
Ann. I. H. Poincaré – AN 28 (2011) 853–887
www.elsevier.com/locate/anihpc

Local well-posedness and blow-up in the energy space for a class of
L2 critical dispersion generalized Benjamin–Ono equations

C.E. Kenig a, Y. Martel b,c,∗, L. Robbiano b

a Department of Mathematics, University of Chicago, 5734 University avenue, Chicago, IL 60637-1514, United States
b Laboratoire de mathématiques de Versailles, CNRS UMR 8100, Université de Versailles Saint-Quentin-en-Yvelines, 45, av. des Etats-Unis,

78035 Versailles cedex, France
c Institut Universitaire de France, France

Received 27 May 2010; accepted 27 June 2011

Available online 2 August 2011

Abstract

We consider a family of dispersion generalized Benjamin–Ono equations (dgBO)

ut − ∂x |D|αu + |u|2α∂xu = 0, (t, x) ∈ R × R,

where |̂D|αu = |ξ |αû and 1 � α � 2. These equations are critical with respect to the L2 norm and global existence and interpolate
between the modified BO equation (α = 1) and the critical gKdV equation (α = 2).

First, we prove local well-posedness in the energy space for 1 < α < 2, extending results in Kenig et al. (1991, 1993) [13,14] for
the generalized KdV equations.

Second, we address the blow-up problem in the spirit of Martel and Merle (2000) [19] and Merle (2001) [22] concerning the
critical gKdV equation, by studying rigidity properties of the dgBO flow in a neighborhood of the solitons. We prove that for α

close to 2, solutions of negative energy close to solitons blow up in finite or infinite time in the energy space H
α
2 .

The blow-up proof requires both extensions to dgBO of monotonicity results for local L2 norms by pseudo-differential operator
tools and perturbative arguments close to the gKdV case to obtain structural properties of the linearized flow around solitons.
© 2011 Elsevier Masson SAS. All rights reserved.

Résumé

Nous considérons une famille d’équations de Benjamin–Ono à dispersion généralisée (dgBO)

ut − ∂x |D|αu + |u|2α∂xu = 0, (t, x) ∈ R × R,

où |̂D|αu = |ξ |αû et 1 � α � 2. Ces équations sont critiques par rapport à la norme L2 et à l’existence globale et peuvent être
vues comme des interpolations entre l’équation de Benjamin–Ono généralisée critique (α = 1) et l’équation de Korteweg–de Vries
généralisée critique (α = 2).

D’abord, nous montrons le caractère bien posé de ces équations dans l’espace d’énergie pour 1 < α < 2, étendant les résultats
de Kenig et al. (1991, 1993) [13,14] pour les équations de Korteweg–de Vries généralisées.

Ensuite, nous étudions le phénomène d’explosion dans l’esprit de Martel et Merle (2000) [19] et Merle (2001) [22] concernant
l’équation de gKdV critique, en étudiant les propriétés de rigidité du flot de dgBO dans un voisinage des solitons. Nous montrons
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que pour α proche de 2, les solutions d’énergie négative proches des solitons explosent en temps fini ou infini dans l’espace
d’énergie H

α
2 .

La preuve de ce résultat d’explosion est basée d’une part sur l’adaptation à dgBO de résultats de monotonie de normes L2 locales
par des méthodes d’opérateurs pseudo-differentiels et d’autre part sur des arguments de perturbation pour obtenir des propriétés
structurelles du flot linéarisé autour des solitons lorsque l’équation est proche de gKdV.
© 2011 Elsevier Masson SAS. All rights reserved.

1. Introduction

We consider the following dispersion generalized Benjamin–Ono equations (dgBO)

ut − ∂x |D|αu + |u|2α∂xu = 0, (t, x) ∈ R × R, (1)

where |D|α is such that |̂D|αu = |ξ |αû and 1 � α � 2. Formally, the following three quantities are conserved for
solutions∫

u(t, x) dx =
∫

u(0, x) dx, (2)

M(t) =
∫

u2(t, x) dx = M(0), (3)

E(t) =
∫ (∣∣|D| α

2 u
∣∣2 − |u|2α+2

(α + 1)(2α + 1)

)
(t, x) dx = E(0). (4)

Recall the scaling and translation invariances of Eq. (1): if u(t, x) is a solution of (1) then, for all λ0 > 0, x0 ∈ R,

uλ0,x0(t, x) = λ
− 1

α

0 u
(
λ

−(2+ 2
α
)

0 t, λ
− 2

α

0 (x − x0)
)

is also a solution of (1).

In particular, note that for any λ0 > 0, x0 ∈ R, ‖uλ0,x0‖L2 = ‖u‖L2, which means that (1) is a family of L2 critical
equations interpolating between the critical Benjamin–Ono equation (also called modified Benjamin–Ono equation)

ut − ∂x |D|u + u2∂xu = 0, (t, x) ∈ R × R, (5)

and the critical generalized Korteweg–de Vries equation

ut + ∂3
xu + u4∂xu = 0, (t, x) ∈ R × R. (6)

1.1. Local well-posedness in the energy space

Recall that the local Cauchy problem is known to be well-posed in the energy space H
α
2 both for the critical gKdV

equation – see Kenig, Ponce and Vega [14] – and for the critical (BO) equation – see Kenig and Takaoka [15]. The
first objective of this paper is to present a local Cauchy theory for (1) in the energy space H

α
2 for 1 < α < 2.

Theorem 1 (Local well-posedness in the energy space). Let 1 < α < 2 and A > 0. Let u0 ∈ H
α
2 be such that

‖u0‖
H

α
2

� A. Then there exists a unique solution u ∈ C([0, T ],H α
2 ) ∩ ZT of{

ut − ∂x |D|αu ± |u|2α∂xu = 0, (t, x) ∈ R × R,

u(t = 0) = u0, x ∈ R,
(7)

where T = T (A) > 0. Moreover, the map u0 �→ u ∈ C([0, T ],H α
2 ) ∩ ZT is continuous.

Theorem 1 is proved by a contraction argument in ZT , see the proof of Theorem 1 for the definition of this
functional space. The linear estimates, mainly taken from [12] and [14], are gathered in Lemma 1.

Remark 1. Together with Theorem 1, we obtain in this paper a property of weak continuity of the flow of Eq. (1) in
the energy space, see Theorem 3. See also [19] and [4] for the cases α = 1,2.
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In this paper, by solutions of (1), we mean H
α
2 solutions in the sense of Theorem 1. For such solutions, it follows

from standard arguments that the two quantities M(u(t)) and E(u(t)) defined in (3), (4) are conserved as long as the
solution exists (see also Remark 2).

1.2. Blow-up in finite or infinite time

The second objective of this paper is to study global well-posedness versus blow-up for Eqs. (1), i.e. in the focusing
case. Recall that Eqs. (1) are critical with respect to global well-posedness in the following sense. For fixed 1 � α � 2,
the power 2α + 1 of the nonlinearity in (1) is the smallest power for which blow-up is possible in the energy space,
whereas from the critical Gagliardo–Nirenberg inequality∫

|u|2α+2 � Cα

( ∫ ∣∣D α
2 u

∣∣2
)( ∫

u2
)α

, (8)

it is a standard observation that small (in L2) solutions of (1) are global and bounded from Theorem 1. Note that
inequality (8) is easily proved using Fourier analysis and scaling arguments. See Proposition 1 for the value of the
best constant in (8), related to soliton solutions of (1).

Following Martel and Merle [19] and Merle [22] concerning the critical gKdV equation, we look for blow-up
solutions close to the soliton family, which we introduce now.

We call soliton any traveling wave solution u(t, x) = Qλ0(x −x0 −λ−2
0 t) of Eq. (1), with λ0 > 0, x0 ∈ R, Qλ0(x) =

λ
− 1

α

0 Q(λ
− 2

α

0 x) and where Q solves:

|D|αQ + Q − 1

2α + 1
Q2α+1 = 0, Q ∈ H

α
2 , Q > 0. (9)

For the critical gKdV case (α = 2), it follows from standard ODE arguments that there exists a unique (up to transla-
tions) solution of (9), which is

Q(x) = 151/4

cosh1/2(2x)
. (10)

Moreover, Weinstein [28] proved that the function Q provides the best constant in estimate (8) for α = 2.
For 1 � α < 2, existence of a positive even solution of (9) is known by variational arguments, see Weinstein [29,31]

and Proposition 1 of the present paper. Such a solution is called a ground state of (9). Amick and Toland [1] proved
uniqueness of the solution of the Benjamin–Ono equation (BO)

ut − ∂x |D|u + u∂xu = 0, (t, x) ∈ R × R, (11)

but their argument does not adapt to (9). By a different and very general argument, Frank and Lenzmann [5] recently
proved uniqueness of the ground state for a large class of equations |D|αQ + Q − cQβ+1 = 0 including (9) for all
α ∈ [1,2).

Now, we state our second main result.

Theorem 2 (Blow-up in finite or infinite time). There exists α0 ∈ [1,2) such that for all α ∈ (α0,2), the following
holds. Let Q be the unique even positive solution of (9) which minimizes the constant Cα in (8). There exists β0 > 0
such that if u(t) is an H

α
2 solution of (1) satisfying

E
(
u(0)

)
< 0 and

∫
u2(0) �

∫
Q2 + β0,

then u(t) blows up in finite or infinite time in H
α
2 , i.e. there exists 0 < T � +∞ such that limt→T ‖u(t)‖

H
α
2

= +∞.

Note that from Gagliardo–Nirenberg’s inequality with best constant (see Proposition 1) E(u(0)) < 0 implies that∫
u2(0) >

∫
Q2. Therefore, we prove blow-up in finite or infinite time for any u(0) such that E(u(0)) < 0,

∫
Q2 <∫

u2(0) �
∫

Q2 + β0, which is a large class of initial data close to Q up to the invariances of the equation (see
Lemma 9).
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Theorem 2 extends to Eq. (1) the main result in [22]. We follow the same strategy based on rigidity properties of the
nonlinear flow around solitons. First, we prove a nonlinear Liouville property around the soliton as a consequence of a
linear Liouville property. See Section 5 where we extend the main results of [19]. Then, in Section 6, we prove blow-
up in the sense of Theorem 2 by a contradiction argument, using the nonlinear Liouville property and the additional
invariant

∫
u(t) = ∫

u(0), as in [22].
Now, we discuss how techniques developed in [19] and [22] have to be adapted to Eq. (1) to prove Theorem 2.

1. Monotonicity properties of local L2 quantities. These arguments were developed in [19] and [22] in order to
study the variation in time of the L2 norm of the solution in various regions of space (on the left or on the right,
in some sense, to the soliton). For the critical gKdV equation, these monotonicity arguments are mainly based on
the Kato identity and refined estimates on the nonlinear term in this identity. For Benjamin–Ono type equations,
such localization arguments are subtle to adapt due to the nonlocal character of the linear operator. Such L2

monotonicity arguments were developed in [11] to prove asymptotic stability of the solitons for the BO equation,
but the arguments in [11] seem to work only for the operator |D|, i.e. for α = 1 in (1). In the present paper, we
extend these results to any α ∈ (1,2) using tools from pseudo-differential calculus. Section 4 is devoted to these
arguments.

2. Weak continuity of the flow. In addition to the local Cauchy theory, we need the weak continuity of the flow of
(1) in several key limiting arguments. See Theorem 3.

3. Linear Liouville property. The proofs in [19] and [22] for the gKdV case depend crucially on a linear rigidity
property of the ground state (hereafter called linear Liouville property). By perturbative arguments, we are able
to extend the linear Liouville property for gKdV to (9) for α < 2 close enough to 2 (i.e. when the model is close
in some sense to the critical gKdV equation). See Proposition 3. In this paper, we rely on the simplified approach
of [17].
It follows from the arguments of this paper that Theorem 2 holds true for any 1 < α < 2 if the linear Liouville
property is assumed. Indeed, it is the only part in the proof of Theorem 2 where we need perturbative arguments
close to the gKdV case. In particular, the monotonicity arguments and the overall strategy work for any 1 < α � 2.

Remark finally that in addition to [19] and [22], two further works ([20] and [21]) provide refined information
about the blow-up phenomenon for the critical gKdV equation close to the soliton family. Indeed, in [20], the soliton
Q is found to be the universal blow-up profile in the context of Theorem 2. The proof is based on an additional rigidity
property of the gKdV flow around solitons in a blow-up regime. Finally, [21] proves blow-up in finite time, together
with an upper estimate on the blow-up rate, provided that the initial data has some space decay. However, note that
the blow-up problem for the critical gKdV equations is not yet completely understood, in particular the question of
the exact blow-up rate. The case of the nonlinear Schrödinger equation is by now much better known, see Merle and
Raphaël [23–25] and references therein. For simplicity and brevity, we do not try here to extend results of [20] and
[21] to dgBO equation.

1.3. Plan of the paper

The paper is organized as follows. In Section 2, we prove Theorem 1. In Section 3, we study the stationary problem
(9) in the general case 1 � α � 2 and obtain further properties in the perturbative case where α is close to 2. In
Section 4, we present L2 monotonicity properties for the model (1) for all α ∈ (1,2). In Section 5, we deal with
solutions close to a (bounded) soliton and finally in Section 6, we prove Theorem 2, i.e. for α close to 2, blow-up in
finite or infinite time for negative energy solutions close to solitons.

2. Local well-posedness in the energy space

2.1. Proof of Theorem 1

We denote the Fourier transform by F (f )(ξ) = f̂ (ξ) = ∫
e−ixξ f (x) dx.

We introduce the group Wα(t) defined by

F
(
Wα(t)f

)
(ξ) = eit (|ξ |αξ)f̂ (ξ), 1 < α < 2.
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Then, we claim (or recall) the following linear estimates (we use classical notation from [14]).

