corresponds to iδ in Lemma 6.3),

T1(ψ)w = ε
∑
j∈S

ε2(b−1)|j |[L2(ψ)w]j ei[θ0(ψ)]j

2
√
ξj + ε2(b−1)|j |[yδ(ψ)]j

eijx + εbw =: ε2b−1U1(ψ)w + εbw (7.12)

T2(ψ)[w,w] = −ε
∑
j∈S

ε4(b−1)j2[L2(ψ)w]2
j e

i[θ0(ψ)]j

8{ξj + ε2(b−1)|j |[yδ(ψ)]j }3/2
eijx =: ε4b−3U2(ψ)[w,w] (7.13)

and T≥3(ψ, w) collects all the terms of order at least cubic in w. In the notation of (4.7), the function vδ(ψ) in (7.11) is 
vδ(ψ) = vε(θ0(ψ), yδ(ψ)). The terms U1, U2 = O(1) in ε. Moreover, using that L2(ψ) in (7.10) vanishes as z0 = 0, 
they satisfy

‖U1w‖s ≤ ‖Iδ‖s‖w‖s0 + ‖Iδ‖s0‖w‖s , ‖U2[w,w]‖s ≤ ‖Iδ‖s‖Iδ‖s0‖w‖2
s0

+ ‖Iδ‖2
s0

‖w‖s0‖w‖s (7.14)

and also in the ‖ ‖Lip(γ )
s -norm.

By Taylor’s formula H(u + h) = H(u) + ((∇H)(u), h)L2(T) + 1
2 ((∂u∇H)(u)[h], h)L2(T) + O(h3). Specifying at 

u = Tδ(ψ) and h = T1(ψ)w + T2(ψ)[w, w] + T≥3(ψ, w), we obtain that the sum of all the components of K =
ε−2b(H ◦Aε ◦Gδ)(ψ, 0, w) that are quadratic in w is

1

2
(K02w,w)L2(T) = ε−2b((∇H)(Tδ), T2[w,w])L2(T) + ε−2b 1

2
((∂u∇H)(Tδ)[T1w], T1w)L2(T) .

Inserting the expressions (7.12), (7.13) we get

K02(ψ)w = (∂u∇H)(Tδ)[w] + 2εb−1(∂u∇H)(Tδ)[U1w] + ε2(b−1)UT
1 (∂u∇H)(Tδ)[U1w]

+ 2ε2b−3U2[w, ·]T (∇H)(Tδ). (7.15)

Lemma 7.4.

(K02(ψ)w,w)L2(T) = ((∂u∇H)(Tδ)[w],w)L2(T) + (R(ψ)w,w)L2(T) (7.16)

where R(ψ)w has the “finite dimensional” form

R(ψ)w =
∑ (

w,gj (ψ)
)
L2(T)

χj (ψ) (7.17)

|j |≤C
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where, for some σ := σ(ν, τ) > 0,

‖gj‖Lip(γ )
s ‖χj‖Lip(γ )

s0 + ‖gj‖Lip(γ )
s0 ‖χj‖Lip(γ )

s ≤s ε
b+1‖Iδ‖Lip(γ )

s+σ (7.18)

‖∂igj [ ı̂ ]‖s‖χj‖s0 + ‖∂igj [ ı̂ ]‖s0‖χj‖s + ‖gj‖s0‖∂iχj [ ı̂ ]‖s + ‖gj‖s‖∂iχj [ ı̂ ]‖s0

≤s ε
b+1‖̂ı‖s+σ + ε2b−1‖Iδ‖s+σ‖ ı̂ ‖s0+σ , (7.19)

and, as usual, i = (θ, y, z) (see (5.1)), ̂ı = (θ̂ , ̂y, ̂z).

Proof. Since U1 = SU1 and U2 = SU2, the last three terms in (7.15) have all the form (7.17) (argue as in 
Lemma 7.1). We now prove that they are also small in size.

The contributions in (7.15) from H2 are better analyzed by the expression

ε−2bH2 ◦Aε ◦Gδ(ψ,η,w) = const +
∑
j∈S+

j3[yδ(ψ)+L1(ψ)η +L2(ψ)w
]
j
+ 1

2

∫
T

(z0(ψ)+w)2
x dx

which follows by (4.8), (6.19), (7.10). Hence the only contribution to (K02w, w) is 
∫
T
w2

x dx. Now we con-
sider the cubic term H3 in (3.6). A direct calculation shows that for u = v + z, ∇H3(u) = 3z2 + 6⊥

S (vz), and 
∂u∇H3(u)[U1w] = 6⊥

S (zU1w) (since U1w ∈ HS ). Therefore

∇H3(Tδ) = 3ε2bz2
0 + 6εb+1⊥

S (vδz0) , ∂u∇H3(Tδ)[U1w] = 6εb⊥
S (z0 U1w) . (7.20)

By (7.20) one has ((∂u∇H3)(Tδ)[U1w], U1w)L2(T) = 0, and since also U2 = SU2,

εb−1∂u∇H3(Tδ)[U1w] + ε2b−3U2[w, ·]T ∇H3(Tδ) = 6ε2b−1⊥
S (z0U1w)+ 3ε4b−3U2[w, ·]T z2

0 . (7.21)

These terms have the form (7.17) and, using (7.14), (6.4), they satisfy (7.18).
Finally we consider all the terms which arise from H≥4 = O(u4). The operators εb−1∂u∇H≥4(Tδ)U1,

ε2(b−1)UT
1 (∂u∇H≥4)(Tδ)U1, ε2b−3UT

2 ∇H≥4(Tδ) have the form (7.17) and, using ‖Tδ‖Lip(γ )
s ≤ ε(1 + ‖Iδ‖Lip(γ )

s ), 
(7.14), (6.4), the bound (7.18) holds. Notice that the biggest term is εb−1∂u∇H≥4(Tδ)U1.

By (6.12) and using explicit formulae (7.10)–(7.13) we get estimate (7.19). �
The conclusion of this section is that, after the composition with the action-angle variables, the rescaling (4.5), 

and the transformation Gδ , the linearized operator to analyze is H⊥
S " w �→ (∂u∇H)(Tδ)[w], up to finite dimensional 

operators which have the form (7.17) and size (7.18).

7.2. The linearized operator in the normal directions

In view of (7.16) we now compute ((∂u∇H)(Tδ)[w], w)L2(T), w ∈ H⊥
S , where H = H ◦�B and �B is the Birkhoff 

map of Proposition 3.1. It is convenient to estimate separately the terms in

H = H ◦�B = (H2 +H3) ◦�B +H≥5 ◦�B (7.22)

where H2, H3, H≥5 are defined in (3.1).
We first consider H≥5 ◦ �B . By (3.1) we get ∇H≥5(u) = π0[(∂uf )(x, u, ux)] − ∂x{(∂ux f )(x, u, ux)}, see (2.2). 

Since the Birkhoff transformation �B has the form (3.4), Lemma 7.1 (at u = Tδ , see (7.11)) implies that

∂u∇(H≥5 ◦�B)(Tδ)[h] = (∂u∇H≥5)(�B(Tδ))[h] +RH≥5(Tδ)[h]
= ∂x(r1(Tδ)∂xh)+ r0(Tδ)h+RH≥5(Tδ)[h] (7.23)

where the multiplicative functions r0(Tδ), r1(Tδ) are

r0(Tδ) := σ0(�B(Tδ)), σ0(u) := (∂uuf )(x,u,ux)− ∂x{(∂uux f )(x,u,ux)}, (7.24)

r1(Tδ) := σ1(�B(Tδ)), σ1(u) := −(∂uxux f )(x,u,ux), (7.25)

the remainder RH≥5(u) has the form (7.2) with χj = eijx or gj = eijx and, using (7.3), it satisfies, for some σ :=
σ(ν, τ) > 0,
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‖gj‖Lip(γ )
s ‖χj‖Lip(γ )

s0 + ‖gj‖Lip(γ )
s0 ‖χj‖Lip(γ )

s ≤s ε
4(1 + ‖Iδ‖Lip(γ )

s+2 )

‖∂igj [ ı̂ ]‖s‖χj‖s0 + ‖∂igj [ ı̂ ]‖s0‖χj‖s + ‖gj‖s0‖∂iχj [ ı̂ ]‖s + ‖gj‖s‖∂iχj [ ı̂ ]‖s0

≤s ε
4(‖̂ı‖s+σ + ‖Iδ‖s+2‖̂ı‖s0+2).

Now we consider the contributions from (H2 + H3) ◦ �B . By Lemma 7.1 and the expressions of H2, H3 in (3.1) we 
deduce that

∂u∇(H2 ◦�B)(Tδ)[h] = −∂xxh+RH2(Tδ)[h] , ∂u∇(H3 ◦�B)(Tδ)[h] = 6�B(Tδ)h+RH3(Tδ)[h] ,
where �B(Tδ) is a function with zero space average, because �B : H 1

0 (Tx) → H 1
0 (Tx) (Proposition 3.1) and RH2(u), 

RH3(u) have the form (7.2). By (7.3), the size (RH2 +RH3)(Tδ) = O(ε). We expand

(RH2 +RH3)(Tδ) = εR1 + ε2R2 + R̃>2 ,

where R̃>2 has size o(ε2), and we get, ∀h ∈ H⊥
S ,

⊥
S ∂u∇((H2 +H3) ◦�B)(Tδ)[h] = −∂xxh+⊥

S (6�B(Tδ)h)+⊥
S (εR1 + ε2R2 + R̃>2)[h] . (7.26)

We also develop the function �B(Tδ) is powers of ε. Expand �B(u) = u +�2(u) +�≥3(u), where �2(u) is quadratic, 
�≥3(u) = O(u3), and both map H 1

0 (Tx) → H 1
0 (Tx). At u = Tδ = εvδ + εbz0 we get

�B(Tδ) = Tδ +�2(Tδ)+�≥3(Tδ) = εvδ + ε2�2(vδ)+ q̃ (7.27)

where q̃ := εbz0 +�2(Tδ) − ε2�2(vδ) +�≥3(Tδ) has zero space average and it satisfies

‖q̃‖Lip(γ )
s ≤s ε

3 + εb‖Iδ‖Lip(γ )
s , ‖∂i q̃[ ı̂ ]‖s ≤s ε

b
(‖̂ı‖s + ‖Iδ‖s ‖̂ı‖s0

)
.

In particular, its low norm ‖q̃‖Lip(γ )
s0 ≤s0 ε

6−bγ−1 = o(ε2).
We need an exact expression of the terms of order ε and ε2 in (7.26). We compare the Hamiltonian (3.5) with 

(7.22), noting that (H≥5 ◦�B)(u) = O(u5) because f satisfies (1.5) and �B(u) = O(u). Therefore

(H2 +H3) ◦�B = H2 +H3 +H4 +O(u5) ,

and the homogeneous terms of (H2 +H3) ◦�B of degree 2, 3, 4 in u are H2, H3, H4 respectively. As a consequence, 
the terms of order ε and ε2 in (7.26) (both in the function �B(Tδ) and in the remainders R1, R2) come only from 
H2 +H3 +H4. Actually they come from H2, H3 and H4,2 (see (3.6), (3.7)) because, at u = Tδ = εvδ + εbz0, for all 
h ∈ H⊥

S ,

⊥
S (∂u∇H4)(Tδ)[h] = ⊥

S (∂u∇H4,2)(Tδ)[h] + o(ε2) .

A direct calculation based on the expressions (3.6), (3.7) shows that, for all h ∈ H⊥
S ,

⊥
S (∂u∇(H2 +H3 +H4))(Tδ)[h] = −∂xxh+ 6ε⊥

S (vδh)+ 6εb⊥
S (z0h)+ ε2⊥

S

{
6π0[(∂−1

x vδ)
2]h

+ 6vδS[(∂−1
x vδ)(∂

−1
x h)] − 6∂−1

x {(∂−1
x vδ)S[vδh]}}+ o(ε2). (7.28)

Thus, comparing the terms of order ε, ε2 in (7.26) (using (7.27)) with those in (7.28) we deduce that the operators 
R1, R2 and the function �2(vδ) are

R1 = 0, R2[h] = 6vδS

[
(∂−1

x vδ)(∂
−1
x h)

]− 6∂−1
x {(∂−1

x vδ)S[vδh]} , �2(vδ) = π0[(∂−1
x vδ)

2]. (7.29)

In conclusion, by (7.22), (7.26), (7.23), (7.27), (7.29), we get, for all h ∈HS⊥ ,

⊥
S ∂u∇H(Tδ)[h] = −∂xxh+⊥

S

[(
ε6vδ + ε26π0[(∂−1

x vδ)
2] + q>2 + p≥4

)
h
]

+⊥
S ∂x(r1(Tδ)∂xh)+ ε2⊥

S R2[h] +⊥
S R>2[h] (7.30)

where r1 is defined in (7.24), R2 in (7.29), the remainder R>2 := R̃>2 + RH≥5(Tδ) and the functions (using also 
(7.24), (7.25), (1.5)),

q>2 := 6q̃ + ε3((∂uuf5)(vδ, (vδ)x)− ∂x{(∂uux f5)(vδ, (vδ)x)}
)

(7.31)

p≥4 := r0(Tδ)− ε3[(∂uuf5)(vδ, (vδ)x)− ∂x{(∂uux f5)(vδ, (vδ)x)}
]
. (7.32)



1616 P. Baldi et al. / Ann. I. H. Poincaré – AN 33 (2016) 1589–1638
Lemma 7.5. 
∫
T
q>2dx = 0.

Proof. We already observed that q̃ has zero x-average as well as the derivative ∂x{(∂uux f5)(v, vx)}. Finally

(∂uuf5)(v, vx) =
∑

j1,j2,j3∈S
cj1j2j3vj1vj2vj3e

i(j1+j2+j3)x , v :=
∑
j∈S

vj e
ijx (7.33)

for some coefficient cj1j2j3 , and therefore it has zero average by hypothesis (S1). �
By Lemma 7.4 and the results of this section (in particular (7.30)) we deduce:

Proposition 7.6. Assume (7.8). Then the Hamiltonian operator Lω has the form, ∀h ∈ Hs
S⊥(T

