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Abstract

We prove under some general assumptions on elastic energy densities (namely, frame indifference, minimality at identity, non-
degeneracy and existence of a quadratic expansion at identity) that homogenization and linearization commute at identity. This
generalizes a recent result by S. Müller and the second author by dropping their assumption of periodicity. As a first application,
we extend their Γ -convergence commutation diagram for linearization and homogenization to the stochastic setting under standard
growth conditions. As a second application, we prove that the Γ -closure is local at identity for this class of energy densities.
© 2011 Elsevier Masson SAS. All rights reserved.

Résumé

Nous démontrons que linéarisation et homogénéisation commutent à l’identité sous des hypothèses générales sur la densité
d’énergie élastique (à savoir indifférence matérielle, minimalité à l’identité, non-dégénérescence et existence d’un développement
quadratique à l’identité). Ceci généralise un résultat récent de S. Müller et du second auteur au cas non-périodique. En particulier,
nous étendons au cas de l’homogénéisation stochastique leur diagramme de commutation de la linéarisation et de l’homogénéisa-
tion au sens de la Γ -convergence. Par ailleurs, nous démontrons que la Γ -fermeture est locale à l’identité pour la classe de densités
d’énergie non convexes considérée.
© 2011 Elsevier Masson SAS. All rights reserved.
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1. Introduction

We study the commutability of linearization and homogenization at identity in finite elasticity. We consider an open
bounded Lipschitz domain D ⊂ R

d , and a family of integral functionals
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Iε : H 1(D) → [0,+∞], u �→
∫
D

Wε

(
x,∇u(x)

)
dx

where Wε : D × M
d → [0,+∞] is a Borel function. As it is common in finite elasticity, we assume that Wε is frame

indifferent and minimal at identity. Moreover, we assume that Wε is non-degenerate and admits a quadratic expansion
at identity with quadratic term Qε; as a consequence, in situations when the deformation is close to a rigid-body
motion, say when |∇u − Id| ∼ h 	 1, we can accurately describe the functional Iε (after scaling by h−2) by the
quadratic functional

Eε : H 1(D) → [0,+∞], g �→
∫
D

Qε

(
x,∇g(x)

)
dx with g(x) := h−1(u(x) − x

)
.

Since Qε(·,F ) genuinely only depends on the symmetric part of the strain gradient F , the energy Eε corresponds
to linear elasticity. On the other hand, if Iε has some specific structure in space rescaled by ε (think of periodicity
for instance), we may expect a homogenization property to hold as ε vanishes, which justifies to replace the non-
linear oscillating-in-space energy density (x,F ) �→ Wε(x,F ) by a nonlinear homogeneous-in-space energy density
F �→ Whom(F ) (or more generally by an energy density (x,F ) �→ W ∗(x,F ) whose oscillations in x are independent
of ε).

In this paper, we address the commutability of both limits (in h and ε), and prove that they indeed commute in the
following sense: The quadratic expansion of the homogenized energy Whom (resp. W ∗) at identity coincides with the
homogenization of the quadratic expansion Qε of the heterogeneous energy density at identity. In Theorem 2.1 we
study functionals with standard growth and prove that the commutability holds (both, on the level of densities and on
the level of the functionals), provided Iε can be homogenized in the sense that Iε Γ (L2)-converges to a functional of
the form

u �→
∫
D

W ∗(x,∇u)dx.

In Theorems 2.4 and 2.5 we study unbounded energies and show that the commutability still holds provided both
Iε and Eε can be homogenized, or at least at the level of the Γ -liminf and Γ -limsup if no assumption is made
on Iε . These theorems cover in particular the case when Wε(x,F ) = +∞ if detF � 0—as it is desirable in finite
elasticity. Our results generalize a recent work by S. Müller and the second author in [13] (see also [15]) by relaxing
the periodicity assumption on Wε (as well as the growth condition from above). In [13] the central object in the
analysis is a multi-cell homogenization formula that allows in the periodic setting to compute the homogenized energy
density Whom by solving a sequence of periodic minimization problems on cubic domains invading R

d . In [15] the
commutability of homogenization and linearization (solely as a Γ -convergence statement on the level of the energies)
has been extended in the periodic case to energy densities without growth condition from above by extensive use
of two-scale convergence methods. In the general situation considered in the present contribution, both the multi-
cell homogenization formula and two-scale convergence approaches do not apply. Instead, we study the asymptotic
formula

WD(F) := lim
ε→0

{
inf

v∈H 1
0 (D)

Iε(ϕF + v)
} (

where ϕF (x) := Fx
)

which is well defined whenever Iε Γ -converges and is equi-coercive. In Proposition 2.2 we establish a quadratic
expansion at identity for WD—which is the key insight in our analysis.

As a first application of Theorem 2.1, we show that linearization and stochastic homogenization commute at iden-
tity for energy densities which satisfy standard growth conditions (see Theorem 3.2). In a nutshell, what holds in
[13] in the periodic setting is also proved to hold here in the stochastic setting. This shows that the arguments used
by S. Müller and the second author in [13] are quite stable with respect to the structure assumption which ensures
homogenization—at the core of the proof the quantitative rigidity estimate of [7].

As a second application of Theorem 2.1, we prove a “weak local property” of the Γ -closure of a class of inte-
gral functionals at identity. The problem of Γ -closure consists in characterizing all the energy densities which can
be reached by Γ -convergence starting from a composite made of a finite number of constituents with prescribed
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volume fraction. In particular, the Γ -closure is said to be local in some class of integrands if and only if any such
“homogenized” energy density is the pointwise limit of a sequence of homogenized energy densities obtained by
periodic homogenization. In the linear case, this property has been proved independently by Tartar in [18] and Lurie
and Cherkaev in [11]. The corresponding locality property of the G-closure for monotone operators is due to Raitums
in [16] (generalizing an unpublished work by Dal Maso and Kohn). Related results of locality of the Γ -closure in
the class of convex integrands can be found in [1]. Yet, the local character of the Γ -closure is an open question in
the class of quasiconvex nonconvex integrands satisfying standard growth conditions. We focus here on a smaller
class. In particular, we consider energy densities which are frame indifferent, non-degenerate, minimal at identity,
admit a quadratic Taylor expansion at identity, and satisfy standard growth conditions. Then, we show that for any
F �→ W ∗(F ) in the Γ -closure of this set, there exists a sequence of periodic energy densities whose homogenized
energy densities have quadratic Taylor expansions arbitrary close to the Taylor expansion of W ∗ at identity (see The-
orem 4.1). This can be seen as a weak version of the local character of the Γ -closure in this set at identity. Although
quite restricted, this is the first such result for quasiconvex nonconvex energy densities.

This article is organized as follows: In Section 2 we state and prove our main theorem, the commutability of
linearization and homogenization at identity. In Section 3 we apply this result to stochastic homogenization. The last
section is dedicated to the local character of the Γ -closure at identity.

We will make use of the following notation throughout the text:

– R
+ := [0,+∞) is the set of non-negative real numbers;

– d is the dimension;
– M

d denotes the space of d × d real matrices, and for all F ∈ M
d , symF = 1/2(F + FT ) is the associated

symmetric matrix, and skwF = F − symF the associated skew-symmetric matrix;
– SO(d) is the set of rotations of R

d ;
– T

d
sym denotes the space of symmetric fourth order tensors on R

d ;

– D denotes an open bounded subset of R
d with a Lipschitz boundary (except for Theorems 2.4 and 2.5, and

Proposition 2.2 in Section 2 where D is further assumed to be C1);
– U = (0,1)d is the unit cell;
– for all F ∈ M

d , we define the function ϕF : R
d → R

d as ϕF : x �→ Fx;
– for all p ∈ [1,+∞], Lp(D), H 1(D), W 1,p(D), H 1

0 (D), and W
1,p

0 (D) denote the standard Lebesgue, Hilbert and
Sobolev spaces of maps from D to R

d , and the associated subspaces of functions vanishing on the boundary ∂D

(in the sense of traces);
– ε and h denote generic elements of vanishing families of positive numbers (ε) and (h), respectively;
– ρ (and ρ′) denotes a modulus of approximation, i.e. ρ is an increasing function from R

+ to [0,+∞] such that
limh→0 ρ(h) = 0.