Lemma 1. For 0 < T < 1, there exists C > 0 such that, for all u0 ∈ L2 , then

(i) sup
t

∥∥Wα(t)u0
∥∥

L2 � C‖u0‖L2;

(ii)
∥∥|D| α

2 Wα(t)u0
∥∥

L∞
x L2

t
� C‖u0‖L2;

(iii) for all u0 ∈ Hα/2,
∥∥Wα(t)u0

∥∥
L∞

x L2
T

� CT 1/2‖u0‖
H

α
2
;

for 0 � β < α/2, there exists γ > 0 such that,

(iv)
∥∥|D|βWα(t)u0

∥∥
L∞

x L2
T

� CT γ ‖u0‖L2;
(v) for all u0 ∈ Hα/2,

∥∥∂xWα(t)u0
∥∥

L∞
x L2

T
� CT γ ‖u0‖Hα/2;

(vi) for all u0 ∈ Hβ+
, where β+ >

3

4
− α

4
,

∥∥Wα(t)u0
∥∥

L2α
x L∞

T
� C‖u0‖Hβ+;

for all h ∈ L1
xL

2
T ,

(vii)

∥∥∥∥∥|D|α
t∫

0

Wα

(
t − t ′

)
h
(
t ′
)
dt ′

∥∥∥∥∥
L∞

x L2
t

� C‖h‖L1
xL2

T
;

(viii) sup
0<t<T

∥∥∥∥∥|D|α/2

t∫
0

Wα

(
t − t ′

)
h
(
t ′
)
dt ′

∥∥∥∥∥
L2

x

� C‖h‖L1
xL2

T
;

for 0 � β < α, there exists γ > 0 such that,

(ix)

∥∥∥∥∥|D|β
t∫

0

Wα

(
t − t ′

)
h
(
t ′
)
dt ′

∥∥∥∥∥
L∞

x L2
T

� CT γ ‖h‖L1
xL2

T
;

there exists γ > 0 such that,

(x) sup
0<t<T

∥∥∥∥∥
t∫

0

Wα

(
t − t ′

)
h
(
t ′
)
dt ′

∥∥∥∥∥
L2

x

� CT γ ‖h‖L1
xL2

T
;

for all h ∈ L1
xL

2
T such that ∂xh ∈ L1

xL
2
T ,

(xi)

∥∥∥∥∥
t∫

0

Wα

(
t − t ′

)
∂xh

(
t ′
)
dt ′

∥∥∥∥∥
L2α

x L∞
T

� C‖∂xh‖L1
xL2

T
.

Proof. (i) is the classical conservation law, and (ii) (sharp Kato smoothing effect) is proved in [13, Lemma 2.1].
By Sobolev embedding

∣∣Wα(t)u0(x)
∣∣2 � C

∥∥Wα(t)u0
∥∥2

H
α
2

� C‖u0‖2

H
α
2
. (12)

Integrating (12) with respect t , we obtain (iii).
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To prove (iv), we first write u0 = u0,1 + u0,2 where û0,1(ξ) = χ|ξ |�Mû0(ξ), for M > 0 to be chosen. Con-

sider ‖|D|βWα(t)u0,2‖L∞
x L2

t
and let v0,2 such that v̂0,2(ξ) = |ξ |β

|ξ |α/2 û0,2(ξ), so that we have |D|α/2Wα(t)v0,2 =
|D|βWα(t)u0,2. Using (ii), we see that, since β < α/2,∥∥|D|βWα(t)u0,2

∥∥
L∞

x L2
T

� C‖v0,2‖L2 � CMβ−α/2‖u0‖L2 . (13)

Consider now |D|βu0,1. Then, ‖|D|βu0,1‖Hα/2 � CMβ+α/2‖u0‖L2 . From (iii),∥∥|D|βWα(t)u0,1
∥∥

L∞
x L2

T
� CT 1/2Mβ+α/2‖u0‖L2 . (14)

Choosing Mα = T −1/2, estimate (iv) follows from (13) and (14).
Writing |D| = |D|1−α/2|D|α/2 we use (iii) and (iv) and the fact that 1 − α/2 < α/2 to prove (v).
In [13, proof of Theorem 2.7, p. 332], it is proved that if |ξ | 
 2k (or |ξ | � 1 for k = 0) we have, for û0 with that

support∥∥Wα(t)u0
∥∥

L2
xL∞

T
� C2k(α+1)/4‖u0‖L2 . (15)

Also in [12, Theorem 2.5], it is proved that∥∥Wα(t)u0
∥∥

L4
xL∞

T
� C

∥∥|D|1/4u0
∥∥

L2 . (16)

Write now 1
2α

= θ
2 + 1−θ

4 then θ = 2
α

− 1 ∈ (0,1), by interpolation, we get∥∥Wα(t)u0
∥∥

L2α
x L∞

T
� C2k(1−θ)/42k(1+α)θ/4‖u0‖L2 = C2k(3−α)/4‖u0‖L2 (17)

which implies (vi). Note that (17) is more precise for û0 supported in |ξ | 
 2k .
Estimates (vii) and (viii) are proved in a similar way as (3.8) and (3.7) in [14]. We omit their proofs.
Let θ ∈ C∞

0 , θ ≡ 1 for |ξ | � 1, θM(ξ) = θ(ξ/M), ψM(ξ) = 1−θM(ξ) where M � 1. Write h = h1,M +h2,M , where

ĥ1,M(t, ξ) = θM(ξ)ĥ(t, ξ). Write h̃2,M by (h̃2,M)∧(t, ξ) = |ξ |β
|ξ |α ĥ2,M(t, ξ). Thus |D|β ∫ t

0 Wα(t − t ′)h2,M(t ′) dt ′ =
|D|α ∫ t

0 Wα(t − t ′)h̃2,M dt ′. Let η̂M(ξ) = |ξ |β
|ξ |α ψM(ξ). Using a dyadic partition of unity in frequency space and Bern-

stein inequality, we claim
∫ |ηM | � CMβ−α .

Thus

‖h̃2,M‖L1
xL2

T
� CMα−β‖h‖L1

xL2
T

(18)

so that by (vii),∥∥∥∥∥|D|β
t∫

0

Wα

(
t − t ′

)
h2,M

(
t ′
)
dt ′

∥∥∥∥∥
L∞

x L2
T

� CMα−β‖h‖L1
xL2

T
. (19)

Next, we consider |D|β ∫ t

0 Wα(t − t ′)h1,M(t ′) dt ′. Then, let us define μ̂M(ξ) = |ξ |β〈ξ〉θM(ξ) where 〈ξ〉2 = 1 + |ξ |2.
Then, ‖μM‖L2 � CMβ+3/2. Moreover, for a fixed t , we have by Sobolev embedding,∣∣∣∣∣|D|β

t∫
0

Wα

(
t − t ′

)
h1,M

(
t ′
)
dt ′

∣∣∣∣∣ � C

∥∥∥∥∥
t∫

0

Wα

(
t − t ′

)〈D〉|D|βh1,M

(
t ′
)
dt ′

∥∥∥∥∥
L2

x

� C

T∫
0

∥∥μM ∗ h
(
t ′
)∥∥

L2
x
dt ′

� CMβ+3/2

T∫
0

∥∥h
(
t ′
)∥∥

L1
x
dt ′ = CMβ+3/2‖h‖L1

xL1
T

� CT 1/2Mβ+3/2‖h‖L1L2 . (20)

x T



C.E. Kenig et al. / Ann. I. H. Poincaré – AN 28 (2011) 853–887 859
Hence, pick M so that Mα+3/2 = T −1/2, (19) and (20) prove estimate (ix).
We obtain (x) by duality to the case β = 0 of (iv). Let g ∈ L1

xL
2
T , ‖g‖L1

xL2
T

= 1. Then

T∫
0

∫
Wα(t)u0(x)g(t, x) dx dt =

∫ T∫
0

u0(x)Wα(−t)g(t, x) dt dx. (21)

So estimate (iv) is equivalent to∥∥∥∥∥
T∫

0

Wα

(−t ′
)
g
(
t ′, x

)
dt ′

∥∥∥∥∥
L2

x

� CT γ ‖g‖L1
xL2

T
. (22)

Fix 0 < t < T , let g(t ′, x) = χ[0,t](t ′)h(t, x), then∥∥∥∥∥
t∫

0

Wα

(−t ′
)
h
(
t ′, x

)
dt ′

∥∥∥∥∥
L2

x

� CT γ ‖h‖L1
xL2

T
. (23)

Apply now Wα(t) to the left-hand side, which is an isometry in L2, to obtain (x).
Let Pk be a projection on frequencies 
 2k (or � 1 for k = 0), which is smooth on Fourier transform side. Consider

Tkh(x, t) =
t∫

0

Wα

(
t − t ′

)
Pk∂xh

(·, t ′)dt ′;

T̃kh(x, t) =
T∫

0

Wα

(
t − t ′

)
Pk∂xh

(·, t ′)dt ′. (24)

By (vi), localization in frequencies and (viii) we have, for 3
4 − α

4 < β+ < α
2 ,

‖T̃kh‖L2α
x L∞

T
=

∥∥∥∥∥Wα(t)

T∫
0

Wα

(−t ′
)
Pk∂xh

(·, t ′)dt ′
∥∥∥∥∥

L2α
x L∞

T

� C2k(β+−α/2)

∥∥∥∥∥
T∫

0

|D|α/2Wα

(−t ′
)
Pk∂xh

(·, t ′)dt ′
∥∥∥∥∥

L2
x

� C2k(β+−α/2)

∥∥∥∥∥
T∫

0

|D|α/2Wα

(
T − t ′

)
Pk∂xh

(·, t ′)dt ′
∥∥∥∥∥

L2
x

� C2k(β+−α/2)‖∂xh‖L1
xL2

T
. (25)

Using the version of Christ and Kiselev’s lemma in Molinet and Ribaud [26, Lemma 3], we obtain

‖Tkh‖L2α
x L∞

T
� C2k(β+−α/2)‖∂xh‖L1

xL2
T
. (26)

The sum of right side of (25) being convergent, (xi) follows. �
We are now ready for our well-posedness result in the energy space, Theorem 1.

Proof of Theorem 1. Let ZT be the space defined by the maximum of the following norms,

sup
0�t�T

‖u‖Hα/2,
∥∥|D|αu

∥∥
L∞

x L2
T
, T −γ ‖u‖L∞

x L2
T
, T −γ ‖∂xu‖L∞

x L2
T
, ‖u‖L2α

x L∞
T

,

for some γ > 0 to be chosen.
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Fix u0 ∈ Hα/2, ‖u0‖Hα/2 � A. For R, T to be determined, let BR,T = {v ∈ ZT , ‖v‖ZT
� R}. Let

Φu0(v) = Wα(t)u0 ±
t∫

0

Wα

(
t − t ′

)(|v|2α∂xv
)(

t ′
)
dt ′. (27)

We will show that, given A, we can find R, T such that Φu0(v) : BR,T → BR,T and is a contraction there. First,
note that (i), (ii), (iii), (iv) (with β = 1/2), (v), (vi) show that ‖Wα(t)u0‖ZT

� CA, for some γ > 0.
Now, we work on the Duhamel term. It is easy to see that, using (vii), (viii), (ix) (with β = 0 and β = 1), (x), (xi),

we have∥∥∥∥∥
t∫

0

Wα

(
t − t ′

)|v|2α∂xv dt ′
∥∥∥∥∥

ZT

� C
{∥∥|v|2α∂xv

∥∥
L1

xL2
T

+ ∥∥|v|2αv
∥∥

L1
xL2

T

}
� CT γ ‖v‖2α

L2α
x L∞

T
‖v‖ZT

, (28)

for some γ > 0. We now choose R = 2CA and T so that C(2CA)2αT γ � CA = 1
2R, which gives Φu0 :BR,T → BR,T .

For the contraction property, we estimate∣∣|v|2α∂xv − |w|2α∂xw
∣∣ �

∣∣(|v|2α − |w|2α
)
∂xw

∣∣ + ∣∣|v|2α∂x(v − w)
∣∣ (29)

since ||v|2α − |w|2α| � C|v −w|(|v|2α−1 + |w|2α−1) and α > 1, this allows to conclude the proof (we argue similarly
for ||v|2αv − |w|2αw|). �
Remark 2. From Theorem 1, it follows that for any initial data in H

α
2 , we can define a maximal solution to the

problem. Moreover, either this solution is globally defined or it blows up in finite time.
From the previous arguments and estimates, it is standard to obtain the property of persistence of regularity, i.e.

if the initial data belongs to some Hs , for s > α
2 , then the maximal solution u(t) of the equation belongs to Hs as

long as it exists in H
α
2 . In particular, by density arguments and continuous dependence upon the initial data, we can

approximate any H
α
2 by smooth solutions in C([0, T ],H α

2 ), which allows us to prove rigorously the conservation of
mass and energy (3) and (4).

2.2. Weak continuity of the flow

Theorem 3. Let 1 < α � 2. Let {un}n be a sequence of H
α
2 solutions of (7) in [0, T ]; assume that un(0) ⇀ u0 in H

α
2

weak. Assume also that (without loss of generality) ‖un(0)‖
H

α
2

� A, ‖u0‖
H

α
2

� A, T � T (A) as in Theorem 1. Then,
if u(t) is the solution of (7) corresponding to u0, we have

∀t ∈ [0, T ], un(t) ⇀ u(t) in H
α
2 weak.

Note that for α = 1, the result is proved in the final remark of [4] (see also [7]) and for α = 2, it was proved by
different arguments in [19].

Proof. For 1 < α � 2 we remark that a slight modification of the proof of Theorem 1 gives us the local well-posedness

in H
α′
2 for 1 < α′ < α. Then, the proof is identical to the one in Theorem 5 of [11], using this remark. �

3. Properties of the ground states and perturbation arguments

In this section, we first recall or prove general results about ground states for (1) for all 1 � α � 2, mainly by
classical variational arguments. Then, we prove specific results for α close to 2 by perturbation of the well-known
results for gKdV.
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3.1. Construction and first properties of the ground states

Proposition 1. Let 1 � α � 2. There exists a solution Q ∈ H
α
2 (R) ∩ C∞(R) of (9) which satisfies the following

properties

(i) First properties: Q > 0 on R, Q is even, Q′ < 0 on (0,+∞).
(ii) Variational properties. The infima

J1 = inf

{
(
∫ |D α

2 v|2)(∫ v2)α∫ |v|2α+2
, for v ∈ H

α
2

}
, (30)

J2 = inf

{
E(v), for v ∈ H

α
2 such that

∫
v2 =

∫
Q2

}
, (31)

are attained at Q (J2 = 0).
(iii) Linearized operator: let L be the unbounded operator defined on L2(R) by

Lv = |D|αv + v − Q2αv.

