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Abstract

We show that different notions of solutions to measure data problems involving p-Laplace type operators and nonnegative source
measures are locally essentially equivalent. As an application we characterize singular solutions of multidimensional Riccati type
partial differential equations.
© 2011 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Consider elliptic quasilinear type equations

−div
(

A(x,Du)
) = μ, (1.1)

in an open set Ω ⊂ Rn, where μ is a nonnegative Radon measure and the operator div(A(x,Du)) is a measurable
perturbation of the p-Laplacian operator

�pu = div
(|Du|p−2Du

)
, 1 < p � n.

The natural domain of definition for the operator div(A(x,Du)) is W
1,p

loc (Ω). Then, however, u �→ div(A(x,Du))

is locally in W−1,p′
(Ω). Consequently, Eq. (1.1) carries no solutions u in W

1,p

loc (Ω) if the measure data μ is not

in the dual. On the other hand, if μ ∈ W−1,p′
(Ω), the existence of solutions is a straightforward consequence of

duality methods in view of the weak continuity of the operator, see e.g. [23]. Moreover, the reader is asked to examine
functions

u(x) =
1∫

|x|
rγ−1 dr (1.2)
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that for γ = (p − n)/(p − 1) yield a reasonable distributional solution to Eq. (1.1), where the operator is the p-
Laplacian and μ is a multiple of the Dirac measure – a measure outside the dual. From this example we also infer that
the maximal regularity for a general solution cannot reach n′-integrability of |Du|p−1.

In conclusion, in order to solve Eq. (1.1) with a general Radon measure one is forced to look outside the natural
domain of the operator (see Section 2 for a more accurate description). A relevant existence theory for equations
with general signed measure data was developed by Boccardo and Gallouët [6] for p > 2 − 1/n (this restriction,
dictated by the fact that the fundamental solution in (1.2) does not have a distributional derivative at the origin, can
be dispensed with by using a weaker derivative, see [21]). Their method is based on a suitable approximation of the
measure μ. The main task pursued there was showing necessary a priori summability estimates for the gradients of
solutions that allow for viable compactness arguments. The solutions produced in [6] are often called SOLA (Solutions
Obtained as Limits of Approximations), emphasizing the fact that these are limit functions of solutions to equations
with regularized source measures from the dual of W 1,p converging weakly to the original measure. Regularity theory
for SOLA is a widely studied field, see for example [29–31] and the references therein.

As known e.g. by the example given by Serrin [35] the distributional solutions to (1.1) do not solve the Dirichlet
problem in a unique manner. Thus there arose attempts to arrive at the unique solvability by imposing new require-
ments for u to be a solution.

When μ belongs to L1, alternative solutions were called entropy or renormalized solutions, introduced indepen-
dently by Bénilan et al. [4], Dall’Aglio [7], and by Lions and Murat [25], and in these works also the uniqueness of
renormalized solutions was settled, but only when μ ∈ L1. Later, Dal Maso et al. [11] generalized the concept for
general measures. These renormalized solutions allow for testing the equation with Lipschitz functions of the solution
itself provided that the derivative of the test function is compactly supported; see Section 2.3 for the precise definition.
Again, renormalized solutions are SOLA in the above sense.

In the case of nonnegative measures, Kilpeläinen and Malý [21] established a clear connection between exis-
tence theory and nonlinear potential theory. In particular, it was shown that every nonnegative measure induces an
A-superharmonic solution for all p > 1 and that obtained solutions are SOLA as well. A class of A-superharmonic
functions consists of (pointwise defined) lower semicontinuous functions satisfying a comparison with respect to
solutions to homogeneous equations. See Section 2.1 for definitions and [19] for the rich theory behind such func-
tions. In the light of the fundamental convergence theorem, stating that under mild integrability conditions properly
pointwise defined limits of A-superharmonic functions remain A-superharmonic, it is easy to see that SOLA have
A-superharmonic representatives whenever μ can be approximated with nonnegative smooth measures.

In this paper we study the connection between A-superharmonic functions and renormalized solutions. Our main
result is that every A-superharmonic function is locally a renormalized solution. We also show the converse, i.e. that
every renormalized solution has an A-superharmonic representative. In this respect, our result unifies the existence
theory in the case of nonnegative measures and allows for very sharp testing of superharmonic functions provided by
the definition of renormalized solutions. More importantly, superharmonic functions form a class of pointwise defined
solutions to (2.6) equivalent with SOLA and renormalized solutions whenever the source measure is nonnegative.

As an application for our main result we characterize all W 1,p solutions to Riccati type equation

−�pu = |∇u|p, p > 1. (1.3)

We show that the transformation

u �→ e
u

p−1 (1.4)

gives an one-to-one correspondence between the solutions to (1.3) and those p-superharmonic functions whose Riesz
measures are singular with respect to the p-capacity. More precisely, for each nonnegative Radon measure μ, singular
with respect to the p-capacity, any (SOLA) solution of −�pv = μ has a p-superharmonic representative and it can
be transformed to a solution u to (1.3) by the inverse of the transformation (1.4). Conversely, if u is a solution to

the Riccati equation (1.3), then e
u

p−1 is a p-superharmonic function whose Riesz measure is supported in a set of
p-capacity zero.

A corresponding result was proved in the Laplacian case in [38] by using the linear potential theory. In the nonlinear
case, results in the akin spirit were obtained independently by Abdel Hamid and Bidaut-Véron [1]; however our
argument is fairly simple and our result completes the story.
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The Riccati type equations, especially related existence and uniqueness questions, are widely studied, see for
instance [1–3,8,12–17,20,26,27,33,34].

2. Tools from nonlinear potential theory

Throughout this paper we let Ω stand for an open set in Rn, n � 2, and μ be a nonnegative Radon measure in Ω .
Moreover, we let 1 < p < ∞ be a fixed number. Throughout, c and C (and c(a, b, d)) will denote positive constants
(depending on data a, b, d) whose value is not necessarily the same at each occurrence.

Let A :Ω × Rn �→ Rn be a Carathéodory function, that is, (x, ξ) �→ A(x, ξ) is measurable for every ξ ∈ Rn and
ξ �→ A(x, ξ) is continuous for almost every x ∈ Ω . We assume the growth conditions〈

A(x, ξ), ξ
〉
� α0|ξ |p, and

∣∣A(x, ξ)
∣∣ � β0|ξ |p−1, (2.1)

for all ξ ∈ Rn and for almost every x ∈ Ω , and the monotonicity condition〈
A(x, ξ) − A(x, ζ ), ξ − ζ

〉
> 0 (2.2)

for all ξ 
= ζ in Rn and for almost every x ∈ Ω . Here α0 and β0 are positive constants.