2. General commutability results

2.1. General framework

Throughout this article, we make the following assumptions on the energy densities.

Definition 1. For all α > 0 and every modulus of approximation ρ, we denote by Wα,ρ the set of Borel functions
W : M

d → [0,+∞] which satisfy the following three properties:

(W1) W is frame indifferent, i.e.

W(RF) = W(F) for all F ∈ M
d, R ∈ SO(d);

(W2) W is non-degenerate, i.e.

W(F) � 1

α
dist2

(
F,SO(d)

)
for all F ∈ M

d;
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(W3) W is minimal at Id and admits the following quadratic expansion at Id:

sup
0<|G|�δ

|W(Id + G) − Q(G)|
|G|2 � ρ(δ) for all δ > 0,

where Q : M
d → [0,∞) is a quadratic form satisfying

0 � Q(G) � α|G|2 for all G ∈ M
d .

Remark 1. The energy densities of class Wα,ρ describe elastic materials with a single, quadratic energy well at SO(d).
The minimality condition in (W3) implies that the reference state F = Id is stress free. The combination of (W2)
and (W3) might be interpreted as a generalization of Hooke’s law to geometrically nonlinear material laws: For
infinitesimal small strains we expect a linear stress-strain relation. Indeed, in view of condition (W3) the material law
is sufficiently smooth to allow a linearization around the reference state; this is made precise in [13, Theorem 5.1]
and [6] on the level of the associated energy functional. Let us remark that (W3) is typically satisfied if W is of class
C2 in a neighborhood of Id. Since in the homogenization of nonlinear materials buckling phenomena might occur
even for deformations close to SO(d) (cf. [13, Section 7]), it is not clear whether C2 regularity in a neighborhood of
Id is stable by homogenization. However, as a by-product of our main result, we shall prove that (W3) is stable by
homogenization.

For some results (in particular Theorem 2.1) we consider continuous energy densities that additionally satisfy
standard growth conditions:

Definition 2. For all p ∈ [1,+∞) and α > 0, we denote by W p
α the set of continuous energy densities W : M

d → R

which satisfy the following standard growth condition of order p:

(W4) ∀F ∈ M
d : 1

α
|F |p − α � W(F) � α

(|F |p + 1
)
.

In addition, we set W p
α,ρ := Wα,ρ ∩ W p

α for every modulus of approximation ρ. Note that W p
α,ρ = ∅ for p < 2, and

W p
α,ρ �= ∅ for p � 2.

Remark 2. Let W ∈ Wα,ρ and let Q denote the quadratic form associated with W through (W3). Because of (W1)–
(W3) the quadratic form Q generically satisfies conditions that are common in linear elasticity; namely, the growth
and ellipticity condition

(Q1) ∀G ∈ M
d : 1

α′ |symG|2 � Q(G) � α′|G|2

for some positive constant α′ that only depends on α, and

(Q2) ∀G ∈ M
d : Q(skwG) = 0.

The property (Q2) follows from a Taylor expansion of W at identity using (W3) and the fact that W(F) depends only
on FT F by (W1). The non-degeneracy condition (Q1) on the quadratic form is inherited from the non-degeneracy
condition (W2).

Definition 3. We denote by Qα′ the set of non-negative quadratic forms Q : M
d → R

+ satisfying (Q1) and (Q2).

In this article we frequently consider mappings of the form W(x,∇u(x)) where W is a non-negative function de-
fined on D × M

d and u ∈ W 1,1(D). To guarantee the measurability of such a composition we introduce the following
definition:
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Definition 4. Let C be one of the classes Wα,ρ, W p
α , W p

α,ρ or Qα , and D ⊂ R
d a Borel set. We denote by C(D × M

d)

the set of functions W : D × M
d → [0,+∞] such that W is a Borel function (or equivalent to a Borel function) and

W(x, ·) ∈ C for almost every x ∈ D.

Clearly, if W : D × M
d → R

+ satisfies W(x, ·) ∈ W p
α,ρ for almost every x ∈ D and W(·,F ) is measurable for all

F ∈ M
d , then W is a Carathéodory function and therefore W ∈ W p

α,ρ(D×M
d).

Let us consider a family of energy densities (Wε) ⊂ Wα,ρ(D×M
d). For almost every x ∈ D, we denote by Qε(x, ·)

the quadratic form associated with Wε(x, ·) through (W3); thus, Qε can be written as the pointwise limit

(x,G) �→ Qε(x,G) := lim
h→0

1

h2
Wε(x, Id + hG),

and therefore inherits the measurability properties of Wε . We then define two families of integral functionals, namely
Iε : H 1(D) → [0,+∞] characterized by

Iε(u) :=
∫
D

Wε

(
x,∇u(x)

)
dx, (1)

and Eε : H 1(D) → [0,+∞) characterized by

Eε(u) :=
∫
D

Qε

(
x,∇u(x)

)
dx. (2)

2.2. Commutation result for energy density with p-growth

The main theorem of this paper is the following result, which generalizes [13, Theorems 1 and 2] to the non-
periodic setting.

Theorem 2.1. Let 2 � p < +∞, (Wε) ⊂ W p
α,ρ(D × M

d) be a family of energy densities and let W ∗ ∈ W p
α (D × M

d).
Assume that the associated family of energy functionals Iε defined in (1) Γ (Lp)-converges to the integral functional
I ∗ on W 1,p(D), defined by

I ∗(u) :=
∫
D

W ∗(x,∇u(x)
)

dx.

Then there exist positive constants α′, α′′, a modulus of approximation ρ′ (all only depending on α and ρ), and
Q∗ ∈ Qα′′(D × M

d) such that the following properties hold:

(a) W ∗ ∈ W p

α′,ρ′(D × M
d) and the expansion

W ∗(x, Id + G) = Q∗(x,G) + o
(|G|2)

holds for almost every x ∈ D and for all G ∈ M
d ;

(b) the energy functionals Eε defined in (2) Γ (L2)-converge to E ∗ : H 1(D) → [0,+∞) defined by

E ∗(u) :=
∫
D

Q∗(x,∇u(x)
)

dx;

(c) the following diagram commutes

Gh,ε
(1)−−−−→ Eε

(2)

⏐⏐� ⏐⏐�(3)

G∗
h −−−−→ E ∗
(4)
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where Gh,ε and G∗
h denote the functionals from H 1

0 (D) to [0,+∞] defined as

Gh,ε(g) := 1

h2
Iε(ϕId + hg), G∗

h(g) := 1

h2
I ∗(ϕId + hg);

and (1), (4), and (2), (3) mean Γ -convergence in H 1
0 (D) with respect to the strong topology of L2(D) as h → 0

and ε → 0, respectively. Moreover, the families (Iε) and (Eε) are equi-coercive w.r.t. weak convergence in H 1
0 (D).

Remark 3. Due to the compactness of integral functionals with standard p-growth conditions w.r.t. Γ (Lp)-
convergence (see for instance [2, Theorem 12.5]), the assumptions on Iε are always satisfied up to extraction of a
subsequence.

Remark 4. If (Wε) satisfies a growth condition from below of order p � 2 (uniformly in ε) then Iε ≡ +∞ on
H 1(D) \ W 1,p(D) and it is natural to study the restricted functionals Iε|W 1,p(D) w.r.t. the strong topology in Lp(D).
In particular, Iε|W 1,p(D) is sequentially weakly lower semicontinuous in W 1,p(D) if and only if it is lower semicon-
tinuous w.r.t. strong convergence in Lp(D). Note that due to condition (W2), (Wε) generically satisfies a uniform
growth condition from below of order p = 2.