Then, L has only one negative eigenvalue μ0, associated to an even eigenfunction χ0 > 0, LQ′ = 0 and the
continuous spectrum of L is [1,+∞). Moreover, the following holds

inf

{
(Lη,η), for η ∈ H

α
2 such that

∫
ηQ = 0

}
= 0. (32)

Finally, let Qλ(x) = λ− 1
α Q(λ− 2

α x) for all λ > 0 and

ΛQ = −
(

d

dλ
Qλ

)
λ=1

= 1

α

(
Q + 2xQ′) then L(ΛQ) = −2Q. (33)

(iv) Decay properties:

∀x ∈ R, Q(x) + (
1 + |x|)∣∣Q′(x)

∣∣ + (
1 + |x|2)∣∣Q′′(x)

∣∣ � C

(1 + x2)
1
2 (1+α)

. (34)

Definition 1. An even positive solution of (9) in the sense of Proposition 1 is called a ground state.

Before proving the above proposition, we recall the following classical result.

Lemma 2. Let 1 � α � 2. Let K(x) be such that K̂(ξ) = e−|ξ |α . Then, K is a real and even function, K > 0 on R and
K ′(x) < 0 for x > 0.

Proof. For α = 1,2, K(x) is known explicitly. This result is not trivial for 1 < α < 2 but known in probabilistic
literature: K is the law of stable distribution, special cases of distribution of class L (see Gnedenko and Kolmogorov
[6, Theorem, p. 164]). Yamazato [33] proved the unimodality of distribution of class L, i.e. K ′(x) < 0 for x > 0. �
Remark 3. It follows in particular from the previous lemma that the operator |D|α for 1 � α � 2 satisfies properties
(L1)α/2, (L2) and (L3) of [31].

We also recall the following identities satisfied by any solution of (9).

Lemma 3. Let Q ∈ H
α
2 be a solution of (9). Then,∫

Q2 = α

∫ ∣∣D α
2 Q

∣∣2 = α

(2α + 1)(α + 1)

∫
Q2α+2. (35)

In particular,

E(Q) =
∫ ∣∣D α

2 Q
∣∣2 − 1

(2α + 1)(α + 1)

∫
Q2α+2 = 0.
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Proof. Multiplying Eq. (9) by Q and integrating, we first find∫ ∣∣D α
2 Q

∣∣2 +
∫

Q2 = 1

2α + 1

∫
Q2α+2. (36)

Second, note that by Plancherel and integration by parts, for all u ∈ S , one has∫ (−|D|αu
)
(xux) = −α − 1

2

∫ ∣∣D α
2 u

∣∣2
.

Thus, multiplying the equation of Q by xQ′ and integrating, we obtain

(α − 1)

∫ ∣∣D α
2 Q

∣∣2 −
∫

Q2 = − 1

(2α + 1)(α + 1)

∫
Q2α+2. (37)

Combining (36) and (37), we find (35). �
Sketch of the proof of Proposition 1. The existence of a solution Q of (9) satisfying (i), (ii) and (iii) follows from
Weinstein’s arguments [29–32] and Lemma 2. Property (iv) follows from Amick and Toland’s arguments, see [1].

Let us sketch the proofs. (i): Follows by Theorem 3.2 in [31] and Remark 3.
(ii): As in [29,32], a suitable solution Q(x) is obtained by minimizing the functional j1(v), defined for v ∈ H

α
2 by

j1(v) = (
∫ |D α

2 v|2)(∫ v2)α∫ |v|2α+2
.

Note that by Theorem XIII.50 in [27], Lemma 2, Remark 3, and Lemma 6 in [31], for all v ∈ H
α
2 ,(|D|α|v|∗, |v|∗) �

(|D|αv, v
)
,

where v∗ the symmetric decreasing rearrangement of v. Thus, in the minimization procedure, one can always assume
that the minimization sequence is composed of nonnegative and even functions. It is not possible here to use the decay
properties of H 1 radial functions as in [29], since such an argument is limited to space dimensions larger than or equal
to 2. One rather uses the concentration–compactness approach [16] on a suitable continuous family of variational
problems related to j1(v), as in [31].

Once a nonnegative, symmetric decreasing, minimizer ψ of j1 is constructed, we verify that for some constants
a, b > 0, Q(x) = aψ(bx) satisfies

|D|αQ + Q − 1

2α + 1
Q2α+1 = 0, Q ∈ H

α
2 , Q > 0, Q′ < 0 on (0,+∞), Q even,

and j1(Q) = inf{j1(v) for v ∈ H
α
2 }. By Lemma 3, we have E(Q) = 0. In particular, the definition of J1 implies that

for all v ∈ H
α
2 ,

1

(2α + 1)(α + 1)

∫
|v|2α+2 �

( ∫
v2∫
Q2

)α ∫ ∣∣D α
2 v

∣∣2
, (38)

which is the sharp Gagliardo–Nirenberg inequality in this context, and which means that if
∫

v2 �
∫

Q2, then
E(v) � 0.

Note that also that for two different solutions Q and Q̃ of (9), both minimizers of j1, we have ‖Q‖L2 = ‖Q̃‖L2 .
(iii): Exactly as in the proofs of Propositions 4.1 and 4.2 of [31] and Proposition 2.7 of [29], we obtain that

0 = inf

{
(Lv|v), for v ∈ H

α
2 ,

∫
vQ = 0

}
,

and (LQ,Q) < 0, so that there exists exactly one negative eigenvalue μ0 of L, related an even eigenfunction χ0 which
can be taken to be positive. Moreover, the continuous spectrum of L is [1,+∞).

Finally, from the equation of Qλ(x + x0) = λ− 1
α Q(λ− 2

α (x + x0)), we have

|D|αQλ(x + x0) + λ2Qλ(x + x0) = 1
Q2α+1

λ (x + x0).

2α + 1
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Differentiating with respect to x0 and taking x0 = 0, λ = 1, we find LQ′ = 0; differentiating with respect to λ, and
taking x0 = 0, λ = 1, we find L(ΛQ) = −2Q.

(iv): Proof of the decay property. For this part, we first recall the following facts from [3]. For a function F : R → R,
we denote by f : R2+ → R (R2+ = R × [0,+∞)) the extension

f (x,0) = F(x) on R, ∂2
xf + ∂2

yf + 1 − α

y
∂yf = 0 on R2+.

Then, from [3], there exists a constant Cα > 0 such that, on R,

Cα|D|αF = − lim
y→0+ y1−α∂yf.

This generalizes a classical observation for α = 1.
Next, following [1,2], if Q is solution of (9), and q(x, y) is its extension to R2+, then q satisfies

∂2
xq + ∂2

yq + 1 − α

y
∂yq = 0 on R2+,

lim
y→0+ y1−α∂yq = Cα

(
q − 1

2α + 1
q2α+1

)
on y = 0,

lim|x|→+∞
∣∣q(x,0)

∣∣ = 0.

From [3] and [1,2], we are led to set

Gα(x, y) =
(∫

dx′

(1 + (x′)2)
1+α

2

)−1

e
1

αCα
yα

+∞∫
0

e
− 1

αCα
(y+ω)α (y + ω)α

(x2 + (y + ω)2)
1+α

2

dω,

so that q(x, y) satisfies on R2+

q(x, y) = 1

2α + 1

+∞∫
−∞

Gα(x − z, y)q2α+1(z, y) dz.

From this expression, we get the decay estimate (34) following exactly the same arguments as in pp. 23–24 of [2] and
using immediate estimates on Gα . �

Now, we recall Frank and Lenzmann’s recent uniqueness result.

Proposition 2 (Uniqueness of the ground state and Kernel property). (See [5].) There exists a unique ground state
of (9). Moreover,

Ker(L) = span
{
Q′}.

Recall that the result in [5] is general and not restricted to the L2 critical case.
Finally, we recall a direct consequence of the spectral theorem and Propositions 1 and 2.

Lemma 4. For some constant μ > 0,

∀v ∈ H
α
2 ,

∫
vχ0 =

∫
vQ′ = 0 ⇒ (Lv, v) � μ‖v‖2

H 1 . (39)

3.2. Linear Liouville property by perturbation around the gKdV case

We have summarized in Proposition 1 standard results about the ground states of (9) which hold for any 1 � α � 2.
To study the nonlinear flow of (1) around the solitons, we will also need the following fundamental rigidity property
of the linearized flow around a ground state.
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Definition 2 (Linear Liouville property). We say that L satisfies the linear Liouville property if any H
α
2 bounded

solution w(t) of

wt = ∂x(Lw), (t, x) ∈ R,

such that

∀ε > 0, ∃B > 0, ∀t ∈ R,

∫
|x|>B

∣∣w(t, x)
∣∣2

dx � ε (40)

is necessarily w(t, x) ≡ c0Q
′(x) for some c0 ∈ R.

The linear Liouville property was proved for α = 2 in [19] and [17] by Virial type identities and the variational
characterization of Q. Note that it is a stronger property than the Kernel property stated in Proposition 2. We are able
to prove this property for α < 2 sufficiently close to 2 by perturbation arguments.

Proposition 3. There exists α0 ∈ [1,2) such that for all α0 � α � 2, the following properties hold.

(i) There exists a unique (positive, even) ground state solution Q = Q[α] ∈ H 1 of (9) and

Q[α] → Q[2] as α → 2− in H 1.

(ii) Variational characterization of Q: ∀u ∈ H
α
2 ,

E(u) = 0,

∫
u2 =

∫
Q2,

∫ ∣∣|D| α
2 u

∣∣2 =
∫ ∣∣|D| α

2 Q
∣∣2 ⇒ u = ±Q(. − x0), x0 ∈ R. (41)

(iii) The linear Liouville property holds true.

Proof. The proof of Proposition 3 is perturbative. Let us denote by Q[2] the unique positive even solution of (9) given
by (10).

(i) Let αn → 2 be an increasing sequence and for all n, let Q[αn] be a solution of (9) given by Proposition 1. First,
we claim that limn→+∞ Q[αn] = Q[2]. Indeed, from (38) applied to a given function w, we obtain

∫
Q2[α] � C. Then,

by Lemma 3, ‖Q[αn]‖
H

αn
2

� C, and using the equation of Q[αn], it follows that Q[αn] ∈ H 1 and ‖Q[αn]‖H 1 � C. In

particular, there exists V ∈ H 1, a weak limit in H 1 of a subsequence of Q[αn], still denoted by Q[αn]. It is easy to see
that V �= 0, using Lemma 3. Indeed, since∫

Q2[αn] � C‖Q[αn]‖2α
L∞

∫
Q2[αn],

it follows that Q[αn](0) = ‖Q[αn]‖L∞ � c1 > 0 and since weak H 1 convergence implies uniform convergence on
compact sets, we obtain V (0) �= 0.

Moreover, we easily check that V satisfies Eq. (9) with α = 2 and thus by uniqueness, we deduce V = Q[2].
To obtain the strong convergence, we just observe that

lim sup
n→+∞

∫
Q2[αn] �

∫
Q2[2]

follows from the following consequence of Lemma 3[
(αn + 1)(2αn + 1)

]−1
(∫

Q2[αn]
)αn

= j1,[αn](Q[αn])

� j1,[αn](Q[2]) → j1,[2](Q[2]) = [15]−1
( ∫

Q2[2]
)2

.

This gives L2 strong convergence. To obtain H 1 convergence, we just use the equation of Q[αn] and interpolation
argument.
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Let us give a direct proof of the uniqueness of the ground state for α close to 2. We consider two sequences Q[αn]
and Q̃[αn] of solutions of (9) as in Proposition 1. By the first observation, we have Q[αn] → Q[2] and Q̃[αn] → Q[2] in
H 1(R). Moreover, by the equation satisfied by Q[αn] and Q̃[αn], we have∥∥|D|αn(Q[αn] − Q̃[αn])

∥∥
L2 � C‖Q[αn] − Q̃[αn]‖L2 . (42)

Let

wn = Q[αn] − Q̃[αn]
‖Q[αn] − Q̃[αn]‖H 1

.

By (42), the sequence wn is bounded in H
3
2 (say αn > 3/2). A more precise computation using the equations of Q[αn]

and Q̃[αn] shows that the function wn satisfies

‖L[αn]wn‖H 1 = ∥∥|D|αnwn + wn − Q
2αn[αn]wn

∥∥
H 1 � C‖Q[αn] − Q̃[αn]‖L2

where we observe a special cancellation. Using this estimate, the bound of the sequence (wn) in H
3
2 and standard

Fourier analysis, we find

lim
n→+∞(L[2]wn,wn)L2 = 0.

It is known that (39) holds for α = 2, moreover, it can be rewritten as

∀v ∈ H
α
2 , (L[2]v, v) � μ

2
‖v‖2

H 1 − C

( ∫
vχ0

)2

− C

( ∫
vQ′

)2

.

By parity properties, we observe
∫

wnQ
′[2] = 0. By the previous equation, and (39), we have∫

wnχ0,[2] = 1

μ0
(L[2]χ0,wn) = 1

μ0
(L[αn]χ0,wn) + o(1) = 1

μ0
(χ0,L[αn]wn) + o(1),

and thus limn→+∞
∫

wnχ0,[2] = 0. Since ‖wn‖H 1 = 1, we find a contradiction for n large enough.
Therefore, there exists α0 ∈ [1,2) so that there is one and only one solution of (9) satisfying the properties of

Proposition 1. See [5] for a general proof.
(ii) Variational characterization. It follows from the arguments of the proof of Proposition 1. Indeed, for such a

function u, |u| is a minimizer of J1 and satisfies the same equation as Q. By the uniqueness result of (i), it follows
that |u| is a translation of Q. Thus, u being continuous, it is a translation of Q or −Q.

Using a similar argument and possibly taking α0 closer to 2, we can prove directly that Ker(L[α]) = span{Q′[α]} for
α ∈ [α0,2].

(iii) Now, we prove the linear Liouville property for α close to 2. The proof is by contradiction and similar to
(i), using a compactness argument. For the sake of contradiction, we assume that there exists an increasing sequence
αn → 2 and functions wn(t, x) satisfying

(wn)t = (L[αn]wn)x,

wn(t) �≡ an(t)Q
′[αn], sup

t∈R

∥∥wn(t)
∥∥

H
αn
2

� Cn,

∀ε > 0, ∃Bn(ε) > 0, ∀t ∈ R,

∫
|x|>Bn(ε)

∣∣wn(t, x)
∣∣2

dx � ε.