2.1. A-superharmonic functions

A continuous function h ∈ W
1,p

loc (Ω) is said to be A-harmonic in Ω if it is a weak solution to

−div
(

A(x,∇h)
) = 0,

that is,∫
Ω

〈
A(x,∇h),∇ϕ

〉
dx = 0

for all ϕ ∈ C∞
0 (Ω).

A lower semicontinuous function u :Ω → R ∪ {∞} is called A-superharmonic if u 
≡ ∞ in each component of Ω ,
and for each open U � Ω and each h ∈ C(U) that is A-harmonic in U , the inequality u � h on ∂U implies u � h

in U .
The following characterization for A-superharmonicity is our starting point. For the proof, see for example [19].

2.3. Proposition. Suppose that u is an a.e. finite function in Ω . Then u has an A-superharmonic representative if and
only if the truncations uk = min(u, k) are supersolutions to

−div
(

A(x,∇u)
)
� 0

for each k > 0, i.e. uk ∈ W
1,p

loc (Ω) and∫
Ω

〈
A(x,∇uk),∇ϕ

〉
dx � 0

for all nonnegative ϕ ∈ C∞
0 (Ω).

Recall that the pointwise values of an A-superharmonic function are uniquely determined by its values a.e. since

u(x) = ess lim inf
y→x

u(y),

for each x; see [19, Theorem 7.22].
We denote by Tk(t) = min(k,max(t,−k)) the usual truncation operator. Following the tradition of the potential

theory we use the very weak gradient

Du = lim
k→∞∇Tk(u)

for such u whose truncations are Sobolev functions, see [19,21].
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A frequently used property of A-superharmonic functions is the local summability:

2.4. Theorem. (See [19, Theorem 7.46].) If u is A-superharmonic in Ω , then u ∈ Ls
loc(Ω) and |Du|p−1 ∈ L

q

loc(Ω)

whenever

0 < s <
n(p − 1)

n − p
and 0 < q <

n

n − 1
;

for p = n any finite s is allowed; for p > n, u ∈ W
1,p

loc (Ω).

A function u is a solution to

−div
(

A(x,∇u)
) = μ (2.5)

if ∫
Ω

〈
A(x,Du),∇ϕ

〉
dx =

∫
Ω

ϕ dμ (2.6)

for all ϕ ∈ C∞
0 (Ω). Here, of course, one must have that A(x,Du) is locally integrable. For an A-superharmonic

function u this assumption is satisfied by Theorem 2.4 and, indeed, for any nonnegative measure μ there is an A-
superharmonic function solving (2.5), see [21]. Conversely, for any A-superharmonic function there exists a unique
nonnegative Radon measure μ such that u solves Eq. (2.5). This measure μ is called the Riesz measure of u, and it is
often denoted by μ[u].

We shall later employ the fact that the truncations uk = min(u, k) are also A-superharmonic and their Riesz mea-
sures μ[uk] are locally in the dual of the Sobolev space W 1,p (see Proposition 2.3); moreover μ[uk] → μ[u] weakly
in Ω .

Recall also the two-sided Wolff potential estimate [22,24,32,39,40]: if u is a nonnegative A-superharmonic solution
to (2.5) in B(x,2r) ⊂ Ω , then there is a constant c = c(n,p,α0, β0) such that

1

c
Wμ,r (x) � u(x) � c

(
ess inf
B(x,r)

u + Wμ,r(x)
)
, (2.7)

where

Wμ,r(x) =
r∫

0

(
μ(B(x,�))

�n−p

)1/(p−1)
d�

�
.

Observe carefully that all A-superharmonic functions with the Riesz measure μ satisfy the estimate. This fact
suggests a definition of a class of functions, namely

Sμ,r,L

(
Ω ′) =

{
u:

1

c
Wμ,r (x) � u(x) � L + cWμ,r (x) ∀x ∈ Ω ′

}
,

for some r > 0, L � 0, and Ω ′ � Ω . We indeed have the following.

2.8. Proposition. Let u be a nonnegative A-superharmonic function with the Riesz measure μ in a bounded domain Ω .
Let Ω ′ � Ω . For every 0 < r < dist(Ω ′, ∂Ω)/2, there is a constant L < ∞ for which u ∈ Sμ,r,L(Ω ′).

Proof. The first inequality in the definition of Sμ,r,L(Ω ′) readily follows from the Wolff potential estimate (2.7). To
deduce the second inequality from the same estimate we need to have an upper bound for infB(y,r) u with an arbitrary
y ∈ Ω ′. This easily follows from Theorem 2.4: there is γ = γ (n,p) > 0 such that

inf
B(y,r)

u �
(

−
∫

B(y,r)

uγ dx

)1/γ

� c

(
r−n

∫
Ω ′+Br

uγ dx

)1/γ

< ∞

for all y ∈ Ω ′, as desired. �
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2.2. Decomposition of measures

The p-capacity capp(B,Ω) of any set B ⊂ Ω is defined in the standard way: the p-capacity of a compact set
K ⊂ Ω is

capp(K,Ω) = inf

{ ∫
Ω

|∇ϕ|p dx: ϕ ∈ C∞
0 (Ω), ϕ � 1 on K

}
.

The p-capacity of an open set U ⊂ Ω is then

capp(U,Ω) = sup
{
capp(K,Ω): K compact, K ⊂ U

};
and for an arbitrary set E ⊂ Ω

capp(E,Ω) = inf
{
capp(U,Ω): U open, E ⊂ U

}
.

There is also a dual approach to the capacity. Indeed, define

c̃app(E,Ω) := sup
{
ν(E): ν ∈ (

W
1,p

0 (Ω)
)′
, suppν ⊂ E, ν � 0, −�pw = ν such that 0 � w � 1

}
for E ⊂ Ω . Then by [22, Theorem 3.5] we have

c̃app(E,Ω) = capp(E,Ω)

whenever E ⊂ Ω is a Borel set.
A set E is called polar if there is an open neighborhood U of E and an A-superharmonic function u in U such

that u = ∞ on E. We will later employ the fact (see e.g. [19]) that a set E is polar if and only if it is of p-capacity
zero, that is

capp(E ∩ U,U) = 0

for all open sets U ⊂ Rn.
For every Radon measure μ we denote with μ0 the part which is absolutely continuous with respect to the p-

capacity and with μs the singular part with respect to the p-capacity, i.e.

μ = μ0 + μs,

where μ0 � capp (meaning that μ0(E) = 0 for each set E of p-capacity zero), and μs ⊥ capp (meaning that there is
a Borel set F of p-capacity zero for which μs(Rn \ F) = 0). The support of the singular part is contained in the polar
set of corresponding A-superharmonic functions, as the next lemma shows.

