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Abstract

We consider the incompressible Euler equations on Rd or Td , where d ∈ {2, 3}. We prove that:
(a) In Lagrangian coordinates the equations are locally well-posed in spaces with fixed real-analyticity radius (more generally, 
a fixed Gevrey-class radius).
(b) In Lagrangian coordinates the equations are locally well-posed in highly anisotropic spaces, e.g. Gevrey-class regularity in the 
label a1 and Sobolev regularity in the labels a2, . . . , ad .
(c) In Eulerian coordinates both results (a) and (b) above are false.
© 2015 
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1. Introduction

The Euler equations for ideal incompressible fluids have two formulations, the Eulerian and the Lagrangian one 
(apparently both due to Euler [9]). In the Eulerian formulation the unknown functions are velocity and pressure, 
recorded at fixed locations in space. Their time evolution is determined by equating the rates of change of momenta 
to the forces applied, which in this case are just internal isotropic forces maintaining the incompressible character 
of the fluid. In the Lagrangian formulation the main unknowns are the particle paths, the trajectories followed by 
ideal particles labeled by their initial positions. The Eulerian and Lagrangian formulations are equivalent in a smooth 
regime in which the velocity is in the Hölder class Cs , where s > 1. The particle paths are just the characteristics 
associated with the Eulerian velocity fields.
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In recent years it was proved [4,12,19,22,13,20,18,10,24,7] that the Lagrangian paths are time-analytic, even in the 
case in which the Eulerian velocities are only Cs , with s > 1. In contrast, if we view the Eulerian solution as a function 
of time with values in Cs , then this function is everywhere discontinuous for generic initial data [5,11,16,17]. This 
points to a remarkable difference between the Lagrangian and Eulerian behaviors, in the not-too-smooth regime.

In this paper we describe a simple but astonishing difference of behaviors in the analytic regime: The radius of ana-
lyticity is locally in time conserved in the Lagrangian formulation (Theorem 1.1), but may deteriorate instantaneously 
in the Eulerian one (Remark 1.2). Moreover, the Lagrangian formulation allows solvability in anisotropic classes, e.g. 
functions which have analyticity in one variable, but are not analytic in the others (Theorem 1.5). In contrast, the 
Eulerian formulation is ill-posed in such functions spaces (Theorem 1.6).

1.1. Velocity in Lagrangian coordinates

We consider the Cauchy problem for the incompressible homogeneous Euler equations

ut + u · ∇u + ∇p = 0 (1.1)

∇ · u = 0 (1.2)

u(x,0) = u0(x) (1.3)

where (x, t) ∈ R
d × [0, ∞), and d ∈ {2, 3}. In order to state our main results, we first rewrite the Euler equations in 

Lagrangian coordinates. Define the particle flow map X by

∂tX(a, t) = u(X(a, t), t) (1.4)

X(a,0) = a (1.5)

where t ≥ 0, and a ∈ R
d is the Lagrangian label. The Lagrangian velocity v and the pressure q are obtained by 

composing with X, i.e.,

v(a, t) = u(X(a, t), t)

q(a, t) = p(X(a, t), t).

The Lagrangian formulation of the Euler equations (1.1)–(1.3) is given in components by

∂tv
i + Y k

i ∂kq = 0, i = 1, . . . , d (1.6)

Y k
i ∂kv

i = 0 (1.7)

where we have used the summation convention on repeated indices. The derivatives ∂k are with respect to the label 
direction ak and Y k

i represents the (k, i) entry of the matrix inverse of the Jacobian of the particle map, i.e.,

Y(a, t) = (∇aX(a, t))−1.

We henceforth drop the index a on gradients, as it will be clear from the context when the gradients are taken with 
respect to Lagrangian variables a or with respect to the Eulerian variable x. From (1.2) it follows that det(∇X) = 1, 
and thus, differentiating ∂tX = v with respect to labels, and inverting the resulting matrix, we obtain

Yt = −Y(∇v)Y. (1.8)

The closed system for (v, q, Y) is supplemented with the initial conditions

v(a,0) = v0(a) = u0(a)

Y (a,0) = I

where I is the identity matrix. In the smooth category, the Lagrangian equations (1.6)–(1.8) are equivalent to the 
Eulerian ones (1.1)–(1.3).
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1.2. Vorticity in Lagrangian coordinates

For d = 2 the Eulerian scalar vorticity ω = ∇⊥ · u is conserved along particle trajectories, that is, the Lagrangian 
vorticity

ζ(a, t) = ω(X(a, t), t)

obeys

ζ(a, t) = ω0(a) (1.9)

for t ≥ 0. The Lagrangian velocity v may then be computed from the Lagrangian vorticity ζ using the elliptic curl–div 
system

εij Y
k
i ∂kv

j = Y k
1 ∂kv

2 − Y k
2 ∂kv

1 = ζ = ω0 (1.10)

Y k
i ∂kv

i = Y k
1 ∂kv

1 + Y k
2 ∂kv

2 = 0 (1.11)

where εij is the sign of the permutation (1, 2) �→ (i, j). The equation (1.10) above represents the conservation of the 
Lagrangian vorticity, while (1.11) stands for the Lagrangian divergence-free condition. Note that the right sides of 
(1.10)–(1.11) are time-independent.

For d = 3 the Eulerian vorticity vector ω = ∇ × u is not conserved along particle trajectories, and the replacement 
of (1.9) is the vorticity transport formula

ζ i(a, t) = ∂kX
i(a, t)ωk

0(a). (1.12)

Thus, in three dimensions, the elliptic curl–div system becomes

εijkY
l
j ∂lv

k = ζ i = ∂kX
iωk

0 (1.13)

Y k
i ∂kv

i = 0 (1.14)

where εijk denotes the standard antisymmetric tensor. In order to make use of the identity (1.13), we need to reformu-
late it so that the right side is time-independent, in analogy to the two-dimensional case. Multiplying (1.13) with Ym

i

and summing in i, we get

εijkY
m
i Y l

j ∂lv
k = ωm

0 , m = 1,2,3, (1.15)

which is a form of the Cauchy identity containing only Y . Recall here the standard Cauchy invariants [3,24]

εijk∂j v
l∂kX

l = ωi
0, i = 1,2,3, (1.16)

which can be obtained by taking the Lagrangian curl of the Weber formula [23,6]. Thus, for d = 3 we solve (1.14)
and (1.15) for ∇v in terms of Y and ω0. Note that, as in the d = 2 case, this system has a right side which is 
time-independent.

1.3. Isotropic and anisotropic Lagrangian Gevrey spaces

First we recall the definition of the Gevrey spaces. Fix r > d/2, so that Hr(Rd) is an algebra (we may replace 
Hr(Rd) with Wr,p(Rd) for r > d/p and p ∈ (1, ∞)). For a Gevrey-index s ≥ 1 and Gevrey-radius δ > 0, we denote 
the isotropic Gevrey norm by

‖f ‖Gs,δ =
∑
β≥0

δ|β|

|β|!s ‖∂βf ‖Hr =
∑
m≥0

δm

m!s
∑

|β|=m

‖∂βf ‖Hr (1.17)

where β ∈ N
d
0 is a multi-index. Also, let Gs,δ be the set of functions for which the above norm is finite. When s = 1

this set consists of analytic functions extendable analytically to the strip of radius δ, and which are bounded uniformly 
in this strip (the latter property is encoded in the summability property of the norm).
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Similarly, given a coordinate j ∈ {1, . . . , d}, we define the anisotropic s-Gevrey norm with radius δ > 0 by

‖f ‖
G

(j)
s,δ

=
∑
m≥0

δm

m!s ‖∂m
j f ‖Hr

that is, among all multi-indices β with |β| = m, we only consider β = (βk) with βk = mδjk , where δjk is as usual the 
Kronecker symbol.