We introduce several auxiliary functions defined from wn. First, set

w̃n(t) = wn(t) −
∫

Q′[αn]wn(t)∫
(Q′[αn])2

Q′[αn],

satisfying
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(w̃n)t = (L[αn]w̃n)x + δn(t)Q
′[αn],

w̃n(t) �≡ 0, sup
t∈R

∥∥w̃n(t)
∥∥

H
αn
2

� C′
n,

∫
w̃n(t)Q

′[αn] = 0,

∀ε > 0, ∃Bn(ε) > 0, ∀t ∈ R,

∫
|x|>Bn(ε)

∣∣w̃n(t, x)
∣∣2

dx � ε.

Moreover, using monotonicity arguments on w̃n(t) as in Section 4 of the present paper and Lemma 4 in [17], we find
(αn > 3/2)

∀x0 > 1, ∀t ∈ R,

∫
|x|>x0

∣∣w̃n(t, x)
∣∣2

dx � sup
t∈R

∥∥w̃n(t)
∥∥2

L2

C

|x0| 3
2

.

In particular, by Fubini, we obtain

∀t ∈ R,

∫
|x|∣∣w̃n(t)

∣∣2 � C sup
t∈R

∥∥w̃n(t)
∥∥2

L2 .

Multiplying the equation of w̃n by xw̃n and using the argument of Lemma 3, we find, for C > 0,

d

dt

∫
x
(
w̃n(t)

)2 � −C
∥∥|D| α

2 w̃n(t)
∥∥2

L2 + C′∥∥w̃n(t)
∥∥2

L2 ,

and thus, for all t ∈ R,
∫ t+1
t

‖|D| α
2 w̃n(t)‖2

L2 � C supt∈R ‖w̃n(t)‖2
L2 . Therefore, from standard arguments, using the

equation of w̃n,

sup
t∈R

∥∥w̃n(t)
∥∥

H
αn
2

� C sup
t∈R

∥∥w̃n(t)
∥∥

L2 ,

for a constant C > 0 independent of n.
Let tn be such that ‖w̃n(tn)‖L2 � 1

2 supt∈R ‖w̃n(t)‖L2 and set

w̄n(t, x) = w̃n(tn + t, x)

supt∈R ‖w̃n(t)‖L2
,

so that we have

(w̄n)t = (L[αn]w̄n)x + δ̄n(t)Q
′[αn],∥∥w̄n(0)

∥∥
L2 � 1

2
, sup

t∈R

∥∥w̄n(t)
∥∥

H
αn
2

� C,

∫
w̄n(t)Q

′[αn] = 0,

δ̄n(t) = 1∫
(Q′[αn])2

∫
w̄nL[αn]

(
Q′′[αn]

)
,

∀x0 > 1, ∀t ∈ R,

∫
|x|>x0

∣∣w̄n(t, x)
∣∣2

dx � C

|x0| 3
2

.

Finally, we set

ŵn(t) = w̄n(t) − Q′[αn]

t∫
0

δ̄n(s) ds,

so that

(ŵn)t = (L[αn]ŵn)x,∥∥ŵn(0)
∥∥

L2 � 1

2
,

∥∥ŵn(0)
∥∥

H
αn
2

� C,

∫
ŵn(0)Q′[αn] = 0,

∀x0 > 1,

∫ ∣∣ŵn(0, x)
∣∣2

dx � C

|x0| 3
2

.

|x|>x0
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We are now able to pass to the strong limit in H 1−
, for any 0 < 1− < 1.

ŵn(0) → ŵ0 �≡ 0,

and we define the solution ŵ(t) of

(ŵ)t = (L[2]ŵ)x, ŵ(0) = ŵ0.

By well-posedness argument in H 1−
, we have ŵn(t) → ŵ(t) in H 1−

. Moreover,

δ̄n(t) → δ̄(t) = 1∫
(Q′[2])2

∫
ŵ(t)L[2]

(
Q′′[2]

)
.

Set w̄(t) = ŵ(t) + Q′[2]
∫ t

0 δ̄(s) ds. Then

∀t ∈ R, w̄n(t) → w̄(t) in H 1−
,

w̄t = (L[2]w̄)x + δ̄Q′[2],

w̄(0) �≡ 0,

∫
w̄(0)Q′[2] = 0,

∀t ∈ R, ∀x0 > 1,

∫
|x|>x0

∣∣w̄(t, x)
∣∣2

dx � C

|x0| 3
2

.

But the existence of such a w̄ is a contradiction with Theorem 1 in [17], i.e. the linear Liouville property for the gKdV
case (see also [19]). �
4. Modulation and monotonicity for solutions close to solitons

In this section, we consider 1 � α � 2 and Q is the ground state solution of (9).

4.1. Modulation

Lemma 5 (Modulation of a solution close to the family of solitons). There exist C,ε0 > 0 such that for any 0 < ε < ε0,
if u(t) is an H

α
2 solution of (1) such that for t1 < t2 and λ0(t) > 0, ρ0(t) ∈ R, defined on [t1, t2],

∀t ∈ [t1, t2],
∥∥u(t) − Qλ0(t)

(
. − ρ0(t)

)∥∥
H

α
2

< ε, (43)

then there exist λ(t) > 0, ρ(t) ∈ C1([t1, t2]) such that

η(t, y) = λ
1
α (t)u

(
t, λ

2
α (t)y + ρ(t)

) − Q(y) (44)

satisfies

∀t ∈ [t1, t2],
∫

Q′(y)η(t, y) dy =
∫

χ0(y)η(t, y) dy = 0,
∥∥η(t)

∥∥
H

α
2

� Cε, (45)∣∣∣∣λ0(t)

λ(t)

∣∣∣∣ + ∣∣ρ0(t) − ρ(t)
∣∣ � Cε. (46)

Moreover, setting

s =
t∫

0

dt ′

λ2+ 2
α (t ′)

, Λη = 1

α
(η + 2yηy),

the function η(s, x) is a solution of

ηs − ∂y(Lη) = λs

λ
ΛQ +

(
ρs

λ
2
α

− 1

)
Q′ + λs

λ
Λη +

(
ρs

λ
2
α

− 1

)
ηy − ∂y

(
R(η)

)
,

where R(η) = 1 |Q + η|2α(Q + η) − 1
Q2α+1 − Q2αη,
2α + 1 2α + 1
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and the following holds∣∣∣∣ ρs(s)

λ
2
α (s)

− 1

∣∣∣∣ +
∣∣∣∣λs(s)

λ(s)

∣∣∣∣ � C

( ∫
η2(s, y)

1 + y2
dy

) 1
2

� C
∥∥η(s)

∥∥
L2 . (47)

Sketch of the proof of Lemma 5. This result is completely proved for α = 2 in [18]. For 1 � α < 2, the proof is
exactly the same. In particular, the existence of the modulation parameters (λ(t), ρ(t)) such that (45) hold is based on
the implicit function theorem.

Then, the equation of η(t), λ(t) and ρ(t) is easily obtained from the equation of u(t), and the estimates (47) on λs ,
ρs follow from the equation of η multiplied by χ0 and Q′. Indeed, let us first introduce

v(t, y) = λ
1
α (t)u

(
t, λ

2
α y + ρ(t)

)
.

Then, v(t, y) satisfies

λ
2α+2

α vt − ∂y

(|D|αv
) + |v|2α∂yv − λ

2α+2
α

λt

λ
Λv − λ

2α+2
α

ρt

λ
2
α

∂yv = 0.

Using the new time variable s, since λ
2α+2

α ds = dt ,

vs − ∂y

(
|D|αv + v − 1

1 + 2α
|v|2αv

)
= λs

λ
Λv +

(
ρs

λ
2
α

− 1

)
∂yv.

Now, expanding v = Q + η and using the equation of Q, we find

ηs − ∂y(Lη) = λs

λ
ΛQ +

(
ρs

λ
2
α

− 1

)
Q′ + λs

λ
Λη +

(
ρs

λ
2
α

− 1

)
ηy

− ∂y

(
1

2α + 1
|Q + η|2α(Q + η) − 1

2α + 1
Q2α+1 − Q2αη

)
.

To prove (47), we multiply the above equation by χ0 and then by Q′ and we use the orthogonality conditions (45).
Indeed, using decay properties of χ0 and Q′ (proved as in Proposition 1(iv) and (ΛQ,χ0) = − 1

μ0
(ΛQ,Lχ0) =

2
μ0

(Q,χ0) �= 0, (Q′, χ0) = 0, (ΛQ,Q′) = 0, we obtain∣∣∣∣λs

λ

∣∣∣∣ +
∣∣∣∣ ρs

λ
2
α

− 1

∣∣∣∣ � C

( ∫
η2

1 + y2
dy

) 1
2 + C

(∣∣∣∣λs

λ

∣∣∣∣ +
∣∣∣∣ ρs

λ
2
α

− 1

∣∣∣∣)‖η‖L2,

and for ε0 small enough, we obtain (47). �
4.2. Monotonicity argument on u(t)

This section contains the main new argument of this paper, i.e. the extension to Eq. (1) of the L2 monotonicity
arguments proved in [19,22] for the gKdV equation and in [11] for the BO equation. With respect to the gKdV case,
the difficulty comes from the nonlocal character of the operator in (1). Note that in [11], using special symmetry
arguments and harmonic extensions, we could overcome the difficulty created the nonlocal operator |D|. For the
general case of Eq. (1) with 1 < α < 2, we can prove similar results using pseudo-differential operators tools. This is
the objective of this section.

Using the standard notation 〈x〉2 = 1 + x2, we set, for 1
2 < r � 1

2 (α + 1) to be chosen later

ϕ(x) =
x∫

−∞

ds

〈s〉2r
, φ(x) = 1

〈s〉r = √
ϕ′.

For A > 1 to be chosen, let

ϕA(x) = ϕ

(
x

A

)
.

We now claim the following L2 monotonicity results.



C.E. Kenig et al. / Ann. I. H. Poincaré – AN 28 (2011) 853–887 869
Proposition 4. Let r ∈ ( 1
2 , 1

2 (α + 1)] and 0 < μ < 1. Under the assumptions of Lemma 5, assuming in addition

∀t ∈ [t1, t2], λ(t) � 2 (48)

for ε0 = ε0(μ, r) small enough and A = A(μ, r) large enough, there exists C0 = C(μ, r,A) > 0 such that for all
x0 > 1,

(i) Monotonicity on the right of the soliton:∫
u2(t2, x)ϕA(x − ρ(t2) − x0) dx

�
∫

u2(t1, x)ϕA

(
x − ρ(t1) − μ

(
ρ(t2) − ρ(t1)

) − x0
)
dx + C0

x2r−1
0

. (49)

(ii) Monotonicity on the left of the soliton:∫
u2(t2, x)ϕA

(
x − ρ(t2) + μ

(
ρ(t2) − ρ(t1)

) + x0
)
dx

�
∫

u2(t1, x)ϕA

(
x − ρ(t1) + x0

)
dx + C0

x2r−1
0

. (50)

The case α = 1 is treated in [11] by different techniques. For α = 2, the error term is in fact exponential in x0. See
e.g. [19].

Proof. Let u(t) be a solution of (1) under the assumptions of Lemma 5. By standard regularization arguments (density
arguments and continuous dependence of the solution of (1) upon the initial data), we may assume that u(t) is smooth
(see Remark 2). We prove (49). Estimate (50) is then deduced from (49), L2-norm conservation and the symmetry
x → −x, t → −t of the equation.

For 0 < μ < 1, x0 > 1 and any t ∈ [t1, t2], x ∈ R, set

x̃ = x − x0 − ρ(t) − μ
(
ρ(t2) − ρ(t)

)
, Mϕ(t) = Mϕ,A,x0,t2(t) = 1

2

∫
u2(t, x)ϕA(x̃) dx.

By direct computations, we have the following generalization of the well-known Kato identity [10]

d

dt
Mϕ(t) = μ − 1

2
ρt

∫
u2ϕ′

A(x̃) dx +
∫

utuϕA(x̃) dx (51)

= μ − 1

2
ρt

∫
u2ϕ′

A(x̃) dx −
∫ (

∂x

(−|D|αu
) + |u|2αux

)
uϕA(x̃) dx

= μ − 1

2
ρt

∫
u2ϕ′

A(x̃) dx +
∫ (−|D|αu

)(
uxϕA(x̃) + uϕ′

A(x̃)
)
dx

+ 1

2(α + 1)

∫
|u|2α+2ϕ′

A(x̃) dx. (52)

Two terms in the right-hand side of (52) are treated by the following two lemmas.

Lemma 6. Let α ∈ [1,2], and r ∈ ( 1
2 , 1

2 (α + 1)]. There exists C > 0 such that, for all u ∈ S ,∫ (−|D|αu
)
uxϕ(x) � − (α − 1)

2

∫ (|D| α
2 (φu)

)2 + C

∫
u2ϕ′(x) dx.

Lemma 7. Let α ∈ [1,2], and r ∈ ( 1
2 , 1

2 (α + 1)]. There exists C > 0 such that, for all u ∈ S ,∫ (−|D|αu
)
uϕ′(x) dx � −

∫ (|D| α
2 (φu)

)2 + C

∫
u2ϕ′(x) dx.
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Assuming Lemmas 6–7, we finish the proof of the proposition. First, note that from Lemmas 6 and 7, by changing
variables (x′ = x/A), we find for any u ∈ S ,∫ (−|D|αu

)
uxϕA(x) � − (α − 1)

2

∫ (|D| α
2
(
u

√
ϕ′

A

))2 + C

Aα

∫
u2ϕ′

A(x)dx, (53)∫ (−|D|αu
)
uϕ′

A(x)dx � −
∫ (|D| α

2
(
u

√
ϕ′

A

))2 + C

Aα

∫
u2ϕ′

A(x)dx. (54)

By (52), (53), (54), we find

M ′
ϕ(t) � −1

2

(
ρt (1 − μ) − C

Aα

)∫
u2(t)ϕ′

A(x̃) dx + 1

2(α + 1)

∫
|u|2α+2ϕ′

A(x̃) dx.

Note that from (47) for ε0 small enough

1

λ2

∣∣∣∣ ρs

λ
2
α

− 1

∣∣∣∣ =
∣∣∣∣ρt − 1

λ2

∣∣∣∣ � 1

10

1

λ2
.