2.9. Lemma. Let u be A-superharmonic with the Riesz measure μ. Then

μs

({u < ∞}) = 0,

where μs is the singular part of μ (with respect to the p-capacity).

Proof. Our goal is to estimate the measure μs on the set {u < ∞} by employing the dual definition of the capacity.
To this end, we first recall a general fact that if∫

Ω

Wν,r (x) dν < ∞

for a measure ν and for some r > 0, then ν belongs to (W
1,p

0 (Ω))′, see [18] and also [28,41].
Let then E ⊂ Ω be a set such that capp(E) = 0 and μs(Ω \ E) = 0. For every k > 0 denote Ek = E ∩ {u < k}. Fix

k > 0 and take a compact subset K ⊂ Ek . By the compactness, the distance of K and ∂Ω , say r , is positive. Now the
Wolff potential estimate (2.7) implies

Wμ�K,r/8(x) � Wμ,r/8(x) � cu(x) < ck
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for all x ∈ K . Thus∫
Ω

Wμ�K,r/8(x) dμ�K� ckμ(K) < ∞

and hence μ�K belongs to the dual of W
1,p

0 (Ω).
Next, let v be a nonnegative A-superharmonic function solving

−�pv = μ�K

in Ω with v ∈ W
1,p

0 (Ω). By the Wolff potential estimate (2.7) we have that

v(x) � L + ck

for all x ∈ K (see Proposition 2.8). Since v is A-harmonic in Ω \ K , the maximum principle yields

0 � v � L + ck

in Ω . Hence, for M = L + ck, w = v/M solves

−�pw = Mp−1μ�K∈ (
W

1,p

0 (Ω)
)′
, 0 � w � 1,

and therefore it is an admissible function to test the dual capacity of K . It follows that

μ(K) � Mp−1c̃app(K,Ω) = Mp−1capp(K,Ω) � Mp−1capp(E,Ω) = 0,

where we used the equivalence of capacities. Thus μ(Ek) = 0, and hence

μs

({u < ∞}) � μs

(
Ω \ E

) +
∞∑

k=1

μs(Ek) = 0. �

2.3. Locally renormalized solutions

If μ is a nonnegative Radon measure in an open set Ω , we say that a function u is a local renormalized solution to
(2.5) in Ω if

Tk(u) ∈ W
1,p

loc (Ω) for all k > 0,

|u|p−1 ∈ Ls
loc(Ω) for all 1 � s <

n

n − p
,

|Du|p−1 ∈ L
q

loc(Ω) for all 1 � q <
n

n − 1
, (2.10)

and ∫
Ω

〈
A(x,Du),Du

〉
h′(u)φ dx +

∫
Ω

〈
A(x,Du),∇φ

〉
h(u)dx

=
∫
Ω

h(u)φ dμ0 + h(+∞)

∫
Ω

φ dμs (2.11)

is satisfied for all φ ∈ C∞
0 (Ω) and h ∈ W 1,∞(R) such that h′ has a compact support; here

h(∞) = lim
t→∞h(t).

This definition is a local version for a nonnegative measure μ of a renormalized solution used by Dal Maso, Murat,
Orsina, and Prignet in [11] for general signed measures. The localization was then made by Bidaut-Véron in [5]. The
most important feature in the localization is that the test function φ is required to be compactly supported in (2.11).

We would like to write the condition (2.11) for short as∫ 〈
A(x,Du),D

(
h(u)φ

)〉
dx =

∫
h(u)φ dμ, (2.12)
Ω Ω
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where h and φ are as above. This, however, requires some care: the left-hand sides of both (2.11) and (2.12) clearly
agree for all a.e. representatives of u. The same is not true for the right-hand sides. Indeed,∫

Ω

h(u)φ dμ =
∫
Ω

h(u)φ dμ0 +
∫
Ω

h(u)φ dμs.

The first integral on the right is easily settled: the integration against μ0 is independent of the chosen p-
quasicontinuous representative of u as these agree q.e. and hence μ0-a.e. That∫

Ω

h(u)φ dμs = h(∞)

∫
Ω

φ dμs

for all h and φ is more tricky: it requires u to be Borel measurable (or μs -measurable) and, more importantly, that
u = ∞ μs -a.e. By Lemma 2.9 A-superharmonic representatives (if exist) have these properties, since they are lower
semicontinuous.

We will proceed in showing that locally renormalized supersolutions have A-superharmonic representatives when-
ever μ is nonnegative. For such functions the condition (2.12) is a legitimate way to write Eq. (2.11). The first
task is to show that renormalized solutions are locally bounded below. This will readily imply by the assumption
Tk(u) ∈ W

1,p

loc (Ω) that also min(u, k) ∈ W
1,p

loc (Ω) for all k > 0.

2.13. Lemma. Let μ be nonnegative and let u be a local renormalized solution to (2.5) in Ω . Then u is locally
essentially bounded below.

Proof. Choose first the test function

hε(u) = 1

ε
min{ε,u+} − 1, ε > 0,

and let h ∈ W 1,∞(R) be nonnegative with h′ having a compact support. Let φ ∈ C∞
0 (Ω) be nonnegative. On the one

hand, we have

hε(+∞)h(+∞)

∫
Ω

φ dμs = 0,

∫
Ω

hε(u)h(u)φ dμ0 � 0,

and ∫
Ω

〈
A(x,Du),∇hε(u)

〉
h(u)φ dx � 0.

On the other hand, the dominated convergence theorem gives∫
Ω

〈
A(x,Du),∇(

h(u)φ
)〉

hε(u)dx →
∫
Ω

〈−A(x,−Du−),∇(
h(u)φ

)〉
dx

as ε → 0. Thus v := u− satisfies

min(v, k) ∈ W
1,p

loc (Ω), k > 0,

and ∫
Ω

〈
Ã(x,Dv),∇(

h(v)φ
)〉

dx � 0 (2.14)

for all φ and h as above. Here Ã(x, z) := −A(x,−z). This means that v is a nonnegative distributional subsolution
for which a priori integrability requirements are not necessarily fulfilled. We now proceed to show that v is actually
locally bounded and thus a usual weak subsolution. We establish this using the method in [22].