1.4. Main results

We have the following statement asserting persistence of the Gevrey radius for solutions of the Lagrangian Euler 
equation.

Theorem 1.1 (Persistence of the Lagrangian Gevrey radius). Assume that v0 ∈ L2 and

∇v0 ∈ Gs,δ

for some Gevrey-index s ≥ 1 and a Gevrey-radius δ > 0. Then there exist T > 0 and a unique solution (v, Y) ∈
C([0, T ]; Hr+1) × C([0, T ], Hr) of the Lagrangian Euler system (1.6)–(1.8), which moreover satisfies

∇v,Y ∈ L∞([0, T ],Gs,δ).

On the other hand, if the uniform analyticity radius of the solution u(x, t) of (1.1)–(1.3) is measured with respect 
to the Eulerian coordinate x, then this radius is in general not conserved in time, as may be seen in the following 
example.

Remark 1.2 (Decay of the Eulerian analyticity radius). We recall from Remark 1.3 in [15] that there exist solutions to 
(1.1)–(1.3) whose Eulerian real-analyticity radius decays in time. Consider the explicit shear flow example (cf. [8,2]) 
given by

u(x, t) = (f (x2),0, g(x1 − tf (x2))) (1.18)

which satisfies (1.1)–(1.2) with vanishing pressure in d = 3, for smooth f and g. For s = 1 we may for simplicity 
consider the domain to be the periodic box [0, 2π ]3, and let

f (y) = sin(y) and g(y) = 1

sinh2(1) + sin2(y)
.

It is easily verified that the uniform in x1 and x2 real-analyticity radius of u(x, t) decays as

1

t + 1

for all t > 0, and is thus not conserved. Note however that the above example does not provide the necessary coun-
terexample to Theorem 1.1, since g does not belong to the periodic version of G1,1. Indeed, (−1)ng(2n)(0) ≥ (2n!)/4, 
and thus the series defining ‖g‖G1,1 is not summable.

The next statement shows indeed that Theorem 1.1 does not hold in the Eulerian setting.

Theorem 1.3. There exists a smooth periodic divergence-free function u0 such that

‖u0‖G1,1 < ∞ (1.19)

and such that

‖u(t)‖G1,1 = ∞ (1.20)

for any t > 0.
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The example proving Theorem 1.3 is provided in Section 5.
We are indebted to A. Shnirelman [21] for the following example, pointing out that the results of Theorem 1.1

are sharp in the sense that the time of persistence T of the Lagrangian analyticity radius may be strictly less than the 
maximal time of existence of a real-analytic solution.

Remark 1.4 (Time of persistence of the Lagrangian analyticity radius). (See [21].) Consider the stationary solution

u(x1, x2) = (sinx1 cosx2,− cosx1 sinx2)

of the Euler equations in R2. This is an entire function of (x1, x2), and moreover, the x1-axis is invariant under the 
induced dynamics. Abusing notation we denote by

X1(a1, t) = X1(a1,0, t)

the image of the point (a1, 0) under the flow map at the moment t , and by

Y22(a1, t) = Y22(a1,0, t) = (∂a1X1)(a1,0, t)

its Lagrangian tangential derivative. These functions satisfy the ODE

d

dt
X1(a1, t) = sin(X1(a1, t)), X1(a1,0) = a1,

d

dt
Y22(a1, t) = cos(X1(a1, t))Y22(a1, t), Y22(a1,0) = 1.

The solution X1 is given by

cosX1(a1, t) = (e2t + 1) cos(a1) − (e2t − 1)

(e2t + 1) − (e2t − 1) cos(a1)

and its tangential gradient obeys

Y22(a1, t) = 2et

(e2t + 1) − (e2t − 1) cos(a1)
.

Thus, for any fixed t > 0, the function Y22(a1, t) has a singularity at the complex point a1 = �a1 + �a1 (and its 
conjugate) satisfying

cos(a1) = cos(�a1 + i�a1) = e2t + 1

e2t − 1

so that

�a1 = 0, and |�a1| = ln

(
et + 1

et − 1

)
.

Note however that this singularity obeys

|a1| → ∞ as t → 0+. (1.21)

In summary, at any fixed t > 0 the function Y(a, t) is not anymore entire with respect to the label a. Given any δ > 0, 
we have ∇av0 = ∇xu0 ∈ G1,δ , and while ∇xu(·, t) = ∇xu0 ∈ G1,δ for all t > 0, there exists

T = T (δ) = ln

(
eδ + 1

eδ − 1

)
> 0

such that Y(·, t), and thus also ∇av(·, t), obey

‖Y(·, t)‖G1,δ
,‖∇v(·, t)‖G1,δ

→ ∞ as t → T (δ)−.

Thus, the time of analyticity radius persistence T guaranteed by Theorem 1.1 cannot be taken as infinite. Yet, Theo-
rem 1.1 is consistent with T (δ) → 0 as δ → ∞.
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The proof of Theorem 1.1 may be used to obtain the local existence and the persistence of the radius for anisotropic 
Gevrey spaces as well.

Theorem 1.5 (Solvability in Lagrangian anisotropic Gevrey spaces). For a fixed direction j ∈ {1, . . . , d}, assume that 
v0 ∈ Hr+1 and that

∇v0 ∈ G
(j)
s,δ

for some index s ≥ 1 and radius δ > 0. Then there exist T > 0 and a unique solution (v, Y) ∈ C([0, T ], Hr+1) ×
C([0, T ], Hr) of the Lagrangian Euler system (1.6)–(1.8), which moreover satisfies

∇v,Y ∈ L∞([0, T ],G(j)
s,δ ).

The above theorem does not hold in the Eulerian coordinates as shown by the next result. The fact that the Eulerian 
version of the theorem does not hold might not surprise, due to the isotropy and time-reversibility of the Euler equa-
tions. On the other hand, the fact that the Lagrangian formulation keeps the memory of initial anisotropy is puzzling.

Theorem 1.6 (Ill-posedness in Eulerian anisotropic real-analytic spaces). There exist T > 0 and an initial datum 
u0 ∈ C∞(R2) for which u0 and ω0 are real-analytic in x1, uniformly with respect to x2, such that the unique 
C([0, T ]; Hr) solution ω(t) of the Cauchy problem for the Euler equations (1.1)–(1.3) is not real-analytic in x1, 
for any t ∈ (0, T ].

2. Ill-posedness in Eulerian anisotropic real-analytic spaces

In this section we prove Theorem 1.6. Here, all the derivatives are taken with respect to the Eulerian variables. The 
idea of the proof is as follows. We consider an initial vorticity that is supported in a horizontal strip around the x1-axis
and which is nonzero in a horizontal strip and is very highly concentrated near the origin. We can construct it such that 
it is real analytic in x1, but is obviously not real analytic in x2. Given that the vorticity is approximately a point vortex 
at the origin, the corresponding velocity is approximately a pure rotation. Then for short time, the Euler equations will 
evolve in such manner that the vorticity is supported in a slightly deformed but rotated strip. The rotation uncovers 
some of the points that were on the boundary of the original strip, making them points of vanishing vorticity, while 
covering others. Thus, on a horizontal line parallel with the x1-axis, the vorticity instantly acquires an interval on 
which it must vanish, while it is not identically zero, and hence it cannot possibly continue to be real analytic with 
respect to x1.

In the detailed proof we first construct a function

u(x1, x2) ∈ C∞(R2)

such that the following properties hold:

(i) divu = 0 on R2, curlu = ω,
(ii) suppω ⊆ {(y1, y2) : −1 ≤ y2 ≤ 1}

(iii) u2(1, 1) > 0 and u2(−1, 1) < 0
(iv) There exists ε ∈ (0, 1/2) such that

ω(x1, x2) �= 0, (x1, x2) ∈ {
(y1, y2) : |y1 − 1| < ε,1 − ε < y2 < 1

}
(v) (tangential analyticity for u) There exist constants M0, δ0 > 0 such that

|∂m
1 u(x1, x2)| ≤ M0m!