In particular, since λ < 2, ρt > 1/5. Choosing A large enough, we find

M ′
ϕ(t) � −1 − μ

4
ρt

∫
u2(t)ϕ′

A(x̃) dx + 1

2(α + 1)

∫
|u|2α+2ϕ′

A(x̃) dx.

The constant A > 0 is now fixed.
Now, we estimate the nonlinear term as in [19], using the decomposition (44) and the decay of Q (34). Let a0 to

be fixed later. We decompose the nonlinear term as follows∫
|u|2α+2ϕ′

A(x̃) dx = I + II,

where

I =
∫

|x−ρ(t)|>a0

|u|2α+2ϕ′
A(x̃) dx and II =

∫
|x−ρ(t)|<a0

|u|2α+2ϕ′
A(x̃) dx.

On the one hand

I �
∥∥u(t)

∥∥2α

L∞(|x−ρ(t)|>a0)

∫
u2ϕ′

A(x̃)

� C
(‖Qλ(t)‖2α

L∞(|x|>a0) + ∥∥λ− 1
α η

(
t, λ− 2

α .
)∥∥2α

L∞(|x|>a0)

)∫
u2ϕ′

A(x̃)

� Cλ−2(t)
(‖Q‖2α

L∞(|y|�2− 2
α a0)

+ ‖η‖2α
L∞

)∫
u2ϕ′

A(x̃)

� Cρt

(‖Q‖2α

L∞(|y|�2− 2
α a0)

+ ‖η‖2α

H
α
2

)∫
u2ϕ′

A(x̃) � 1 − μ

8
ρt

∫
u2ϕ′

A(x̃),

for a0 large enough and ε0 small enough (recall that λ(t) � 2, 1 � α � 2).
On the other hand, a0 being now fixed, by (44) and (47),∥∥u(t)

∥∥2α

L∞ � C

λ2(t)
� C′ρt .

Thus, by the definition of ϕA

II �
∥∥u(t)

∥∥2
L2

∥∥u(t)
∥∥2α

L∞
∥∥ϕ′

A(x̃)
∥∥

L∞(|x−ρ(t)|<a0)
� Cρt

〈
x0 + μ

(
ρ(t2) − ρ(t)

)〉−2r
.

Estimate (49) is thus obtained by integration on [t1, t2]. �
Now, we prove Lemmas 6–7.
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Proof of Lemma 6. We use commutator arguments and pseudo-differential operators tools. We recall here some
well-known results which can be found for instance in Hörmander [9, Chapter 18]. For simplicity we denote by
(u|v) = ∫

u(x)v(x) dx and ‖u‖2 = (u|u).
We denote by Sm,q the symbolic class of symbol defined by

a(x, ξ) ∈ Sm,q ⇔
{

a ∈ C∞(
R2),

∀k,β ∈ N, ∃Ck,β > 0 such that
∣∣∂k

x ∂
β
ξ a(x, ξ)

∣∣ � Ck,β〈x〉q−k〈ξ〉m−β.
(55)

Following Hörmander’s notation, we have Sm,q = S(〈x〉q〈ξ〉m,g) where g = dx2

〈x〉2 + dξ2

〈ξ〉2 . We define the operator
associated to a by the following formula for u ∈ S ,

a(x,D)u = 1

2π

∫
eixξ a(x, ξ)û(ξ) dξ (56)

where the Fourier transform is defined by û(ξ) = ∫
e−ixξ u(x) dx. We recall here some results about the pseudo-

differential calculus.

Let a(x, ξ) ∈ Sm,q, ∃C > 0, ∀u ∈ S then
∥∥a(x,D)u

∥∥ � C
∥∥〈x〉q〈D〉mu

∥∥. (57)

Let a(x, ξ) ∈ Sm,q, there exists b(x, ξ) ∈ Sm,q such that a(x,D)∗ = b(x,D)

moreover, there exists r0(x, ξ) ∈ Sm−3,q−3 such that

b(x, ξ) = a(x, ξ) + 1

i
∂x∂ξ a(x, ξ) − 1

2
∂2
x ∂2

ξ a(x, ξ) + r0(x, ξ). (58)

We recall that A∗ is the unique operator satisfying for all u and v in S , (Au|v) = (u|A∗v). We remark that
∂x∂ξ a(x, ξ) ∈ Sm−1,q−1 and ∂2

x ∂2
ξ a(x, ξ) ∈ Sm−2,q−2.

Let a(x, ξ) ∈ Sm,q and b(x, ξ) ∈ Sm′,q ′
then there exists c(x, ξ) ∈ Sm+m′,q+q ′

such that a(x,D)b(x,D) = c(x,D). (59)

Remark that following (56), we have a(x,D)D = c(x,D) where c(x, ξ) = a(x, ξ)ξ .

Let a(x, ξ) ∈ Sm,q and b(x, ξ) ∈ Sm′,q ′
then there exists c(x, ξ) ∈ Sm+m′−1,q+q ′−1

such that
[
a(x,D), b(x,D)

] = c(x,D) moreover

there exists r0(x, ξ) ∈ Sm+m′−2,q+q ′−2 such that c(x, ξ) = 1

i
{a, b}(x, ξ) + r0(x, ξ). (60)

We recall for operators A and B we have [A,B] = AB − BA and {a, b} = ∂ξ a∂xb − ∂xa∂ξb. In some cases we have
exact formula, for instance [D,a(x,D)] = 1

i
(∂xa)(x,D).

In Lemma 6 u is real-valued but it is convenient to write the integral in the following form∫ (−|D|αu
)
uxϕ(x) = Im

(
ϕ(x)Du||D|αu

) = − i

2

((|D|αϕD − Dϕ|D|α)
u|u)

. (61)

Let χ ∈ C∞
0 (R) such that 0 � χ � 1, χ(ξ) = 1 if |ξ | � 1 and χ(ξ) = 0 if |ξ | � 2. We set

T = |D|αϕD − Dϕ|D|α = T1 + T2 where

T1 = |D|α(
1 − χ(D)

)
ϕD − Dϕ

(
1 − χ(D)

)|D|α,

T2 = |D|αχ(D)ϕD − Dϕχ(D)|D|α. (62)

The proof of Lemma 6 follows from (61), (62) and the two following claims.

Claim 1. There exists C > 0 such that for all u ∈ S we have

i(T1u|u) = (α − 1)
(
φ|D|α(

1 − χ(D)
)
φu|u) + R (63)

where R satisfies |R| � C‖φu‖2.
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Claim 2. There exists C > 0 such that for all u ∈ S we have

i(T2u|u) = (α − 1)
(
φ|D|αχ(D)φu|u) + R (64)

where R satisfies |R| � C‖φu‖2.

Proof of Claim 1. In the following we set a(x, ξ) = ϕ(x)|ξ |α(1 − χ(ξ)) and we have a(x, ξ) ∈ Sα,0. With this
notation we have T1 = a(x,D)∗D − Da(x,D). Following (58), the symbol of a(x,D)∗ is a(x, ξ) + 1

i
∂x∂ξ a(x, ξ) −

1
2∂2

x ∂2
ξ a(x, ξ) + r0(x, ξ) where r0(x, ξ) ∈ Sα−3,−3. We obtain, following (60) and remark below,

T1 = [
a(x,D),D

] + 1

i
(∂x∂ξ a)(x,D)D − 1

2

(
∂2
x ∂2

ξ

)
a(x,D)D + r1(x,D)

= i(∂xa)(x,D) + 1

i
(∂x∂ξ a)(x,D)D − 1

2

(
∂2
x ∂2

ξ a
)
(x,D)D + r1(x,D) (65)

where r1(x, ξ) = r0(x, ξ)ξ ∈ Sα−2,−3 ⊂ S0,−2r . We have, by (57)∣∣(r1(x,D)u|u)∣∣ = ∣∣(〈x〉r r1(x,D)u|〈x〉−ru
)∣∣ � C

∥∥∥∥ u

〈x〉r
∥∥∥∥2

(66)

because 〈x〉r r1(x,D) = r2(x,D) where r2(x, ξ) ∈ S0,−r .
We remark that the symbol of (∂2

x ∂2
ξ a)(x,D)D is real-valued, we can apply the following claim.

Claim 3. Let b(x, ξ) ∈ Sm,q , real-valued then there exists C > 0 such that for all u ∈ S , we have∣∣Im(
b(x,D)u|u)∣∣ � C

∥∥〈x〉 q−1
2 〈D〉m−1

2 u
∥∥2

. (67)

By definition (T1u|u) = 2i Im(Du|a(x,D)u), it is sufficient to consider the imaginary part of the term of (65). In
particular Im((∂2

x ∂2
ξ a)(x,D)Du|u) and we have (∂2

x ∂2
ξ a)(x, ξ)ξ ∈ Sα−1,−2. Claim 3 gives

∣∣Im((
∂2
x ∂2

ξ a
)
(x,D)Du|u)∣∣ � C

∥∥〈x〉− 3
2 〈D〉 α−2

2 u
∥∥2 � C

∥∥∥∥ u

〈x〉r
∥∥∥∥2

(68)

following (57) and 〈x〉− 3
2 〈ξ〉 α−2

2 ∈ S
α−2

2 ,− 3
2 ⊂ S0,−2r .

Proof of Claim 3. We have 2i Im(b(x,D)u|u) = ((b(x,D)− b(x,D)∗)u|u). By (58) we have b(x,D)∗ = b(x,D)+
r0(x,D) where r0(x, ξ) ∈ Sm−1,q−1. We have 2i Im(b(x,D)u|u) = (〈x〉− q−1

2 〈D〉− m−1
2 r0(x,D)u|〈x〉 q−1

2 〈D〉m−1
2 u)

and following (59) 〈x〉− q−1
2 〈D〉− m−1

2 r0(x,D) = c(x,D) where c(x, ξ) ∈ S
m−1

2 ,
q−1

2 . We conclude by (57). �
Following (65), (66), (68) and notation of Claim 1, we have

(T1u|u) = (
i
(
(∂xa)(x,D) − (∂x∂ξ a)(x,D)D

)
u|u) + R. (69)

We have

(∂xa)(x, ξ) − (∂x∂ξ a)(x, ξ)ξ = ϕ′(x)|ξ |α(
1 − χ(ξ)

)
− αϕ′(x)|ξ |α−2|ξ |2(1 − χ(ξ)

) + ϕ′(x)|ξ |αχ ′(ξ)

= (1 − α)ϕ′(x)|ξ |α(
1 − χ(ξ)

) + ϕ′(x)|ξ |αχ ′(ξ). (70)

We have ϕ′(x)|ξ |αχ ′(ξ) ∈ S0,−2r because χ ′ is compact supported in R \ 0. We have∣∣(ϕ′(x)
)|D|αχ ′(D)u|u)∣∣ = ∣∣(〈x〉rϕ′(x)

)|D|αχ ′(D)u|〈x〉−ru)
∣∣ � C

∥∥∥∥ u

〈x〉r
∥∥∥∥2

(71)

following (59) and (57). By (69), (70) and (71), we obtain
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(T1u|u) = (1 − α)
(
iφ2|D|α(

1 − χ(D)
)
u|u) + R

= (1 − α)
((

iφ|D|α(
1 − χ(D)

)
φu|u) + (

iφ
[
φ, |D|α(

1 − χ(D)
)]

u|u)) + R. (72)

Following (60), we have i[φ, |D|α(1 − χ(D))] = c(x,D) + r0(x,D) where c(x, ξ) = {φ, |ξ |α(1 − χ(ξ))} =
−φ′(x)∂ξ (|ξ |α(1 − χ(ξ))) and r0(x, ξ) ∈ Sα−2,−r−2 ⊂ S0,−r then |(r0(x,D)u|φu)| � C‖〈x〉−ru‖2. We have
φ(x)c(x, ξ) ∈ Sα−1,−2r−1 ⊂ S1,−2r+1 and real-valued, we can apply Claim 3 to obtain | Im(φ(x)c(x,D)u|u)| �
C‖〈x〉−ru‖2. With (72), this proves Claim 1. �
Proof of Claim 2. Since [D,a(x,D)] = 1

i
(∂xa)(x,D) for any a(x,D),

T2 = |D|αDχ(D)ϕ(x) − ϕ(x)|D|αDχ(D) + i|D|αχ(D)ϕ′(x) + iϕ′(x)|D|αχ(D)

= [|D|αDχ(D),ϕ(x)
] + 2iφ|D|αχ(D)φ + i

[[|D|αχ(D),φ
]
, φ

] = A1 + A2 + A3. (73)

We remark that D|D|αχ(D)u = g ∗ u where ĝ(ξ) = |ξ |αξχ(ξ).

Claim 4. Let A1 = [|D|αDχ(D),ϕ], then there exists C > 0 such that for all u ∈ S ,

i(A1u|u) = (α + 1)
(
φ|D|αχ(D)φu|u) + R (74)

where |R| � C‖〈x〉−ru‖2. In particular,

i
(
(A1 + A2)u|u) = (α − 1)

(
φ|D|αχ(D)φu|u) + R. (75)

Proof. We have, by a direct computation [|D|αDχ(D),ϕ]u(x) = ∫
g(x −y)(ϕ(y)−ϕ(x))u(y) dy. To prove Claim 4

we need the following two claims, proved below.

Claim 5. There exists C > 0 such that we have

ϕ(y) − ϕ(x) = y − x

〈x〉r 〈y〉r + Q(x,y) (76)

where Q(x,y) satisfies∣∣Q(x,y)
∣∣ � C

|x − y|2
(〈x〉 + 〈y〉)2r+1

if |x − y| � 1

2

(〈x〉 + 〈y〉), (77)∣∣Q(x,y)
∣∣ � C + C

|x − y|
〈x〉r 〈y〉r if |x − y| � 1

2

(〈x〉 + 〈y〉). (78)

We remark that if |x − y| � 1
2 (〈x〉 + 〈y〉) then 〈x〉 ∼ 〈y〉 and if |x − y| � 1

2 (〈x〉 + 〈y〉) then 〈x − y〉 ∼ |x − y| ∼
〈x〉 + 〈y〉.