Define

hk,d,ε(v) = 1 −
(

1 + min

(
(v − k)+

,
1
))1−τ

, k, d, ε > 0, τ > 1,

d ε
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which we can substitute into (2.14). Note that h′
k,d,ε � 0. We then have by the monotone convergence together with

the assumed summability of |Dv|p−1 that

0 �
∫
Ω

〈
Ã(x,Dv),∇(

hk,d,ε(v)φp
)〉

dx

� 1

C

∫
Ω

|Dv|ph′
k,d,ε(v)φp dx − C

∫
Ω

|Dv|p−1hk,d,ε(v)φp−1|Dφ|dx

→ 1

C

∫
Ω

|Dv|ph′
k,d (v)φp dx − C

∫
Ω

|Dv|p−1hk,d(v)φp−1|Dφ|dx

as ε → 0, where

hk,d(v) := 1 −
(

1 + (v − k)+
d

)1−τ

, k, d > 0, τ > 1.

This energy estimate is enough for showing [22, Lemma 4.1]. Indeed, now one may mimic the proof starting from
[22, (4.5)] with obvious changes v ≡ u and μ ≡ 0. We then continue as in the proof of [22, Theorem 4.8], with only
slight differences: let x0 ∈ Ω be a Lebesgue point of vγ and let r < dist(x0, ∂Ω)/2. Assume that

p − 1 < γ <
n(p − 1)

n − p + 1
.

Denote Bj = B(x0, rj ), where rj = 21−j r . Let a0 = 0 and for j � 1 let

aj+1 = aj + δ−1
(

−
∫

Bj+1

(v − aj )
γ
+ dx

)1/γ

,

where δ > 0 is a suitable small constant. Note that aj < ∞ since v = u− ∈ L
γ

loc(Ω) by the assumptions. Now applying
[22, Lemma 4.1] one can deduce as in the proof of [22, Theorem 4.8] that aj+1 − aj � (aj − aj−1)/2 implying by
telescoping argument that

a := lim
j→∞aj � 2a1 = C

(
−
∫
B1

vγ dx

)1/γ

.

Hence the sequence (aj ) is bounded and increasing. Therefore, we have(
v(x0) − a

)γ

+ = lim
j→∞ −

∫
Bj

(v − a)
γ
+ dx � lim

j→∞ −
∫
Bj

(v − aj )
γ
+ dx = lim

j→∞Cδ(aj − aj−1) = 0.

Thus

u−(x0) = v(x0) � a � C

(
−
∫
B0

|u|γ dx

)1/γ

and hence u is locally essentially bounded below by the assumed summability of u. �
We are ready to prove that for nonnegative measures μ each local renormalized solution has an A-superharmonic

representative.

2.15. Theorem. Suppose that u is a local renormalized solution to (2.5) in Ω with a nonnegative μ. Then there is an
A-superharmonic function ũ such that ũ = u a.e. and, moreover, ũ satisfies (2.12), i.e.∫

Ω

〈
A(x,Dũ),∇(

h(ũ)φ
)〉

dx =
∫
Ω

h(ũ)φ dμ

for all φ ∈ C∞(Ω) and h ∈ W 1,∞(R) such that h′ has a compact support.
0
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Proof. In the light of the discussion after (2.12) it suffices to find an A-superharmonic representative for u. To this
end, let φ ∈ C∞

0 (Ω) be nonnegative. For ε > 0 and k > 0 write

hk,ε(t) = 1

ε
min

(
(k + ε − t)+, ε

)
.

Since h′
k,ε(t) � 0, we have∫

Ω

〈
A(x,Du),Du

〉
h′

k,ε(u)φ dx � 0.

Moreover, the nonnegativity of μ and φ implies∫
Ω

hk,ε(u)φ dμ0 + hk,ε(+∞)

∫
Ω

φ dμ+
s � 0.

Thus, (2.11) yields∫
Ω

〈
A(x,∇uk),∇φ

〉
dx � 0

once we let ε → 0 and refer to the dominated convergence theorem; here uk = min(u, k).
Since u is locally bounded from below by Lemma 2.13, uk ∈ W

1,p

loc (Ω) is an ordinary supersolution. Therefore each
uk has an A-superharmonic representative ũk . We conclude the proof by observing that the desired representative of
u is then given by

ũ = lim
k→∞ ũk

as it is A-superharmonic, being an increasing limit of A-superharmonic functions. �
3. Superharmonic functions are locally renormalized

Before proving our main theorem, we establish the existence of an auxiliary comparison function. The result relies
on the existence of renormalized solutions.

3.1. Lemma. Let μ be a nonnegative Radon measure supported in B(0,R). Then there is an A-superharmonic func-
tion w solving{−div(A(x,Dw)) = μ in B(0,4R),

w = 0 on ∂B(0,4R),

such that for all 0 < r < R there is a positive constant L < ∞ such that

w ∈ Sμ,r,L

(
B(0,4R)

)
and ∫

B(0,4R)

∣∣∇(
min(w,2λ) − λ

)
+
∣∣p dx � λ

α0
μ

({Wμ,r > λ/L} ∩ B(0,R)
)

for all λ > L.

Proof. We first obtain by [11, Definition 2.25] the existence of a renormalized solution v to the equation in the formu-
lation vanishing on ∂B(0,4R) in the W

1,p

0 -sense. Theorem 2.15 implies that v has an A-superharmonic representative
w satisfying (2.12).

Observe next that since w is an A-superharmonic function, it is nonnegative by the minimum principle. Proposi-
tion 2.8 gives a constant L0 < ∞ such that

w ∈ Sμ,r,L

(
B(0,2R)

)
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for L � L0. The Wolff potential estimate (2.7) implies that w is locally bounded outside the support of μ, hence w

is locally in W 1,p there; in particular w is A-harmonic in B(0,4R) \ B(0,R) (cf. [28, Corollary 3.19]). Thus the
maximum principle gives

sup
B(0,4R)\B(0,2R)

w � L0.

Consequently, we may take any L � L0 to obtain

w ∈ Sμ,r,L

(
B(0,4R)

)
.

The potential estimate also leads to the inclusion

{w > L0 + ck} ⊂ {Wμ,r > k}
for all k ∈ R. Fix k = λ/c − L0, λ > 0. We have for all λ > 2cL0 that k > λ/(2c). Thus,

{w > λ} ⊂ {
Wμ,r > λ/(2c)

}
holds for all λ > 2cL0.

Finally, we test the renormalized equation of w with

h(w) = (
min(w,2λ) − λ

)
+,

λ > 2cL0 > 0, which is clearly admissible since h is Lipschitz continuous and h′ has a compact support. More-
over, since w vanishes continuously on the boundary of B(0,4R), h(w) has a compact support in B(0,4R) and, in
particular, h(w) ∈ W

1,p

0 (B(0,4R)). We have

λμ
({

Wμ,r > λ/(2c)
} ∩ B(0,R)

)
�

∫
B(0,R)

h(w)dμ

=
∫

B(0,4R)

〈
A(x,∇w),∇h(w)

〉
dx � α0

∫
{λ<w<2λ}∩B(0,4R)

|∇w|p dx

= α0

∫
B(0,4R)

∣∣∇(
min(w,2λ) − λ

)
+
∣∣p dx

and the result follows for L := 2c max{L0,1}. �
The heart of this paper is the following.