δm
0

(2.1)

with

|∂m
1 ∂1u(x1, x2)| ≤ M0m!

δm (2.2)

0
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and

|∂m
1 ∂2u(x1, x2)| ≤ M0m!

δm
0

(2.3)

(vi) ∂αω converges to 0 exponentially fast and uniformly as x1 → ±∞, uniformly in x2.

In order to simplify the presentation, we introduce the following notation: If ω is a function (or a measure) with a 
sufficient decay at infinity, denote

u(ω) =
∫
R2

K(x − y)ω(y)dy

where

K(x) = 1

2π

(
− x2

|x|2 ,
x1

|x|2
)

denotes the Biot–Savart kernel. Now, choose a test function

ψ ∈ C∞
0 (R)

with values in [0, 1] such that 
∫

ψ = 1 with ψ(x) > 0 for x ∈ (−1, 1) and ψ = 1 on [−1/4, 1/4]. Consider the 
sequence of vorticities

ω(k)(x1, x2) = c0k
2 exp

(−k2(x2
1 + x2

2)
)
ψ(x2) (2.4)

for k = 1, 2, . . . , where c0 is a normalizing constant such that∫
ω(k)(x) dx → 1 as k → ∞

Denote by

u(k)(x1, x2) = u(ω(k)(x1, x2)), k = 1,2, . . .

the corresponding velocities. Each individual member of this sequence of velocities satisfies the assumptions (i), (ii), 
(iv), (v), and (vi). (Note however that the constants in (2.1)–(2.3) depend on k.) The construction of a desired vorticity 
is complete once we show that for k large enough, we have

u
(k)
2 (1,1) > 0

and

u
(k)
2 (−1,1) < 0.

These inequalities for k sufficiently large indeed follow immediately once we observe that the sequence (2.4) is an 
approximation of identity, i.e., it converges to the Dirac mass δ0, while the velocity

u = u(δ0) = 1

2π

(
− x2

|x|2 ,
x1

|x|2
)

corresponding to δ0 satisfies (iii). Thus the construction of a velocity satisfying the properties (i)–(vi) is complete. 
Denote this velocity by u0 and the corresponding vorticity ω0 = curlu0. Now, consider the Euler equation

ωt + u(ω) · ∇ω = 0

with

ω(0) = ω0

where, recall, u(ω) denotes the velocity computed from the vorticity ω via the Biot–Savart law. By the well-known 
properties of the Euler equation, the solution is smooth for all t > 0. By (ii) and (iii) and using the Lagrangian variables 
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to solve the Euler equation, there exists t0 > 0 with the following property: For every t ∈ (0, t0), there exists a constant 
ε1(t) > 0 such that

ω(x1, x2) = 0, |(x1, x2) − (−1,1)| < ε1(t) (2.5)

On the other hand, by (iii) and (iv), we obtain, by possibly reducing t0, that for every t ∈ (0, t0) there exists a constant 
ε2(t) > 0 such that

ω(x1, x2) �= 0, |(x1, x2) − (1,1)| < ε2(t). (2.6)

The properties (2.5) and (2.6) contradict the tangential analyticity of ω(t) at x2 = 1 for all t ∈ (0, t0).

3. Local solvability in Lagrangian anisotropic Gevrey spaces

In this section we prove Theorem 1.5. For simplicity of the presentation, we give here the proof for d = 2. The 
proof carries over mutatis mutandis to d = 3, where the only change arises from using (1.15) instead of (1.10). These 
details may be seen in Section 4, where the well-posedness (by which we mean the existence and uniqueness) in 3d

isotropic Gevrey spaces is proven.
Fix s ≥ 1. Without loss of generality, the direction j ∈ {1, 2} may be taken to be j = 1. Fix δ > 0 so that ∇v0 ∈ G

(1)
s,δ

with the norm M , that is, the quantity

�m = ‖∂m
1 ∇v0‖Hr

obeys

∑
m≥0

�m

δm

m!s ≤ M (3.1)

Recall that Y0 = I .
Fix T > 0, to be chosen further below sufficiently small in terms of M , s, and δ. For m ≥ 0 we define

Vm = Vm(T ) = sup
t∈[0,T ]

‖∂m
1 ∇v(t)‖Hr , (3.2)

Zm = Zm(T ) = sup
t∈[0,T ]

t−1/2‖∂m
1 (Y (t) − I )‖Hr . (3.3)

Observe that in the norm (3.2) the velocity v does not appear without a gradient. Also, we note that the power −1/2
of t appearing in (3.3) is arbitrary, in the sense that the proof works with any power in (−1, 0).

First we bound ∇v from the approximate curl–div system (1.10)–(1.11), in terms of Y and ω0. Since ∂m
1 commutes 

with curl and div, we may use the Helmholtz decomposition to estimate

‖∂m
1 ∇v‖Hr ≤ C‖∂m

1 curlv‖Hr + C‖∂m
1 divv‖Hr .

Further, by appealing to (1.10)–(1.11), the Leibniz rule, and the fact that Hr is an algebra, we obtain

‖∂m
1 ∇v‖Hr ≤ C‖∂m

1 (ω0 + εij (δik − Y k
i )∂kv

j )‖Hr + C‖∂m
1 ((δik − Y k

i )∂kv
i)‖Hr

≤ C‖∂m
1 ω0‖Hr + C‖Y − I‖Hr ‖∂m

1 ∇v‖Hr + C‖∂m
1 (Y − I )‖Hr ‖∇v‖Hr

+ C

m−1∑
j=1

(
m

j

)
‖∂j

1 (Y − I )‖Hr ‖∂m−j

1 ∇v‖Hr .

Taking a supremum over t ∈ [0, T ] and using the notation (3.2)–(3.3), we obtain

Vm ≤ C�m + CT 1/2Z0Vm + CT 1/2ZmV0 + CT 1/2
m−1∑
j=1

(
m

j

)
ZjVm−j (3.4)

for all m ∈N, while for m = 0 we have
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V0 ≤ C�0 + CT 1/2Z0V0. (3.5)

Note that we have not used here the evolution equation (1.6) for v, and have instead appealed to the Lagrangian 
vorticity conservation (1.10).

In order to estimate Zm, we use the Lagrangian evolution (1.8) in integrated form, and obtain

I − Y(t) =
t∫

0

Y :∇v:Y dτ

=
t∫

0

(Y − I ):∇v: (Y − I ) dτ +
t∫

0

(Y − I ):∇v dτ

+
t∫

0

∇v: (Y − I ) dτ +
t∫

0

∇v dτ (3.6)

for all t ∈ [0, T ]. Dividing by t1/2 and taking a supremum over t ∈ [0, T ] it immediately follows from (3.6) that

Z0 ≤ CT 1/2(1 + T 1/2Z0)
2V0. (3.7)

Differentiating (3.6) m times with respect to the label a1, using the Leibniz rule, and the fact that Hr is an algebra, 
we arrive at

‖∂m
1 (Y (t) − I )‖Hr

≤
∑

|(j,k)|≤m

t∫
0

(
m

j k

)
‖∂j

1 (Y − I )‖Hr ‖∂k
1 (Y − I )‖Hr ‖∂m−j−k

1 ∇v‖Hr dτ

+ 2
m∑

j=0

t∫
0

(
m

j

)
‖∂j

1 (Y − I )‖Hr ‖∂m−j

1 ∇v‖Hr dτ +
t∫

0

‖∂m
1 ∇v‖Hr dτ

for all m ≥ 1. Further, dividing by t1/2, taking a supremum over t ∈ [0, T ] and using the notation (3.2)–(3.3), we 
obtain

Zm ≤ CT 3/2
∑

|(j,k)|≤m

(
m

j k

)
ZjZkVm−j−k + CT

m∑
j=0

(
m

j

)
ZjVm−j + CT 1/2Vm

≤ CT 1/2(T Z2
0Vm + T ZmZ0V0 + T 1/2Z0Vm + T 1/2ZmV0 + Vm)

+ CT 3/2
∑

0<|(j,k)|<m

(
m

j k

)
ZjZkVm−j−k + CT

m−1∑
j=1

(
m

j

)
ZjVm−j (3.8)

for some constant C > 0.
From (3.5) and (3.7) we obtain that for any t ∈ (0, T ] we have

V0(t) ≤ C0�0 + C0t
1/2Z0(t)V0(t)

Z0(t) ≤ C0t
1/2 sup

τ∈[0,t)

(
V0(τ )(1 + t1/2Z0(τ ))2

)
for some constant C0 > 0, while the initial data obey

V0(0) = ‖∇v0‖Hr = �0 ≤ M

Z0(0) = 0.