ν+1),

Lωh := ω · ∂ϕh− ∂xK02h = ⊥
S

(
ω · ∂ϕh+ ∂xx(a1∂xh)+ ∂x(a0h)− ε2∂xR2h− ∂xR∗h

)
(7.34)

where R2 is defined in (7.29), R∗ := R>2 +R(ψ) (with R(ψ) defined in Lemma 7.4), the functions

a1 := 1 − r1(Tδ) , a0 := −(εp1 + ε2p2 + q>2 + p≥4) , p1 := 6vδ , p2 := 6π0[(∂−1
x vδ)

2] , (7.35)

the function q>2 is defined in (7.31) and satisfies 
∫
T
q>2dx = 0, the function p≥4 is defined in (7.32), r1 in (7.25), Tδ

and vδ in (7.11). For pk = p1, p2,

‖pk‖Lip(γ )
s ≤s 1 + ‖Iδ‖Lip(γ )

s , ‖∂ipk [̂ı]‖s ≤s ‖̂ı‖s+1 + ‖Iδ‖s+1‖̂ı‖s0+1, (7.36)

‖q>2‖Lip(γ )
s ≤s ε

3 + εb‖Iδ‖Lip(γ )
s , ‖∂iq>2[ ı̂ ]‖s ≤s ε

b
(‖̂ı‖s+1 + ‖Iδ‖s+1‖̂ı‖s0+1

)
, (7.37)

‖a1 − 1‖Lip(γ )
s ≤s ε

3(1 + ‖Iδ‖Lip(γ )
s+1

)
, ‖∂ia1[ ı̂ ]‖s ≤s ε

3(‖̂ı‖s+1 + ‖Iδ‖s+1‖̂ı‖s0+1
)

(7.38)

‖p≥4‖Lip(γ )
s ≤s ε

4 + εb+2‖Iδ‖Lip(γ )
s+2 , ‖∂ip≥4[ ı̂ ]‖s ≤s ε

b+2(‖̂ı‖s+2 + ‖Iδ‖s+2‖̂ı‖s0+2
)

(7.39)

where Iδ(ϕ) := (θ0(ϕ) − ϕ, yδ(ϕ), z0(ϕ)) corresponds to Tδ . The remainder R2 has the form (7.2) with

‖gj‖Lip(γ )
s + ‖χj‖Lip(γ )

s ≤s 1 + ‖Iδ‖Lip(γ )
s+σ , ‖∂igj [ ı̂ ]‖s + ‖∂iχj [ ı̂ ]‖s ≤s ‖̂ı‖s+σ + ‖Iδ‖s+σ‖ ı̂ ‖s0+σ (7.40)

and also R∗ has the form (7.2) with

‖g∗
j ‖Lip(γ )

s ‖χ∗
j ‖Lip(γ )

s0 + ‖g∗
j ‖Lip(γ )

s0 ‖χ∗
j ‖Lip(γ )

s ≤s ε
3 + εb+1‖Iδ‖Lip(γ )

s+σ (7.41)

‖∂ig∗
j [ ı̂ ]‖s‖χ∗

j ‖s0 + ‖∂ig∗
j [ ı̂ ]‖s0‖χ∗

j ‖s + ‖g∗
j ‖s0‖∂iχ∗

j [ ı̂ ]‖s + ‖g∗
j ‖s‖∂iχ∗

j [ ı̂ ]‖s0

≤s ε
b+1‖̂ı‖s+σ + ε2b−1‖Iδ‖s+σ‖ ı̂ ‖s0+σ . (7.42)

The bounds (7.40), (7.41) imply, by Lemma 7.3, estimates for the s-decay norms of R2 and R∗. The linearized 
operator Lω := Lω(ω, iδ(ω)) depends on the parameter ω both directly and also through the dependence on the torus 
iδ(ω). We have estimated also the partial derivative ∂i with respect to the variables i (see (5.1)) in order to control, 
along the nonlinear Nash–Moser iteration, the Lipschitz variation of the eigenvalues of Lω with respect to ω and the 
approximate solution iδ .

8. Reduction of the linearized operator in the normal directions

The goal of this section is to conjugate the Hamiltonian operator Lω in (7.34) to the diagonal operator L∞ defined 
in (8.121). The proof is obtained applying different kind of symplectic transformations. We shall always assume (7.8).

8.1. Change of the space variable

The first task is to conjugate Lω in (7.34) to L1 in (8.31), which has the coefficient of ∂xxx independent on the 
space variable. We look for a ϕ-dependent family of symplectic diffeomorphisms �(ϕ) of H⊥

S which differ from

A⊥ := ⊥
S A⊥

S , (Ah)(ϕ, x) := (1 + βx(ϕ, x))h(ϕ, x + β(ϕ, x)) , (8.1)
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up to a small “finite dimensional” remainder, see (8.6). Each A(ϕ) is a symplectic map of the phase space, see 
[2]-Remark 3.3. If ‖β‖W 1,∞ < 1/2 then A is invertible, see Lemma 2.4, and its inverse and adjoint maps are

(A−1h)(ϕ, y) := (1 + β̃y(ϕ, y))h(ϕ, y + β̃(ϕ, y)) , (AT h)(ϕ, y) = h(ϕ,y + β̃(ϕ, y)) (8.2)

where x = y + β̃(ϕ, y) is the inverse diffeomorphism (of T) of y = x + β(ϕ, x).
The restricted maps A⊥(ϕ) : H⊥

S → H⊥
S are not symplectic. In order to find a symplectic diffeomorphism near 

A⊥(ϕ), the first observation is that each A(ϕ) can be seen as the time 1-flow of a time dependent Hamiltonian PDE. 
Indeed A(ϕ) (for simplicity we skip the dependence on ϕ) is homotopic to the identity via the path of symplectic 
diffeomorphisms

u �→ (1 + τβx)u(x + τβ(x)), τ ∈ [0,1] ,
which is the trajectory solution of the time dependent, linear Hamiltonian PDE

∂τ u = ∂x(b(τ, x)u) , b(τ, x) := β(x)

1 + τβx(x)
, (8.3)

with value u(x) at τ = 0 and Au = (1 + βx(x))u(x + β(x)) at τ = 1. The equation (8.3) is a transport equation. Its 
associated characteristic ODE is

d

dτ
x = −b(τ, x) . (8.4)

We denote its flow by γ τ0,τ , namely γ τ0,τ (y) is the solution of (8.4) with γ τ0,τ0(y) = y. Each γ τ0,τ is a diffeomor-
phism of the torus Tx .

Remark 8.1. Let y �→ y + β̃(τ, y) be the inverse diffeomorphism of x �→ x + τβ(x). Differentiating the identity 
β̃(τ, y) + τβ(y + β̃(τ, y)) = 0 with respect to τ it results that γ τ (y) := γ 0,τ (y) = y + β̃(τ, y).

Then we define a symplectic map � of H⊥
S as the time-1 flow of the Hamiltonian PDE

∂τ u = ⊥
S ∂x(b(τ, x)u) = ∂x(b(τ, x)u)−S∂x(b(τ, x)u) , u ∈ H⊥

S . (8.5)

Note that ⊥
S ∂x(b(τ, x)u) is the Hamiltonian vector field generated by 1

2

∫
T
b(τ, x)u2dx restricted to H⊥

S . We denote 
by �τ0,τ the flow of (8.5), namely �τ0,τ (u0) is the solution of (8.5) with initial condition �τ0,τ0(u0) = u0. The flow 
is well defined in Sobolev spaces Hs

S⊥(Tx) for b(τ, x) smooth enough (standard theory of linear hyperbolic PDEs, 
see e.g. Section 0.8 in [31]). It is natural to expect that the difference between the flow map � := �0,1 and A⊥ is a 
“finite-dimensional” remainder of the size of β .

Lemma 8.2. For ‖β‖Ws0+1,∞ small, there exists an invertible symplectic transformation � =A⊥ +R� of Hs
S⊥ , where 

A⊥ is defined in (8.1) and R� is a “finite-dimensional” remainder

R�h =
∑
j∈S

1∫
0

(h, gj (τ ))L2(T)χj (τ )dτ +
∑
j∈S

(
h,ψj

)
L2(T)

eijx (8.6)

for some functions χj (τ ), gj (τ ), ψj ∈ Hs satisfying

‖ψj‖s , ‖gj (τ )‖s ≤s ‖β‖Ws+2,∞ , ‖χj (τ )‖s ≤s 1 + ‖β‖Ws+1,∞ , ∀τ ∈ [0,1] . (8.7)

Furthermore, the following tame estimates holds

‖�±1h‖s ≤s ‖h‖s + ‖β‖Ws+2,∞‖h‖s0 , ∀h ∈ Hs
S⊥ . (8.8)

Proof. Let w(τ, x) := (�τu0)(x) denote the solution of (8.5) with initial condition �0(w) = u0 ∈ H⊥
S . The difference

(A⊥ −�)u0 = ⊥
S Au0 −w(1, ·) =Au0 −w(1, ·)−SAu0 , ∀u0 ∈ H⊥

S , (8.9)
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and

SAu0 = S(A− I )⊥
S u0 =

∑
j∈S

(
u0 , ψj

)
L2(T)

eijx , ψj := (AT − I )eijx . (8.10)

We claim that the difference

Au0 −w(1, x) = (1 + βx(x))

1∫
0

(1 + τβx(x))
−1[S∂x(b(τ )w(τ))

]
(γ τ (x + β(x))) dτ (8.11)

where γ τ (y) := γ 0,τ (y) is the flow of (8.4). Indeed the solution w(τ, x) of (8.5) satisfies

∂τ {w(τ, γ τ (y))} = bx(τ, γ
τ (y))w(τ, γ τ (y))− [S∂x(b(τ )w(τ))

]
(γ τ (y)) .

Then, by the variation of constant formula, we find

w(τ, γ τ (y)) = e
∫ τ

0 bx(s,γ
s (y)) ds

(
u0(y)−

τ∫
0

e− ∫ s0 bx(ζ,γ
ζ (y)) dζ

[
S∂x(b(s)w(s))

]
(γ s(y)) ds

)
.

Since ∂yγ τ (y) solves the variational equation ∂τ (∂yγ τ (y)) = −bx(τ, γ τ (y))(∂yγ
τ (y)) with ∂yγ 0(y) = 1 we have 

that

e
∫ τ

0 bx(s,γ
s (y))ds = (∂yγ τ (y)

)−1 = 1 + τβx(x) (8.12)

by Remark 8.1, and so we derive the expression

w(τ, x) = (1 + τβx(x))
{
u0(x + τβ(x))−

τ∫
0

(1 + sβx(x))
−1[S∂x(b(s)w(s))

]
(γ s(x + τβ(x))) ds

}
.

Evaluating at τ = 1, formula (8.11) follows. Next, we develop (recall w(τ) =�τ (u0))

[S∂x(b(τ )w(τ))](x) =
∑
j∈S

(
u0, gj (τ )

)
L2(T)

eijx , gj (τ ) := −(�τ )T [b(τ)∂xeijx] , (8.13)

and (8.11) becomes

Au0 −w(1, ·) = −
1∫

0

∑
j∈S

(
u0 , gj (τ )

)
L2(T)

χj (τ, ·) dτ , (8.14)

where

χj (τ, x) := −(1 + βx(x))(1 + τβx(x))
−1eijγ τ (x+β(x)) . (8.15)

By (8.9), (8.10), (8.11), (8.14) we deduce that � =A⊥ +R� as in (8.6).

We now prove the estimates (8.7). Each function ψj in (8.10) satisfies ‖ψj‖s ≤s ‖β‖Ws,∞ , see (8.2). The bound 
‖χj (τ )‖s ≤s 1 + ‖β‖Ws+1,∞ follows by (8.15). The tame estimates for gj (τ ) defined in (8.13) are more difficult 
because require tame estimates for the adjoint (�τ )T , ∀τ ∈ [0, 1]. The adjoint of the flow map can be represented as 
the flow map of the “adjoint” PDE

∂τ z = ⊥
S {b(τ, x)∂x⊥

S z} = b(τ, x)∂xz −S(b(τ, x)∂xz) , z ∈ H⊥
S , (8.16)

where −⊥
S b(τ, x)∂x is the L2-adjoint of the Hamiltonian vector field in (8.5). We denote by �τ0,τ the flow of (8.16), 

namely �τ0,τ (v) is the solution of (8.16) with �τ0,τ0(v) = v. Since the derivative ∂τ (�τ (u0), �τ0,τ (v))L2(T) = 0, ∀τ , 
we deduce that (�τ0(u0), �τ0,τ0(v))L2(T) = (�0(u0), �τ0,0(v))L2(T), namely (recall that �τ0,τ0(v) = v) the adjoint

(�τ0)T = �τ0,0 , ∀τ0 ∈ [0,1] . (8.17)
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Thus it is sufficient to prove tame estimates for the flow �τ0,τ . We first provide a useful expression for the solution 
z(τ, x) := �τ0,τ (v) of (8.16), obtained by the methods of characteristics. Let γ τ0,τ (y) be the flow of (8.4). Since 
∂τ z(τ, γ τ0,τ (y)) = −[S(b(τ)∂xz(τ )](γ τ0,τ (y)) we get

z(τ, γ τ0,τ (y)) = v(y)+
τ0∫
τ

[S(b(s)∂xz(s)](γ τ0,s(y)) ds , ∀τ ∈ [0,1] .

Denoting by y = x + σ(τ, x) the inverse diffeomorphism of x = γ τ0,τ (y) = y + σ̃ (τ, y), we get

�τ0,τ (v) = z(τ, x) = v(x + σ(τ, x))+
τ0∫
τ

[S(b(s)∂xz(s)](γ τ0,s(x + σ(τ, x))) ds

= v(x + σ(τ, x))+
τ0∫
τ

∑
j∈S

(z(s),pj (s))κj (s, x) ds = v(x + σ(τ, x))+Rτ v , (8.18)

where pj (s) := −∂x(b(s)e
ijx), κj (s, x) := eijγ τ0,s (x+σ(τ,x)) and

(Rτ v)(x) :=
τ0∫
τ

∑
j∈S

(�τ0,s(v),pj (s))L2(T)κj (s, x) ds .