3.2. Theorem. Suppose that u is an A-superharmonic solution to (2.5). Suppose further that v is A-superharmonic
and that for all Ω ′ � Ω and for all small r > 0 there is L < ∞ such that

u,v ∈ Sμ,r,L

(
Ω ′).

Let h : R × R �→ R be Lipschitz and let ∇h have a compact support. Then∫
Ω

h(u, v)φ dμ =
∫
Ω

〈
A(x,Du),∇(

h(u, v)φ
)〉

dx

for all φ ∈ C∞
0 (Ω).

Proof. Denote uj = min(u, j), j > 0. Let k be so large that h(u, v) = h(uk, vk). Let φ ∈ C∞
0 (Ω) and let Ω ′ � Ω be

a smooth domain such that the support of φ belongs to Ω ′.
Let ε > 0 and

Kε ⊂ {Wμ,1 = +∞} ∩ Ω ′
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be a compact set such that

μs

(
Ω ′ \ Kε

)
< ε.

Set

r = 1

2
min

{
dist

(
Ω ′, ∂Ω

)
,dist

(
Kε,

{
max(u, v) � k

})}
> 0

and denote

Sε := {
x ∈ Rn: dist(x,Kε) � r

}
.

Take

θε ∈ C∞
0

({
min(u, v) > k

})
, 0 � θε � 1,

such that

θε = 1 on Sε.

In particular, in the support of θεφ, h(u, v) = h(k, k) is a constant. Define further

με = μ�Ω ′\Kε
,

i.e., the restriction of μ to the set Ω ′ \ Kε . Note that με(E) � μ0(E) + ε whenever E is a Borel set. Observe that we
have

Wμ,r = Wμε,r in Ω ′ \ Sε.

This yields the inclusion

Sμε,r,L

(
Ω ′) ⊂ Sμ,r,L

(
Ω ′ \ Sε

)
for all L � 0.

Next, let R be large enough so that Ω ′ ⊂ B(0,R) and let wε be an A-superharmonic renormalized solution to{−div(A(x,Dwε)) = με in B(0,4R),

wε = 0 on ∂B(0,4R).

By Lemma 3.1, there is a constant L̃ < ∞ such that

wε ∈ Sμε,r,L̃

(
Ω ′) ⊂ Sμ,r,L̃

(
Ω ′ \ Sε

)
,

and for

ψλ = (min{wε,2λ} − λ)+
λ

,

the estimate∫
Ω

|∇ψλ|p dx � Cλ1−pμε

({Wμ,r > λ/C} ∩ Ω ′)
� Cλ1−p

(
μ0

({Wμ,r > λ/C} ∩ Ω ′) + ε
)

(3.3)

holds for all λ > L̃.
Furthermore, the assumption of the theorem provides us L such that

u,v ∈ Sμ,r,L

(
Ω ′ \ Sε

)
and thus

wε,u, v ∈ Sμ,r,max{L,L̃}
(
Ω ′ \ Sε

)
.

Consequently, wε , u, and v are comparable. In particular, there is a constant C < ∞ such that{
max(u, v) > Cλ

} ∩ (
Ω ′ \ Sε

) ⊂ {wε > λ} ∩ (
Ω ′ \ Sε

) ⊂ {
min(u, v) > C−1λ

} ∩ (
Ω ′ \ Sε

)
holds for all λ > C.
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Next we observe that by the choice of θε we have∫
Ω

h(u, v)φθε dμ = h(k, k)

∫
Ω

φθε dμ

= h(k, k)

∫
Ω

〈
A(x,Du),∇(φθε)

〉
dx

=
∫
Ω

〈
A(x,Du),∇(

h(u, v)φθε

)〉
dx. (3.4)

Indeed, θε has been chosen so that its support does not intersect the support of ∇h. Our goal is hence to show that∣∣∣∣ ∫
Ω

h(u, v)φ(1 − θε) dμ −
∫
Ω

〈
A(x,Du),∇(

h(u, v)φ(1 − θε)
)〉

dx

∣∣∣∣
is small by means of ε, eventually leading to the result of the theorem. To prove this, we use the truncated equation
of u, i.e.

−div
(

A(x,∇um)
) = μ[um],

m ∈ N.
First, since both uk and vk are p-quasicontinuous and in W 1,p(Ω ′), there are sequences uk,j and vk,j of smooth

functions converging in W 1,p(Ω ′) and p-quasieverywhere to uk and vk , respectively. In particular, uk,j → uk and
vk,j → vk μ0-almost everywhere. This readily implies that h(uj,k, vj,k) converges weakly to h(uk, vk) in W 1,p(Ω ′).
Recall that h(uk, vk) = h(u, v) by the choice of k. We have by the weak convergence of μ[um] to μ that∫

Ω

h(uk,j , vk,j )(1 − θε)φ dμ[um] →
∫
Ω

h(uk,j , vk,j )(1 − θε)φ dμ.

Furthermore, by the p-quasieverywhere convergence and the dominated convergence theorem, we obtain∫
Ω

h(uk,j , vk,j )(1 − θε)φ dμ0 →
∫
Ω

h(u, v)(1 − θε)φ dμ0

as j → ∞ and the estimate∫
Ω

h(uk,j , vk,j )(1 − θε)φ dμs � ε‖h‖∞‖φ‖∞

holds by Lemma 2.9 and the choice of θε . Hence we obtain

lim sup
j→∞

∣∣∣∣ ∫
Ω

h(uk,j , vk,j )(1 − θε)φ dμ −
∫
Ω

h(u, v)(1 − θε)φ dμ

∣∣∣∣ � Cε (3.5)

with C independent of ε.
Next, rewrite∫

Ω

h(uk,j , vk,j )(1 − θε)φ dμ[um]

=
∫
Ω

ψλh(uk,j , vk,j )(1 − θε)φ dμ[um] +
∫
Ω

(1 − ψλ)h(uk,j , vk,j )(1 − θε)φ dμ[um]. (3.6)

We estimate the first integral on the right as∫
ψλh(uk,j , vk,j )(1 − θε)φ dμ[um] � ‖h‖∞

∫
ψλ(1 − θε)φ dμ[um] (3.7)
Ω Ω
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and then use the structure of A to obtain∫
Ω

ψλ(1 − θε)φ dμ[um]