Remark 5. As in [13], in Theorem 2.1 part (d), we can replace the function space H 1
0 (D) by the space

Aγ := {
g ∈ H 1(D): g = 0 on γ

}
,

where γ denotes a closed subset of ∂D with positive (d − 1)-dimensional Hausdorff measure, and regular enough so
that Aγ ∩ W 1,∞(D) is dense in Aγ (see [13, proof of Proposition 1] and [6] for details).

Theorem 2.1 follows from a result which is somewhat unrelated to homogenization, and establishes a quadratic
expansion at Id for the asymptotic formula

WD(F) := lim
ε→0

{
inf

v∈W
1,p
0 (D)

Iε(ϕF + v)
}

(3)

if it exists.

Proposition 2.2. Let 2 � p < +∞, let the domain D be C1, and consider a family of energy densities (Wε) ⊂
Wα,ρ(D × M

d). Suppose that for all F ∈ M
d the limit (3) exists in [0,+∞] (where Iε is as in (1)), and that the

functionals Eε defined in (2) Γ (L2)-converge to a functional E ∗ on H 1(D). Then there exist a constant α′ > 0 that
only depends on α, and a modulus of approximation ρ′ that additionally depends on ρ and on the geometry of D,
such that 1

|D|WD ∈ Wα′,ρ′ and

|WD(Id + G) − infv∈H 1
0 (D) E ∗(ϕG + v)|

|G|2 � |D|ρ ′(|G|) (4)

for all G ∈ M
d .

Remark 6. In the proof of Proposition 2.2 we make ρ′ explicit:

ρ′(h) = C max
{
ρ(h + √

h)
(
1 + α + ρ(h)

) + h
μ

4(2+μ)
(
1 + α + ρ(h)

) 4+3μ
4(2+μ) , h

μ
2 + ρ(h + √

h)
(
1 + h

μ
2
)}

, (5)

where the constants C,μ > 0 only depend on α and on the geometry of D, i.e. C and μ are invariant under dilation,
rotation, and translation of D. Note that for h 	 1, (5) reduces to

ρ′(h) ∼ C
(
ρ(

√
h) + h

μ
4(2+μ)

)
.

Remark 7. The assumption on Eε is no restriction. In particular, by the compactness of G-convergence (see for
instance [10, Section 12.2]), we can always extract a subsequence of (ε) to which Proposition 2.2 applies.
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In the proof of Proposition 2.2 we will make use of the following higher integrability and Lipschitz truncation
result for minimizers of quadratic functionals:

Proposition 2.3. Let α > 0, G ∈ M
d , and Q ∈ Qα(D × M

d). Set

EG : H 1
0 (D) → [0,+∞), EG(g) :=

∫
D

Q(x,G + ∇g)dx.

(a) The functional EG admits a unique minimizer g∗ ∈ H 1
0 (D), characterized by the Euler–Lagrange equation∫

D

〈
L(x)

(
G + ∇g∗),∇ϕ

〉
dx = 0 for all ϕ ∈ H 1

0 (D)

where L ∈ L∞(D,T
d
sym) is defined by〈

L(x)A,B
〉 = Q(x,A + B) − Q(x,A) − Q(x,B)

2

for all A,B ∈ M
d and almost every x ∈ D.

(b) (Meyers’ estimate). If in addition the domain D is C1, then there exists a Meyers’ exponent μ > 0 and a positive
constant C such that∥∥∇g∗∥∥2+μ

L2+μ(D)
� C|D||G|2+μ.

The exponent μ and the constant C only depend on α and on the geometry of the domain D.
(c) (Lipschitz truncation). Let λ > 0. If in addition the domain D is C1, then there exists a map g ∈ W

1,∞
0 (D) such

that ∣∣∇g(x)
∣∣ � λ for a.e. x ∈ D,

EG(g) − EG

(
g∗) � Cλ−μ|D||G|2+μ,

where μ is the Meyers’ exponent, and the constant C only depends on α and on the geometry of the domain D (in
particular, it is independent of λ, G, and μ).

The first statement of Proposition 2.3 is standard and relies on Korn’s inequality. The second statement is a higher
integrability result for gradients in linear elasticity proved in [17]. This is the only place where we use the regularity of
the domain. The third statement is essentially a combination of Meyers’ estimate with a Lipschitz truncation argument
from [7]. The constants C and μ only depend on the geometry of the domain in the sense that they can be chosen
invariant under translation, rotation, and dilation of the domain. The proof of this statement is deferred to the end of
this section.

Proof of Proposition 2.2. We divide the proof into three steps. In the first step, we introduce a quadratic form
associated with WD . The last two steps are dedicated to the proof of (4).

Step 1. Definition of the quadratic form QD .

By the assumptions on Wε the associated quadratic form Qε belongs to Qα̃′(D × M
d), where α̃′ > 0 only de-

pends on α. Remark 2 and Korn’s inequality on D thus imply that the quadratic energies Eε are equi-coercive
functionals on H 1

0 (D), so that the associated elliptic operators are compact w.r.t. G-convergence (see for instance
[10, Section 12.2]). In particular, this yields Γ -convergence of the energy functionals to an integral functional (see for
instance [9, Section 4.4]): There exist α̃′′ depending only on α, and an energy density Q∗ ∈ Qα̃′′(D × M

d) such that
Eε Γ (L2)-converges (up to extraction) to the functional E ∗ : H 1(D) → R characterized by

E ∗ : u �→
∫
D

Q∗(x,∇u(x)
)

dx. (6)

This shows that E ∗ is a quadratic integral functional.
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We are now in position to define the map QD : M
d → [0,+∞) as

QD(G) := inf
v∈H 1

0 (D)

E ∗(ϕG + v).

Because of the representation (6), the map QD is a quadratic form of class Qα̃ for a positive constant α̃ depending
only on α.

We claim that 1
|D|WD is of class Wα′,ρ′ where ρ′ is defined by (5). It is clear that 1

|D|WD is frame indifferent. It
also satisfies a property of type (W2) as an application of [13, Lemma 2] (the proof of which actually does not use
periodicity, but only the asymptotic formula (3)). The expansion property (W3) is equivalent to (4). As in [13] we
notice that it is sufficient to prove the following: For all families (Gh) ∈ R

d with |Gh| = 1, we have:

(lower bound)
1

h2
WD(Id + hGh) � QD(Gh) − |D|

2
ρ′(h),

(upper bound)
1

h2
WD(Id + hGh) � QD(Gh) + |D|

2
ρ′(h).

We prove both statements separately.

Step 2. Proof of the lower bound.

By definition of WD (see (3)), for all h > 0,

0 � WD(Id + hGh) � lim sup
ε→0

∫
D

Wε(x, Id + hGh).

From (W3), the fact that Qε(x,G) � α|G|2 for a.e. x ∈ D, and the assumption |Gh| = 1, we infer that

0 � 1

h2
WD(Id + hGh) � |D|(α + ρ(h)

)
. (7)

By definition of WD , there exists a sequence (uh,ε) ∈ W 1,p(D) with the properties

uh,ε − ϕId+hGh
∈ W

1,p

0 (D) ⊂ H 1
0 (D), (8)

lim
ε→0

Iε(uh,ε) = WD(Id + hGh). (9)

We then define the following sequence of scaled displacements

gh,ε := uh,ε − ϕId+hGh

h
.

By construction gh,ε ∈ H 1
0 (D) and the uniform non-degeneracy assumption (W2) on Wε yields the estimate

1

h2

∫
D

dist2
(
Id + h

(
Gh + ∇gh,ε(x)

)
,SO(d)

)
dx � α

1

h2
Iε(uh,ε).

The quantitative geometric rigidity estimate (see [7, Theorem 3.1]) implies the existence of a rotation Rh,ε ∈ SO(d)

such that

‖Fh,ε + ∇gh,ε‖2
L2(D)

� C
1

h2
Iε(uh,ε) with Fh,ε := Id − Rh,ε

h
+ Gh.