Since ‖σ(τ, ·)‖Ws,∞ , ‖σ̃ (τ, ·)‖Ws,∞ ≤s ‖β‖Ws+1,∞ (recall also (8.3)), we derive ‖pj‖s ≤s ‖β‖Ws+2,∞ , ‖κj‖s ≤s 1 +
‖β‖Ws+1,∞ and ‖v(x + σ(τ, x))‖s ≤s ‖v‖s + ‖β‖Ws+1,∞‖v‖s0 , ∀τ ∈ [0, 1]. Moreover

‖Rτ v‖s ≤s supτ∈[0,1]‖�τ0,τ (v)‖s‖β‖Ws0+2,∞ + supτ∈[0,1]‖�τ0,τ (v)‖s0‖β‖Ws+2,∞ .

Therefore, for all τ ∈ [0, 1],
‖�τ0,τ v‖s ≤s ‖v‖s + ‖β‖Ws+1,∞‖v‖s0 + supτ∈[0,1]

{‖�τ0,τ v‖s‖β‖Ws0+2,∞ + ‖�τ0,τ v‖s0‖β‖Ws+2,∞
}
. (8.19)

For s = s0 it implies

supτ∈[0,1]‖�τ0,τ (v)‖s0 ≤s0 ‖v‖s0(1 + ‖β‖Ws0+1,∞)+ supτ∈[0,1]‖�τ0,τ (v)‖s0‖β‖Ws0+2,∞

and so, for ‖β‖Ws0+2,∞ ≤ c(s0) small enough,

supτ∈[0,1]‖�τ0,τ (v)‖s0 ≤s0 ‖v‖s0 . (8.20)

Finally (8.19), (8.20) imply the tame estimate

supτ∈[0,1]‖�τ0,τ (v)‖s ≤s ‖v‖s + ‖β‖Ws+2,∞‖v‖s0 . (8.21)

By (8.17) and (8.21) we deduce the bound (8.7) for gj defined in (8.13). The tame estimate (8.8) for � follows by that 
of A and (8.7) (use Lemma 2.4). The estimate for �−1 follows in the same way because �−1 = �1,0 is the backward 
flow. �

We conjugate Lω in (7.34) via the symplectic map � =A⊥ +R� of Lemma 8.2. We compute (split ⊥
S = I −S )

Lω� = �Dω +⊥
S A
(
b3∂yyy + b2∂yy + b1∂y + b0

)
⊥

S +RI , (8.22)

where the coefficients are

b3(ϕ, y) := AT [a1(1 + βx)
3] b2(ϕ, y) := AT

[
2(a1)x(1 + βx)

2 + 6a1βxx(1 + βx)
]

(8.23)

b1(ϕ, y) := AT
[
(Dωβ)+ 3a1

β2
xx

1 + βx

+ 4a1βxxx + 6(a1)xβxx + (a1)xx(1 + βx)+ a0(1 + βx)
]

(8.24)

b0(ϕ, y) := AT
[ (Dωβx) + a1

βxxxx + 2(a1)x
βxxx + (a1)xx

βxx + a0
βxx + (a0)x

]
(8.25)
1 + βx 1 + βx 1 + βx 1 + βx 1 + βx
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and the remainder

RI := −⊥
S ∂x(ε

2R2 +R∗)A⊥ −⊥
S

(
a1∂xxx + 2(a1)x∂xx + ((a1)xx + a0)∂x + (a0)x

)
SA⊥

S

+ [Dω,R�] + (Lω −Dω)R� . (8.26)

The commutator [Dω, R�] has the form (8.6) with Dωgj or Dωχj , Dωψj instead of χj , gj , ψj respectively. Also 
the last term (Lω −Dω)R� in (8.26) has the form (8.6) (note that Lω −Dω does not contain derivatives with respect 
to ϕ). By (8.22), and decomposing I = S +⊥

S , we get

Lω� = �(Dω + b3∂yyy + b2∂yy + b1∂y + b0)
⊥
S +RII , (8.27)

RII := {
⊥

S (A− I )S −R�

}
(b3∂yyy + b2∂yy + b1∂y + b0)

⊥
S +RI . (8.28)

Now we choose the function β = β(ϕ, x) such that

a1(ϕ, x)(1 + βx(ϕ, x))
3 = b3(ϕ) (8.29)

so that the coefficient b3 in (8.23) depends only on ϕ (note that AT [b3(ϕ)] = b3(ϕ)). The only solution of (8.29) with 
zero space average is (see e.g. [2]-Section 3.1)

β := ∂−1
x ρ0, ρ0 := b3(ϕ)

1/3(a1(ϕ, x))
−1/3 − 1, b3(ϕ) :=

( 1

2π

∫
T

(a1(ϕ, x))
−1/3dx

)−3
. (8.30)

Applying the symplectic map �−1 in (8.27) we obtain the Hamiltonian operator (see Definition 2.2)

L1 := �−1Lω� = ⊥
S

(
ω · ∂ϕ + b3(ϕ)∂yyy + b1∂y + b0

)
⊥

S +R1 (8.31)

where R1 := �−1RII . We used that, by the Hamiltonian nature of L1, the coefficient b2 = 2(b3)y (see [2]-Remark 3.5) 
and so, by the choice (8.30), we have b2 = 2(b3)y = 0. In the next lemma we analyze the structure of the remainderR1.

Lemma 8.3. The operator R1 has the form (7.7).

Proof. The remainders RI and RII have the form (7.7). Indeed R2, R∗ in (8.26) have the form (7.2) (see Propo-
sition 7.6) and the term SAw = ∑

j∈S(AT eijx, w)L2(T)e
ijx has the same form. By (8.6), the terms of RI , 

RII which involves the operator R� have the form (7.7). All the operations involved preserve this structure: if 
Rτw = χ(τ)(w, g(τ))L2(T), τ ∈ [0, 1], then

Rτ
⊥
S w = χ(τ)(⊥

S g(τ ),w)L2(T) , RτAw = χ(τ)(AT g(τ ),w)L2(T) , ∂xRτw = χx(τ)(g(τ ),w)L2(T) ,

⊥
S Rτw = (⊥

S χ(τ))(g(τ ),w)L2(T) , ARτw = (Aχ(τ))(g(τ ),w)L2(T) ,

�−1Rτw = (�−1χ(τ))(g(τ ),w)L2(T)

(the last equality holds because �−1(f (ϕ)w) = f (ϕ)�−1(w) for all function f (ϕ)). Hence R1 has the form (7.7)
where χj (τ ) ∈ H⊥

S for all τ ∈ [0, 1]. �
We now put in evidence the terms of order ε, ε2, . . . , in b1, b0, R1, recalling that a1 − 1 = O(ε3) (see (7.38)), 

a0 = O(ε) (see (7.35)–(7.39)), and β = O(ε3) (proved below in (8.35)). We expand b1 in (8.24) as

b1 = −εp1 − ε2p2 − q>2 +Dωβ + 4βxxx + (a1)xx + b1,≥4 (8.32)

where b1,≥4 = O(ε4) is defined by difference (the precise estimate is in Lemma 8.5).
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Remark 8.4. The function Dωβ has zero average in x by (8.30) as well as (a1)xx , βxxx .

Similarly, we expand b0 in (8.25) as

b0 = −ε(p1)x − ε2(p2)x − (q>2)x +Dωβx + βxxxx + b0,≥4 (8.33)

where b0,≥4 = O(ε4) is defined by difference.
Using the equalities (8.28), (8.26) and SA⊥

S = S(A − I )⊥
S we get

R1 := �−1RII = −ε2⊥
S ∂xR2 +R∗ (8.34)

where R2 is defined in (7.29) and we have renamed R∗ the term of order o(ε2) in R1. The remainder R∗ in (8.34)
has the form (7.7).

Lemma 8.5. There is σ = σ(τ, ν) > 0 such that

‖β‖Lip(γ )
s ≤s ε

3(1 + ‖Iδ‖Lip(γ )
s+1 ), ‖∂iβ[ ı̂ ]‖s ≤s ε

3(‖̂ı‖s+σ + ‖Iδ‖s+σ ‖̂ı‖s0+σ

)
, (8.35)

‖b3 − 1‖Lip(γ )
s ≤s ε

4 + εb+2‖Iδ‖Lip(γ )
s+σ , ‖∂ib3[ ı̂ ]‖s ≤s ε

b+2(‖̂ı‖s+σ + ‖Iδ‖s+σ ‖̂ı‖s0+σ

)
(8.36)

‖b1,≥4‖Lip(γ )
s + ‖b0,≥4‖Lip(γ )

s ≤s ε
4 + εb+2‖Iδ‖Lip(γ )

s+σ (8.37)

‖∂ib1,≥4[ ı̂ ]‖s + ‖∂ib0,≥4[ ı̂ ]‖s ≤s ε
b+2(‖̂ı‖s+σ + ‖Iδ‖s+σ ‖̂ı‖s0+σ

)
. (8.38)

The transformations �, �−1 satisfy

‖�±1h‖Lip(γ )
s ≤s ‖h‖Lip(γ )

s+1 + ‖Iδ‖Lip(γ )
s+σ ‖h‖Lip(γ )

s0+1 (8.39)

‖∂i(�±1h)[ ı̂ ]‖s ≤s ‖h‖s+σ ‖̂ı‖s0+σ + ‖h‖s0+σ ‖̂ı‖s+σ + ‖Iδ‖s+σ‖h‖s0+σ ‖̂ı‖s0+σ . (8.40)

Moreover the remainder R∗ has the form (7.7), where the functions χj (τ ), gj (τ ) satisfy the estimates (7.41)–(7.42)
uniformly in τ ∈ [0, 1].

Proof. The estimates (8.35) follow by (8.30), (7.38), and the usual interpolation and tame estimates in Lemmata 
2.2–2.4 (and Lemma 5.13) and (7.8). For the estimates of b3, by (8.30) and (7.35) we consider the function r1 defined 
in (7.25). Recalling also (3.4) and (7.11), the function

r1(Tδ) = ε3(∂uxux f5)(vδ, (vδ)x)+ r1,≥4 , r1,≥4 := r1(Tδ)− ε3(∂uxux f5)(vδ, (vδ)x) .

Hypothesis (S1) implies, as in the proof of Lemma 7.5, that the space average 
∫
T
(∂uxux f5)(vδ, (vδ)x)dx = 0. Hence 

the bound (8.36) for b3 − 1 follows. For the estimates on �, �−1 we apply Lemma 8.2 and the estimate (8.35) for β . 
We estimate the remainder R∗ in (8.34), using (8.26), (8.28) and (7.41)–(7.42). �
8.2. Reparametrization of time

The goal of this section is to make constant the coefficient of the highest order spatial derivative operator ∂yyy , by 
a quasi-periodic reparametrization of time. We consider the change of variable

(Bw)(ϕ, y) := w(ϕ +ωα(ϕ), y), (B−1h)(ϑ, y) := h(ϑ +ωα̃(ϑ), y) ,

where ϕ = ϑ + ωα̃(ϑ) is the inverse diffeomorphism of ϑ = ϕ + ωα(ϕ) in Tν . By conjugation, the differential 
operators become

B−1ω · ∂ϕB = ρ(ϑ)ω · ∂ϑ , B−1∂yB = ∂y, ρ := B−1(1 +ω · ∂ϕα). (8.41)

By (8.31), using also that B and B−1 commute with ⊥
S , we get

B−1L1B = ⊥
S [ρω · ∂ϑ + (B−1b3)∂yyy + (B−1b1)∂y + (B−1b0)]⊥

S +B−1R1B. (8.42)

We choose α such that
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(B−1b3)(ϑ) = m3ρ(ϑ) , m3 ∈ R , namely b3(ϕ) = m3(1 +ω · ∂ϕα(ϕ)) (8.43)

(recall (8.41)). The unique solution with zero average of (8.43) is

α(ϕ) := 1

m3
(ω · ∂ϕ)−1(b3 −m3)(ϕ), m3 := 1

(2π)ν

∫
Tν

b3(ϕ)dϕ . (8.44)

Hence, by (8.42),

B−1L1B = ρL2 , L2 := ⊥
S (ω · ∂ϑ +m3∂yyy + c1∂y + c0)

⊥
S +R2 (8.45)

c1 := ρ−1(B−1b1) , c0 := ρ−1(B−1b0) , R2 := ρ−1B−1R1B . (8.46)

The transformed operator L2 in (8.45) is still Hamiltonian, since the reparametrization of time preserves the Hamilto-
nian structure (see Section 2.2 and Remark 3.7 in [2]).

We now put in evidence the terms of order ε, ε2, . . . in c1, c0. To this aim, we anticipate the following estimates: 
ρ(ϑ) = 1 +O(ε4), α = O(ε4γ−1), m3 = 1 +O(ε4), B−1 − I = O(α) (in low norm), which are proved in Lemma 8.7
below. Then, by (8.32)–(8.33), we expand the functions c1, c0 in (8.46) as

c1 = −εp1 − ε2p2 −B−1q>2 + ε(p1 −B−1p1)+ ε2(p2 −B−1p2)+Dωβ + 4βxxx + (a1)xx + c1,≥4 , (8.47)

c0 = −ε(p1)x − ε2(p2)x − (B−1q>2)x + ε(p1 −B−1p1)x + ε2(p2 −B−1p2)x + (Dωβ)x + βxxxx + c0,≥4 ,

(8.48)

where c1,≥4, c0,≥4 = O(ε4) are defined by difference.

Remark 8.6. The functions ε(p1 − B−1p1) = O(ε5γ−1) and ε2(p2 − B−1p2) = O(ε6γ−1), see (8.53). For the 
reducibility scheme, the terms of order ∂0

x with size O(ε5γ−1) are perturbative, since ε5γ−2 � 1.

The remainder R2 in (8.46) has still the form (7.7) and, by (8.34),

R2 := −ρ−1B−1R1B = −ε2⊥
S ∂xR2 +R∗ (8.49)

where R2 is defined in (7.29) and we have renamed R∗ the term of order o(ε2) in R2.