=
∫
Ω

〈
A(x,∇um),∇(

ψλ(1 − θε)φ
)〉

dx

� β0‖φ‖∞
∫

Ω ′\Sε

|∇um|p−1|∇ψλ|dx + β0
∥∥∇(

φ(1 − θε)
)∥∥∞

∫
Ω ′∩supp(ψλ)

|Du|p−1 dx. (3.8)

Since wε,u ∈ Sμ,r,C(Ω ′ \ Sε),

u � C + cWμ,r � C + c2wε < C + 2c2λ in {wε < 2λ} ∩ (
Ω ′ \ Sε

)
(3.9)

and hence u � Cλ in the intersection of the support of ∇ψλ and Ω ′ \Sε for all sufficiently large λ. In this set um = uCλ

for all m > Cλ. It follows by Hölder’s inequality and (3.3) that∫
Ω ′\Sε

|∇um|p−1|∇ψλ|dx =
∫

Ω ′\Sε

|∇uCλ|p−1|∇ψλ|dx

�
( ∫

Ω ′
|∇uCλ|p dx

)(p−1)/p( ∫
B(0,4R)

|∇ψλ|p dx

)1/p

� Cλ(p−1)/pCλ−(p−1)/p
(
μ0

({Wμ,r > λ/C} ∩ Ω ′) + ε
)1/p

= C
(
μ0

({Wμ,r > λ/C} ∩ Ω ′) + ε
)1/p

→ Cε1/p (3.10)

as λ → ∞ since capp({Wμ,r > λ/C} ∩ Ω ′) → 0; here we have also employed the estimate∫
Ω ′∩{u�λ}

|∇u|p dx � Cλ, (3.11)

with some constant C independent of λ, from the proof of [21, Theorem 1.13]. Note that the upper bound in (3.10) is
independent of j and m. Moreover, the local summability of |Du|p−1, see Theorem 2.4, implies that∫

Ω ′∩supp(ψλ)

|Du|p−1 dx → 0 (3.12)

as λ → ∞ since capp({ψλ > 0} ∩ Ω ′) → 0. Inserting estimates (3.10) and (3.12) into (3.8) and then using (3.7) leads
to

lim sup
λ,j,m→∞

∣∣∣∣ ∫
Ω

h(uk,j , vk,j )ψλ(1 − θε)φ dμ[um]
∣∣∣∣ � Cε1/p. (3.13)

Hence, by (3.5) and (3.6),

lim sup
λ,j,m→∞

∣∣∣∣ ∫
Ω

h(uk,j , vk,j )(1 − ψλ)(1 − θε)φ dμ[um] −
∫
Ω

h(u, v)(1 − θε)φ dμ

∣∣∣∣ � C
(
ε + ε1/p

)
, (3.14)

with C independent of ε.
Next, we consider the first term on the left in (3.14). By (3.9) we have that (1 − ψλ)(1 − θε)φ vanishes outside

{u � Cλ} ∩ (Ω ′ \ Sε) for all sufficiently large λ. Hence, for all m > Cλ,
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∫
Ω

h(uk,j , vk,j )(1 − ψλ)(1 − θε)φ dμ[um]

=
∫

Ω ′\Sε

〈
A(x,∇uCλ),∇φ

〉
h(uk,j , vk,j )(1 − θε)(1 − ψλ)dx

+
∫

Ω ′\Sε

〈
A(x,∇uCλ),∇(1 − θε)

〉
h(uk,j , vk,j )(1 − ψλ)φ dx

+
∫

Ω ′\Sε

〈
A(x,∇uCλ),∇h(uk,j , vk,j )

〉
(1 − θε)(1 − ψλ)φ dx

−
∫

Ω ′\Sε

〈
A(x,∇uCλ),∇ψλ

〉
h(uk,j , vk,j )(1 − θε)φ dx.

Now we fix the “marching order” for the limiting processes by sending first m, then j , and finally λ to infinity; observe
that the estimates in previous limiting processes were independent of the particular order.

First, it follows by the dominated convergence theorem that

lim
λ→∞ lim

j→∞ lim
m→∞

∫
Ω ′\Sε

〈
A(x,∇uCλ),∇φ

〉
h(uk,j , vk,j )(1 − θε)(1 − ψλ)dx

=
∫
Ω

〈
A(x,Du),∇φ

〉
h(u, v)(1 − θε) dx

and

lim
λ→∞ lim

j→∞ lim
m→∞

∫
Ω ′\Sε

〈
A(x,∇uCλ),∇(1 − θε)

〉
h(uk,j , vk,j )(1 − ψλ)φ dx

=
∫
Ω

〈
A(x,Du),∇(1 − θε)

〉
h(u, v)φ dx.

Second, the weak convergence of ∇h(uk,j , vk,j ) to ∇h(uk, vk) = ∇h(u, v) together with the dominated convergence
gives

lim
λ→∞ lim

j→∞ lim
m→∞

∫
Ω ′\Sε

〈
A(x,∇uCλ),∇h(uk,j , vk,j )

〉
(1 − θε)(1 − ψλ)φ dx

=
∫
Ω

〈
A(x,Du),∇h(u, v)

〉
(1 − θε)φ dx.

Third, estimating as in (3.8) and (3.10), we have∣∣∣∣ ∫
Ω ′\Sε

〈
A(x,∇uCλ),∇ψλ

〉
h(uk,j , vk,j )(1 − θε)φ dx

∣∣∣∣ � C‖h‖∞‖φ‖∞
∫
Ω ′

|∇uCλ|p−1|∇ψλ|dx

� C
(
μ0

({Wμ,r > λ/C} ∩ Ω ′) + ε
)1/p

,

which readily implies

lim sup
λ,j,m→∞

∣∣∣∣ ∫
′

〈
A(x,∇uCλ),∇ψλ

〉
h(uk,j , vk,j )(1 − θε)φ dx

∣∣∣∣ � Cε1/p.
Ω \Sε
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Inserting above estimates into (3.14) we infer that∣∣∣∣ ∫
Ω

h(u, v)(1 − θε)φ dμ −
∫
Ω

〈
A(x,Du),∇(

h(u, v)(1 − θε)φ
)〉

dx

∣∣∣∣ � C
(
ε + ε1/p

)
.

This together with (3.4) yields∣∣∣∣ ∫
Ω

h(u, v)φ dμ −
∫
Ω

〈
A(x,Du),∇(

h(u, v)φ
)〉

dx

∣∣∣∣ � C
(
ε + ε1/p

)
,

concluding the proof after letting ε → 0. �
Now we arrive at our main theorem by choosing u = v in Theorem 3.2.

3.15. Theorem. Let u be A-superharmonic with Riesz measure

μ = −div A(x,∇u).