Except otherwise stated, C denotes a positive constant that may vary from line to line, but can be chosen only depend-
ing on α and on the geometry of D. Because gh,ε vanishes on ∂D, an integration by parts shows that ∇gh,ε and the
(constant) matrix Fh,ε are orthogonal w.r.t. the inner product in L2(D;M

d):

‖Fh,ε + ∇gh,ε‖2
2 = |D||Fh,ε|2 + ‖∇gh,ε‖2

2 � ‖∇gh,ε‖2
2 .
L (D) L (D) L (D)
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Hence, the rigidity estimate, (7), and (9) yield

lim sup
ε→0

‖∇gh,ε‖2
L2(D)

� C|D|(α + ρ(h)
)
. (10)

Next, in order to make use of the quadratic expansion in (W3), we focus on the set where h(Gh + ∇gh,ε) is bounded.
To this end, we let χh,ε denote the indicator function of the set Xh,ε := {x ∈ D: |∇gh,ε| � h−1/2}, and note that

1

h2
Iε(uh,ε) = 1

h2

∫
D

Wε

(
x, Id + h

(
Gh + ∇gh,ε(x)

))
dx

� 1

h2

∫
D

χh,ε(x)Wε

(
x, Id+h

(
Gh + ∇gh,ε(x)

))
dx

= 1

h2

∫
D

Wε

(
x, Id + hχh,ε(x)

(
Gh + ∇gh,ε(x)

))
dx

by the non-negativity of Wε and the fact that Wε vanishes at Id. We then write the r.h.s. in the form

1

h2

∫
D

Wε

(
x, Id + hχh,ε(x)

(
Gh + ∇gh,ε(x)

))
dx =

∫
D

(
Qε

(
x,χh,ε(x)

(
Gh + ∇gh,ε(x)

)) + rh,ε(x)
)

dx,

where, using assumption (W3), the remainder rh,ε satisfies for all x ∈ Xh,ε

∣∣rh,ε(x)
∣∣ = ∣∣Gh + ∇gh,ε(x)

∣∣2 × |Wε(x, Id+h(Gh + ∇gh,ε(x))) − Qε(x,h(Gh + ∇gh,ε(x)))|
h2|Gh + ∇gh,ε(x)|2

� ρ
(
h|Gh| +

√
h

)∣∣Gh + ∇gh,ε(x)
∣∣2

= ρ(h + √
h)

∣∣Gh + ∇gh,ε(x)
∣∣2

,

and rh,ε(x) = 0 for a.e. x ∈ D \ Xh,ε . Thus, we conclude that

1

h2
Iε(uh,ε) �

∫
D

Qε

(
x,χh,ε(Gh + ∇gh,ε)

)
dx − ρ(h + √

h)‖Gh + ∇gh,ε‖2
L2(D)

. (11)

Appealing to (10) and using |Gh| = 1, (11) turns into

lim inf
ε→0

1

h2
Iε(uh,ε) � lim inf

ε→0

∫
D

Qε

(
x,χh,ε(Gh + ∇gh,ε)

)
dx − C|D|ρ(

√
h + h)

(
1 + α + ρ(h)

)
. (12)

Next, we wish to replace the integral term on the r.h.s. of (12) by the infimum of Eε on the set ϕGh
+ H 1

0 (D). By
coercivity of Eε on this set, this infimum problem is well-posed, and there exists g∗

h,ε ∈ H 1
0 (D) such that vh,ε :=

ϕGh
+ g∗

h,ε satisfies

Eε(vh,ε) =
∫
D

Qε

(
x,∇vh,ε(x)

)
dx = inf

v∈H 1
0 (D)

∫
D

Qε

(
x,Gh + ∇v(x)

)
dx. (13)

Since Eε is equi-coercive on ϕGh
+ H 1

0 (D), and Eε Γ (L2)-converges to E ∗ on H 1(D), the Γ -limit is coercive, and
the sequence of minima converges to the minimum of E ∗ on ϕGh

+ H 1
0 (D). This yields

lim
ε→0

Eε(vh,ε) = inf
v∈ϕG +H 1(D)

E ∗(v) = QD(Gh). (14)

h 0
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We shall actually prove that there exists μ > 0 depending only on α and on the geometry of D such that

lim inf
ε→0

∫
D

(
Qε

(
x,χh,ε(G + ∇gh,ε)

) − Qε

(
x,∇vh,ε(x)

))
dx � −C|D|h μ

4(2+μ)
(
1 + α + ρ(h)

) 4+3μ
4(2+μ) . (15)

Combined with (9), (12) and (14), (15) yields the desired lower bound.
The proof of (15) is the heart of the matter. Let Lε ∈ L∞(D,T

d
sym) denote the unique symmetric 4th order tensor

associated with Qε , i.e.〈
Lε(x)A,B

〉 = Qε(x,A + B) − Qε(x,A) − Qε(x,B)

2
(16)

for all A,B ∈ M
d and a.e. x ∈ D. Note that (Lε) is uniformly bounded in L∞(D,T

d
sym) because the operator norm

of Qε(x, ·) on M
d is bounded by α for all ε > 0 and a.e. x ∈ D. Since Qε(x, ·) is a non-negative quadratic form,

the inequality

Qε(x,A) − Qε(x,B) � 2
〈
Lε(x)(A − B),B

〉
(17)

holds for all A,B ∈ M
d and a.e. x ∈ D. We use this estimate with A = χh,ε(x)(Gh + ∇gh,ε(x)) and B = ∇vh,ε(x),

which yields by integration over D:∫
D

(
Qε

(
x,χh,ε(Gh + ∇gh,ε)(x)

) − Qε

(
x,∇vh,ε(x)

))
dx

� 2
∫
D

〈
Lε

(
χh,ε(Gh + ∇gh,ε) − ∇vh,ε

)
,∇vh,ε

〉
dx. (18)

Following [13, proof of Theorem 1], we rewrite the r.h.s. as∫
D

〈
Lε

(
χh,ε(Gh + ∇gh,ε) − ∇vh,ε

)
,∇vh,ε

〉
dx = I

(1)
h,ε − I

(2)
h,ε ,

with

I
(1)
h,ε :=

∫
D

〈
Lε(Gh + ∇gh,ε − ∇vh,ε),∇vh,ε

〉
dx,

I
(2)
h,ε :=

∫
D

〈
Lε(1 − χh,ε)(Gh + ∇gh,ε),∇vh,ε

〉
dx.

Because I
(1)
h,ε is the weak form of the Euler–Lagrange equation of the minimization problem in (13) with admissible

test-function ϕGh
+ gh,ε − vh,ε ∈ H 1

0 (D), the first term I
(1)
h,ε vanishes identically. We now deal with the second term,

and claim that

lim sup
ε→0

∣∣I (2)
h,ε

∣∣ � C|D|h μ
4(2+μ)

(
1 + α + ρ(h)

) 4+3μ
4(2+μ) . (19)

Combined with (18) and I
(1)
h,ε ≡ 0, this implies the desired estimate (15). To prove (19), we apply the higher integra-

bility result of Proposition 2.3 part (b) to ∇vh,ε . In particular, there exists a Meyers’ exponent μ > 0 and a positive
constant C such that∫

D

|∇vh,ε|2+μ dx � C|D||Gh|2+μ = C|D|. (20)

By Cauchy–Schwarz’ and Hölder’s inequalities, we may estimate I
(2) by
h,ε
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∣∣I (2)
h,ε

∣∣ � C‖Gh + ∇gh,ε‖L2(D)

∥∥(1 − χh,ε)∇vh,ε

∥∥
L2(D)

� C‖Gh + ∇gh,ε‖L2(D)‖1 − χh,ε‖Lq(D)‖∇vh,ε‖L2+μ(D) (21)

with q := 2(2+μ)
μ

∈ (1,∞). By definition of χh,ε there holds∣∣1 − χh,ε(x)
∣∣ �

√
h
(
1 − χh,ε(x)

)∣∣∇gh,ε(x)
∣∣ �

√
h
∣∣∇gh,ε(x)

∣∣
for a.e. x ∈ D, so that∫

D

|1 − χh,ε|q dx =
∫
D

|1 − χh,ε|dx �
√

h

∫
D

|∇gh,ε|dx.