Lemma 8.7. There is σ = σ(ν, τ) > 0 (possibly larger than σ in Lemma 8.5) such that

|m3 − 1|Lip(γ ) ≤ Cε4, |∂im3[ ı̂ ]| ≤ Cεb+2‖̂ı‖s0+σ (8.50)

‖α‖Lip(γ )
s ≤s ε

4γ−1 + εb+2γ−1‖Iδ‖Lip(γ )
s+σ , ‖∂iα[ ı̂ ]‖s ≤s ε

b+2γ−1(‖̂ı‖s+σ + ‖Iδ‖s+σ ‖̂ı‖s0+σ

)
, (8.51)

‖ρ − 1‖Lip(γ )
s ≤s ε

4 + εb+2‖Iδ‖Lip(γ )
s+σ , ‖∂iρ[ ı̂ ]‖s ≤s ε

b+2(‖̂ı‖s+σ + ‖Iδ‖s+σ ‖̂ı‖s0+σ

)
(8.52)

‖pk −B−1pk‖Lip(γ )
s ≤s ε

4γ−1 + εb+2γ−1‖Iδ‖Lip(γ )
s+σ , k = 1,2 (8.53)

‖∂i(pk −B−1pk)[ ı̂ ]‖s ≤s ε
b+2γ−1(‖̂ı‖s+σ + ‖Iδ‖s+σ ‖̂ı‖s0+σ

)
(8.54)

‖B−1q>2‖Lip(γ )
s ≤s ε

3 + εb‖Iδ‖Lip(γ )
s+σ , (8.55)

‖∂i(B−1q>2)[ ı̂ ]‖s ≤s ε
b
(‖̂ı‖s+σ + ‖Iδ‖s+σ ‖̂ı‖s0+σ

)
. (8.56)

The terms c1,≥4, c0,≥4 satisfy the bounds (8.37)–(8.38). The transformations B , B−1 satisfy the estimates (8.39), 
(8.40). The remainder R∗ has the form (7.7), and the functions gj (τ ), χj (τ ) satisfy the estimates (7.41)–(7.42) for all 
τ ∈ [0, 1].

Proof. (8.50) follows from (8.44), (8.36). The estimate ‖α‖s ≤s ε
4γ−1 + εb+2γ−1‖Iδ‖s+σ and the inequality for ∂iα

in (8.51) follow by (8.44), (8.36), (8.50). For the first bound in (8.51) we also differentiate (8.44) with respect to the 
parameter ω. The estimates for ρ follow from ρ − 1 = B−1(b3 −m3)/m3. �
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8.3. Translation of the space variable

In view of the next linear Birkhoff normal form steps (whose goal is to eliminate the terms of size ε and ε2), in the 
expressions (8.47), (8.48) we split p1 = p̄1 + (p1 − p̄1), p2 = p̄2 + (p2 − p̄2) (see (7.35)), where

p̄1 := 6v̄, p̄2 := 6π0[(∂−1
x v̄)2], v̄(ϕ, x) :=

∑
j∈S

√
ξj e

i (j)·ϕeijx, (8.57)

and   : S → Zν is the odd injective map (see (1.8))

 : S → Zν,  (j̄i ) := ei,  (−j̄i ) := − (j̄i) = −ei, i = 1, . . . , ν, (8.58)

denoting by ei = (0, . . . , 1, . . . , 0) the i-th vector of the canonical basis of Rν .

Remark 8.8. All the functions p̄1, p̄2, p1 − p̄1, p2 − p̄2 have zero average in x.

We write the variable coefficients c1, c0 of the operator L2 in (8.45) (see (8.47), (8.48)) as

c1 = −εp̄1 − ε2p̄2 + qc1 + c1,≥4 , c0 = −ε(p̄1)x − ε2(p̄2)x + qc0 + c0,≥4 , (8.59)

where we define

qc1 := q + 4βxxx + (a1)xx , qc0 := qx + βxxxx, (8.60)

q := ε(p1 −B−1p1)+ ε(p̄1 − p1)+ ε2(p2 −B−1p2)+ ε2(p̄2 − p2)−B−1q>2 +Dωβ . (8.61)

Remark 8.9. The functions qc1 , qc0 have zero average in x (see Remarks 8.8, 8.4 and Lemma 7.5).

Lemma 8.10. The functions p̄k − pk , k = 1, 2 and qcm , m = 0, 1, satisfy

‖p̄k − pk‖Lip(γ )
s ≤s ‖Iδ‖Lip(γ )

s , ‖∂i(p̄k − pk)[̂ı]‖s ≤s ‖̂ı‖s + ‖Iδ‖s ‖̂ı‖s0 , (8.62)

‖qcm‖Lip(γ )
s ≤s ε

5γ−1 + ε‖Iδ‖Lip(γ )
s+σ , ‖∂iqcm[ ı̂ ]‖Lip(γ )

s ≤s ε
(‖̂ı‖s+σ + ‖Iδ‖s+σ ‖̂ı‖s0+σ

)
. (8.63)

Proof. The bound (8.62) follows from (8.57), (7.35), (7.11), (7.8). Then use (8.62), (8.53)–(8.56), (8.35), (7.38) to 
prove (8.63). The biggest term comes from ε(p̄1 − p1). �

We now apply the transformation T defined in (8.64) whose goal is to remove the space average from the coefficient 
in front of ∂y .

Consider the change of the space variable z= y + p(ϑ) which induces on Hs
S⊥(T

ν+1) the operators

(T w)(ϑ,y) := w(ϑ,y + p(ϑ)) , (T −1h)(ϑ, z) = h(ϑ, z − p(ϑ)) (8.64)

(which are a particular case of those used in Section 8.1). The differential operator becomes T −1ω · ∂ϑT = ω · ∂ϑ +
{ω · ∂ϑp(ϑ)}∂z, T −1∂yT = ∂z. Since T , T −1 commute with ⊥

S , we get

L3 := T −1L2T = ⊥
S

(
ω · ∂ϑ +m3∂zzz + d1∂z + d0

)
⊥

S +R3 , (8.65)

d1 := (T −1c1)+ω · ∂ϑp , d0 := T −1c0 , R3 := T −1R2T . (8.66)

We choose

m1 := 1

(2π)ν+1

∫
Tν+1

c1dϑdy , p := (ω · ∂ϑ)−1
(
m1 − 1

2π

∫
T

c1dy
)
, (8.67)

so that 1
2π

∫
T
d1(ϑ, z) dz = m1 for all ϑ ∈ Tν . Note that, by (8.59),∫

c1(ϑ, y) dy =
∫

c1,≥4(ϑ, y) dy , ω · ∂ϑp(ϑ) = m1 − 1

2π

∫
c1,≥4(ϑ, y) dy (8.68)
T T T
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because p̄1, p̄2, qc1 have all zero space-average. Also note that R3 has the form (7.7). Since T is symplectic, the 
operator L3 in (8.65) is Hamiltonian.

Remark 8.11. We require Hypothesis (S1) so that the function q>2 has zero space average (see Lemma 7.5). If q>2
did not have zero average, then p in (8.67) would have size O(ε3γ−1) (see (7.31)) and, since T −1 − I = O(ε3γ−1), 
the function d̃0 in (8.71) would satisfy d̃0 = O(ε4γ−1). Therefore it would remain a term of order ∂0

x which is not 
perturbative for the reducibility scheme of Section 8.7.

We put in evidence the terms of size ε, ε2 in d0, d1, R3. Recalling (8.66), (8.59), we split

d1 = −εp̄1 − ε2p̄2 + d̃1 , d0 = −ε(p̄1)x − ε2(p̄2)x + d̃0 , R3 = −ε2⊥
S ∂xR̄2 + R̃∗ (8.69)

where R̄2 is obtained replacing vδ with v̄ in R2 (see (7.29)), and

d̃1 := ε(p̄1 − T −1p̄1)+ ε2(p̄2 − T −1p̄2)+ T −1(qc1 + c1,≥4)+ω · ∂ϑp, (8.70)

d̃0 := ε(p̄1 − T −1p̄1)x + ε2(p̄2 − T −1p̄2)x + T −1(qc0 + c0,≥4), (8.71)

R̃∗ := T −1R∗T + ε2⊥
S ∂x(R2 − T −1R2T )+ ε2⊥

S ∂x(R̄2 −R2), (8.72)

and R∗ is defined in (8.49). We have also used that T −1 commutes with ∂x and with ⊥
S .

Remark 8.12. The space average 1
2π

∫
T
d̃1(ϑ, z) dz = 1

2π

∫
T
d1(ϑ, z) dz = m1 for all ϑ ∈ Tν .

Lemma 8.13. There is σ := σ(ν, τ) > 0 (possibly larger than in Lemma 8.7) such that

|m1|Lip(γ ) ≤ Cε4, |∂im1[ ı̂ ]| ≤ Cεb+2‖̂ı‖s0+σ (8.73)

‖p‖Lip(γ )
s ≤s ε

4γ−1 + εb+2γ−1‖Iδ‖Lip(γ )
s+σ , ‖∂ip[ ı̂ ]‖s ≤s ε

b+2γ−1(‖̂ı‖s+σ + ‖Iδ‖s+σ ‖̂ı‖s0+σ

)
, (8.74)

‖d̃k‖Lip(γ )
s ≤s ε

5γ−1 + ε‖Iδ‖Lip(γ )
s+σ , ‖∂i d̃k[ ı̂ ]‖s ≤s ε

(‖̂ı‖s+σ + ‖Iδ‖s+σ ‖̂ı‖s0+σ

)
(8.75)

for k = 0, 1. Moreover the matrix s-decay norm (see (2.16))

|R̃∗|Lip(γ )
s ≤s ε

3 + ε2‖Iδ‖Lip(γ )
s+σ , |∂iR̃∗[ ı̂ ]|s ≤s ε

2‖̂ı‖s+σ + ε2b−1‖Iδ‖s+σ ‖̂ı‖s0+σ . (8.76)

The transformations T , T −1 satisfy (8.39), (8.40).

Proof. The estimates (8.73), (8.74) follow by (8.67), (8.59), (8.68), and the bounds for c1,≥4, c0,≥4 in Lemma 8.7. 
The estimates (8.75) follow similarly by (8.63), (8.68), (8.74). The estimates (8.76) follow because T −1R∗T satisfies 
the bounds (7.41) like R∗ does (use Lemma 7.3 and (8.74)) and |ε2⊥

S ∂x(R̄2 −R2)|Lip(γ )
s ≤s ε

2‖Iδ‖Lip(γ )
s+σ . �

It is sufficient to estimate R̃∗ (which has the form (7.7)) only in the s-decay norm (see (8.76)) because the next 
transformations will preserve it. Such norms are used in the reducibility scheme of Section 8.7.

8.4. Linear Birkhoff normal form. Step 1

Now we eliminate the terms of order ε and ε2 of L3. This step is different from the reducibility steps that we 
shall perform in Section 8.7, because the diophantine constant γ = o(ε2) (see (5.4)) and so terms O(ε), O(ε2) are 
not perturbative. This reduction is possible thanks to the special form of the terms εB1, ε2B2 defined in (8.77): the 
harmonics of εB1, and ε2T in (8.93), which correspond to a possible small divisor are naught, see Corollary 8.17, and 
Lemma 8.21. In this section we eliminate the term εB1. In Section 8.5 we eliminate the terms of order ε2.

Note that, since the previous transformations �, B , T are O(ε4γ−1)-close to the identity, the terms of order ε and 
ε2 in L3 are the same as in the original linearized operator.

We first collect all the terms of order ε and ε2 in the operator L3 defined in (8.65). By (8.69), (7.29), (8.57) we 
have, renaming ϑ = ϕ, z = x,

L3 = ⊥
S

(
ω · ∂ϕ +m3∂xxx + εB1 + ε2B2 + d̃1∂x + d̃0

)
⊥

S + R̃∗
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where d̃1, d̃0, R̃∗ are defined in (8.70)–(8.72) and (recall also (2.2))

B1h := −6∂x(v̄h), B2h := −6∂x{v̄S[(∂−1
x v̄) ∂−1

x h] + hπ0[(∂−1
x v̄)2]} + 6π0{(∂−1

x v̄)S[v̄h]}. (8.77)

Note that B1 and B2 are the linear Hamiltonian vector fields of H⊥
S generated, respectively, by the Hamiltonian 

z �→ 3 
∫
T
vz2 in (3.6), and the fourth order Birkhoff Hamiltonian H4,2 in (3.7) at v = v̄.

We transform L3 by a symplectic operator �1 : Hs
S⊥(T

ν+1) → Hs
S⊥(T

ν+1) of the form

�1 := exp(εA1) = IH⊥
S

+ εA1 + ε2 A
2
1

2
+ ε3Â1, Â1 :=

∑
k≥3

εk−3

k! Ak
1 , (8.78)

where A1(ϕ)h =∑j,j ′∈Sc (A1)
j ′
j (ϕ)hj ′eijx is a Hamiltonian vector field. The map �1 is symplectic, because it is the 

time-1 flow of a Hamiltonian vector field. Therefore

L3�1 −�1
⊥
S (Dω +m3∂xxx)

⊥
S = ⊥

S (ε{DωA1 +m3[∂xxx,A1] +B1}
+ ε2{B1A1 +B2 + 1

2
m3[∂xxx,A2

1] + 1

2
(DωA

2
1)}

+ d̃1∂x +R3)
⊥
S (8.79)

where

R3 := d̃1∂x(�1 − I )+ d̃0�1 + R̃∗�1 + ε2B2(�1 − I )

+ ε3{DωÂ1 +m3[∂xxx, Â1] + 1

2
B1A

2
1 + εB1Â1

}
. (8.80)

Remark 8.14. R3 has no longer the form (7.7). However R3 = O(∂0
x ) because A1 = O(∂−1

x ) (see Lemma 8.19), and 
therefore �1 − IH⊥

S
= O(∂−1

x ). Moreover the matrix decay norm of R3 is o(ε2).