Then u is a local renormalized solution, i.e.,∫
Ω

〈
A(x,Du),∇(

h(u)φ
)〉

dx =
∫
Ω

h(u)φ dμ

for all φ ∈ C∞
0 (Ω) and for all Lipschitz functions h : R �→ R whose derivatives h′ are compactly supported.

3.16. Remark. Dal Maso and Malusa [9] defined a concept of a reachable solution. They showed that such a solution
satisfies the formula (for h and ϕ as in Theorem 3.15)∫

Ω

〈
A(x,Du),∇(

h(u)φ
)〉

dx =
∫
Ω

h(u)φ dμ1 + h(+∞)

∫
Ω

φ dμ2 − h(−∞)

∫
Ω

φ dμ3

for some decomposition μ = μ1 + μ2 − μ3 for the measure μ. The novelty in our result is that we may now specify
the decomposition by taking μ1 � capp , μ2 ⊥ capp such that spt(μ2) ⊂ ⋂

k>0{u > k}, and μ3 = 0. Our theorem
seems not to be easily deduced from results in [9], since the weak convergence of measures, used by Dal Maso and
Malusa to obtain the measures μ2 and μ3, seems to be as such inadequate to conquer the concentration phenomenon.

4. Nonlinear Riccati type equations

Theorem 3.15 enables us to employ all the properties of the renormalized solution when studying equations of
type (2.5), regardless of the nature of the solutions. As an example we consider the following two problems:{−�pu = |∇u|p in Ω,

u ∈ W
1,p

0 (Ω)
(4.1)

and ⎧⎨⎩
−�pv = μ,

μ ∈ M+(Ω) and μ ⊥ capp,

0 � min(v, k) ∈ W
1,p

0 (Ω) for all k > 0,

(4.2)

where Ω is bounded. Recall that, as emphasized in (2.5), the equations are understood in the sense of distributions.
In this section we show that these two problems are essentially equivalent:

4.3. Theorem. There is a one-to-one correspondence between problems (4.1) and (4.2) via the transformation

v = e
u

p−1 − 1.

That is, if u solves (4.1), then v = eu/(p−1) − 1 solves (4.2); and conversely, if v is a solution to (4.2), then u =
(p − 1) log(v + 1) is a solution to (4.1).
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Abdel Hamid and Bidaut-Véron have related results in their recent manuscript [1]. The novelty in our result is that
we do not assume a priori that solutions are of special nature like renormalized or similar.

Before proving the correspondence we first analyze equations locally.

4.4. Lemma. Let u ∈ W
1,p

loc (Ω) satisfy

−�pu = |∇u|p (4.5)

in Ω . Then v = eu/(p−1) is p-superharmonic in Ω .

Proof. Observe first that u is a nonnegative weak supersolution of −�pu � 0. It follows that ũ defined via

ũ(x) = ess lim inf
y→x

u(y)

is a representative of u in the sense that ũ = u almost everywhere. Thus we may assume that u is lower semicontinuous.
Write next uk = min(u, k) and vk = euk/(p−1). There is a nonnegative measure νk such that∫

Ω

〈|∇uk|p−2∇uk,∇η
〉
dx =

∫
Ω

|∇uk|pη dx +
∫
Ω

ηdνk

for each η ∈ W
1,p

0 (Ω) ∩ L∞(Ω); indeed choosing

1

ε
min

(
ε, (k + ε − u)+

)
η, ε > 0,

as a test function in (4.5) and letting ε → 0, we have by the dominated convergence that∫
Ω

ηdνk = lim
ε→0

1

ε

∫
{k<u<k+ε}

|∇u|pη dx.

Substitute then the test function η = eukϕ, ϕ ∈ C∞
0 (Ω), ϕ � 0, to obtain∫

Ω

〈|∇uk|p−2∇uk, e
uk∇ϕ

〉
dx +

∫
Ω

〈|∇uk|p−2∇uk,∇uke
ukϕ

〉
dx

=
∫
Ω

|∇uk|peukϕ dx +
∫
Ω

eukϕ dνk.

Hence

(p − 1)1−p

∫
Ω

〈|∇vk|p−2∇vk,∇ϕ
〉
dx =

∫
Ω

eukϕ dνk � 0

and therefore vk ∈ W
1,p

loc (Ω) is p-superharmonic. Consequently also

v = lim
k→∞vk

is p-superharmonic. �
Next we calculate how the equations are transformed.

4.6. Lemma. Suppose that v is a nonnegative p-superharmonic function with the Riesz measure μ. Then u =
(p − 1) log(v) satisfies

(p − 1)p−1
∫
Ω

e−uϕ dμ =
∫
Ω

〈|∇u|p−2∇u,∇ϕ
〉
dx −

∫
Ω

|∇u|pϕ dx

for all ϕ ∈ C∞(Ω).
0
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Proof. Let ϕ ∈ C∞
0 (Ω). Theorem 3.15 allows us to test the equation of v with the function ηk = e−ukϕ, where

uk = min(u, k). We have

(p − 1)p−1
∫
Ω

ηk dμ

= (p − 1)p−1
∫
Ω

〈|∇v|p−2∇v, e−uk∇ϕ − ∇uke
−ukϕ

〉
dx

=
∫

{u�k}

〈|∇u|p−2∇u,∇ϕ
〉
dx + (p − 1)p−1

∫
{u>k}

〈|∇v|p−2∇v, e−uk∇ϕ
〉
dx −

∫
Ω

|∇uk|pϕ dx

→
∫
Ω

〈|∇u|p−2∇u,∇ϕ
〉
dx −

∫
Ω

|∇u|pϕ dx

as k → ∞ since |∇v|p−1 is locally integrable (Lemma 2.4) and u ∈ W
1,p

loc (Ω), see [19, Theorem 7.48]. The dominated
convergence guarantees that∫

Ω

ηk dμ →
∫
Ω

e−uϕ dμ,

finishing the proof. �
We are ready to prove the local version of Theorem 4.3:

4.7. Theorem. Let u ∈ W
1,p

loc (Ω) be a weak solution to

−�pu = |∇u|p
in Ω . Then v = eu/(p−1) is p-superharmonic and its Riesz measure μ = −�pv is singular with respect to the p-
capacity, i.e.

μ ⊥ capp .

Conversely, if v is a nonnegative p-superharmonic function whose Riesz measure μ = −�pv is singular with

respect to the p-capacity, then u = (p − 1) logv ∈ W
1,p

loc (Ω) solves weakly the equation

−�pu = |∇u|p
in Ω .

Proof. Suppose first that u ∈ W
1,p

loc (Ω) satisfies

−�pu = |∇u|p in Ω.