Hence, by Cauchy–Schwarz’ inequality,

‖1 − χh,ε‖Lq(D) � Ch
1

2q |D| 1
2q ‖gh,ε‖

1
q

H 1(D)
= C|D| μ

4(2+μ) h
μ

4(2+μ) ‖gh,ε‖
μ

2(2+μ)

H 1(D)
,

which, combined with (10), (20) and (21), proves (19). This concludes the proof of the lower bound.

Step 3. Proof of the upper bound.

As usual, the proof of the upper bound relies on an explicit construction. As a first step we apply the Lipschitz
truncation argument of Proposition 2.3 part (c) with λ = h−1/2: There exists a doubly indexed sequence (gh,ε) ⊂
H 1

0 (D) and some μ > 0 (only depending on α and the geometry of D) such that{
‖∇gh,ε‖L∞(D) � h−1/2,

Eε(ϕGh
+ gh,ε) − QD(Gh) � Chμ/2|D|. (22)

Here and below, C denotes a positive constant that may vary from line to line, but only depends on α and on the
geometry of D.

Since for all ε > 0 the quadratic form Eε is Korn-elliptic with some constant α′ depending only on α, the second
property in (22) and Poincaré’s inequality imply that the sequence (gh,ε)ε is bounded in H 1(D). Using in addition
Step 1 in the form of QD(Gh) � α̃|D|, this yields the estimate

‖Gh + ∇gh,ε‖2
L2(D)

� C
(
1 + hμ/2)|D|. (23)

We set

uh,ε := ϕId+hGh
+ hgh,ε.

By definition we have

WD(Id + hGh) = lim
ε→0

{
inf

v∈H 1
0 (D)

Iε(ϕId+hGh
+ v)

}
� lim inf

ε→0
Iε(uh,ε)

= lim inf
ε→0

∫
D

Wε

(
x, Id + h

(
Gh + ∇gh,ε(x)

))
dx. (24)

As in the proof of the lower bound, we expand the r.h.s. as∫
D

Wε

(
x, Id + h

(
Gh + ∇gh,ε(x)

))
dx = h2

∫
D

(
Qε

(
x,Gh + ∇gh,ε(x)

) + rh,ε(x)
)

dx, (25)

where, using assumption (W3) and property (22), the remainder is estimated by∫
D

∣∣rh,ε(x)
∣∣dx � ρ(h + √

h)‖Gh + ∇gh,ε‖2
L2(D)

.

The combination of (24), (25), (23), and the second property in (22) then yields
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1

h2
WD(Id + hGh) � lim inf

ε→0
Eε(ϕGh

+ gh,ε) + lim sup
ε→0

ρ(h + √
h)‖Gh + ∇gh,ε‖2

L2(D)

� QD(Gh) + C|D|(hμ/2 + ρ(h + √
h)

(
1 + hμ/2)).

This proves the upper bound, and concludes the proof of the proposition. �
The proof of Theorem 2.1 relies on the quantitative version of Proposition 2.2 (see Remark 6) and on a localization

argument allowed by the p-growth condition.

Proof of Theorem 2.1. We split the proof into four steps.

Step 1. Localization of the energy Iε .

Let B denote the collection of all open balls contained in D, and define for all B ∈ B and all u ∈ W 1,p(B) the
localized functionals

Iε(u;B) :=
∫
B

Wε

(
x,∇u(x)

)
dx and I ∗(u;B) :=

∫
B

W ∗(x,∇u(x)
)

dx.

Since Wε satisfies the standard p-growth conditions, Γ -convergence is local (see [2, Theorem 12.5]), and for all B ∈ B
the functionals Iε(·;B) Γ (Lp)-converge to I ∗(·;B).

Step 2. Localization of Eε .

We consider a subsequence (not relabeled) such that Eε Γ (L2)-converges to a functional E ∗ on H 1(D). As in
Step 1 of the proof of Proposition 2.2, E ∗ is of the form

E ∗(g) =
∫
D

Q∗(x,∇g(x)
)

dx

for some Q∗ ∈ Qα′′(D × M
d), where α′′ only depends on α. Moreover, for all B ∈ B the localized functionals

Eε(g;B) :=
∫
B

Qε

(
x,∇g(x)

)
dx

Γ (L2)-converge on H 1(B) to

E ∗(g;B) :=
∫
B

Q∗(x,∇g(x)
)

dx.

Step 3. Characterization of Q∗.

For all B ∈ B and G ∈ M
d we define

QB(G) := inf
g∈H 1

0 (B)

∫
B

Q∗(x,G + ∇g(x)
)

dx,

WB(G) := inf
v∈W

1,p
0 (B)

∫
B

W ∗(x,G + ∇v(x)
)

dx.

Since I ∗(·;B) is the Γ (Lp)-limit of the sequence Iε(·;B), the functional I ∗(·;B) is lower semicontinuous and its
energy density W ∗ satisfies a p-growth condition from below. Hence, infima converge, and we have

WB(G) = lim
ε→0

{
inf

v∈W
1,p

(B)

Iε(ϕG + v;B)
}
, (26)
0
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which proves that (3) is well defined. Since B ∈ B is of class C1, we can apply Proposition 2.2 to each of the
functionals Iε(·;B); and since each B ∈ B can be obtained by translation and dilation of the unit ball in R

d , we
deduce that there exist a constant α′ and a modulus of approximation ρ′ (both only depending on α, and on ρ), such
that the following two properties are fulfilled: For all B ∈ B and G ∈ M

d

1

|B|WB ∈ Wα′,ρ′ , (27)∣∣∣∣ 1

|B|WB(Id+G) − 1

|B|QB(G)

∣∣∣∣ � ρ′(|G|)|G|2. (28)

In particular, (28) holds for all balls B(x, r) with center x ∈ D and sufficiently small radius r > 0. Because the l.h.s.
of (28) is independent of x and r , and since for almost every x ∈ D

lim
r→0

1

|B(x, r)|WB(x,r)(Id+G) = W ∗(x, Id + G),

lim
r→0

1

|B(x, r)|QB(x,r)(Id+G) = Q∗(x,G)

(see e.g. [4]), the estimate∣∣W ∗(x, Id + G) − Q∗(x,G)
∣∣ � ρ′(|G|)|G|2 (29)

holds for all G ∈ M
d and almost every x ∈ D. On the one hand, this implies that W ∗ ∈ W p

α′,ρ′(D×M
d). On the other

hand, this proves that Q∗ can be characterized by

Q∗(x,G) := lim
h→0

1

h2
W ∗(x, Id + hG).

The limit on the r.h.s. does not depend on the extraction of Step 2, so that the entire sequence Eε Γ (L2)-converges
to E ∗.

Step 4. Commutation diagram.

The proof of the diagram, which closely follows [13, Section 6], is left to the reader. �
We conclude this section with the Lipschitz truncation estimate of Proposition 2.3.

Proof of Proposition 2.3(c). The proof is divided into three steps. In the first two steps we prove the statement for
a fixed domain D by combining Meyers’ estimate and the Lipschitz truncation argument of [7, Proposition A.3]. We
then prove in the third step that the constants can be chosen only depending on α and on the geometry of D.

Step 1. Control of energy differences.