In order to eliminate the order ε from (8.79), we choose

(A1)
j ′
j (l) :=

⎧⎨⎩− (B1)
j ′
j (l)

i(ω · l +m3(j ′ 3 − j3))
if ω̄ · l + j ′ 3 − j3 �= 0 ,

0 otherwise,

j, j ′ ∈ Sc, l ∈ Zν. (8.81)

This definition is well posed. Indeed, by (8.77) and (8.57),

(B1)
j ′
j (l) :=

{
−6ij

√
ξj−j ′ if j − j ′ ∈ S , l =  (j − j ′)

0 otherwise.
(8.82)

In particular (B1)
j ′
j (l) = 0 unless |l| ≤ 1. Thus, for ω̄ · l + j ′ 3 − j3 �= 0, the denominators in (8.81) satisfy

|ω · l +m3(j
′ 3 − j3)| = |m3(ω̄ · l + j ′ 3 − j3)+ (ω −m3ω̄) · l|

≥ |m3||ω̄ · l + j ′ 3 − j3| − |ω −m3ω̄||l| ≥ 1/2 , ∀|l| ≤ 1 , (8.83)

for ε small, because the nonzero integer |ω̄ · l + j ′ 3 − j3| ≥ 1, (8.50), and ω = ω̄ +O(ε2).
A1 defined in (8.81) is a Hamiltonian vector field like B1.

Remark 8.15. This is a general fact: the denominators δl,j,k := i(ω · l + m3(k
3 − j3)) satisfy δl,j,k = δ−l,k,j and an 

operator G(ϕ) is self-adjoint if and only if its matrix elements satisfy Gk
j (l) = G

j
k(−l), see [2]-Remark 4.5. In a more 

intrinsic way, we could solve the homological equation of this Birkhoff step directly for the Hamiltonian function 
whose flow generates �1.

Lemma 8.16. If j, j ′ ∈ Sc, j − j ′ ∈ S, l =  (j − j ′), then ω̄ · l + j ′ 3 − j3 = 3jj ′(j ′ − j) �= 0.
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Proof. We have ω̄ · l = ω̄ · (j −j ′) = (j −j ′)3 because j −j ′ ∈ S (see (2.10) and (8.58)). Note that j, j ′ �= 0 because 
j, j ′ ∈ Sc, and j − j ′ �= 0 because j − j ′ ∈ S. �
Corollary 8.17. Let j, j ′ ∈ Sc. If ω̄ · l + j ′ 3 − j3 = 0 then (B1)

j ′
j (l) = 0.

Proof. If (B1)
j ′
j (l) �= 0 then j − j ′ ∈ S, l =  (j − j ′) by (8.82). Hence ω̄ · l + j ′ 3 − j3 �= 0 by Lemma 8.16. �

By (8.81) and the previous corollary, the term of order ε in (8.79) is

⊥
S

(
DωA1 +m3[∂xxx,A1] +B1

)
⊥

S = 0 . (8.84)

We now estimate the transformation A1.

Lemma 8.18. (i) For all l ∈ Zν , j, j ′ ∈ Sc,

|(A1)
j ′
j (l)| ≤ C(|j | + |j ′|)−1 , |(A1)

j ′
j (l)|lip ≤ ε−2(|j | + |j ′|)−1 . (8.85)

(ii) (A1)
j ′
j (l) = 0 for all l ∈ Zν , j, j ′ ∈ Sc such that |j − j ′| >CS , where CS := max{|j | : j ∈ S}.

Proof. (i) We already noted that (A1)
j ′
j (l) = 0, ∀|l| > 1. Since |ω| ≤ |ω̄| + 1, one has, for |l| ≤ 1, j �= j ′,

|ω · l +m3(j
′ 3 − j3)| ≥ |m3| |j ′ 3 − j3| − |ω · l| ≥ 1

4
(j ′ 2 + j2)− |ω| ≥ 1

8
(j ′ 2 + j2) , ∀(j ′ 2 + j2) ≥ C,

for some constant C > 0. Moreover, recalling that also (8.83) holds, we deduce that for j �= j ′,

(A1)
j ′
j (l) �= 0 ⇒ |ω · l +m3(j

′ 3 − j3)| ≥ c(|j | + |j ′|)2 . (8.86)

On the other hand, if j = j ′, j ∈ Sc, the matrix (A1)
j
j (l) = 0, ∀l ∈ Zν , because (B1)

j
j (l) = 0 by (8.82) (recall that 

0 /∈ S). Hence (8.86) holds for all j , j ′. By (8.81), (8.86), (8.82) we deduce the first bound in (8.85). The Lipschitz 
bound follows similarly (use also |j − j ′| ≤ CS ). (ii) follows by (8.81)–(8.82). �

The previous lemma means that A =O(|∂x |−1). More precisely we deduce that

Lemma 8.19. |A1∂x |Lip(γ )
s + |∂xA1|Lip(γ )

s ≤ C(s).

Proof. Recalling the definition of the (space–time) matrix norm in (2.23), since (A1)
j2
j1
(l) = 0 outside the set of 

indices |l| ≤ 1, |j1 − j2| ≤ CS , we have

|∂xA1|2s =
∑

|l|≤1, |j |≤CS

(
sup

j1−j2=j

|j1| |(A1)
j2
j1
(l)|
)2〈l, j 〉2s ≤ C(s)

by Lemma 8.18. The estimates for |A1∂x |s and the Lipschitz bounds follow similarly. �
It follows that the symplectic map �1 in (8.78) is invertible for ε small, with inverse

�−1
1 = exp(−εA1) = IH⊥

S
+ εǍ1 , Ǎ1 :=

∑
n≥1

εn−1

n! (−A1)
n , |Ǎ1∂x |Lip(γ )

s + |∂xǍ1|Lip(γ )
s ≤ C(s) . (8.87)

Since A1 solves the homological equation (8.84), the ε-term in (8.79) is zero, and, with a straightforward calculation, 
the ε2-term simplifies to B2 + 1

2 [B1, A1]. We obtain the Hamiltonian operator

L4 := �−1
1 L3�1 = ⊥

S (Dω +m3∂xxx + d̃1∂x + ε2{B2 + 1
2 [B1,A1]} + R̃4)

⊥
S (8.88)

R̃4 := (�−1 − I )⊥
S [ε2(B2 + 1 [B1,A1])+ d̃1∂x] +�−1⊥

S R3 . (8.89)
1 2 1
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We split A1 defined in (8.81), (8.82) into A1 = Ā1 + Ã1 where, for all j, j ′ ∈ Sc, l ∈ Zν ,

(Ā1)
j ′
j (l) := 6j

√
ξj−j ′

ω̄ · l + j ′ 3 − j3
if ω̄ · l + j ′ 3 − j3 �= 0, j − j ′ ∈ S, l =  (j − j ′), (8.90)

and (Ā1)
j ′
j (l) := 0 otherwise. By Lemma 8.16, for all j, j ′ ∈ Sc , l ∈ Zν , (Ā1)

j ′
j (l) =

2
√
ξj−j ′

j ′(j ′−j)
if j − j ′ ∈ S, l =

 (j − j ′), and (Ā1)
j ′
j (l) = 0 otherwise, namely (recall the definition of v̄ in (8.57))

Ā1h = 2⊥
S [(∂−1

x v̄)(∂−1
x h)] , ∀h ∈ Hs

S⊥(T
ν+1) . (8.91)

The difference is

(Ã1)
j ′
j (l) = (A1 − Ā1)

j ′
j (l) = −6j

√
ξj−j ′

{
(ω − ω̄) · l + (m3 − 1)(j ′ 3 − j3)

}(
ω · l +m3(j ′ 3 − j3)

)(
ω̄ · l + j ′ 3 − j3

) (8.92)

for j, j ′ ∈ Sc , j − j ′ ∈ S, l =  (j − j ′), and (Ã1)
j ′
j (l) = 0 otherwise. Then, by (8.88),

L4 = ⊥
S

(
Dω +m3∂xxx + d̃1∂x + ε2T +R4

)
⊥

S , (8.93)

where

T := B2 + 1

2
[B1, Ā1] , R4 := ε2

2
[B1, Ã1] + R̃4 . (8.94)

The operator T is Hamiltonian like B2, B1, Ā1 (the commutator of two Hamiltonian vector fields is Hamiltonian).

Lemma 8.20. There is σ = σ(ν, τ) > 0 (possibly larger than in Lemma 8.13) such that

|R4|Lip(γ )
s ≤s ε

5γ−1 + ε‖Iδ‖Lip(γ )
s+σ , |∂iR4[ ı̂ ]|s ≤s ε

(‖̂ı‖s+σ + ‖Iδ‖s+σ ‖̂ı‖s0+σ

)
. (8.95)

Proof. We first estimate [B1, Ã1] = (B1∂
−1
x )(∂xÃ1) − (Ã1∂x)(∂

−1
x B1). By (8.92), |ω− ω̄| ≤ Cε2 (as ω ∈ �ε in (5.2)) 

and (8.50), arguing as in Lemmata 8.18, 8.19, we deduce that |Ã1∂x |Lip(γ )
s + |∂xÃ1|Lip(γ )

s ≤s ε
2. By (8.77) the norm 

|B1∂
−1
x |Lip(γ )

s + |∂−1
x B1|Lip(γ ) ≤ C(s). Hence ε2|[B1, Ã1]|Lip(γ )

s ≤s ε
4. Finally (8.94), (8.89), (8.87), (8.80), (8.75), 

(8.76), and the interpolation estimate (2.20) imply (8.95). �
8.5. Linear Birkhoff normal form. Step 2

The goal of this section is to remove the term ε2T from the operator L4 defined in (8.93). We conjugate the 
Hamiltonian operator L4 via a symplectic map

�2 := exp(ε2A2) = IH⊥
S

+ ε2A2 + ε4Â2 , Â2 :=
∑
k≥2

ε2(k−2)

k! Ak
2 (8.96)

where A2(ϕ) =∑j,j ′∈Sc (A2)
j ′
j (ϕ)hj ′eijx is a Hamiltonian vector field. We compute

L4�2 −�2
⊥
S

(
Dω +m3∂xxx

)
⊥

S = ⊥
S (ε

2{DωA2 +m3[∂xxx,A2] + T } + d̃1∂x + R̃5)
⊥
S , (8.97)

R̃5 := ⊥
S {ε4((DωÂ2)+m3[∂xxx, Â2])+ (d̃1∂x + ε2T )(�2 − I )+R4�2}⊥

S . (8.98)

We define

(A2)
j ′
j (l) := − T

j ′
j (l)

i(ω · l +m3(j ′ 3 − j3))
if ω̄ · l + j ′ 3 − j3 �= 0; (A2)

j ′
j (l) := 0 otherwise. (8.99)

This definition is well posed. Indeed, by (8.94), (8.82), (8.90), (8.77), the matrix entries T j ′
j (l) = 0 for all |j − j ′| >

2CS , l ∈ Zν , where CS := max{|j | , j ∈ S}. Also T j ′
(l) = 0 for all j, j ′ ∈ Sc , |l| > 2 (see also (8.100), (8.103), (8.104)
j
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below). Thus, arguing like in (8.83), if ω̄ · l + j ′ 3 − j3 �= 0, then |ω · l + m3(j
′ 3 − j3)| ≥ 1/2. The operator A2 is a 

Hamiltonian vector field because T is Hamiltonian and by Remark 8.15.
Now we prove that the Birkhoff map �2 removes completely the term ε2T .

Lemma 8.21. Let j, j ′ ∈ Sc. If ω̄ · l + j ′ 3 − j3 = 0, then T j ′
j (l) = 0.

Proof. By (8.77), (8.91) we get B1Ā1h = −12∂x{v̄⊥
S [(∂−1

x v̄)(∂−1
x h)]}, Ā1B1h = −12⊥

S [(∂−1
x v̄)⊥

S (v̄h)] for all 
h ∈ Hs

S⊥ , whence, recalling (8.57), for all j, j ′ ∈ Sc , l ∈ Zν ,

([B1, Ā1])j
′

j (l) = 12i
∑

j1,j2∈S, j1+j2=j−j ′
j ′+j2∈Sc,  (j1)+ (j2)=l

jj1 − j ′j2

j ′j1j2

√
ξj1ξj2 . (8.100)

If ([B1, Ā1])j
′

j (l) �= 0 there are j1, j2 ∈ S such that j1 + j2 = j − j ′, j ′ + j2 ∈ Sc,  (j1) +  (j2) = l. Then

ω̄ · l + j ′ 3 − j3 = ω̄ ·  (j1)+ ω̄ ·  (j2)+ j ′ 3 − j3 (8.58)= j3
1 + j3

2 + j ′ 3 − j3 . (8.101)

Thus, if ω̄ · l + j ′ 3 − j3 = 0, Lemma 3.3 implies (j1 + j2)(j1 + j ′)(j2 + j ′) = 0. Now j1 + j ′, j2 + j ′ �= 0 because 
j1, j2 ∈ S, j ′ ∈ Sc and S is symmetric. Hence j1 + j2 = 0, which implies j = j ′ and l = 0 (the map  in (8.58) is 
odd). In conclusion, if ω̄ · l + j ′ 3 − j3 = 0, the only nonzero matrix entry ([B1, Ā1])j

′
j (l) is

([B1, Ā1])jj (0) (8.100)= 24i
∑

j2∈S, j2+j∈Sc

ξj2j
−1
2 . (8.102)

Now we consider B2 in (8.77). Split B2 = B1 + B2 + B3, where B1h := −6∂x{v̄S[(∂−1
x v̄)∂−1

x h]}, B2h :=
−6∂x{hπ0[(∂−1

x v̄)2]}, B3h := 6π0{S(v̄h)∂
−1
x v̄}. Their Fourier matrix representation is

(B1)
j ′
j (l) = 6ij

∑
j1,j2∈S, j1+j ′∈S

j1+j2=j−j ′,  (j1)+ (j2)=l

√
ξj1ξj2

j1j ′ ,

(B2)
j ′
j (l) = 6ij

∑
j1,j2∈S, j1+j2 �=0

j1+j2=j−j ′,  (j1)+ (j2)=l

√
ξj1ξj2

j1j2
, (8.103)

(B3)
j ′
j (l) = 6

∑
j1,j2∈S, j1+j ′∈S

j1+j2=j−j ′,  (j1)+ (j2)=l

√
ξj1ξj2

ij2
, j, j ′ ∈ Sc, l ∈ Zν. (8.104)