Here we used that in view of (3.6), as long as ∇v and Y are bounded in time, we have t−1/2(Y (t) − I ) ≈ t1/2 → 0 as 
t → 0. By the continuity in time of V0(t) and Z0(t), it follows that there exists
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T1 = T1(M) > 0

such that

sup
t∈[0,T1]

V0(t) ≤ 3C0M (3.9)

sup
t∈[0,T1]

Z0(t) ≤ 1

2
. (3.10)

This is a time of local existence in Hr(Rd) for ∇v and a.
At this stage, we assume that T obeys

T ≤ T1 (3.11)

and we define

Bm = Vm + Zm = sup
t∈[0,T ]

(Vm(t) + Zm(t))

for all m ≥ 0. By (3.9)–(3.10) we have

B0 ≤ 3C0M + 1

2
. (3.12)

Adding (3.4) and (3.8) we arrive at

Bm ≤ C1�m + C1T
1/2(1 + B0 + T 1/2B0 + T B2

0 )Bm

+ C1T
1/2(1 + T 1/2)

∑
0<j<m

(
m

j

)
BjBm−j

+ C1T
3/2

∑
0<|(j,k)|<m

(
m

j k

)
BjBkBm−j−k (3.13)

for all m ≥ 1, for some positive constant C1 ≥ 1. In view of (3.12) we may take

0 < T = T (B0) = T (M) < T1

sufficiently small, such that

C1T
1/2(1 + B0 + T 1/2B0 + T B2

0 ) ≤ 1

2
. (3.14)

We thus obtain from (3.13) and (3.14) that

Bm ≤ 2C1�m + 2C1T
1/2(1 + T 1/2)

∑
0<j<m

(
m

j

)
BjBm−j

+ 2C1T
3/2

∑
0<|(j,k)|<m

(
m

j k

)
BjBkBm−j−k (3.15)

for all m ≥ 1.
Finally, denote

‖(∇v,Y − I )‖δ,s,T =
∑
m≥0

Bmδm

m!s .

Multiplying (3.15) by δmm!−s , noting that since s ≥ 1 we have 
(
m
j

)1−s ≤ 1 and 
(

m
j k

)1−s ≤ 1, and recalling the initial 
datum assumption (3.1), we arrive at
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‖(∇v,Y − I )‖δ,s,T ≤ 2C1M + 2C1T
1/2(1 + T 1/2)

∑
m≥0

∑
0<j<m

Bjδ
j

j !s
Bm−j δ

m−j

(m − j)!s

+ 2C1T
3/2

∑
m≥0

∑
0<|(j,k)|<m

Bjδ
j

j !s
Bkδ

k

k!s
Bm−j−kδ

m−j−k

(m − j − k)!s

≤ 2C1M + 2C1T
1/2(1 + T 1/2)‖(∇v,Y − I )‖2

δ,s,T

+ 2C1T
3/2‖(∇v,Y − I )‖3

δ,s,T . (3.16)

Here we used the discrete Young inequality �1 ∗ �1 ⊂ �1. In order to conclude the proof, we note that the initial values 
are ∇v0 obeying (3.1), and Y0 = I . Thus, at T = 0 we have

‖(∇v,Y − I )‖δ,s,0 ≤ M, (3.17)

and in view of (3.16), if T is taken sufficiently small so that

8C2
1T 1/2(1 + T 1/2)M + 32C3

1T 3/2M2 ≤ 1

4
, (3.18)

we arrive at

‖(∇v,Y − I )‖δ,s,T ≤ 4C1M. (3.19)

In summary, we have proven that there exists T = T (M) > 0, given by (3.11), (3.14), and (3.18), such that

∑
m≥0

sup
t∈[0,T ]

(
‖∂m

1 ∇v(t)‖Hr + ‖∂m
1 (Y (t) − I )‖Hr

t1/2

)
δm

m!s

≤ C
∑
m≥0

‖∂m
1 ∇v0‖Hr

δm

m!s = CM (3.20)

for some constant C > 0. This concludes the proof of the a priori estimates needed to establish Theorem 1.5.

Remark 3.1 (Justification of the a priori estimates). Here we show that by using an approximation argument we may 
rigorously justify the inequality (3.20). Assume that the initial datum v0 is real-analytic (e.g., a mollified approxima-
tion of the original datum) and it satisfies the inequality (3.17), i.e.,

∞∑
m=0

‖∂m
1 ∇v0‖Hr

δm

m!s ≤ M (3.21)

for some δ > 0 and s ≥ 1. Then by [1,15] we know that the solution is real-analytic on [0, T1), where T1 > 0 (cf. (3.11)) 
is the time of existence of the solution v in Hr+1, which under the assumptions of the theorem may be taken indepen-
dently of the mollification parameter, and in particular it is infinite when d = 2. Thus Bm(t) < ∞ for all t ∈ [0, T1)

and all m ≥ 0.
Let m0 ≥ 0 be an arbitrary integer, and define Bm = Bm for m ∈ {0, 1, . . . , m0} and Bm = 0 for m ∈ {m0 + 1,

m0 + 2, . . .}. Similarly, denote by �m the same type of truncation corresponding to �m, for all integers m ≥ 0. Then 
Bm and �m satisfy the same recursion relation (3.13), i.e.,

Bm ≤ C1�m + C1T
1/2(1 + B0 + T 1/2B0 + T B2

0)Bm

+ C1T
1/2(1 + T 1/2)

∑
0<j<m

(
m

j

)
BjBm−j

+ C1T
3/2

∑ (
m

j k

)
BjBkBm−j−k
0<|(j,k)|<m
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for all m ≥ 0. Denote

Sm0(t) =
∞∑

m=0

Bm(t)δm

m!s =
m0∑

m=0

Bm(t)δm

m!s .

Note that Sm0 is a continuous function of time and

Sm0(0) ≤ M (3.22)

Following the derivation in (3.16), we then obtain

Sm0(t) ≤ 2C1M + 2C1T
1/2(1 + T 1/2)S2

m0
+ 2C1T

3/2S3
m0

for all t ≥ 0. By (3.22) and the continuity of Sm0(t), we get

Sm0(T ) ≤ 4C1M (3.23)

provided that T < T1 is chosen to obey (3.11), (3.14), and (3.18). The bound (3.23) may be rewritten as
m0∑

m=0

Bm(t)

m!s δm ≤ 4C1M

for all t ∈ [0, T ], with T as above. Finally, since m0 ≥ 0 is arbitrary, from the monotone convergence theorem we 
obtain

∞∑
m=0

Bm(t)

m!s δm ≤ 4C1M

for all t ∈ [0, T ]. Passing to zero in the mollification approximation completes the proof.