Let g∗ ∈ H 1
0 (D) denote the unique minimizer of the functional EG on H 1

0 (D). We claim that for all g ∈ H 1
0 (D)

there holds∫
D

Q(x,G + ∇g)dx −
∫
D

Q
(
x,G + ∇g∗)dx � α

∥∥∇g − ∇g∗∥∥2
L2(D)

. (30)

To prove this we first expand the formula for Q(x,∇g − ∇g∗) (use (16) with A = G + ∇g∗ and B = ∇g − ∇g∗):

Q(x,G + ∇g) − Q
(
x,G + ∇g∗) = Q

(
x,∇g − ∇g∗) + 2

〈
L(x)

(
G + ∇g∗),∇g − ∇g∗〉.

We integrate this identity over D and note that the second term on the r.h.s. vanishes as the first variation of the
minimization problem characterizing g∗. Thus, (30) follows from the fact that Q(x, ·) ∈ Qα for a.e. x ∈ D.

Step 2. Proof of the claim for a fixed domain.
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We assert that there exist C > 0 and μ > 0 such that for all λ > 0 there exists a map g ∈ W
1,∞
0 (D) that satisfies

‖g‖W 1,∞(D) � λ, (31)∥∥∇g − ∇g∗∥∥2
L2(D)

� Cλ−μ
∥∥∇g∗∥∥2+μ

L2+μ(D)
. (32)

We construct the map as follows. By Meyers’ estimate (see Proposition 2.3 part (b)), there exist C > 0 and μ > 0
depending only on α and D such that for all G ∈ M

d ,∥∥∇g∗∥∥2+μ

L2+μ(D)
� C|D||G|2+μ.

Hence, [7, Proposition A.2] yields a map g ∈ W
1,∞
0 (D) that satisfies (31), and the estimate

|Dλ| � C

λ2+μ

∥∥∇g∗∥∥2+μ

L2+μ(D)
, Dλ := {

x ∈ D: g(x) �= g∗(x)
}

(33)

for some C independent of λ and g∗. Let us prove that g also satisfies (32). From Hölder’s inequality with exponents
(

2+μ
2 ,

2+μ
μ

), we have

∥∥∇g − ∇g∗∥∥2
L2(D)

=
∫
Dλ

∣∣∇g − ∇g∗∣∣2 dx � |Dλ|
μ

2+μ

( ∫
D

∣∣∇g − ∇g∗∣∣2+μ dx

) 2
2+μ

.

On the one hand, the combination of (31) and (33) yields∫
D

∣∣∇g − ∇g∗∣∣2+μ dx =
∫
Dλ

∣∣∇g − ∇g∗∣∣2+μ dx

� C

( ∫
Dλ

|∇g|2+μ dx +
∫
D

∣∣∇g∗∣∣2+μ dx

)

� C

(
|Dλ|λ2+μ +

∫
D

∣∣∇g∗∣∣2+μ dx

)
� C

∥∥∇g∗∥∥2+μ

L2+μ(D)
.

On the other hand, (33) also implies

|Dλ|
μ

2+μ � Cλ
−(2+μ)

μ
2+μ

∥∥∇g∗∥∥(2+μ)
μ

2+μ

L2+μ(D)
= Cλ−μ

∥∥∇g∗∥∥μ

L2+μ(D)
.

Estimate (31) follows from these last three inequalities.

Step 3. Dependence of the constants on D.

Step 2 provides a function g satisfying the desired properties with some constants μ and C which only depend on
α and the domain D. Let us quickly show that both constants can be chosen invariant under dilations, translations,
and rotations of D. Assume that D is a translated, rotated, and dilated version of some reference domain D0, i.e.
D := τ + rRD0 with τ ∈ R

d , R ∈ SO(d), and r > 0. We shall prove that C and μ only depend on α and D0. To this
end we set

g∗
0(x) := 1

r
g∗(τ + rRx) and Q0(x,G) := Q(τ + rRx,G).

Then g∗
0 is the unique minimizer of

H 1
0 (D0) � g0 �→

∫
Q0(x,G + ∇g0)dx.
D0
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For all λ > 0, Step 2 yields a map g0 ∈ W
1,∞
0 (D0) with∣∣∇g0(x)

∣∣ � λ for a.e. x ∈ D0,∫
D0

Q0
(
x,G + ∇g0(x)

)
dx −

∫
D0

Q0
(
x,G + ∇g∗

0(x)
)

dx � C0λ
−μ0 |D0||G|2+μ0 ,

where μ0 and C0 only depend on α and D0. A simple change of variables shows that the map

g(x) := rg0

(
R−1 x − τ

r

)
satisfies (31) and (32) with μ = μ0 and C = C0. �
2.3. Extension to general energy densities

In finite elasticity it is desirable to consider energy densities with the physical behavior

W(x,F ) = +∞ for all F ∈ M
d with detF � 0.

In order to allow such energy densities we have to drop the p-growth condition from above. As we shall show in
Theorem 2.4 below, provided homogenization holds, linearization and homogenization commute at identity in the
homogeneous case (that is, when the limiting energy density does not depend on the space variable). Yet homogeniza-
tion of such energy functionals is currently an open problem, so that the assumption of Theorem 2.4 is quite strong.
On the other hand, the commutativity result is a local statement close to SO(d), so that the behavior of W(x,F ) as
detF is close to 0 should not rule out our arguments—in the spirit of the linearization result by Dal Maso, Negri and
Percivale in [6]. To emphasize this point we shall prove the following statement: Taking the Γ -limsup (or liminf) and
linearization commute. In particular, whether the Γ -limit in ε (homogenization) exists or not does not matter, since
whatever the chosen (converging) subsequence in ε, it commutes with the limit in h (linearization). In particular, this
is a mild statement of the fact that nonlinear elastic energy densities without growth condition can be homogenized in
a neighborhood of identity. This is made precise in Theorem 2.5.

Theorem 2.4. Let the domain D be C1, and consider a family of energy densities (Wε) ⊂ Wα,ρ(D × M
d). Suppose

that there exist p � 2, and homogeneous-in-space energy densities Whom : M
d → [0,+∞] and Qhom : M

d → R, such
that as ε → 0:

(i) the energy functionals Iε|W 1,p
0 (D)

defined in (1) Γ (Lp)-converge to

Ihom : W 1,p

0 (D) → [0,+∞], u �→
∫
D

Whom
(∇u(x)

)
dx;

(ii) the quadratic energy functionals Eε|H 1
0 (D) defined in (2) Γ (L2)-converge to Ehom given by

Ehom : H 1
0 (D) → R, u �→

∫
D

Qhom
(∇u(x)

)
dx.

If the homogenized density Whom satisfies for all F ∈ M
d the asymptotic formula

Whom(F ) = lim
ε→0

1

|D| inf
{

Iε(ϕF + v): v ∈ W
1,p

0 (D)
}
, (34)

then Whom admits a quadratic expansion at Id given by Qhom, i.e. for all G ∈ M
d , there holds

Whom(Id + G) = Qhom(G) + o
(|G|2). (35)

In addition the following diagram commutes
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Gh,ε
(1)−−−−→ Eε

(2)

⏐⏐� ⏐⏐�(3)

Gh,hom −−−−→
(4)

Ehom

where Gh,ε and Gh,hom denote the functionals from H 1
0 (D) to [0,+∞] defined as

Gh,ε(g) := 1

h2
Iε(ϕId + hg), Gh,hom(g) := 1

h2
Ihom(ϕId + hg);

and (1), (4), and (2), (3) mean Γ -convergence in H 1
0 (D) with respect to the strong topology of L2(D) as h → 0 and

ε → 0, respectively. Moreover, the families (Gh,ε), (Gh,hom) and (Eε) are equi-coercive w.r.t. weak convergence in
H 1

0 (D).

Remark 8. The quadratic expansion (35) of Whom does not depend on the exponent for which the Γ (Lp)-convergence
holds.