We study the terms B1, B2, B3 separately. If (B1)
j ′
j (l) �= 0, there are j1, j2 ∈ S such that j1 + j2 = j − j ′, j1 + j ′ ∈ S, 

l =  (j1) +  (j2) and (8.101) holds. Thus, if ω̄ · l + j ′ 3 − j3 = 0, Lemma 3.3 implies (j1 + j2)(j1 + j ′)(j2 + j ′) = 0, 
and, since j ′ ∈ Sc and S is symmetric, the only possibility is j1 + j2 = 0. Hence j = j ′, l = 0. In conclusion, if 
ω̄ · l + j ′ 3 − j3 = 0, the only nonzero matrix element (B1)

j ′
j (l) is

(B1)
j
j (0) = 6i

∑
j1∈S, j1+j∈S

ξj1j
−1
1 . (8.105)

By the same arguments, if (B2)
j ′
j (l) �= 0 and ω̄ · l + j ′ 3 − j3 = 0 we find (j1 + j2)(j1 + j ′)(j2 + j ′) = 0, which is 

impossible because also j1 + j2 �= 0. Finally, arguing as for B1, if ω̄ · l + j ′ 3 − j3 = 0, then the only nonzero matrix 
element (B3)

j ′
j (l) is

(B3)
j
j (0) = 6i

∑
ξj1j

−1
1 . (8.106)
j1∈S, j1+j∈S
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From (8.102), (8.105), (8.106) we deduce that, if ω̄ · l + j ′ 3 − j3 = 0, then the only nonzero elements ( 1
2 [B1, Ā1] +

B1 +B3)
j ′
j (l) must be for (l, j, j ′) = (0, j, j). In this case, we get

1

2
([B1, Ā1])jj (0)+ (B1)

j
j (0)+ (B3)

j
j (0) = 12i

∑
j1∈S

j1+j∈Sc

ξj1

j1
+ 12i

∑
j1∈S

j1+j∈S

ξj1

j1
= 12i

∑
j1∈S

ξj1

j1
= 0 (8.107)

because the case j1 + j = 0 is impossible (j1 ∈ S, j ′ ∈ Sc and S is symmetric), and the function S " j1 → ξj1/j1 ∈ R
is odd. The lemma follows by (8.94), (8.107). �

The choice of A2 in (8.99) and Lemma 8.21 imply that

⊥
S

(
DωA2 +m3[∂xxx,A2] + T

)
⊥

S = 0 . (8.108)

Lemma 8.22. |∂xA2|Lip(γ )
s + |A2∂x |Lip(γ )

s ≤ C(s).

Proof. First we prove that the diagonal elements T j
j (l) = 0 for all l ∈ Zν . For l = 0, we have already proved that 

T
j
j (0) = 0 (apply Lemma 8.21 with j = j ′, l = 0). Moreover, in each term [B1, Ā1], B1, B2, B3 (see (8.100), (8.103), 

(8.104)) the sum is over j1 + j2 = j − j ′, l =  (j1) +  (j2). If j = j ′, then j1 + j2 = 0, and l = 0. Thus T j
j (l) =

T
j
j (0) = 0. For the off-diagonal terms j �= j ′ we argue as in Lemmata 8.18, 8.19, using that all the denominators 

|ω · l +m3(j
′ 3 − j3)| ≥ c(|j | + |j ′|)2. �

For ε small, the map �2 in (8.96) is invertible and �2 = exp(−ε2A2). Therefore (8.97), (8.108) imply

L5 := �−1
2 L4�2 = ⊥

S (Dω +m3∂xxx + d̃1∂x +R5)
⊥
S , (8.109)

R5 := (�−1
2 − I )⊥

S d̃1∂x +�−1
2 ⊥

S R̃5 . (8.110)

Since A2 is a Hamiltonian vector field, the map �2 is symplectic and so L5 is Hamiltonian.

Lemma 8.23. R5 satisfies the same estimates (8.95) as R4 (with a possibly larger σ ).

Proof. Use (8.110), Lemma 8.22, (8.75), (8.98), (8.95) and the interpolation inequalities (2.18), (2.20). �
8.6. Descent method

The goal of this section is to transform L5 in (8.109) so that the coefficient of ∂x becomes constant. We conjugate 
L5 via a symplectic map of the form

S := exp(⊥
S (w∂−1

x ))⊥
S = ⊥

S

(
I +w∂−1

x

)
⊥

S + Ŝ , Ŝ :=
∑
k≥2

1

k! [
⊥
S (w∂−1

x )]k⊥
S , (8.111)

where w : Tν+1 → R is a function. Note that ⊥
S (w∂−1

x )⊥
S is the Hamiltonian vector field generated by 

− 1
2

∫
T
w(∂−1

x h)2 dx, h ∈ H⊥
S . Recalling (2.2), we calculate

L5S − S⊥
S (Dω +m3∂xxx +m1∂x)

⊥
S = ⊥

S (3m3wx + d̃1 −m1)∂x
⊥
S + R̃6 ,

R̃6 := ⊥
S {(3m3wxx + d̃1

⊥
S w −m1w)π0 + ((Dωw)+m3wxxx + d̃1

⊥
S wx)∂

−1
x + (DωŜ)

+m3[∂xxx, Ŝ] + d̃1∂x Ŝ −m1Ŝ∂x +R5S}⊥
S (8.112)

where R̃6 collects all the terms of order at most ∂0
x . By Remark 8.12, we solve 3m3wx + d̃1 − m1 = 0 by choosing 

w := −(3m3)
−1∂−1

x (d̃1 −m1). For ε small, the operator S is invertible and, by (8.112),

L6 := S−1L5S = ⊥
S (Dω +m3∂xxx +m1∂x)

⊥
S +R6 , R6 := S−1R̃6 . (8.113)

Since S is symplectic, L6 is Hamiltonian (recall Definition 2.2).
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Lemma 8.24. There is σ = σ(ν, τ) > 0 (possibly larger than in Lemma 8.23) such that

|S±1 − I |Lip(γ )
s ≤s ε

5γ−1 + ε‖Iδ‖Lip(γ )
s+σ , |∂iS±1[ ı̂ ]|s ≤s ε(‖̂ı‖s+σ + ‖Iδ‖s+σ ‖̂ı‖s0+σ ).

The remainder R6 satisfies the same estimates (8.95) as R4.

Proof. By (8.75), (8.73), (8.50), ‖w‖Lip(γ )
s ≤s ε

5γ−1 + ε‖Iδ‖Lip(γ )
s+σ , and the lemma follows by (8.111). Since Ŝ =

O(∂−2
x ) the commutator [∂xxx, Ŝ] = O(∂0

x ) and |[∂xxx, Ŝ]|Lip(γ )
s ≤s ‖w‖Lip(γ )

s0+3 ‖w‖Lip(γ )
s+3 . �

8.7. KAM reducibility and inversion of Lω

The coefficients m3, m1 of the operator L6 in (8.113) are constants, and the remainder R6 is a bounded operator 
of order ∂0

x with small matrix decay norm, see (8.116). Then we can diagonalize L6 by applying the iterative KAM 
reducibility Theorem 4.2 in [2] along the sequence of scales

Nn := N
χn

0 , n = 0,1,2, . . . , χ := 3/2, N0 > 0 . (8.114)

In Section 9, the initial N0 will (slightly) increase to infinity as ε → 0, see (9.5). The required smallness condition 
(see (4.14) in [2]) is (written in the present notations)

N
C0
0 |R6|Lip(γ )

s0+β γ−1 ≤ 1 (8.115)

where β := 7τ + 6 (see (4.1) in [2]), τ is the diophantine exponent in (5.4) and (8.120), and the constant C0 :=
C0(τ, ν) > 0 is fixed in Theorem 4.2 in [2]. By Lemma 8.24, the remainder R6 satisfies the bound (8.95), and using 
(7.8) we get (recall (5.10))

|R6|Lip(γ )
s0+β ≤ Cε7−2bγ−1 = Cε3−2a, |R6|Lip(γ )

s0+β γ−1 ≤ Cε1−3a . (8.116)

We use that μ in (7.8) is assumed to satisfy μ ≥ σ + β where σ := σ(τ, ν) is given in Lemma 8.24.

Theorem 8.25 (Reducibility). Assume that ω �→ iδ(ω) is a Lipschitz function defined on some subset �o ⊂ �ε (recall 
(5.2)), satisfying (7.8) with μ ≥ σ + β where σ := σ(τ, ν) is given in Lemma 8.24 and β := 7τ + 6. Then there exists 
δ0 ∈ (0, 1) such that, if

N
C0
0 ε7−2bγ−2 = N

C0
0 ε1−3a ≤ δ0 , γ := ε2+a , a ∈ (0,1/6) , (8.117)

then:
(i) (Eigenvalues). For all ω ∈ �ε there exists a sequence

μ∞
j (ω) := μ∞

j (ω, iδ(ω)) := i
(− m̃3(ω)j

3 + m̃1(ω)j
)+ r∞

j (ω), j ∈ Sc , (8.118)

where m̃3, m̃1 coincide with the coefficients m3, m1 of L6 in (8.113) for all ω ∈ �o, and

|m̃3 − 1|Lip(γ ) + |m̃1|Lip(γ ) ≤ Cε4 , |r∞
j |Lip(γ ) ≤ Cε3−2a , ∀j ∈ Sc , (8.119)

for some C > 0. All the eigenvalues μ∞
j are purely imaginary. We define, for convenience, μ∞

0 (ω) := 0.

(ii) (Conjugacy). For all ω in the set

�
2γ∞ := �

2γ∞ (iδ) :=
{
ω ∈ �o : |iω · l +μ∞

j (ω)−μ∞
k (ω)| ≥ 2γ |j3 − k3|

〈l〉τ , ∀l ∈ Zν, j, k ∈ Sc ∪ {0}
}

(8.120)

there is a real, bounded, invertible linear operator �∞(ω) : Hs
S⊥(T

ν+1) → Hs
S⊥(T

ν+1), with bounded inverse 
�−1∞ (ω), that conjugates L6 in (8.113) to constant coefficients, namely

L∞(ω) := �−1∞ (ω) ◦L6(ω) ◦�∞(ω) = ω · ∂ϕ +D∞(ω), D∞(ω) := diagj∈Sc {μ∞
j (ω)} . (8.121)

The transformations �∞, �−1∞ are close to the identity in matrix decay norm, with

|�∞ − I |Lip(γ )

s,�
2γ∞

+ |�−1∞ − I |Lip(γ )

s,�
2γ∞

≤s ε
5γ−2 + εγ−1‖Iδ‖Lip(γ )

s+σ . (8.122)

Moreover �∞, �−1∞ are symplectic, and L∞ is a Hamiltonian operator.
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Proof. The proof is the same as the one of Theorem 4.1 in [2], which is based on Theorem 4.2, Corollaries 4.1, 4.2 
and Lemmata 4.1, 4.2 of [2]. A difference is that here ω ∈ Rν , while in [2] the parameter λ ∈ R is one-dimensional. 
The proof is the same because Kirszbraun’s Theorem on Lipschitz extension of functions also holds in Rν (see, e.g., 
Lemma A.2 in [27]). The bound (8.122) follows by Corollary 4.1 of [2] and the estimate of R6 in Lemma 8.24. We also 
use the estimates (8.50), (8.73) for ∂im3, ∂im1 which correspond to (3.64) in [2]. Another difference is that here the 
sites j ∈ Sc ⊂ Z \ {0} unlike in [2] where j ∈ Z. We have defined μ∞

0 := 0 so that also the first Melnikov conditions 

(8.123) are included in the definition of �2γ∞ . �
Remark 8.26. Theorem 4.2 in [2] also provides the Lipschitz dependence of the (approximate) eigenvalues μn

j with 
respect to the unknown i0(ϕ), which is used for the measure estimate Lemma 9.3.

All the parameters ω ∈ �
2γ∞ satisfy (specialize (8.120) for k = 0)

|iω · l +μ∞
j (ω)| ≥ 2γ |j |3〈l〉−τ , ∀l ∈ Zν, j ∈ Sc, (8.123)

and the diagonal operator L∞ is invertible.
In the following theorem we finally verify the inversion assumption (6.33) for Lω.

Theorem 8.27 (Inversion of Lω). Assume the hypotheses of Theorem 8.25 and (8.117). Then there exists σ1 :=
σ1(τ, ν) > 0 such that, ∀ω ∈ �

2γ∞ (iδ) (see (8.120)), for any function g ∈ H
s+σ1
S⊥ (Tν+1) the equation Lωh = g has 

a solution h =L−1
ω g ∈ Hs

S⊥(T
ν+1), satisfying

‖L−1
ω g‖Lip(γ )

s ≤s γ
−1(‖g‖Lip(γ )

s+σ1
+ εγ−1‖I0‖Lip(γ )

s+σ1
‖g‖Lip(γ )

s0

)
. (8.124)

Proof. Collecting Theorem 8.25 with the results of Sections 8.1–8.6, we have obtained the (semi)-conjugation of the 
operator Lω (defined in (7.34)) to L∞ (defined in (8.121)), namely

Lω =M1L∞M−1
2 , M1 := �BρT �1�2S�∞, M2 := �BT �1�2S�∞ , (8.125)

where ρ means the multiplication operator by the function ρ defined in (8.41). By (8.123) and Lemma 4.2 of [2] we 
deduce that ‖L−1∞ g‖Lip(γ )

s ≤s γ
−1‖g‖Lip(γ )

s+2τ+1. In order to estimate M2, M−1
1 , we recall that the composition of tame 

maps is tame, see Lemma 6.5 in [2]. Now, �, �−1 are estimated in Lemma 8.5, B , B−1 and ρ in Lemma 8.7, T , T −1

in Lemma 8.13. The decay norms |�1|Lip(γ )
s , |�−1

1 |Lip(γ )
s , |�2|Lip(γ )

s , |�−1
2 |Lip(γ )

s ≤ C(s) by Lemmata 8.19, 8.22. The 
decay norm of S , S−1 is estimated in Lemma 8.24, and �∞, �−1∞ in (8.122). The decay norm controls the Sobolev 
norm by (2.21). Thus, by (8.125),

‖M2h‖Lip(γ )
s + ‖M−1

1 h‖Lip(γ )
s ≤s ‖h‖Lip(γ )

s+3 + εγ−1‖Iδ‖Lip(γ )
s+σ+3‖h‖Lip(γ )

s0 ,

and (8.124) follows, using also (6.9). �
9. The Nash–Moser nonlinear iteration

In this section we prove Theorem 5.1. It will be a consequence of the Nash–Moser Theorem 9.1 below.
Consider the finite-dimensional subspaces

En := {I(ϕ) = (�,y, z)(ϕ) : � = n�, y = ny, z = nz
}

where Nn := N
χn

0 are introduced in (8.114), and n are the projectors (which, with a small abuse of notation, we 
denote with the same symbol)

n�(ϕ) :=
∑

|l|<Nn

�le
il·ϕ, ny(ϕ) :=

∑
|l|<Nn

yle
il·ϕ, where �(ϕ) =

∑
l∈Zν

�le
il·ϕ, y(ϕ) =

∑
l∈Zν

yle
il·ϕ,

nz(ϕ, x) :=
∑

zlj e
i(l·ϕ+jx), where z(ϕ, x) =

∑
ν c

zlj e
i(l·ϕ+jx). (9.1)
|(l,j)|<Nn l∈Z ,j∈S
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We define ⊥
n := I −n. The classical smoothing properties hold: for all α, s ≥ 0,

‖nI‖Lip(γ )
s+α ≤ Nα

n ‖I‖Lip(γ )
s , ∀I(ω) ∈ Hs , ‖⊥

n I‖Lip(γ )
s ≤ N−α

n ‖I‖Lip(γ )
s+α , ∀I(ω) ∈ Hs+α . (9.2)

We define the constants

μ1 := 3μ+ 9 , α := 3μ1 + 1 , α1 := (α − 3μ)/2 , (9.3)

κ := 3
(
μ1 + ρ−1)+ 1 , β1 := 6μ1 + 3ρ−1 + 3 , 0 < ρ <

1 − 3a

C1(1 + a)
, (9.4)

where μ := μ(τ, ν) is the “loss of regularity” defined in Theorem 6.10 (see (6.41)) and C1 is fixed below.