Claim 6. Let Ku(x) = ∫
Q(x,y)g(x − y)u(y) dy, there exists C > 0 such that for all u ∈ S we have∣∣(Ku|u)

∣∣ � C
∥∥〈x〉−ru

∥∥2
. (79)

Following Claims 5 and 6, we have A1u = φ(h ∗ (φu)) + Ru where |(Ru|u)| � C‖〈x〉−ru‖2 and h(x) = −xg(x).
By definition of g we have

h(x) = 1

2π

∫
−xeixξ ξ |ξ |αχ(ξ) dξ

= i

2π

∫
∂ξ

(
eixξ

)
ξ |ξ |αχ(ξ) dξ

= −i

2π

∫
eixξ ∂ξ

(
ξ |ξ |αχ(ξ)

)
dξ. (80)

In the last equality we use that ξ |ξ |α is a C1 function, and we have ∂ξ (ξ |ξ |αχ(ξ)) = (α + 1)|ξ |αχ(ξ) + ξ |ξ |αχ ′(ξ).
Then we have h(x) = h1(x) + h2(x) where ĥ1(ξ) = −i(α + 1)|ξ |αχ(ξ) and ĥ2(ξ) = −iξ |ξ |αχ ′(ξ). We have φ(h1 ∗
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(φu)) = −i(α + 1)(φ|D|αχ(D)φu)(x). This term gives the first term of the right-hand side of (74). We have φ(h2 ∗
(φu)) = (φD|D|αχ ′(D)φu)(x) and by (59), D|D|αχ ′(D)φ is an operator with symbol in S0,−r (we recall χ ′ is
supported in 1 � |ξ | � 2), we have by (57), |(D|D|αχ ′(D)φu|φu)| � C‖〈x〉−ru‖2. This proves Claim 4. �
Proof of Claim 5. By definition ϕ is bounded then (78) is obvious. We have ϕ(y)−ϕ(x) = ∫ y

x
1

〈s〉2r ds then Q(x,y) =∫ y

x
( 1
〈s〉2r − 1

〈x〉r 〈y〉r ) ds. We have

1

〈s〉2r
− 1

〈x〉r 〈y〉r = 1

〈s〉r
(

1

〈s〉r − 1

〈x〉r
)

+ 1

〈x〉r
(

1

〈s〉r − 1

〈y〉r
)

. (81)

We have 〈s〉 � 〈x〉+ 〈y〉 because s ∈ [x, y], and 〈s〉 � inf(〈x〉, 〈y〉) ∼ 〈x〉 ∼ 〈y〉 ∼ 〈x〉+ 〈y〉 if |x − y| � 1
2 (〈x〉+ 〈y〉).

To prove (77), it is sufficient to prove∣∣∣∣ 1

〈s〉r − 1

〈x〉r
∣∣∣∣ � C

|s − x|
〈x〉r+1

. (82)

Writing 1
〈s〉r − 1

〈x〉r = ∫ s

x
ψ(t) dt where ψ(t) = ∂t (

1
〈t〉r ), we have |ψ(t)| � C 1

〈t〉r+1 , this gives (82). �
Proof of Claim 6. Writing ((Ku)(x)|u(x)) = (〈x〉rK(〈y〉r 〈y〉−ru)(x)|〈x〉−ru(x)), it is sufficient to prove that
〈x〉rK(〈y〉rv)(x) defines a bounded operator on L2. The kernel of this operator is H(x,y) = 〈x〉r 〈y〉rQ(x, y)g(x −
y) = H1(x, y) + H2(x, y), where H1 and H2 are H restricted respectively to the regions |x − y| � 1

2 (〈x〉 + 〈y〉) and
|x − y| � 1

2 (〈x〉 + 〈y〉). Following Lemma A.2, we have |g(x − y)| � C

〈x−y〉α+2 .
From Claim 5 we have∣∣H1(x, y)

∣∣ � C
〈x〉r 〈y〉r |x − y|2

〈x − y〉α+2(〈x〉 + 〈y〉)2r+1

� C

〈x − y〉α(〈x〉 + 〈y〉)
� C

〈x − y〉α+1
(83)

and ∣∣H2(x, y)
∣∣ � C

〈x〉r 〈y〉r
〈x − y〉α+2

(
C + C|x − y|

〈x〉r 〈y〉r
)

� C
〈x〉r 〈y〉r

〈x − y〉α+2
+ C

〈x − y〉α+1
= H3(x, y) + H4(x, y). (84)

We claim
∫

H3(x, y) dy � C (and by symmetry
∫

H3(x, y) dx � C). Indeed,∫
H3(x, y) dy �

∫
|y|<|x|

H3(x, y) dy +
∫

|y|>|x|
H3(x, y) dy

� C〈x〉r−(α+2)

∫
|y|<|x|

〈y〉r dy + C〈x〉r
∫

|y|>|x|
〈y〉r−(α+2) dy � C〈x〉2r−(α+1) � C.

The same estimate is trivially true for H1 and H4. Thus, by Schur’s lemma, the operator with kernel H is bounded
on L2. �
Claim 7. Let A3 = i[[|D|αχ(D),φ], φ], there exists C > 0 such that for all u ∈ S we have∣∣(A3u|u)

∣∣ � C
∥∥〈x〉−ru

∥∥2
. (85)

Proof. We set h(x) = 1
2π

∫
eixξ |ξ |αχ(ξ) dξ . Following Lemma A.2, there exists C > 0 such that |h(x)| � C

〈x〉α+1 . We

have [[|D|αχ(D),φ], φ]u = ∫
h(x − y)(φ(x) − φ(y))2u(y)dy. We need the following claim to continue.



C.E. Kenig et al. / Ann. I. H. Poincaré – AN 28 (2011) 853–887 875
Claim 8. There exists C > 0 such that∣∣φ(x) − φ(y)
∣∣ � C

|x − y|
(〈x〉 + 〈y〉)r+1

if |x − y| � 1

2

(〈x〉 + 〈y〉),∣∣φ(x) − φ(y)
∣∣ � 1

〈x〉r + 1

〈y〉r if |x − y| � 1

2

(〈x〉 + 〈y〉).
Proof. We have φ(x)− φ(y) = ∫ x

y
ζ(s) ds where ζ = ∂s(

1
〈s〉r ) and we have |ζ(s)| � C

〈s〉r+1 . If |x − y| � 1
2 (〈x〉+ 〈y〉),

we have 〈s〉 ∼ 〈x〉 ∼ 〈y〉 ∼ 〈x〉 + 〈y〉, this gives the first inequality. The second one is obvious. �
We argue as in the proof of Claim 6. Let R(x, y) = 〈x〉rh(x − y)(φ(x)− φ(y))2〈y〉r = R1(x, y)+ R2(x, y) where

R1 and R2 are R restricted respectively to the regions |x −y| � 1
2 (〈x〉+〈y〉) and |x −y| � 1

2 (〈x〉+〈y〉). It is sufficient
to prove that R defines a bounded operator on L2.

We have∣∣R1(x, y)
∣∣ � C

〈x〉r 〈y〉r |x − y|2
〈x − y〉α+1(〈x〉 + 〈y〉)2r+2

� C

〈x − y〉α+1
(86)

and ∣∣R2(x, y)
∣∣ � C

〈x〉r 〈y〉r
〈x − y〉α+1

(
1

〈x〉2r
+ 1

〈y〉2r

)
� C〈x〉r

〈x − y〉α+1〈y〉r + C〈y〉r
〈x − y〉α+1〈x〉r = R3(x, y) + R4(x, y). (87)

By symmetry, it is now sufficient to prove that R3 defines a bounded operator on L2. We have∫
R3(x, y)〈x〉− 1

2 dx � C〈y〉−r and
∫

R3(x, y)〈y〉−r dy � C〈x〉− 1
2 (88)

if r � α+1
2 . Using a variant of Schur’s lemma (see e.g. [8, Theorem 5.2]), the operator with kernel R(x, y) is bounded

on L2. �
By (73), Claims 4 and 7 we obtain i(T2u|u) = (α − 1)(φ|D|αχ(D)φu|u) + R where R satisfies the required

estimates to prove Claim 2. �
Lemma 6 follows from Claims 1 and 2. �

Proof of Lemma 7. We have∫ (−|D|αu
)
uϕ′ dx = (−φ2|D|αu|u) = (−φ|D|αφu|u) − (

φ
[
φ, |D|α]

u|u)
. (89)

As the left-hand side is real, we can take the real part of the last term and we have

2 Re
(
φ
[
φ, |D|α]

u|u) = (
φ
[
φ, |D|α]

u|u) + (
u|φ[

φ, |D|α]
u
)

= (
φ
[
φ, |D|α]

u|u) − ([
φ, |D|α]

φu|u) = ([
φ,

[
φ, |D|α]]

u|u)
. (90)

By pseudo-differential calculus (60), the symbol of [φ, [φ, |D|α(1 − χ(D))]] is in Sα−2,−2r−2 ⊂ S0,−2r and then it
satisfies∣∣([φ,

[
φ, |D|α(

1 − χ(D)
)]]

u|u)∣∣ � C
∥∥〈x〉−ru

∥∥2
. (91)

The term ([φ, [φ, |D|αχ(D)]]u|u) � C‖〈x〉−ru‖2 by Claim 7. This proves that∫ (−|D|αu
)
uϕ′ dx � −∥∥|D| α

2 (φu)
∥∥2 + C

∥∥〈x〉−ru
∥∥2

, (92)

and completes the proof of Lemma 7. �
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4.3. Monotonicity result on η(t)

For future use, we also state a monotonicity result for η(t), restricted to the regular regime, i.e. the situation where
the solution stays close to a fixed soliton.

Proposition 5. Let r ∈ ( 1
2 , 1

2 (α+1)] and 0 < μ < 1. Under the assumptions of Lemma 5, with the restriction λ0(t) = 1,
for ε0 = ε0(μ, r) small enough and A = A(μ, r) large enough, there exists C = C(μ, r,A) > 0 such that for all
x0 > 1,∫

η2(s2, y)
[
ϕA

(
λ

2
α (s2)y − x0

) − ϕA(−x0)
]
dy

�
∫

η2(s1, y)
[
ϕA

(
λ

2
α (s1)y − x0 − μ(s2 − s1)

) − ϕA

(−x0 − μ(s2 − s1)
)]

dx

+ C

s2∫
s1

‖η(s)‖2
L2

(x0 + μ(s2 − s))2r
ds. (93)

Sketch of proof. Using Lemmas 6–7, the proof is similar to the one of Proposition 2 in [11], the only difference being
the additional scaling parameter λ(s) (close to 1) in the present situation. Let

ỹ = λ
2
α (s)y − x0 − μ(s2 − s), Mη(s) = 1

2

∫
η2(s)

[
ϕA(ỹ) − ϕA

(−x0 − μ(s2 − s)
)]

.

Using the equation of η(s) (see Lemma 5), Lemmas 6–7 and estimates on ϕA, as in [11], one finds

M ′
η(s) �

C‖η(s)‖2
L2

(x0 + μ(s2 − s))2r
,

and the result follows by integration on [s1, s2]. �
5. Nonlinear Liouville property and asymptotic stability

This section is devoted to the regular regime: we study rigidity properties of the nonlinear equation (1) in a neigh-
borhood of a soliton. In this section, α0 < α < 2, where α0 is given by Proposition 3 and Q denotes the ground state
solution of (9). Note that we could also work with a general 1 � α < 2, assuming the linear Liouville property.

5.1. Nonlinear Liouville property

Proposition 6 (Nonlinear Liouville property). Let α0 < α < 2. There exists ε > 0 such that if u(t) is a global (t ∈ R)
solution of (1) satisfying for some x0(t),

∀t ∈ R,
∥∥u(t) − Q

(
. − x0(t)

)∥∥
H

α
2

� ε, (94)

∀δ > 0, ∃B > 0, ∀t ∈ R,

∫
|x|>B

∣∣u(
t, x − x0(t)

)∣∣2
dx � δ, (95)

then u(t, x) ≡ Qλ0(x − x0 − λ−2
0 t) for some x0 ∈ R and some λ0 close to 1.

Proof. The proof of Proposition 6 is by contradiction. Assume that there exists a sequence un(t) of global H
α
2

solutions of (1) close to a translation of Q for all time and such that their decomposition parameters ηn(t), λn(t),
ρn(t) given by Lemma 5 satisfy

sup
s∈R

(∣∣λn(s) − 1
∣∣ + ∥∥ηn(s)

∥∥
H

α
2

) → 0 as n → +∞, (96)

ηn �≡ 0, (97)
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∀n, ∀δ, ∃Bn,δ > 0, ∀t ∈ R,

∫
|x|>Bn,δ

∣∣un

(
t, x + ρn(t)

)∣∣2
dx � δ. (98)

We follow the strategy of [11], proof of Theorem 2. Define 0 �≡ bn = sups∈R ‖ηn(s)‖L2 , bn → 0 as n → +∞. Then,
there exists sn such that ‖ηn(sn)‖L2 � 1

2bn. We set

wn(s, y) = ηn(sn + s, y)

bn

,

and we claim the following convergence result for the sequence (wn).

Lemma 8. There exists a subsequence of (wn), denoted (wn′) and w ∈ C(R,L2(R)) ∩ L∞(R,L2(R)) such that

∀s ∈ R, wn′(s) ⇀ w(s) in L2(R) weak as n → +∞.

Moreover, w(s) satisfies for some continuous functions β(s), γ (s),

ws = (Lw)y + β(s)Q′ + γ (s)ΛQ on R × R,

w �= 0,

∫
χ0w =

∫
Q′w = 0,

∀s ∈ R, ∀y0 > 1,

∫
|y|>y0

w2(s, y) dy � C

yα
0

.

Sketch of the proof of Lemma 8. We proceed as in [11, proof of Proposition 5].
Decay estimate. From Proposition 5 (with r = α+1

2 , s2 = s and s1 → −∞) and (98), it follows that

∀y0 > 1, ∀s ∈ R,

∫
|y|>y0

η2
n(s, y) dy � Cb2

n

yα
0

,

∫
|y|>y0

w2
n(s, y) dy � C

yα
0

. (99)

Local smoothing estimate. As in [11], we obtain using the equation of wn(s)

1∫
0

∫ ∣∣D α
2
(
wn(s, y)

√
ϕ′(y)

)∣∣2
dy ds � C. (100)

Compactness in L2. Following (99) and (100), there exists τn ∈ [0,1] and a subsequence of (wn) still denoted by
(wn), s0 ∈ [0,1] and ws0 ∈ L2 such that

wn(τn) → ws0 in L2, τn → s0 as n → +∞.