Theorem 2.4 is an immediate consequence Proposition 2.2:

Proof of Theorem 2.4. By assumption the Γ -limits Ihom and Ehom are integral functionals with homogeneous inte-
grands Whom and Qhom, respectively. Thus, the expansion (4) in Proposition 2.2 simplifies to

inf
v∈W

1,p
0 (D)

∫
D

Whom
(
Id+G + ∇v(x)

)
dx = inf

v∈H 1
0 (D)

∫
D

Qhom
(
G + ∇v(x)

)
dx + o

(∣∣G2
∣∣).

The functional Ihom is (as a Γ (Lp)-limit) lower semicontinuous w.r.t. strong convergence in Lp(D). Hence, Whom is
W 1,p-quasiconvex, and

inf
v∈W

1,p
0 (D)

∫
D

Whom
(
Id+G + ∇v(x)

)
dx = |D|Whom(Id + G).

By convexity of Qhom, we also have

inf
v∈H 1

0 (D)

∫
D

Qhom
(
G + ∇v(x)

)
dx = |D|Qhom(G).

This proves (35). The proof of the diagram, which closely follows [13, Section 6], is left to the reader. �
If we do not assume the homogenization property to hold, we still have a commutation diagram, where the Γ -limit

is replaced by the Γ -liminf or the Γ -limsup (which are well-defined quantities):

Theorem 2.5. Let the domain D be C1, and consider a family of energy densities (Wε) ⊂ Wα,ρ(D × M
d). Suppose

that there exists Q∗ : D × M
d → R, such that as ε → 0 the quadratic energy functionals Eε|H 1

0 (D) defined in (2)

Γ (L2)-converge to E ∗ given by

E ∗ : H 1
0 (D) → R, g �→

∫
D

Q∗(x,∇g(x)
)

dx.

Then setting for all h > 0

G+
h,hom := Γ

(
L2)- lim sup

ε→0
Gh,ε,

G−
h,hom := Γ

(
L2)- lim inf Gh,ε,
ε→0
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where Gh,ε denotes the functional from H 1
0 (D) to [0,+∞] defined as

Gh,ε(g) := 1

h2

∫
D

Wε

(
x, Id + h∇g(x)

)
dx,

the following diagrams commute

Gh,ε
(1)−−−−→ Eε

(2)+
⏐⏐� ⏐⏐�(3)

G+
h,hom −−−−→

(4)
E ∗

Gh,ε
(1)−−−−→ Eε

(2)−
⏐⏐� ⏐⏐�(3)

G−
h,hom −−−−→

(4)
E ∗

where (1), (4), and (2)+ (resp. (2)−), (3) stand for Γ -convergence in H 1
0 (D) with respect to the strong topology of

L2(D) as h → 0 and Γ (L2)- lim sup (resp. Γ (L2)- lim inf) as ε → 0, respectively. In addition the families (Gh,ε),
(G±

h,hom) and (Eε) are equi-coercive w.r.t. weak convergence in H 1
0 (D).

Proof. In the diagram (2)+, (2)− and (3) hold by assumption. For the convergence in arrow (1), which corresponds
to the passage from nonlinear to linear elasticity, we refer to [13, Theorem 5.1] (see also [6]). Hence, only (4) has to
be proved. Since by definition G−

h,hom � G+
h,hom, it suffices to check the following two statements.

(lower bound) For every sequence (gh) ⊂ H 1
0 (D) with gh → g in L2(D) it is

lim inf
h→0

G−
h,hom(gh) �

{
E ∗(g) for g ∈ H 1

0 (D),

+∞ else.

(upper bound) For all g ∈ H 1
0 (D) there exists a sequence (gh) ⊂ H 1

0 (D) such that gh → g in L2(D) and

lim
h→0

G+
h,hom(gh) = E ∗(g).

Both statements follow by adaptation of the proofs of Proposition 2.2 and Proposition 2.3(c). For the sake of com-
pleteness, we briefly present the argument.

Step 1. Construction of a recovery sequence with higher integrability.

We need the following modification of Proposition 2.3(c): Let g ∈ W
1,∞
0 (D) and let gε be the unique minimizer

on H 1
0 (D) of the functional

ϕ �→ Eε(ϕ) + Lg(ϕ), where Lg(ϕ) := −2
∫
D

〈
L

∗(x)∇g,∇ϕ
〉
dx,

and L
∗ denotes the symmetric fourth order tensor associated with Q∗. Then there exist an exponent μ > 0, a con-

stant C and a family (gh,ε) ⊂ W
1,∞
0 (D) such that for all positive ε and h we have

gε ⇀ g weakly in H 1(D) and Eε(gε) → E ∗(g), (36)

∇gε ⇀ ∇g weakly in L2+μ(D), (37)

‖gh,ε‖W 1,∞(D) � Ch−1/2, (38)

‖∇gh,ε − ∇gε‖L2(D) � Chμ/2. (39)

Since the function g is the unique minimizer on H 1
0 (D) of the functional E ∗ + Lg , the assertion (36) follows from the

property that Eε + Lg Γ -converges to E ∗ + Lg . For (37) it suffices to prove the higher integrability statement

‖∇gε‖L2+μ(D) � C, (40)
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where μ and C are independent of ε. Indeed, as a minimizer the function gε satisfies the Euler–Lagrange equation∫
D

〈Lε∇gε,∇ϕ〉dx =
∫
D

〈L∇g,∇ϕ〉dx for all ϕ ∈ H 1
0 (D). (41)

Since Lε is uniformly elliptic, and since L∇g ∈ L∞(D,M
d), we can apply Meyers’ estimate [17, Theorem 1.1] and

(40) follows. As in the proof Proposition 2.3(c), Step 2, the doubly indexed family (gh,ε) satisfying estimates (38)
and (39) can be constructed by a Lipschitz truncation argument.

Step 2. Proof of (upper bound).

Since W
1,∞
0 (D) is dense in H 1

0 (D), it suffices to prove the statement for g ∈ W
1,∞
0 (D). Let (gε) and (gh,ε) be as

in Step 1. By (38) for each h the family (gh,ε)ε is bounded in H 1
0 (D). Therefore, for each h there exist a function

gh ∈ H 1
0 (D) and a vanishing sequence of positive numbers (εh

i )i∈N such that gh,εh
i

→ gh strongly in L2(D) and

weakly in H 1
0 (D) as i → ∞. Hence, by appealing to the definition of the Γ -limsup we get

G+
h,hom(gh) = inf

{
lim sup
i→∞

Gh,εi
(ϕi) : ϕi → gh strongly in L2(D) and εi ↓ 0

}
� lim sup

i→∞
Gh,εh

i
(gh,εh

i
) = lim sup

i→∞
1

h2

∫
D

Wεh
i

(
x, Id + h∇gh,εh

i
(x)

)
dx.

For h 	 1 we can expand the integral of the r.h.s. as follows

1

h2

∫
D

Wεh
i
(x, Id+h∇gh,εh

i
)dx

(W3), (38) and (39)

�
∫
D

Qεh
i
(x,∇gh,εh

i
)dx + ‖∇gh,εh

i
‖2
L2(D)

ρ(C
√

h)

�
∫
D

Qεh
i
(x,∇gεh

i
)dx +

∫
D

Qεh
i
(x,∇gh,εh

i
− ∇gεh

i
) + 2〈Lεh

i
∇gεh

i
,∇gh,εh

i
− ∇gεh

i
〉dx

+ 2
(‖∇gεh

i
‖2
L2(D)

+ ‖∇gh,εh
i
− ∇gεh

i
‖2
L2(D)

)
ρ(C

√
h).

The last line follows from an expansion of Qεh
i

and the triangle inequality. Because Qεh
i

∈ Qα′(D × M
d) for some α′

independent of i and h, and by (36), (37) and (39) we deduce that

lim sup
i→∞

1

h2

∫
D

Wεh
i
(x, Id + h∇gh,εh

i
)dx � E ∗(g) + O

(
hμ/2 + ρ(C

√
h)

)
.

Now, the statement follows by passing to the limit h → 0 on both sides.

Step 3. Proof of (lower bound).