4. Local in time persistence of the Lagrangian Gevrey radius

In this section we prove Theorem 1.1. For simplicity of the presentation, we give here the proof for d = 3. Fix 
s ≥ 1 and δ > 0 so that ∇v0 ∈ Gs,δ with norm M , that is, the quantity

�m :=
∑

|α|=m

‖∂α∇v0‖Hr

obeys∑
m≥0

�m

δm

m!s ≤ M (4.1)

Fix T > 0, to be chosen later sufficiently small in terms of M , s, and δ. Similarly to the previous section for m ≥ 0
define

Vm = Vm(T ) = sup
t∈[0,T ]

∑
|α|=m

‖∂α∇v(t)‖Hr , (4.2)

Zm = Zm(T ) = sup
t∈[0,T ]

t−1/2
∑

|α|=m

‖∂α(Y (t) − I )‖Hr . (4.3)

In order to estimate ∇v and its derivatives, we use the three-dimensional curl–div system (1.14) and (1.15) to write

(curlv)m = εmlk∂lv
k = ωm

0 + εilk(δim − Ym
i )∂lv

k + εmjk(δjl − Y l
j )∂lv

k

− εijk(δim − Ym
i )(δjl − Y l

j )∂lv
k (4.4)

divv = (δik − Y k
i )∂kv

i . (4.5)

From (4.4)–(4.5) we conclude that for α ∈N
3 we have
0
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‖∂α∇v‖Hr ≤ C‖∂αωm
0 ‖Hr + C‖∂α(εijk(δim − Ym

i )(δjl − Y l
j )∂lv

k)‖Hr

+ C‖∂α(εmjk(δjl − Y l
j )∂lv

k)‖Hr + C‖∂α(εijk(δim − Ym
i )∂j v

k)‖Hr

+ C‖∂α((δik − Y k
i )∂kv

i)‖Hr .

Summing the above inequality over all multi-indices with |α| = m and taking a supremum over t ∈ [0, T ] we arrive at

Vm ≤ C�m + CT ZmZ0V0 + CT Z2
0Vm + CT 1/2Z0Vm + CT 1/2ZmV0

+ CT 1/2
∑

0<j<m

∑
|α|=m,|β|=j,β≤α

(
α

β

)
sup

t∈[0,T ]

(
t−1/2‖∂β(Y − I )‖Hr ‖∂α−β∇v‖Hr

)

+ CT
∑

0<(j,k)<m

∑
|α|=m,|β|=j,β≤α,|γ |=m−j−k,γ≤α−β

(
α

β γ

)

× sup
t∈[0,T ]

(
t−1/2‖∂β(Y − I )‖Hr t−1/2‖∂γ (Y − I )‖Hr ‖∂α−β−γ ∇v‖Hr

)
≤ C�m + CT ZmZ0V0 + CT Z2

0Vm + CT 1/2Z0Vm + CT 1/2ZmV0

+ CT 1/2
∑

0<j<m

(
m

j

)
ZjVm−j + CT

∑
0<(j,k)<m

(
m

j k

)
ZjZkVm−j−k, (4.6)

for all m ≥ 1. In (4.6) we have used that if {aα}, {bα}, {cα} are non-negative multi-indexed sequences, then

∑
|α|=m,|β|=j,β≤α

(
α

β

)
aβbα−β ≤

(
m

j

)⎛
⎝ ∑

|β|=j

aβ

⎞
⎠

⎛
⎝ ∑

|γ |=m−j

bγ

⎞
⎠ (4.7)

and ∑
|α|=m,|β|=j,β≤α,|γ |=m−j−k,γ≤α−β

(
α

β γ

)
aβbγ cα−β−γ

≤
(

m

j k

)⎛
⎝ ∑

|β|=j

aβ

⎞
⎠

⎛
⎝ ∑

|γ |=k

bγ

⎞
⎠

⎛
⎝ ∑

|α|=m−j−k

cα

⎞
⎠ . (4.8)

These inequalities follow e.g. from [14, Lemma 4.2] and [15, Lemma A.1] and the fact that 
(
α
β

) ≤ (|α|
|β|

)
. Indeed, for 

(4.7) (the proof of (4.8) being analogous), we have by using the substitution γ = α − β∑
|α|=m,|β|=j,β≤α

(
α

β

)
aβbα−β =

∑
|β|=j

∑
|γ |=m−j

(
β + γ

β

)
aβbγ

≤
(

m

j

) ∑
|β|=j

∑
|γ |=m−j

aβbγ . (4.9)

Note that when m = 0, the bound (4.6) reads as

V0 ≤ C0�0 + C0T
1/2(T 1/2Z2

0 + Z0)V0 (4.10)

for some constant C0 > 0.
As in the two-dimensional case, in order to bound Zm we appeal to the integral formula for Y(t) − I , namely (3.6). 

We apply ∂α to identity (3.6), sum over all multi-indices with |α| = m, divide the resulting inequality by t1/2 and take 
a supremum over t ∈ [0, T ]. By appealing to (4.7) and (4.8), similarly to (3.8) we obtain

Zm ≤ CT 1/2(T Z2
0Vm + T ZmZ0V0 + T 1/2Z0Vm + T 1/2ZmV0 + Vm)

+ CT 3/2
∑ (

m

j k

)
ZjZkVm−j−k + CT

m−1∑ (
m

j

)
ZjVm−j (4.11)
0<|(j,k)|<m j=1
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when m ≥ 1, and

Z0 ≤ C0T
1/2(1 + T 1/2Z0)

2V0 (4.12)

for m = 0.
Once the recursive bounds (4.6)–(4.10) and (4.11)–(4.12) have been established, we combine them with the initial 

datum assumption (4.1), and as in Section 3 obtain that there exists T = T (M) > 0 such that

∑
α≥0

sup
t∈[0,T ]

(
‖∂α∇v(t)‖Hr + ‖∂α(Y (t) − I )‖Hr

t1/2

)
δ|α|

|α|!s

≤ C
∑
α≥0

‖∂α∇v0‖Hr
δ|α|

|α|!s = M,

for some constant C > 0. This concludes the proof of the a priori estimates needed to establish Theorem 1.1.

5. Example of Eulerian ill-posedness in the analytic class G1,δ

In this section we prove Theorem 1.3. The idea of the proof is similar to the example given earlier in Remark 1.2, 
but addresses the fact that functions whose holomorphic extension have a simple pole at ±iδ do not lie in G1,δ (a fact 
encoded in the sum over m, as opposed to a supremum over m, defining our real-analytic norm, cf. (1.17) and (5.1)). 
To address this issue we integrate such a real-valued function four times, so that the holomorphic extension to the strip 
of radius δ (where δ = 1) around the real-axis is also a C2 function up to the boundary of this strip (cf. (5.5)). The 
proof then proceeds by cutting off in a Gaussian way at infinity (cf. (5.9)), which is compatible with real-analyticity, 
and then periodize the resulting function so that we are dealing with a finite energy function (cf. (5.13)). Verifying 
that the resulting function ϕ yields the necessary counterexample to prove the theorem follows then from a direct but 
slightly technical calculation.

Let f , g be two 2π -periodic functions. Recall (cf. [8,2]) that the function defined by

u(x1, x2, x3, t) = (f (x2),0, g(x1 − tf (x2)))

is an exact solution of the Euler equations posed on T3, where T = [−π, π] with the initial datum

u0(x1, x2, x3) = (f (x2),0, g(x1)).

Also, for a 2π -periodic function ϕ and for δ > 0 by definition we have that

‖ϕ‖G1,δ
=

∞∑
m=0

⎛
⎝ ∑

|α|=m

‖∂αϕ‖H 2(T3)

⎞
⎠ δm

m! . (5.1)

Note that H 2(T3) ⊂ C0(T3) in view of the Sobolev embedding. Without loss of generality we fix δ = 1 throughout 
this section.

We start with a few considerations on the real line R. For a function F ∈ L1(R) we normalize the Fourier transform 
as

F̂ (ξ) = 1√
2π

∫
R

F(x)e−ixξ dx.