Theorem 9.1 (Nash–Moser). Assume that f ∈ Cq with q > S := s0 + β1 + μ + 3. Let τ ≥ ν + 2. Then there exist 
C1 > max{μ1 + α, C0} (where C0 := C0(τ, ν) is the one in Theorem 8.25), δ0 := δ0(τ, ν) > 0 such that, if

N
C1
0 εb∗+1γ−2 < δ0 , γ := ε2+a = ε2b , N0 := (εγ−1)ρ , b∗ := 6 − 2b , (9.5)

then, for all n ≥ 0:

(P1)n there exists a function (In, ζn) : Gn ⊆ �ε → En−1 × Rν , ω �→ (In(ω), ζn(ω)), (I0, ζ0) := 0, E−1 := {0}, 
satisfying |ζn|Lip(γ ) ≤ C‖F(Un)‖Lip(γ )

s0 ,

‖In‖Lip(γ )
s0+μ ≤ C∗εb∗γ−1 , ‖F(Un)‖Lip(γ )

s0+μ+3 ≤ C∗εb∗ , (9.6)

where Un := (in, ζn) with in(ϕ) = (ϕ, 0, 0) + In(ϕ). The sets Gn are defined inductively by:

G0 := {ω ∈ �ε : |ω · l| ≥ 2γ 〈l〉−τ , ∀l ∈ Zν \ {0}} ,
Gn+1 :=

{
ω ∈ Gn : |iω · l +μ∞

j (in)−μ∞
k (in)| ≥ 2γn|j3 − k3|

〈l〉τ , ∀j, k ∈ Sc ∪ {0}, l ∈ Zν
}
, (9.7)

where γn := γ (1 + 2−n) and μ∞
j (ω) := μ∞

j (ω, in(ω)) are defined in (8.118) (and μ∞
0 (ω) = 0).

The differences ̂In := In − In−1 (where we set ̂I0 := 0) is defined on Gn, and satisfy

‖̂I1‖Lip(γ )
s0+μ ≤ C∗εb∗γ−1 , ‖̂In‖Lip(γ )

s0+μ ≤ C∗εb∗γ−1N
−α1
n−1 , ∀n > 1 . (9.8)

(P2)n ‖F(Un)‖Lip(γ )
s0 ≤ C∗εb∗N−α

n−1 where we set N−1 := 1.

(P3)n (High norms). ‖In‖Lip(γ )
s0+β1

≤ C∗εb∗γ−1Nκ
n−1 and ‖F(Un)‖Lip(γ )

s0+β1
≤ C∗εb∗Nκ

n−1.
(P4)n (Measure). The measure of the “Cantor-like” sets Gn satisfies

|�ε \ G0| ≤ C∗ε2(ν−1)γ ,
∣∣Gn \ Gn+1

∣∣≤ C∗ε2(ν−1)γN−1
n−1 . (9.9)

All the Lip norms are defined on Gn, namely ‖ ‖Lip(γ )
s = ‖ ‖Lip(γ )

s,Gn
.

Proof. To simplify notations, in this proof we denote ‖ ‖Lip(γ ) by ‖ ‖. We first prove (P1, 2, 3)n.

STEP 1: Proof of (P1, 2, 3)0. Recalling (5.6) we have ‖F(U0)‖s = ‖F(ϕ, 0, 0, 0)‖s = ‖XP (ϕ, 0, 0)‖s ≤s ε
6−2b

by (5.15). Hence (recall that b∗ = 6 − 2b) the smallness conditions in (P1)0–(P3)0 hold taking C∗ := C∗(s0 + β1)

large enough.

STEP 2: Assume that (P1, 2, 3)n hold for some n ≥ 0, and prove (P1, 2, 3)n+1. By (9.5) and (9.4),

N
C1
0 εb∗+1γ−2 = N

C1
0 ε1−3a = ε1−3a−ρC1(1+a) < δ0

for ε small enough, and the smallness condition (8.117) holds. Moreover (9.6) imply (6.4) (and so (7.8)) and 
Theorem 8.27 applies. Hence the operator Lω := Lω(ω, in(ω)) defined in (6.32) is invertible for all ω ∈ Gn+1
and the last estimate in (8.124) holds. This means that the assumption (6.33) of Theorem 6.10 is verified with 
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�∞ = Gn+1. By Theorem 6.10 there exists an approximate inverse Tn(ω) := T0(ω, in(ω)) of the linearized oper-
ator Ln(ω) := di,ζF(ω, in(ω)), satisfying (6.41). Thus, using also (9.5), (9.6),

‖Tng‖s ≤s γ
−1(‖g‖s+μ + εγ−1‖In‖s+μ‖g‖s0+μ

)
(9.10)

‖Tng‖s0 ≤s0 γ
−1‖g‖s0+μ (9.11)

and, by (6.42), using also (9.6), (9.5), (9.2),

‖(Ln ◦ Tn − I
)
g‖s ≤s ε

2b−1γ−2(‖F(Un)‖s0+μ‖g‖s+μ + ‖F(Un)‖s+μ‖g‖s0+μ

+ εγ−1‖In‖s+μ‖F(Un)‖s0+μ‖g‖s0+μ

)
, (9.12)

‖(Ln ◦ Tn − I
)
g‖s0 ≤s0 ε

2b−1γ−2‖F(Un)‖s0+μ‖g‖s0+μ

≤s0 ε
2b−1γ−2(‖nF(Un)‖s0+μ + ‖⊥

n F(Un)‖s0+μ

)‖g‖s0+μ

≤s0 ε
2b−1γ−2Nμ

n

(‖F(Un)‖s0 +N−β1
n ‖F(Un)‖s0+β1

)‖g‖s0+μ . (9.13)

Then, for all ω ∈ Gn+1, n ≥ 0, we define

Un+1 := Un +Hn+1 , Hn+1 := (̂In+1, ζ̂n+1) := −̃nTnnF(Un) ∈ En ×Rν , (9.14)

where ̃n(I, ζ ) := (nI, ζ ) with n in (9.1). Since Ln := di,ζF(in), we write F(Un+1) = F(Un) +LnHn+1 +Qn, 
where

Qn := Q(Un,Hn+1) , Q(Un,H) := F(Un +H)−F(Un)−LnH , H ∈ En ×Rν. (9.15)

Then, by the definition of Hn+1 in (9.14), and writing ̃⊥
n (I, ζ ) := (⊥

n I, 0), we have

F(Un+1) =F(Un)−LñnTnnF(Un)+Qn =F(Un)−LnTnnF(Un)+Lñ
⊥
n TnnF(Un)+Qn

=F(Un)−nLnTnnF(Un)+ (Lñ
⊥
n −⊥

n Ln)TnnF(Un)+Qn

= ⊥
n F(Un)+Rn +Qn +Q′

n (9.16)

where

Rn := (Lñ
⊥
n −⊥

n Ln)TnnF(Un) , Q′
n := −n(LnTn − I )nF(Un) . (9.17)

Lemma 9.2. Define

wn := εγ−2‖F(Un)‖s0 , Bn := εγ−1‖In‖s0+β1 + εγ−2‖F(Un)‖s0+β1 . (9.18)

Then there exists K := K(s0, β1) > 0 such that, for all n ≥ 0, setting μ1 := 3μ + 9 (see (9.3)),

wn+1 ≤ KN
μ1+ 1

ρ
−β1

n Bn +KNμ1
n w2

n , Bn+1 ≤ KN
μ1+ 1

ρ
n Bn . (9.19)

Proof. We estimate separately the terms Qn in (9.15) and Q′
n, Rn in (9.17).

Estimate of Qn. By (9.15), (5.6), (5.20) and (9.6), (9.2), we have the quadratic estimates

‖Q(Un,H)‖s ≤s ε
(‖̂I‖s+3‖̂I‖s0+3 + ‖In‖s+3‖̂I‖2

s0+3

)
(9.20)

‖Q(Un,H)‖s0 ≤s0 εN
6
n ‖̂I‖2

s0
, ∀̂I ∈ En . (9.21)

Now by the definition of Hn+1 in (9.14) and (9.2), (9.10), (9.11), (9.6), we get

‖̂In+1‖s0+β1 ≤s0+β1 N
μ
n

(
γ−1‖F(Un)‖s0+β1 + εγ−2‖F(Un)‖s0+μ{‖In‖s0+β1 + γ−1‖F(Un)‖s0+β1}

)
≤s0+β Nμ

n

(
γ−1‖F(Un)‖s0+β1 + ‖In‖s0+β1

)
, (9.22)

‖̂In+1‖s0 ≤s0 γ
−1Nμ

n ‖F(Un)‖s0 . (9.23)

Then the term Qn in (9.15) satisfies, by (9.20), (9.21), (9.22), (9.23), (9.5), (9.6), (P2)n, (9.3),
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‖Qn‖s0+β1 ≤s0+β1 N
2μ+9
n γ

(
γ−1‖F(Un)‖s0+β1 + ‖In‖s0+β1

)
, (9.24)

‖Qn‖s0 ≤s0 N
2μ+6
n εγ−2‖F(Un)‖2

s0
. (9.25)

Estimate of Q′
n. The bounds (9.12), (9.13), (9.2), (9.3), (9.6) imply

‖Q′
n‖s0+β1 ≤s0+β1 ε

5γ−2N2μ
n

(‖F(Un)‖s0+β1 + εγ−1‖In‖s0+β1‖F(Un)‖s0

)
, (9.26)

‖Q′
n‖s0 ≤s0 ε

2b−1γ−2N2μ
n

(‖F(Un)‖s0 +N−β1
n ‖F(Un)‖s0+β1

)‖F(Un)‖s0 . (9.27)

Estimate of Rn. For H := (̂I, ̂ζ ) we have (Lñ
⊥
n − ⊥

n Ln)H = [D̄n, ⊥
n ]̂I = [n, D̄n ]̂I where D̄n := diXHε(in) +

(0, 0, ∂xxx). Thus Lemma 5.3, (9.6), (9.2) and (5.19) imply

‖(Lñ
⊥
n −⊥

n Ln)H‖s0 ≤s0+β1 εN
−β1+μ+3
n

(‖̂I‖s0+β1−μ + ‖In‖s0+β1−μ‖̂I‖s0+3
)
, (9.28)

‖(Lñ
⊥
n −⊥

n Ln)H‖s0+β1 ≤s εN
μ+3
n

(‖̂I‖s0+β1−μ + ‖In‖s0+β1−μ‖̂I‖s0+3
)
. (9.29)

Hence, applying (9.10), (9.28), (9.29), (9.5), (9.6), (9.2), the term Rn defined in (9.17) satisfies

‖Rn‖s0 ≤s0+β1 N
μ+6−β1
n (εγ−1‖F(Un)‖s0+β1 + ε‖In‖s0+β1) , (9.30)

‖Rn‖s0+β1 ≤s0+β1 N
μ+6
n (εγ−1‖F(Un)‖s0+β1 + ε‖In‖s0+β1) . (9.31)

Estimate of F(Un+1). By (9.16) and (9.24), (9.25), (9.26), (9.27), (9.30), (9.31), (9.5), (9.6), we get

‖F(Un+1)‖s0 ≤s0+β1 N
μ1−β1
n (εγ−1‖F(Un)‖s0+β1 + ε‖In‖s0+β1)+Nμ1

n εγ−2‖F(Un)‖2
s0
, (9.32)

‖F(Un+1)‖s0+β1 ≤s0+β1 N
μ1
n (εγ−1‖F(Un)‖s0+β1 + ε‖In‖s0+β1) , (9.33)

where μ1 := 3μ + 9.
Estimate of In+1. Using (9.22) the term In+1 = In + În+1 is bounded by

‖In+1‖s0+β1 ≤s0+β1 N
μ
n (‖In‖s0+β1 + γ−1‖F(Un)‖s0+β1) . (9.34)

Finally, recalling (9.18), the inequalities (9.19) follow by (9.32)–(9.34), (9.6) and εγ−1 = N
1/ρ
0 ≤ N

1/ρ
n . �

Proof of (P3)n+1. By (9.19) and (P3)n,

Bn+1 ≤ KN
μ1+ 1

ρ
n Bn ≤ 2C∗Kεb∗+1γ−2N

μ1+ 1
ρ

n Nκ
n−1 ≤ C∗εb∗+1γ−2Nκ

n , (9.35)

provided 2KN
μ1+ 1

ρ
−κ

n Nκ
n−1 ≤ 1, ∀n ≥ 0. This inequality holds by (9.4), taking N0 large enough (i.e. ε small enough). 