Moreover,
∫

ws0Q
′ = ∫

ws0χ0 = 0.

Next, note that

wns = ∂y(Lwn) − ∂y

(
1

bn

R(bnwn)

)
+ 1

bn

λns

λn

(ΛQ + bnΛwn) + 1

bn

(
ρns

λ
2
α
n

− 1

)
∂y(Q + bnwn)

= ∂y(Lwn) − ∂y

(
1

bn

R(bnwn)

)
+ βnQ

′ + γnΛQ + bnF
′
n + bnGn + bnβ̃nwny + bnγ̃nΛwn,

where

βn = 1∫
(Q′)2

∫
wnL

(
Q′′), β̃n = 1

bn

(
ρns

λ
2
α
n

− 1

)
, Fn = 1

bn

(β̃n − βn)Q,

γn = 1∫
ΛQχ

∫
wnL

(
χ ′

0

)
, γ̃n = 1

b

λns

λ
, Gn = 1

b
(γ̃n − γn)ΛQ.
0 n n n
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Set

w̃n(s) = wn(s) − ΛQ

s∫
τn

γn

(
s′)ds′ − Q′

s∫
τn

(
βn

(
s′) + 2

s′∫
τn

γn

(
s′′)ds′′

)
ds′,

then

w̃ns = ∂y(Lw̃n) − ∂y

(
1

bn

R(bnwn)

)
+ bnF

′
n + bnGn + bnβ̃nwny + bnγ̃nΛwn.

Consider w̃(s, y) the unique global solution of

w̃s = ∂y(Lw̃) on R × R, w̃(s0) = ws0 on R.

Then (see proof of Lemma 9 in [11]), we have

∀s ∈ R, w̃n(s) ⇀ w̃(s) in L2 weak.

Finally, Lemma 8 is proved with

w(s, y) = w̃(s, y) + ΛQ

s∫
s0

γ
(
s′)ds′ + Q′

s∫
s0

(
β
(
s′) + 2

s′∫
s0

γ
(
s′′)ds′′

)
ds′

where

γ (s) = 1∫
ΛQχ0

∫
w̃L

(
χ ′

0

)
, β(s) = 1∫

(Q′)2

∫ (
w̃ + ΛQ

s∫
s0

γ
(
s′)ds′

)
L

(
Q′′). �

We finish the proof of Proposition 6 by observing that the function w(s, y) constructed in Lemma 8 contradicts the
linear Liouville property, thus reaching the desired contradiction. Indeed, using the strategy of the proof of Corollary 1
in [17], we obtain

w(s, y) = a(t)ΛQ + b(t)Q′.

But since
∫

wχ0 = ∫
wQ′ = 0, we obtain a(t) = b(t) ≡ 0 and thus w ≡ 0, which is a contradiction. �

5.2. Asymptotic stability in the bounded regime

The next proposition is not used in the proof of Theorem 2 but it is stated as a consequence of Proposition 6 and
the monotonicity arguments of Section 4.

Proposition 7 (Asymptotic stability). Assume α0 < α � 2. There exists ε > 0 such that if u(t) is a global (t ∈ R)
solution of (1) satisfying

∀t ∈ R, inf
x0∈R

∥∥u(t) − Q(. − x0)
∥∥

H
α
2

� ε, (101)

then there exist λ(t) > 0, ρ(t) ∈ R such that

η(t, y) = λ
1
α (t)u

(
t, λ

2
α (t)y + ρ(t)

) − Q(y)

satisfies

η(t) ⇀ 0 in H
α
2 as t → +∞.

Except for the presence of the scaling parameter, it is similar to the proof of Theorem 2 from Theorem 1 in [11]. It
is also close to the original proof for the gKdV equation in [19]. We thus omit the proof.
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6. Finite or infinite time blow-up in the energy space

In this section, we prove Theorem 2 following the strategy of [22] and using the classification result given by
Proposition 6.

Let α ∈ (α0,2] where α0 be given by Proposition 3. Consider an initial data u(0) ∈ H
α
2 (R) such that

E
(
u(0)

)
< 0 and 0 < β

(
u(0)

) =
∫

u2(0) −
∫

Q2 < β0,

where β0 is small enough (to be chosen) and u(t) the corresponding solution of (1). Let [0, T ), 0 < T � +∞ be the
maximal interval of existence of u(t) as a solution of (1) in H

α
2 (for t � 0).

We need the following variational result concerning negative energy H
α
2 functions, with L2 norm close to the L2

norm of Q.

Lemma 9. There exists β0 > 0 such that for all v ∈ H
α
2 , if E(v) < 0 and β(v) < β0 then there exist x0 ∈ R, λ0 > 0,

ε = ±1 such that∥∥Q − ελ
1
α

0 v
(
λ

2
α

0 (x + x0)
)∥∥

H
α
2

� δ(β),

where δ(β) → 0 as β → 0.

We omit the proof since it is similar to the one of Lemma 1 in [22], using (41).
By conservation of mass, of energy and under the assumptions on u(0), for β0 small enough, it follows from

Lemma 9 applied to u(t) for all t ∈ [0, T ), that u(t) is close to ±Qλ0(t)(x −ρ0(t)) for some λ0(t), ρ0(t). Without loss
of generality, and by continuity in H

α
2 , we assume that u is close to +Q (up to scaling and translation), by possibly

considering −u instead of u and using the invariance of the equation.
Now, from Lemma 5, possibly taking β0 smaller, there exist λ(t), ρ(t) on [0, T ) such that, for all t ∈ [0, T ),

η(t, y) = λ
1
α (t)u

(
t, λ

2
α (t)y + ρ(t)

) − Q(y)

satisfies∫
Q′(y)η(t, y) dy =

∫
χ0(y)η(t, y) dy = 0, (102)∥∥η(t)

∥∥
H

α
2

� C

√
β
(
u(0)

)
, (103)∣∣∣∣λs

λ

∣∣∣∣ +
∣∣∣∣( ρs

λ
2
α

− 1

)∣∣∣∣ � C

√
β
(
u(0)

)
. (104)

Note that Lemmas 9 and 5 only give ‖η‖
H

α
2

� Cδ(β(0)), where δ(β) is defined in Lemma 9, but not explicit. Actually,
in this context, this estimate can be refined to get (103) by using energy arguments, exactly as in the proof of Lemma 3
in [22].

Now, we prove that

• either the solution u(t) ceases to exist in finite time 0 < T < +∞ and consequently by Theorem 1,
limt→T ‖u(t)‖

H
α
2

= +∞;
• or it exists for all time and then limt→+∞ ‖u(t)‖

H
α
2

= +∞.

The proof is by contradiction. Assume on the contrary that the solution u(t) is globally defined in H
α
2 for t � 0

and that there exists an increasing sequence t̄m → +∞ and c0 > 0 such that∥∥u(t̄m)
∥∥

H
α
2

� c0. (105)

We proceed in four steps to reach a contradiction.
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Step 1. Renormalisation and reduction of the problem. We recall that ‖u(t)‖L2 is bounded and we define

� = lim inf
t→+∞

∥∥|D| α
2 un(t)

∥∥
L2 < ∞.

Note first that � > 0. Indeed, for all time t ,
∫ |u(t)|2α+2 > −(α + 1)(2α + 1)E(u(0)) > 0 and by the Gagliardo–

Nirenberg inequality (8), we obtain � > 0. From the definition of �, there exists t0 such that∥∥|D| α
2 u(t0)

∥∥
L2 � �(1 + β0) and ∀t � t0,

∥∥|D| α
2 u(t)

∥∥
L2 � �(1 − β0).

We consider the following rescaled version of u(t, x): let λ̄ = ‖|D| α
2 Q‖

L2

�
and

ū(t, x) = λ̄
1
α u

(
λ̄2+ 2

α t + t0, λ̄
2
α x

)
.

Note that ‖Q‖2
L2 < ‖ū(0)‖2

L2 < ‖Q‖2
L2 + β0, E(ū(0)) < 0, β(ū(0)) < β0, ū(t) is still a solution of (1) in H

α
2 defined

for all t � 0, and for all t � 0, ‖|D| α
2 ū(t)‖L2 � (1 − β0)‖|D| α

2 Q‖L2 . Moreover, there exists a sequence tm → +∞,
such that

lim
m→+∞

∥∥|D| α
2 ū(tm)

∥∥
L2 = ∥∥|D| α

2 Q
∥∥

L2 and lim
m→+∞ tm+1 − tm = +∞.

Let η̄(t), λ̄(t) and ρ̄(t) be the parameters of the decomposition of ū(t) given by Lemmas 9 and 5. Then, for β0 > 0
small enough,

∀t � 0, λ̄(t) � 2.

From the bound of ū(tm) in H
α
2 , there exists ũ(0) ∈ H

α
2 such that after possibly extracting a subsequence (still denoted

by (tm))

ū
(
tm, . + ρ(tm)

)
⇀ ũ(0) in H

α
2 as m → +∞.

Taking β0 small enough, it is clear that ũ(0) is close to Q and in particular cannot be zero. Let now ũ(t) be the
maximal solution of (1) in H

α
2 corresponding to ũ(0) given by Theorem 1. We denote by (−T1, T2) the maximal

interval of existence of ũ(t). Without a further analysis through Steps 2–4 below, we do not know if ũ(t) is globally
defined for t > 0 or t < 0.

Step 2. First properties of the limiting problem.

Lemma 10. The following holds

0 < β
(
ũ(0)

)
� β0 and E

(
ũ(0)

)
< 0. (106)

Proof. Let

vm(x) = ū
(
tm, x + ρ(tm)

)
⇀ ũ(0) in H

α
2 as m → +∞. (107)

By weak convergence

β
(
ũ(0)

)
� lim inf

m→+∞β(vm) < β0.

The positivity β(ũ(0)) > 0 is a consequence of the negativity of the energy of ũ(0) and (38), which we prove now.
Let χ ∈ C∞

0 (R) such that 0 � χ � 1, χ(x) = 1 if |x| � 1 and χ(x) = 0 if |x| � 2. Let χA(x) = χ(x/A), for A > 1.
Then,

E(vm) = ∥∥(|D| α
2 vm

)√
χA

∥∥2
L2 − 1

(1 + α)(2α + 1)

∫
|vmχA|2α+2 + E

(
vm(1 − χA)

) + Rm,A + R̃m,A,

where

Rm,A = ∥∥|D| α
2 vm

∥∥2
L2 − ∥∥(|D| α

2 vm

)√
χA

∥∥2
L2 − ∥∥|D| α

2
(
vm(1 − χA)

)∥∥2
L2 ,

R̃m,A = − 1
∫

|vm|2α+2(1 − χ2α+2
A − (1 − χA)2α+2).
(1 + α)(2α + 1)
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First, we control the term Rm,A. Note that from standard arguments, for all u,∣∣∥∥|D| α
2 (1 − χA)u

∥∥ − ∥∥(1 − χA)|D| α
2 u

∥∥∣∣ � C
∥∥[|D| α

2 , (1 − χA)
]
u
∥∥ = C

∥∥[|D| α
2 , χA

]
u
∥∥ � C

A
α
2
‖u‖,

and so∥∥|D| α
2 (1 − χA)u

∥∥2 �
(
1 + A− α

2
)∥∥(1 − χA)|D| α

2 u
∥∥2 + C

A
α
2
‖u‖2.

Combining these two estimates, we get

Rm,A � −CA− α
2 ‖vm‖2

H
α
2

� −CA− α
2 .

Next, we control R̃m,A. By weak convergence in H
α
2 and the properties of χA, we have

lim
m→+∞ R̃m,A = − 1

(1 + α)(2α + 1)

∫ ∣∣ũ(0)
∣∣2α+2(1 − χ2α+2

A − (1 − χA)2α+2) = R̃A.

Moreover, from the definition of χA, the following holds limA→+∞ R̃A = 0.
Finally, by (38) (Gagliardo–Nirenberg with best constant), we have E(vm(1 − χA)) � 0 since for A large and β0

small, for all m,
∫

v2
m(1 − χA)2 � 1

2

∫
Q2.

Therefore,

0 > E
(
ū(0)

) = E(vm) �
∥∥(|D| α

2 vm

)√
χA

∥∥2
L2 − 1

(1 + α)(2α + 1)

∫
|vmχA|2α+2

− CA− α
2
∥∥ũ(0)

∥∥2
L2 + R̃m,A

and passing to the limit as m → +∞, we get

0 > E
(
ū(0)

)
�

∥∥(|D| α
2 ũ(0)

)√
χA

∥∥2
L2 − 1

(1 + α)(2α + 1)

∫ ∣∣ũ(0)χA

∣∣2α+2 − CA− α
2
∥∥ũ(0)

∥∥2
L2 + R̃A.

Finally, passing to the limit as A → +∞, we obtain 0 > E(ū(0)) � E(ũ(0)). �
Lemma 11. For all t ∈ (−T1, T2),

ū
(
tm + t, ρ̄(tm) + .

)
⇀ ũ(t) in H

α
2 (R) as m → +∞. (108)

Moreover, if η̃(t, x), λ̃(t) and ρ̃(t) are the parameters of the decomposition of ũ(t, x), then for all t ∈ (−T1, T2),

λ̄(tm + t) → λ̃(t), ρ̄(tm + t) − ρ̄(tm) → ρ̃(t). (109)

The first part of Lemma 11 follows from Theorem 3. By Lemmas 10 and 9, ũ(t) is close to Q (up to scaling and
translation) for all t ∈ (−T1, T2), and we can apply Lemma 5 to obtain a refined decomposition of ũ(t) around Q,
denoted by η̃(t), λ̃(t) and ρ̃(t). Then (109) follows from standard limiting and uniqueness arguments which we omit.
See [22], Lemma 8, Corollary 2 and references therein.

Step 3. Decay properties of the limiting problem by monotonicity properties.