Consider the two decaying real-analytic functions

h1(x) =
√

2

π

1

1 + x2

and

h2(x) = 1√ exp

(
−x2 )

.

2 4
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These functions have explicit Fourier transforms that are given by

ĥ1(ξ) = exp(−|ξ |) (5.2)

and

ĥ2(ξ) = exp(−|ξ |2). (5.3)

Define

h(x) = h1(x) −
(

1 − (−�)1/2 + 3

2
(−�) − 7

6
(−�)3/2

)
h2(x) (5.4)

In view of the above formulae we have that

ĥ(ξ) = exp(−|ξ |) −
(

1 − |ξ | + 3

2
|ξ |2 − 7

6
|ξ |3

)
exp(−|ξ |2).

Note that

ĥ(ξ) = 25|ξ |4
24

+ O(|ξ |5) as |ξ | → 0

and

ĥ(ξ) = exp(−|ξ |) + O

(
exp

(
−|ξ |2

2

))
as |ξ | → ∞.

Lastly, we define

H(x) =
x∫

0

x1∫
0

x2∫
0

x3∫
0

h(x4)dx4 dx3 dx2 dx1, (5.5)

so that

d4

dx4
H(x) = h(x). (5.6)

By taking the Fourier transform of the above equation we arrive at

Ĥ (ξ) = ĥ(ξ)

(iξ)4
= 1

|ξ |4
(

exp(−|ξ |) −
(

1 − |ξ | + 3

2
|ξ |2 − 7

6
|ξ |3

)
exp(−|ξ |2)

)
. (5.7)

Clearly,

sup
|ξ |≤1

|Ĥ (ξ)| + sup
|ξ |≥1

(
|ξ |4 exp(|ξ |)|Ĥ (ξ)|

)
≤ C0 (5.8)

for some constant C0 > 0. The function H however is not in L1 since it grows as |x| → ∞, and the above computations 
are formal. To fix this issue, we set

�(x) = exp

(
−x2

2

)
H(x). (5.9)

This function is smooth, and decays as |x| → ∞. Moreover, in view of (5.7) and using the explicit Fourier transform 
of the Gaussian, we have

�̂(ξ) =
∫
R

exp

(
− (ξ − η)2

2

)
Ĥ (η)dη

=
∫

exp

(
− (ξ − η)2

2

)
1

|η|4
(

exp(−|η|) −
(

1 − |η| + 3

2
|η|2 − 7

6
|η|3

)
exp(−|η|2)

)
dη.
R
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We claim that

sup
|ξ |≤1

|�̂(ξ)| + sup
|ξ |≥1

(
|ξ |4 exp(|ξ |)|�̂(ξ)|

)
≤ C1 (5.10)

for some universal constant C1 > 0. In order to check whether (5.10) holds, we write

|ξ |4 exp(|ξ |)�̂(ξ) = −
∫
R

exp

(
− (ξ − η)2

2

)
exp(|ξ | − |η|)|ξ |4

× 1 − (1 − |η| + 3
2 |η|2 − 7

6 |η|3) exp(−|η|2 + |η|)
|η|4 dη,

decompose the above integral in the regions{
|η| ≤ 1

4

}
,

{
1

4
≤ |η| ≤ |ξ |3/4

}
,

{
|ξ |3/4 ≤ |η| ≤ |ξ |

}
, {|η| ≥ |ξ |}

and use both the decay resulting from the Gaussian factor and the decay coming from (5.8).
A useful observation that shall be needed below is that we have∥∥|ξ |k exp(−|ξ |)∥∥

L2(R)
=

√
(2k)!
2k

which by Stirling’s estimate

(2π)1/2nn+1/2e−n ≤ n! ≤ enn+1/2e−n, n ∈ N (5.11)

yields

1

k!
∥∥|ξ |k exp(−|k|)∥∥

L2(R)
≤ 1

k1/4
. (5.12)

Now, we proceed to construct a periodic function with a finite G1,1 norm. First, we build a 2π -periodic function ϕ
by using the Poisson summation applied to the function �. More precisely, let

ϕ(x) =
∞∑

m=−∞
�(x − 2mπ). (5.13)

Clearly ϕ is periodic, and its Fourier series coefficients obey

ϕ̂(k) = 1√
2π

�̂(k), (5.14)

for all k ∈ Z.
Therefore, using estimates (5.10) and (5.12), with the Poisson summation formula, we have that

‖ϕ‖G1,1 =
∑
n≥0

∥∥∥∥ dn

dxn
ϕ

∥∥∥∥
H 2(T)

1n

n!

≤ C‖ϕ‖H 6(T) + C
∑
n≥5

(∥∥∥∥ dn

dxn
ϕ

∥∥∥∥
L2(T)

+
∥∥∥∥ dn+2

dxn+2
ϕ

∥∥∥∥
L2(T)

)
1

n!

≤ C‖ϕ‖H 6(T) + C
∑
n≥5

(
‖|k|nϕ̂(k)‖L2(Z) + ‖|k|n+2ϕ̂(k)‖L2(Z)

) 1

n!

≤ C‖ϕ‖H 6(T) + C
∑
n≥5

(
‖|ξ |n�̂(ξ)‖L2(|ξ |≥1) + ‖|ξ |n+2�̂(ξ)‖L2(|ξ |≥1)

) 1

n!
and thus
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‖ϕ‖G1,1 ≤ C‖ϕ‖H 6(T)

+ C
∑
n≥5

(
‖|ξ |n−4 exp(−|ξ |)‖L2(|ξ |≥1) + ‖|ξ |n−2 exp(−|ξ |)‖L2(|ξ |≥1)

)
1

n!

≤ C‖ϕ‖H 6(T) + C
∑
n≥5

(
(n − 4)!

(n − 4)1/4
+ (n − 2)!

(n − 2)1/4

)
1

n!

≤ C‖ϕ‖H 6(T) + C
∑
n≥5

1

n9/4

≤ Cϕ < ∞. (5.15)

Note that ‖ϕ‖G1,δ
= ∞ for any analyticity radius δ > 1, since

∑
n≥5

(n − 2)!
(n − 2)1/4

δn

n! = ∞

whenever δ > 1, and the estimate in (5.15) may also be turned into lower bounds.

Proof of Theorem 1.3. Consider

g(x) = ϕ(x) (5.16)

where ϕ is as given in (5.13), and define

f (x) = sinx (5.17)

Since f is entire, we have that ‖f ‖G1,δ
< ∞ for any δ > 0. With the definitions of f and g above, it follows from 

(5.15) that

‖u0‖G1,1 < ∞.

Note that in view of the periodicity in x1 and x2, the functions f (x2) and g(x1) have finite energy (i.e., H 2(T3)

becomes H 2(T), up to a multiplicative constant), and the multi-index summation in (5.1) becomes a simple sum over 
n ≥ 0. Thus (1.19) is established.

In order to establish (1.20), we assume, for the sake of obtaining a contradiction, that for some t ∈ (0, 1/10] we 
have ‖u(t)‖G1,1 < ∞. We fix this value of t ∈ (0, 1/10] throughout this proof.

Consider the function

ψ(x1, x2) := ∂3
x1

u3(x1, x2, x3, t) = g′′′(x1 − tf (x2)). (5.18)

The inequality ‖u(t)‖G1,1 < ∞ implies

∑
α≥0

‖∂αψ‖H 2
1

(|α| + 3)! < ∞.