By (9.18), the bound Bn+1 ≤ C∗εb∗+1γ−2Nκ
n implies (P3)n+1.

Proof of (P2)n+1. Using (9.19), (9.18) and (P2)n, (P3)n, we get

wn+1 ≤ KN
μ1+ 1

ρ
−β1

n Bn +KNμ1
n w2

n ≤ KN
μ1+ 1

ρ
−β1

n 2C∗εb∗+1γ−2Nκ
n−1 +KNμ1

n (C∗εb∗+1γ−2N−α
n−1)

2

which is ≤ C∗εb∗+1γ−2N−α
n provided that

4KN
μ1+ 1

ρ
−β1+α

n Nκ
n−1 ≤ 1, 2KC∗εb∗+1γ−2Nμ1+α

n N−2α
n−1 ≤ 1 , ∀n ≥ 0. (9.36)

The inequalities in (9.36) hold by (9.3)–(9.4), (9.5), C1 > μ1 + α, taking δ0 in (9.5) small enough. By (9.18), the 
inequality wn+1 ≤ C∗εb∗+1γ−2N−α

n implies (P2)n+1.

Proof of (P1)n+1. The bound (9.8) for Î1 follows by (9.14), (9.10) (for s = s0 + μ) and ‖F(U0)‖s0+2μ =
‖F(ϕ, 0, 0, 0)‖s0+2μ ≤s0+2μ εb∗ . The bound (9.8) for ̂In+1 follows by (9.2), (9.23), (P2)n, (9.3). It remains to prove 
that (9.6) holds at the step n + 1. We have

‖In+1‖s0+μ ≤
n+1∑
k=1

‖̂Ik‖s0+μ ≤ C∗εb∗γ−1
∑
k≥1

N
−α1
k−1 ≤ C∗εb∗γ−1 (9.37)

for N0 large enough, i.e. ε small. Moreover, using (9.2), (P2)n+1, (P3)n+1, (9.3), we get



P. Baldi et al. / Ann. I. H. Poincaré – AN 33 (2016) 1589–1638 1635
‖F(Un+1)‖s0+μ+3 ≤ Nμ+3
n ‖F(Un+1)‖s0 +Nμ+3−β1

n ‖F(Un+1)‖s0+β1

≤ C∗εb∗Nμ+3−α
n +C∗εb∗Nμ+3−β1+κ

n ≤ C∗εb∗ ,

which is the second inequality in (9.6) at the step n +1. The bound |ζn+1|Lip(γ ) ≤ C‖F(Un+1)‖Lip(γ )
s0 is a consequence 

of Lemma 6.1 (it is not inductive).

STEP 3: Prove (P4)n for all n ≥ 0. For all n ≥ 0,

Gn \ Gn+1 =
⋃

l∈Zν , j,k∈Sc∪{0}
Rljk(in) (9.38)

where

Rljk(in) := {ω ∈ Gn : |iω · l +μ∞
j (in)−μ∞

k (in)| < 2γn|j3 − k3| 〈l〉−τ
}
. (9.39)

Notice that Rljk(in) = ∅ if j = k, so that we suppose in the sequel that j �= k.

Lemma 9.3. For all n ≥ 1, |l| ≤ Nn−1, the set Rljk(in) ⊆ Rljk(in−1).

Proof. Like Lemma 5.2 in [2] (with ω in the role of λω̄, and Nn−1 instead of Nn). �
By definition, Rljk(in) ⊆ Gn (see (9.39)) and Lemma 9.3 implies that, for all n ≥ 1, |l| ≤ Nn−1, the set Rljk(in) ⊆

Rljk(in−1). On the other hand Rljk(in−1) ∩Gn = ∅ (see (9.7)). As a consequence, for all |l| ≤ Nn−1, Rljk(in) = ∅ and, 
by (9.38),

Gn \ Gn+1 ⊆
⋃

|l|>Nn−1, j,k∈Sc∪{0}
Rljk(in) ∀n ≥ 1. (9.40)

Lemma 9.4. Let n ≥ 0. If Rljk(in) �= ∅ then |l| ≥ C|j3 − k3| ≥ 1
2C(j2 + k2) for some C > 0.

Proof. Like Lemma 5.3 in [2]. The only difference is that ω is not constrained to a fixed direction. Note also that 
|j3 − k3| ≥ (j2 + k2)/2, ∀j �= k. �

By usual arguments (e.g. see Lemma 5.4 in [2]), using Lemma 9.4 and (8.119) we have:

Lemma 9.5. For all n ≥ 0, the measure |Rljk(in)| ≤ Cε2(ν−1)γ 〈l〉−τ .

By (9.38) and Lemmata 9.4, 9.5 we get

|G0 \ G1| ≤
∑

l∈Zν ,|j |,|k|≤C|l|1/2

|Rljk(i0)| ≤
∑
l∈Zν

Cε2(ν−1)γ

〈l〉τ−1
≤ C′ε2(ν−1)γ .

For n ≥ 1, by (9.40),

|Gn \ Gn+1| ≤
∑

|l|>Nn−1,|j |,|k|≤C|l|1/2

|Rljk(in)| ≤
∑

|l|>Nn−1

Cε2(ν−1)γ

〈l〉τ−1
≤ C′ε2(ν−1)γN−1

n−1

because τ ≥ ν + 2. The estimate |�ε \ G0| ≤ Cε2(ν−1)γ is elementary. Thus (9.9) is proved. �
Proof of Theorem 5.1 concluded. Theorem 9.1 implies that the sequence (In, ζn) is well defined for ω ∈ G∞ :=
∩n≥0Gn, that In is a Cauchy sequence in ‖ ‖Lip(γ )

s0+μ,G∞ , see (9.8), and |ζn|Lip(γ ) → 0. Therefore In converges to a limit 

I∞ in norm ‖ ‖Lip(γ )
s0+μ,G∞ and, by (P2)n, for all ω ∈ G∞, i∞(ϕ) := (ϕ, 0, 0) + I∞(ϕ), is a solution of

F(i∞,0) = 0 with ‖I∞‖Lip(γ ) ≤ Cε6−2bγ−1

s0+μ,G∞
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by (9.6) (recall that b∗ := 6 − 2b). Therefore ϕ �→ i∞(ϕ) is an invariant torus for the Hamiltonian vector field XHε

(see (5.5)). By (9.9),

|�ε \ G∞| ≤ |�ε \ G0| +
∑
n≥0

|Gn \ Gn+1| ≤ 2C∗ε2(ν−1)γ +C∗ε2(ν−1)γ
∑
n≥1

N−1
n−1 ≤ Cε2(ν−1)γ .

The set �ε in (5.2) has measure |�ε| = O(ε2ν). Hence |�ε \ G∞|/|�ε| → 0 as ε → 0 because γ = o(ε2), and 
therefore the measure of Cε := G∞ satisfies (5.11).

In order to complete the proof of Theorem 5.1 we show the linear stability of the solution i∞(ωt). By Section 6
the system obtained linearizing the Hamiltonian vector field XHε at a quasi-periodic solution i∞(ωt) is conjugated to 
the linear Hamiltonian system⎧⎨⎩ ψ̇ = K20(ωt)η +KT

11(ωt)w

η̇ = 0
ẇ − ∂xK02(ωt)w = ∂xK11(ωt)η

(9.41)

(recall that the torus i∞ is isotropic and the transformed nonlinear Hamiltonian system is (6.21) where K00, K10,

K01 = 0, see Remark 6.5). In Section 8 we have proved the reducibility of the linear system ẇ − ∂xK02(ωt)w, 
conjugating the last equation in (9.41) to a diagonal system

v̇j +μ∞
j vj = fj (ωt) , j ∈ Sc , μ∞

j ∈ iR , (9.42)

see (8.121), and f (ϕ, x) =∑j∈Sc fj (ϕ)e
ijx ∈ Hs

S⊥(T
ν+1). Thus (9.41) is stable. Indeed the actions η(t) = η0 ∈ R, 

∀t ∈ R. Moreover the solutions of the non-homogeneous equation (9.42) are

vj (t) = cj e
μ∞
j t + ṽj (t) , where ṽj (t) :=

∑
l∈Zν

fjl e
iω·lt

iω · l +μ∞
j

is a quasi-periodic solution (recall that the first Melnikov conditions (8.123) hold at a solution). As a consequence 
(recall also μ∞

j ∈ iR) the Sobolev norm of the solution of (9.42) with initial condition v(0) =∑j∈Sc vj (0)eijx ∈
Hs0(Tx), s0 < s, does not increase in time. �
Construction of the set S of tangential sites. We finally prove that, for any ν ≥ 1, the set S in (1.8) satisfying 
(S1)–(S2) can be constructed inductively with only a finite number of restriction at any step of the induction.

First, fix any integer j̄1 ≥ 1. Then the set J1 := {±j̄1} trivially satisfies (S1)–(S2). Then, assume that we have fixed 
n distinct positive integers j̄1, . . . , j̄n, n ≥ 1, such that the set Jn := {±j̄1, . . . , ±j̄n} satisfies (S1)–(S2). We describe 
how to choose another positive integer j̄n+1, which is different from all j ∈ Jn, such that Jn+1 := Jn ∪ {±j̄n+1} also 
satisfies (S1), (S2).

Let us begin with analyzing (S1). A set of 3 elements j1, j2, j3 ∈ Jn+1 can be of these types: (i) all “old” elements 
j1, j2, j3 ∈ Jn; (ii) two “old” elements j1, j2 ∈ Jn and one “new” element j3 = σ3j̄n+1, σ3 = ±1; (iii) one “old” 
element j1 ∈ Jn and two “new” elements j2 = σ2j̄n+1, j3 = σ3j̄n+1, with σ2, σ3 = ±1; (iv) all “new” elements 
ji = σi j̄n+1, σi = ±1, i = 1, 2, 3.

In case (i), the sum j1 + j2 + j3 is nonzero by inductive assumption. In case (ii), j1 + j2 + j3 is nonzero provided 
j̄n+1 /∈ {j1 + j2 : j1, j2 ∈ Jn}, which is a finite set. In case (iii), for σ2 + σ3 = 0 the sum j1 + j2 + j3 = j1 is trivially 
nonzero because 0 /∈ Jn, while, for σ2 +σ3 �= 0, the sum j1 + j2 + j3 = j1 + (σ2 +σ3)j̄n+1 �= 0 if j̄n+1 /∈ { 1

2j : j ∈ Jn}, 
which is a finite set. In case (iv), the sum j1 + j2 + j3 = (σ1 +σ2 +σ3)j̄n+1 �= 0 because j̄n+1 ≥ 1 and σ1 +σ2 +σ3 ∈
{±1, ±3}.

Now we study (S2) for the set Jn+1. Denote, in short, b := j3
1 + j3

2 + j3
3 + j3

4 − (j1 + j2 + j3 + j4)
3.

A set of 4 elements j1, j2, j3, j4 ∈ Jn+1 can be of 5 types: (i) all “old” elements j1, j2, j3, j4 ∈ Jn; (ii) three 
“old” elements j1, j2, j3 ∈ Jn and one “new” element j4 = σ4j̄n+1, σ4 = ±1; (iii) two “old” element j1, j2 ∈ Jn and 
two “new” elements j3 = σ3j̄n+1, j4 = σ4j̄n+1, with σ3, σ4 = ±1; (iv) one “old” element j1 ∈ Jn and three “new” 
elements ji = σi j̄n+1, σi = ±1, i = 2, 3, 4; (v) all “new” elements ji = σi j̄n+1, σi = ±1, i = 1, 2, 3, 4.

In case (i), b �= 0 by inductive assumption.
In case (ii), assume that j1 + j2 + j3 + j4 �= 0, and calculate

b = −3(j1 + j2 + j3)j̄
2
n+1 − 3(j1 + j2 + j3)

2σ4j̄n+1 + [j3
1 + j3

2 + j3
3 − (j1 + j2 + j3)

3] =: pj1,j2,j3,σ4(j̄n+1).
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This is nonzero provided pj1,j2,j3,σ4(j̄n+1) �= 0 for all j1, j2, j3 ∈ Jn, σ4 = ±1. The polynomial pj1,j2,j3,σ4 is never 
identically zero because either the leading coefficient −3(j1 + j2 + j3) �= 0 (and, if one uses (S3), this is always the 
case), or, if j1 + j2 + j3 = 0, then j3

1 + j3
2 + j3

3 �= 0 by (3.12) (using also that 0 /∈ Jn).
In case (iii), assume that j1 + . . .+ j4 = j1 + j2 + (σ3 + σ4)j̄n+1 �= 0, and calculate

b = −3αj̄3
n+1 − 3α2(j1 + j2)j̄

2
n+1 − 3(j1 + j2)

2αj̄n+1 − j1j2(j1 + j2) =: qj1,j2,α(j̄n+1),

where α := σ3 +σ4. We impose that qj1,j2,α(j̄n+1) �= 0 for all j1, j2 ∈ Jn, α ∈ {±2, 0}. The polynomial qj1,j2,α is never 
identically zero because either the leading coefficient −3α �= 0, or, for α = 0, the constant term −j1j2(j1 + j2) �= 0
(recall that 0 /∈ Jn and j1 + j2 + αj̄n+1 �= 0).

In case (iv), assume that j1 + . . .+ j4 = j1 + αj̄n+1 �= 0, where α := σ2 + σ3 + σ4 ∈ {±1, ±3}, and calculate

b = αj̄n+1rj1,α(j̄n+1), rj1,α(x) := (1 − α2)x2 − 3αj1x − 3j2
1 .

The polynomial rj1,α is never identically zero because j1 �= 0. We impose rj1,α(j̄n+1) �= 0 for all j1 ∈ Jn, α ∈
{±1, ±3}.

In case (v), assume that j1 + . . .+ j4 = αj̄n+1 �= 0, with α := σ1 + . . .+ σ4 �= 0, and calculate b = α(1 − α2)j̄3
n+1. 

This is nonzero because j̄n+1 ≥ 1 and α ∈ {±2, ±4}.
We have proved that, in choosing j̄n+1, there are only finitely many integers to avoid.
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