Lemma 12. For all t ∈ (−T1, T2), for all x0 > 1,∥∥ũ(t)
∥∥2

L2(|x−ρ̃(t)|�x0)
� C|x0|−α. (110)

Proof. The main ingredient of the proof is Proposition 4 applied to ū(t). Fix μ = 1
2 , r = α+1

2 , A large enough, and
let C0 = C( 1

2 , r,A) > 0 be the constant given by Proposition 4.
First, we prove the decay estimates on the right. Let t ∈ (−T1, T2) and m be such that tm + t > 0. From (49) applied

to ū, t2 = tm + t and t1 = 0, we have
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∫
ū2(tm + t, x)ϕA

(
x − ρ̄(tm + t) − x0

)
dx

�
∫

ū2(0, x)ϕA

(
x − ρ̄(0) − 1

2

(
ρ̄(tm + t) − ρ̄(0)

) − x0

)
dx + C0

x2r−1
0

.

Thus, passing to the limit as m → +∞, using ρ̄(tm + t) → +∞ when m → +∞, we have

lim sup
m→+∞

∫
ū2(tm + t, x)ϕA

(
x − ρ̄(tm + t) − x0

)
dx � C0

x2r−1
0

. (111)

It follows from the previous estimate and Lemma 11 that∫
ũ2(t, x)ϕA

(
x − ρ̃(t) − x0

)
dx � C0

x2r−1
0

.

Second, we prove decay estimate on the left. Let t ∈ (−T1, T2) and let m, m′ be such that tm > tm′ + t . Using (50),
we obtain∫

ū2(tm, x)ϕA

(
x − ρ̄(tm) + 1

2

(
ρ̄(tm) − ρ̄(tm′ + t)

) + x0

)
dx

�
∫

ū2(tm′ + t, x)ϕA

(
x − ρ̄(tm′ + t) + x0

)
dx + C0

x2r−1
0

.

By Lemma 11, we have on the one hand, for m′ fixed,

lim inf
m→+∞

∫
ū2(tm, x)ϕA

(
x − ρ̄(tm) + 1

2

(
ρ̄(tm) − ρ̄(tm′)

) + x0

)
dx �

∫
ũ2(t),

and on the other hand, using (111),

lim sup
m′→+∞

∫
ū2(tm′ + t, x)ϕA

(
x − ρ̄(tm′ + t) + x0

)
dx

�
∫

ũ2(t, x)ϕA

(
x − ρ̃(t) + x0

)
dx + C0

x2r−1
0

.

It follows that∫
ũ2(t, x)

(
1 − ϕA

(
x − ρ̃(t) + x0

))
dx � 2C0

x2r−1
0

.

Lemma 12 is now proved. �
Step 4. Conclusion of the proof by rigidity properties. From (106) and Lemma 9, we have∣∣λ̃(0) − 1

∣∣ � δ(β0), where lim
β0→0

δ(β0) = 0. (112)

We claim the following lemma to be used as a bootstrap argument on the behavior of λ̃(t).

Lemma 13. Assume further that for −T1 < −t1 < 0 < t2 < T2,

∀t ∈ (−t1, t2),
∣∣λ̃(t) − 1

∣∣ � 1

2
, (113)

then for some ε > 0,

∀t ∈ (−t1, t2), η̃(t) ∈ L1(R) and
∫ ∣∣η̃(t, x)

∣∣dx � Cβε
0 . (114)
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Assuming Lemma 13, we finish the proof of Theorem 2. Using the invariant

∀t ∈ (−T1, T2),

∫
ũ(t) =

∫
ũ(0)

and Lemma 13, we prove that the solution ũ(t) is global (i.e. T1 = T2 = ∞) and∣∣λ̃(0) − 1
∣∣ � δ̃(β0), lim

β0→0
δ̃(β0) = 0.

By (113), (114), for all t ∈ (−t1, t2), we have∣∣∣∣ ∫ ũ(t) −
∫

Qλ̃(t)

∣∣∣∣ � Cβε
0 ,

and so since
∫

Qλ = λ
1
α

∫
Q,∣∣λ̃(t)

1
α − λ̃(0)

1
α

∣∣ �
∣∣∣∣ ∫ Qλ̃(0) −

∫
Qλ̃(t)

∣∣∣∣ � Cβε
0 . (115)

Therefore, by a standard continuity argument, (112), (113) and thus (115) are satisfied on (−T1, T2). Thus, ũ(t) is
bounded on (−T1, T2) in H

α
2 , which proves that T1 = T2 = ∞, and means that ũ(t) is global. Moreover, (115) is

satisfied for all t ∈ R. By Proposition 6, ũ has to be a soliton but this is a contradiction with E(ũ(0)) < 0, since the
energy of a soliton is zero. This concludes the proof of Theorem 2 assuming Lemma 13. Thus, we only have to prove
Lemma 13.

Proof of Lemma 13. We prove the result for t ∈ (0, t2), the proof being the same for negative times. Let 0 < ε <
1
2 (α − 1) small to be chosen later. As long as (113) is satisfied, we have by Lemma 12,

xε
0

∫
|x|>x0

ũ2(t, x + ρ̃(t)
)
dx � C|x0|−α+ε .

Integrating this estimate in x0 and using the Fubini theorem, we obtain∫
|x|1+ε ũ2(t, x + ρ̃(t)

)
dx � C. (116)

By the definition of η̃(t) and the decay properties of Q, as long as (113) is satisfied, we obtain∫
|x|1+ε η̃2(t, x) dx � C. (117)

In particular, by Hölder inequality,∫ ∣∣η̃(t)
∣∣ � ‖η̃‖ε

L∞

∫ ∣∣η̃(t)
∣∣1−ε

� ‖η̃‖ε
L∞

( ∫ ∣∣η̃(t)
∣∣2(1 + |x|) 1

(1−ε)2

) 1−ε
2

( ∫ (
1 + |x|)− 1

1−ε2

) 1+ε
2

� C‖η̃‖ε
L∞

and the result follows from ‖η̃‖L∞ � ‖η̃‖
H

α
2

and Lemma 5. �
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Appendix A

In the appendix, we gather the proof of standard results for reader’s convenience.

Lemma A.1. Let r > 1
2 and α > −1. Let

g(x) = gα,r (x) = |D|α
(

1

〈x〉2r

)
and h(ξ) =

∫
e−ixξ 1

〈x〉2r
dx so that ĝ(ξ) = |ξ |αh(ξ).

Then

(i) There exists C > 0 such that∣∣gα,r (x)
∣∣ � C

〈x〉α+1
.

(ii) The function h is continuous, and for any M > 0, there exists CM > 0 such that |h(ξ)| � CM

〈ξ〉M .

Moreover, h ∈ C∞(R \ {0}) and for all β ∈ N, q > 0, there exists Cβ,q > 0 such that∣∣∂β
ξ h(ξ)

∣∣ � Cβ,q

|ξ |β〈ξ〉q .

Proof. The proof is standard. Clearly h is a continuous and bounded function. By integration by part we have

(iξ)Nh(ξ) =
∫

(−∂x)
N

(
e−ixξ

) 1

〈x〉2r
dx

=
∫

e−ixξ (∂x)
N

(
1

〈x〉2r

)
dx. (118)

We have |(∂x)
N ( 1

〈x〉2r )| � C

〈x〉2r+N which is an integrable function and so ξNh(ξ) is bounded. This gives the first

part of (ii).
Let χ ∈ C∞

0 (R) such that 0 � χ � 1, χ(ξ) = 1 if |ξ | � 1 and χ(ξ) = 0 if |ξ | � 2, we set hN(ξ) =∫
e−ixξ 1

〈x〉2r χ( x
N

)dx, hN → h uniformly and in particular in D′, then ∂
β
ξ hN → ∂

β
ξ h in D′. Let M > 0 to be fixed

below, we have for some non-important constants C,

ξM∂
β
ξ hN(ξ) = Cβ

∫
e−ixξ ξMxβ

〈x〉2r
χ

(
x

N

)
dx

= Cβ,M

∫
∂M
x

(
e−ixξ

) xβ

〈x〉2r
χ

(
x

N

)
dx

=
∑

M1+M2=M

Cβ,M1,M2

∫
e−ixξ ∂M1

x

(
xβ

〈x〉2r

)
1

NM2
∂M2
x (χ)

(
x

N

)
dx. (119)

We have |∂M1
x ( xβ

〈x〉2r )| � C

〈x〉2r−β+M1
.

If M2 � 1, the integral is restricted to N � |x| � 2N and we have∣∣∣∣ ∫ e−ixξ ∂M1
x

(
xβ

〈x〉2r

)
1

NM2
∂M2
x (χ)

(
x

N

)
dx

∣∣∣∣ � C

N2r−β+M−1
(120)

then these terms go to 0 if 2r − β + M − 1 > 0.
If M2 = 0, 1

〈x〉2r−β+M is integrable if 2r − β + M − 1 > 0. This implies that

ξM∂
β
ξ hN(ξ) → Cβ,M

∫
e−ixξ ∂M

x

(
xβ

〈x〉2r

)
dx

uniformly and since ξM∂
β
ξ hN → ξM∂

β
ξ h in D′, we obtain

ξM∂
β
ξ h(ξ) = Cβ,M

∫
e−ixξ ∂M

x

(
xβ

2r

)
dx. (121)
〈x〉
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If we take M = β we obtain the second part of the estimate (ii) if |ξ | � 1. If we take M = β + q we obtain the second
part of the estimate (ii) if |ξ | � 1.

Now, we prove (i). We set gα,r (x) = 1
2π

(g1(x) + g2(x)) where

g1(x) =
∫

eixξ |ξ |αh(ξ)
(
1 − χ(ξ)

)
dξ,

g2(x) =
∫

eixξ |ξ |αh(ξ)χ(ξ) dξ. (122)

Following (ii), |ξ |αh(ξ) is integrable, thus g1 is continuous and bounded and for all M > 0,∣∣∂β
ξ

(|ξ |αh(ξ)
(
1 − χ(ξ)

))∣∣ � C

〈ξ〉M (123)

moreover, by integration by part, we have

xβg1(x) =
∫

iβeixξ ∂
β
ξ

(|ξ |αh(ξ)
(
1 − χ(ξ)

))
dξ, (124)

(123) and (124) give that xβg1(x) bounded for all β .
To estimate g2 we assume x � 1, the case x � −1 follows by the same way. We set xξ = σ . We have

g2(x) = x−α−1
∫

eiσ |σ |αh

(
σ

x

)
χ

(
σ

x

)
dσ = x−α−1(k1(x) + k2(x)

)
where

k1(x) =
∫

eiσ χ(σ )|σ |αh

(
σ

x

)
χ

(
σ

x

)
dσ

k2(x) =
∫

eiσ
(
1 − χ(σ)

)|σ |αh

(
σ

x

)
χ

(
σ

x

)
dσ. (125)

Obviously k1 is bounded. By integration by part we have

k2(x) =
∫

(−i∂σ )N
(
eiσ

)(
1 − χ(σ)

)|σ |αh

(
σ

x

)
χ

(
σ

x

)
dσ

=
∑

N1,N2,N3

∫
eiσ ∂N1

σ

((
1 − χ(σ)

)|σ |α) 1

xN2+N3

(
∂N2
σ h

)(σ

x

)(
∂N3
σ χ

)(σ

x

)
dσ. (126)

We have |∂N
σ ((1 − χ(σ))|σ |α)| � C

〈σ 〉N−α .
If N3 � 1, x � |σ | � 2x and we obtain∫ ∣∣∣∣∂N1

σ

((
1 − χ(σ)

)|σ |α) 1

xN2+N3

(
∂N2
σ h

)(σ

x

)(
∂N3
σ χ

)(σ

x

)∣∣∣∣dσ � C

〈x〉N−α−1
(127)

which is bounded if N � α + 1.
If N3 = 0, following (ii), we have∫ ∣∣∣∣∂N1

σ

((
1 − χ(σ)

)|σ |α) 1

xN2

(
∂N2
σ h

)(σ

x

)
χ

(
σ

x

)∣∣∣∣dσ �
∫

C

〈σ 〉N−α
dσ (128)

which is bounded for N large enough. This proves (i). �
Lemma A.2. Let p(ξ) a homogeneous function of degree β > −1. Let χ ∈ C∞

0 (R) such that 0 � χ � 1, χ(ξ) = 1 if
|ξ | � 1 and χ(ξ) = 0 if |ξ | � 2. Let

k(x) = 1

2π

∫
eixξp(ξ)χ(ξ) dξ (129)

then for all q ∈ N, there exists Cq > 0 such that for all x ∈ R∣∣∂q
x k(x)

∣∣ � Cq

〈x〉β+q+1
. (130)
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Proof. The proof is standard. We have ∂
q
x k(x) = 1

2π

∫
eixξ (iξ)qp(ξ)χ(ξ) dξ and as (iξ)qp(ξ) is homogeneous of

degree β + q , it is sufficient to prove Lemma A.2 for q = 0. We shall prove the estimate for x � 1, the case x � −1
follows by the same way. We set y = xξ in integral, we have

∫
eixξ (iξ)qp(ξ)χ(ξ) dξ = 1

xβ+1

∫
eiyp(y)χ(

y
x
) dy.

Lemma A.2 will be proved if we prove that
∫

eiyp(y)χ(
y
x
) dy is bounded. We set J1 = ∫

eiyp(y)χ(y)χ(
y
x
) dy and

J2 = ∫
eiyp(y)(1 − χ(y))χ(

y
x
) dy. We remark that J1 does not depend of x if x is large enough. We prove that J2 is

bounded by integration by part. For N > β + 1 we have ∂N
y eiy = iNeiy and by integration by part we have

J2 =
∑

N1+N2+N3=N

CN1,N2,N3

∫
eiy∂N1

y p(y)∂N2
y

(
1 − χ(y)

) 1

xN3

(
∂N3
y χ

)(y

x

)
dy. (131)

If N2 � 1 we integrate on compact domain and these integrals are bounded.
If N3 � 1 in these integrals we have x � |y| � 2x and∣∣∣∣eiy∂N1

y p(y)
(
1 − χ(y)

) 1

xN3

(
∂N3
y χ

)(y

x

)∣∣∣∣ � C|x|β−N1−N2 � C|x|−1 (132)

then these integrals are bounded.
If N2 = N3 = 0∣∣∣∣eiy∂N

y p(y)
(
1 − χ(y)

)
χ

(
y

x

)∣∣∣∣ � C|y|β−N
(
1 − χ(y)

)
(133)

and this function is integrable. This proves Lemma A.2. �
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