Then, by Lemma 4.4, v = eu/(p−1) is p-superharmonic and Lemma 4.6 gives∫
Ω

v1−pϕ dμ = 0 for all ϕ ∈ C∞
0 (Ω).

Therefore v = ∞ μ-almost everywhere. Since the set {v = ∞} is of p-capacity zero, we have μ ⊥ capp , as desired.
For the converse, let v be nonnegative and p-superharmonic with a singular Riesz measure. First observe that

u = (p − 1) logv ∈ W
1,p

loc (Ω) by the standard logarithm estimate [19, Lemma 7.48]. The rest follows by Lemma 4.6,
because v = ∞ μ-almost everywhere by Lemma 2.9 and thus∫

Ω

e−uϕ dμ =
∫
Ω

v1−pϕ dμ = 0

for all ϕ ∈ C∞
0 (Ω). �
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4.8. Corollary. Suppose that u ∈ W
1,p

loc (Ω) satisfies

−�pu = |∇u|p in Ω.

Then eλu ∈ W
1,p

loc (Ω) for all 0 < λ < 1/p.

If eu/p ∈ W
1,p

loc (Ω), then v = eu/(p−1) is p-harmonic and hence u is C1,α for some α > 0.

Proof. Let 0 < λ < 1/p. The integrability result easily follows from the estimate [19, Lemma 3.57]: if ε > 0,∫
Ω

|∇v|pv−1−εηp dx �
(

p

ε

)p ∫
Ω

vp−1−ε|∇η|p dx

for all cut-off functions η ∈ C∞
0 (Ω), η � 0. Now, choosing ε = (p − 1)(1 − pλ) we have that∫

Ω

∣∣∇eλu
∣∣pηp dx = c

∫
Ω

|∇v|pv−1−εηp dx � c

∫
Ω

vp−1−ε|∇η|p dx < ∞,

since vp−1 is locally integrable (Lemma 2.4).
To prove the latter claim, we use the test function η = eukϕ, where ϕ ∈ C∞

0 (Ω), ϕ � 0, and uk = min(u, k). Then∫
Ω

〈|∇u|p−2∇u, euk∇ϕ
〉
dx +

∫
Ω

〈|∇u|p−2∇u,∇uke
ukϕ

〉
dx =

∫
Ω

|∇u|peukϕ dx,

and hence∫
Ω

〈|∇u|p−2∇u, euk∇ϕ
〉
dx =

∫
Ω

|∇u|peukϕ dx −
∫
Ω

|∇uk|peukϕ dx =
∫

{u>k}
ek|∇u|pϕ dx → 0

by the assumption eu/p ∈ W
1,p

loc (Ω). The right-hand side then converges to

(p − 1)1−p

∫
Ω

〈|∇v|p−2∇v,∇ϕ
〉
dx,

which shows that the Riesz measure of v vanishes and therefore v is p-harmonic, see [28, Corollary 3.19]. Hence v

and thereby also u is locally C1,α for some α > 0 (see for example [36,37,10]). �
Next we turn to the global problems (4.1) and (4.2).

Proof for Theorem 4.3. In the light of the local version 4.7, we only need to check that the transformations go into
correct spaces. First, if u ∈ W

1,p

0 (Ω), then it is clear that the truncations of v = eu/(p−1) − 1 lie in W
1,p

0 (Ω), since Ω

is bounded.
Conversely, if v is a solution to the problem (4.2) and u = log(v + 1), then∫

{v�1}
|∇u|p dx =

∫
{v�1}

|∇v|p
(v + 1)p

dx �
∫

{v�1}
|∇v|p dx < ∞.

Also ∫
{v>1}

|∇u|p dx �
∫

{v>1}
|∇ logv|p min(v,1)p dx �

∫
Ω

∣∣∇ min(v,1)
∣∣p dx < ∞

by the standard log-estimate [19, Proof of Lemma 3.47]. The proof is complete. �
We finally record an estimate that might be of some interest:
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4.9. Proposition. Suppose that u is a solution to (4.1) in a bounded open set Ω . Then eλu ∈ W 1,p(Ω) for all 0 < λ <

1/p. If eu/p ∈ W 1,p(Ω), then u = 0. In particular, the only bounded solution is u = 0.

Proof. Define first a decreasing function f : R �→ [0,∞) as

f (k) =
∫

Ω∩{u>k}
|∇u|p dx.

We then have

f (k + ε) − f (k) = −
∫

Ω∩{k<u<k+ε}
|∇u|p dx.

As a monotone function, f is differentiable for almost every k.
Take then the test function

ηk,ε = 1

ε
min

{
(u − k)+, ε

}
,

ε > 0. Now ηk,ε ∈ W
1,p

0 (Ω) provided that k � 0. The monotone convergence theorem implies

lim
ε→0

∫
Ω

|∇u|pηk,ε dx = f (k)

for every k � 0. Inserting thus ηk,ε into (4.1) and letting ε → 0 implies

lim
ε→0

∫
Ω

〈|∇u|p−2∇u,∇ηk,ε

〉
dx = f (k).

The term on the left is

lim
ε→0

1

ε

(
f (k) − f (k + ε)

)
and the limit is obtained for every k � 0. Replacing k by k − ε, an analogous argument gives

lim
ε→0

1

ε

(
f (k − ε) − f (k)

) = f (k).

So f ′(k) = −f (k) for every k > 0 and f ′(0+) = −f (0). Solving the ordinary differential equation gives∫
Ω∩{u>k}

|∇u|p dx = f (k) = e−kf (0) = e−k

∫
Ω

|∇u|p dx

for all k � 0.
We multiply this equation by eλ̃k , 0 < λ̃ < 1, and integrate by the aid of the Fubini theorem to obtain the desired

estimate:∫
Ω

eλ̃u|∇u|p dx =
∫
Ω

(
eλ̃u − 1

)|∇u|p dx +
∫
Ω

|∇u|p dx

= λ̃

∞∫
0

eλ̃k

∫
{u>k}

|∇u|p dx dk +
∫
Ω

|∇u|p dx

= λ̃

∞∫
eλ̃k−k

∫
|∇u|p dx dk +

∫
|∇u|p dx
0 Ω Ω
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=
(

λ̃

∞∫
0

eλ̃k−k dk + 1

)∫
Ω

|∇u|p dx

= 1

1 − λ̃

∫
Ω

|∇u|p dx < ∞.

Hence eλu ∈ W 1,p(Ω) for all 0 < λ < 1/p.
Should it happen that eu/p ∈ W 1,p(Ω) we could let λ̃ increase to 1 in the calculation above. Since the term on the

left remains bounded, this would force ∇u vanish throughout. Hence u is zero. �
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