It follows that for any R ∈ (0, 1), the joint in (x1, x2) power series of ψ at the origin

ψ(x1, x2) =
∑

m,n≥0

am,nx
m
1 xn

2 (5.19)

converges absolutely in the closed square of side length R at the origin

CR = {(x1, x2): |x1| ≤ R, |x2| ≤ R}
and defines a real-analytic function of two variables in this square. Thus, we may consider the complex extension

ψ(z1, z2) = ψ(x1 + iy1, x2 + iy2) =
∑

am,nz
m
1 zn

2

m,n≥0
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which converges absolutely when |z1| ≤ R and |z2| ≤ R. Fix

Rt = 1 − 3t

4
(5.20)

which clearly belongs to (0, 1), and is thus an allowable choice for R. Also, fix

x1 = 0 and z2 = 0 + i log 2.

Since t ∈ (0, 1/10), we have |z2| = log 2 < Rt , so that by the above consideration,

lim
y2→−R−

t

|ψ(iy2, i log 2)| < ∞. (5.21)

In order to complete the proof by contradiction, we shall next show that in fact (5.21) is false, and in fact we have

lim
y2→−R−

t

|ψ(iy2, i log 2)| = ∞. (5.22)

The remainder of this proof is devoted to establishing (5.22).
First observe that sin(i log 2) = 3i/4, and thus

ψ(iy2, i log 2) = ϕ′′′(i(y2 − 3t/4)).

Next, note that by the definition of Rt , (5.20), we have

y2 − 3t

4
→ −1+ as y2 → −R−

t .

Thus, proving (5.22) amounts to showing that

lim
y→−1+ |ϕ′′′(iy)| = ∞ (5.23)

which is what we establish below. In view of (5.9), (5.13), and the Leibniz rule, we have that

ϕ′′′(z) = �′′′(z) +
∑

m∈Z\{0}
�′′′(z − 2mπ) (5.24)

and

�′′′(z) = exp

(
−z2

2

)(
H ′′′(z) − 3zH ′′(z) + 3(z2 − 1)H ′(z) + z(3 − z2)H(z)

)
(5.25)

for any complex number z with |z| < 1. Next, note that by (5.4) and (5.6), we have

H(iv)(z) = h1(z) + E0(z)

where

E0(z) =
(

1 − (−�)1/2 + 3

2
(−�) − 7

6
(−�)3/2

)
h2(z) (5.26)

is an entire function (since its Fourier coefficients are given by a polynomial times a decaying Gaussian). More-
over, letting E1(z) =

∫ z

0 E0(w1)dw1, E2(z) =
∫ z

0

∫ w1
0 E0(w2)dw2 dw1, E3(z) =

∫ z

0

∫ w1
0

∫ w2
0 E0(w3)dw3 dw2 dw1, and 

E4(z) =
∫ z

0

∫ w1
0

∫ w2
0

∫ w3
0 E0(w4)dw4 dw3 dw2 dw1, we immediately obtain that

E(z) = E1(z) − 3zE2(z) + 3(z2 − 1)E3(z) + z(3 − z2)E4(z) (5.27)

is also an entire function. On the other hand, we may explicitly compute the integrals of h as

H1(z) =
z∫

0

h1(w1)dw1 =
√

2

π
arctan z

H2(z) =
z∫ w1∫

h1(w2)dw2 dw1 =
√

2

π

(
z arctan z − 1

2
log(1 + z2)

)

0 0
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H3(z) =
z∫

0

w1∫
0

w2∫
0

h1(w3)dw3 dw2 dw1 = 1

2

√
2

π

(
z + (z2 − 1) arctan z − z log(1 + z2)

)

H4(z) =
z∫

0

w1∫
0

w2∫
0

w3∫
0

h1(w4)dw4 dw3 dw2 dw1

= 1

12

√
2

π

(
5z2 + 2z(z2 − 3) arctan z − (3z2 − 1) log(1 + z2)

)
which implies that

H(z) := H1(z) − 3zH2(z) + 3(z2 − 1)H3(z) + z(3 − z2)H4(z)

= 1

12

√
2

π

(
z(−18 + 33z2 − 5z4)

+ 2(15 − 45z2 + 15z4 − z6) arctan z + z(39 − 28z2 + 3z4) log(1 + z2)
)
. (5.28)

In summary, with the definition of E in (5.27) and of H in (5.28), we have that

�′′′(z) = exp

(
−z2

2

)
(H(z) + E(z)). (5.29)

Letting z = iy, and using that arctan(iy) = i arctany, we arrive at

�′′′(iy) = exp

(
y2

2

)
(H(iy) + E(iy)). (5.30)

Since E is an entire function, we have that supy∈[−1,0] |E(iy)| ≤ C < ∞. Writing

H(iy) = i

√
2

π
y2 arctanhy + i

12

√
2

π
y(−18 − 33y2 − 5y4)

+ i

12

√
2

π
(39 + 28y2 + 3y4)

(
2 arctanhy + y log(1 − y2)

)

+ i

6

√
2

π
(−24 + 11y2 + 12y4 + y6) arctanhy (5.31)

and observing limy→−1+
(
2 arctanhy + y log(1 − y2)

) = − log 4 and limy→−1+(y + 1) arctanhy = 0, we arrive at

lim
y→−1+ |H(iy)| = ∞ (5.32)

since arctanh has a logarithmic singularity at y = −1. Combined with the above, it follows from (5.32) that

lim
y→−1+ |�′′′(iy)| = ∞ (5.33)

which in turn shall imply that (5.23) holds.
Indeed, the only remaining part of the proof is to show that

lim
y→−1+

∑
m∈Z\{0}

∣∣�′′′(iy − 2mπ)
∣∣ < ∞.

The above holds since for each m �= 0 we have that

|H(iy − 2mπ)| + |E(iy − 2mπ)| ≤ P(m)

uniformly for |y| ∈ [1/2, 1], where P is a polynomial, and since∣∣∣∣exp

(
− (iy − 2mπ)2 )∣∣∣∣ ≤ exp

(
1 − 2m2π2

)

2 2
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which makes the sum over m �= 0 finite. In order to obtain the first bound, we use (5.31) and the formula

arctan z = 1

2
i
(
log(1 − iz) − log(1 + iz)

)
where the complex domains of the above logarithms are cut on [0, ∞) and (−∞, 0] respectively. �
Conflict of interest statement

The authors declare that they have no conflict of interest.

Acknowledgements

The authors are thankful to Alexander Shnirelman for helpful suggestions. The work of P.C. was supported in part 
by the NSF grants DMS-1209394 and DMS-1265132, I.K. was supported in part by the NSF grant DMS-1311943, 
while the work of V.V. was supported in part by the NSF grants DMS-1348193, DMS-1514771, and by an Alfred 
P. Sloan Research Fellowship (Award Number AWD1004444).

References

[1] C. Bardos, S. Benachour, M. Zerner, Analycité des solutions périodiques de l’équation d’Euler en deux dimensions, C. R. Acad. Sci. Paris 
Sér. A–B 282 (1976) A995–A998.

[2] C. Bardos, E.S. Titi, Loss of smoothness and energy conserving rough weak solutions for the 3d Euler equations, Discrete Contin. Dyn. Syst., 
Ser. S 3 (2) (2010) 185–197.

[3] A.L. Cauchy, Sur l’état du fluide à une époque quelconque du mouvement, in: Mémoires extraits des recueils de l’Académie des sciences de 
l’Institut de France, Théorie de la propagation des ondes à la surface dun fluide pesant dune profondeur indéfinie, Sciences mathématiques et 
physiques, Tome I, Seconde Partie, 1827.

[4] J.-Y. Chemin, Régularité de la trajectoire des particules d’un fluide parfait incompressible remplissant l’espace, J. Math. Pures Appl. (9) 71 (5) 
(1992) 407–417.

[5] A. Cheskidov, R. Shvydkoy, Ill-posedness of basic equations of fluid dynamics in Besov spaces, Proc. Am. Math. Soc. 138 (2010) 1059–1067.
[6] P. Constantin, An Eulerian–Lagrangian approach for incompressible fluids: local theory, J. Am. Math. Soc. 14 (2) (2001) 263–278 (electronic).
[7] P. Constantin, V. Vicol, J. Wu, Analyticity of Lagrangian trajectories for well posed inviscid incompressible fluid models, arXiv:1403.5749, 

2014.
[8] R.J. DiPerna, A.J. Majda, Oscillations and concentrations in weak solutions of the incompressible fluid equations, Commun. Math. Phys. 

108 (4) (1987) 667–689.
[9] L. Euler, Principes généraux du mouvement des fluides, Académie Royale des Sciences et des Belles Lettres de Berlin, Mémoires 11 (1757) 

274–315.
[10] U. Frisch, V. Zheligovsky, A very smooth ride in a rough sea, Commun. Math. Phys. 326 (2) (2014) 499–505.
[11] A. Himonas, A. Alexandrou, G. Misiolek, Non-uniform dependence on initial data of solutions to the Euler equations of hydrodynamics, 

Commun. Math. Phys. 296 (1) (2010) 285–301.
[12] P. Gamblin, Système d’Euler incompressible et régularité microlocale analytique, Ann. Inst. Fourier (Grenoble) 44 (5) (1994) 1449–1475.
[13] O. Glass, F. Sueur, T. Takahashi, Smoothness of the motion of a rigid body immersed in an incompressible perfect fluid, Ann. Sci. Éc. Norm. 

Supér. (4) 45 (1) (2012) 1–51.
[14] I. Kukavica, V. Vicol, The domain of analyticity of solutions to the three-dimensional Euler equations in a half space, Discrete Contin. Dyn. 

Syst. 29 (1) (2011) 285–303.
[15] I. Kukavica, V. Vicol, On the analyticity and Gevrey-class regularity up to the boundary for the Euler equations, Nonlinearity 24 (3) (2011) 

765–796.
[16] G. Misiolek, T. Yoneda, Ill-posedness examples for the quasi-geostrophic and the Euler equations, in: Analysis, Geometry and Quantum Field 

Theory, in: Contemp. Math., vol. 584, Amer. Math. Soc., 2012, pp. 251–258.
[17] G. Misiolek, T. Yoneda, Loss of continuity of the solution map for the Euler equations in α-modulation and Hl̈der spaces, arXiv:1412.4619, 

2014.
[18] N. Nadirashvili, On stationary solutions of two-dimensional Euler equation, Arch. Ration. Mech. Anal. 209 (3) (2013) 729–745.
[19] P. Serfati, Structures holomorphes à faible régularité spatiale en mécanique des fluides, J. Math. Pures Appl. 74 (2) (1995) 95–104.
[20] A. Shnirelman, On the analyticity of particle trajectories in the ideal incompressible fluid, arXiv:1205.5837, 2012.
[21] A. Shnirelman, Personal communication, 2015.
[22] F. Sueur, Smoothness of the trajectories of ideal fluid particles with Yudovich vorticities in a planar bounded domain, J. Differ. Equ. 251 (12) 

(2011) 3421–3449.
[23] H.M. Weber, Über eine Transformation der hydrodynamischen Gleichungen, J. Reine Angew. Math. (Crelle) 68 (1868) 286–292.
[24] V. Zheligovsky, U. Frisch, Time-analyticity of Lagrangian particle trajectories in ideal fluid flow, J. Fluid Mech. 749 (2014) 404–430.

http://refhub.elsevier.com/S0294-1449(15)00066-9/bib42425As1
http://refhub.elsevier.com/S0294-1449(15)00066-9/bib42425As1
http://refhub.elsevier.com/S0294-1449(15)00066-9/bib426172646F73546974693130s1
http://refhub.elsevier.com/S0294-1449(15)00066-9/bib426172646F73546974693130s1
http://refhub.elsevier.com/S0294-1449(15)00066-9/bib4368656D696E3932s1
http://refhub.elsevier.com/S0294-1449(15)00066-9/bib4368656D696E3932s1
http://refhub.elsevier.com/S0294-1449(15)00066-9/bib436865736B69646F7653687679646B6F793130s1
http://refhub.elsevier.com/S0294-1449(15)00066-9/bib436F6E7374616E74696E303161s1
http://refhub.elsevier.com/S0294-1449(15)00066-9/bib436F6E7374616E74696E5669636F6C57753134s1
http://refhub.elsevier.com/S0294-1449(15)00066-9/bib436F6E7374616E74696E5669636F6C57753134s1
http://refhub.elsevier.com/S0294-1449(15)00066-9/bib44695065726E614D616A6461383761s1
http://refhub.elsevier.com/S0294-1449(15)00066-9/bib44695065726E614D616A6461383761s1
http://refhub.elsevier.com/S0294-1449(15)00066-9/bib45756C657231373537s1
http://refhub.elsevier.com/S0294-1449(15)00066-9/bib45756C657231373537s1
http://refhub.elsevier.com/S0294-1449(15)00066-9/bib4672697363685A68656C69676F76736B79313461s1
http://refhub.elsevier.com/S0294-1449(15)00066-9/bib48696D6F6E6173416C6578616E64726F754D6973696F6C656B3130s1
http://refhub.elsevier.com/S0294-1449(15)00066-9/bib48696D6F6E6173416C6578616E64726F754D6973696F6C656B3130s1
http://refhub.elsevier.com/S0294-1449(15)00066-9/bib47616D626C696E3934s1
http://refhub.elsevier.com/S0294-1449(15)00066-9/bib476C617373537565757254616B6168617368693132s1
http://refhub.elsevier.com/S0294-1449(15)00066-9/bib476C617373537565757254616B6168617368693132s1
http://refhub.elsevier.com/S0294-1449(15)00066-9/bib4B756B61766963615669636F6C313161s1
http://refhub.elsevier.com/S0294-1449(15)00066-9/bib4B756B61766963615669636F6C313161s1
http://refhub.elsevier.com/S0294-1449(15)00066-9/bib4B756B61766963615669636F6C313162s1
http://refhub.elsevier.com/S0294-1449(15)00066-9/bib4B756B61766963615669636F6C313162s1
http://refhub.elsevier.com/S0294-1449(15)00066-9/bib4D6973696F6C656B596F6E6564613132s1
http://refhub.elsevier.com/S0294-1449(15)00066-9/bib4D6973696F6C656B596F6E6564613132s1
http://refhub.elsevier.com/S0294-1449(15)00066-9/bib4D6973696F6C656B596F6E6564613134s1
http://refhub.elsevier.com/S0294-1449(15)00066-9/bib4D6973696F6C656B596F6E6564613134s1
http://refhub.elsevier.com/S0294-1449(15)00066-9/bib4E6164697261736876696C693133s1
http://refhub.elsevier.com/S0294-1449(15)00066-9/bib53657266617469393562s1
http://refhub.elsevier.com/S0294-1449(15)00066-9/bib53686E6972656C6D616E3132s1
http://refhub.elsevier.com/S0294-1449(15)00066-9/bib53756575723131s1
http://refhub.elsevier.com/S0294-1449(15)00066-9/bib53756575723131s1
http://refhub.elsevier.com/S0294-1449(15)00066-9/bib57656265723638s1
http://refhub.elsevier.com/S0294-1449(15)00066-9/bib5A68656C69676F76736B794672697363683134s1

	Contrast between Lagrangian and Eulerian analytic regularity properties of Euler equations
	1 Introduction
	1.1 Velocity in Lagrangian coordinates
	1.2 Vorticity in Lagrangian coordinates
	1.3 Isotropic and anisotropic Lagrangian Gevrey spaces
	1.4 Main results

	2 Ill-posedness in Eulerian anisotropic real-analytic spaces
	3 Local solvability in Lagrangian anisotropic Gevrey spaces
	4 Local in time persistence of the Lagrangian Gevrey radius
	5 Example of Eulerian ill-posedness in the analytic class G1,δ
	Conﬂict of interest statement
	Acknowledgements
	References