It suffices to consider a sequence gh → g in L2(D) with (gh) ⊂ H 1
0 (D) and

lim inf
h→0

G−
h,hom(gh) = lim sup

h→0
G−

h,hom(gh) < ∞.

By appealing to the definition of the Γ -liminf there exists a doubly indexed family (gh,ε) ⊂ H 1
0 (D) such that for each

h we have ‖gh,ε − gh‖L2(D) → 0 as ε → 0 and lim infε→0 Gh,ε(gh,ε) � G−
h,hom(gh) + h. By appealing to (W2) and

geometric rigidity, we deduce that g ∈ H 1(D) and that for each h there exists a vanishing sequence (εh)i∈N such that
0 i
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gh,εh
i

⇀ gh and gh ⇀ g weakly in H 1(D) as i → ∞ and h → 0, respectively, (42)

lim
i→∞ Gh,εh

i
(gεi

h,h) � G−
h,hom(gh) + h. (43)

As in the proof of Proposition 2.2, Step 2, we get for h 	 1 by expansion of Wεh
i

the estimate

Gh,εh
i
(gh,εh

i
) �

∫
D

Qεh
i
(x,∇gh,εh

i
)χh,εh

i
dx − ‖∇gh,εh

i
‖2
L2(D)

ρ(
√

h)

where χh,ε is the indicator function of the set {x ∈ D: |∇gh,ε(x)| � h−1/2}. To estimate the quadratic term, fix a
function g̃ ∈ W

1,∞
0 (D), which we think of as an approximation of g, and let g̃ε be defined as in Step 1. Application

of the expansion formula (17) with A = χh,εh
i
∇gh,εh

i
and B = ∇g̃εh

i
yields∫

D

Qεh
i
(x,∇gh,εh

i
)χh,εh

i
dx �

∫
D

Qεh
i
(x,∇g̃εh

i
)dx + 2

∫
D

〈
Lεh

i
(x)(∇gh,εh

i
− ∇g̃εh

i
),∇g̃εh

i

〉
dx

︸ ︷︷ ︸
=:I (1)

h,εh
i

− 2
∫
D

〈
Lεh

i
(x)(1 − χh,εh

i
)∇gh,εh

i
,∇g̃εh

i

〉
dx

︸ ︷︷ ︸
I

(2)

h,εh
i

. (44)

By (36) we have

lim
i→∞

∫
D

Qεh
i
(x,∇g̃εh

i
)dx =

∫
D

Q∗(x,∇g̃)dx. (45)

Next, we treat I
(1)

h,εh
i

:

lim
h→0

lim
i→∞ I

(1)

h,εh
i

(41)= lim
h→0

lim
i→∞Lg̃(gh,εh

i
− g̃εh

i
)

(42)= Lg̃(g − g̃). (46)

As in the proof of Proposition 2.2, Step 2, the contribution of I
(2)

h,εh
i

vanishes in the limit i → ∞, h → 0. Thus, the

combination of (43), (44), (45), and (46) yields

lim inf
h→0

G−
h,hom(gh) �

∫
D

Q∗(x,∇g̃)dx + Lg̃(g − g̃).

Since g̃ can be chosen arbitrarily close to g, the statement follows. �
3. Application to stochastic homogenization

Let (Ω, F ,P) be a probability space. We shall say that the family of mappings (τz)z∈Rd from Ω to Ω is a strongly
continuous measure-preserving ergodic translation group if:

– (τz)z∈Rd has the group property: τ0 = Id (the identity mapping), and for all x, y ∈ R
d , τx+y = τx ◦ τy ;

– (τz)z∈Rd preserves the measure: For all x ∈ R
d , and every measurable set F ∈ F , τxF is measurable and

P(τxF ) = P(F );
– (τz)z∈Rd is strongly continuous: For any measurable function f on Ω , the function (ω, x) �→ f (τxω) defined on

Ω × R
d is measurable (with the Lebesgue measure on R

d );
– (τz)z∈Rd is ergodic: For all F ∈ F , if for all x ∈ R

d , τxF ⊂ F , then P(F ) ∈ {0,1}.
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We are in position to recall the following standard stochastic homogenization result (see the original contribution [5]
in the convex case, and its generalization [12] to the quasiconvex case).

Theorem 3.1. Let (Ω, F ,P) be a probability space, (τz)z∈Rd be a strongly continuous measure-preserving ergodic
translation group, and let W : R

d × M
d × Ω → R

+ be a map such that

(i) W is Lebesgue-measurable in its first variable,
(ii) W is F -measurable in its third variable,

(iii) W(x, ·,ω) ∈ W p
α for P-almost every ω ∈ Ω , almost every x ∈ R

d and some p ∈ (1,∞),
(iv) W is stationary in the sense that for P-almost every ω ∈ Ω , almost every x ∈ R

d , every F ∈ M
d and every z ∈ R

d

W(x + z,F,ω) = W(x,F, τzω).

Then for P-almost every ω ∈ Ω , the integral functional Iε(ω) : W 1,p(D) → R
+ given for all ε > 0 by

Iε(ω)(u) =
∫
D

W
(
x/ε,∇u(x),ω

)
dx

Γ (Lp)-converges, as ε vanishes, to the integral functional Ihom : W 1,p(D) → R
+ given by

Ihom(u) =
∫
D

Whom
(∇u(x)

)
dx,

where the deterministic homogeneous-in-space energy density Whom is quasiconvex, satisfies (W4) and the asymptotic
formula

Whom(F ) = lim
R→∞

1

Rd
inf

{ ∫
(0,R)d

W
(
x,F + ∇φ(x),ω

)
dx, φ ∈ W

1,p

0

(
(0,R)d

)}
(47)

for all F ∈ M
d and P-almost every ω ∈ Ω .

The combination of Theorems 2.4 and 3.1 yields

Theorem 3.2. Let W and Whom be as in Theorem 3.1 and assume in addition that for some p � 2 and a modulus of
approximation ρ

W(x, ·,ω) ∈ W p
α,ρ

for almost every x ∈ R
d and P-almost every ω ∈ Ω . Let Q denote the quadratic term of the Taylor expansion of W at

identity. Then:

(a) the density Whom is of class W p

α′,ρ′ , with α′ and ρ′ as in Theorem 2.1;
(b) the energy functionals

Eε(ω) : H 1(D) → R
+, u �→

∫
D

Qε

(
x/ε,∇u(x),ω

)
dx

Γ (L2)-converge for P-almost every ω ∈ Ω to

Ehom : H 1(D) → R, u �→
∫
D

Qhom
(∇u(x)

)
dx

where Qhom is the deterministic homogeneous-in-space quadratic energy density that is determined by the expan-
sion

∀G ∈ M
d : Whom(Id + G) = Qhom(G) + o

(|G|2);
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(c) for P-almost every ω ∈ Ω the following diagram commutes

Gh,ε(ω)
(1)−−−−→ Eε(ω)

(2)

⏐⏐� ⏐⏐�(3)

Ghom,h −−−−→
(4)

Ehom

where Gh,ε(ω) and Ghom,h denote the functionals from H 1
0 (D) to [0,+∞] defined as

Gh,ε(ω)(g) := 1

h2

∫
D

W
(
x/ε, Id + h∇g(x),ω

)
dx,

Ghom,h(g) := 1

h2

∫
D

Whom
(
Id + h∇g(x)

)
dx

and (1), (4), and (2), (3) mean Γ -convergence in H 1
0 (D) with respect to the strong topology of L2(D) as h → 0

and ε → 0, respectively. Moreover, the families (Iε(ω)) and (Eε(ω)) are equi-coercive w.r.t. weak convergence in
H 1

0 (D) (for P-almost every ω ∈ Ω).

Proof. Let Iε(ω) and Ihom(ω) be defined as in Theorem 3.1. Then Iε(ω) Γ (Lp)-converges to Ihom(ω) for P-almost
every ω ∈ Ω . Now, the statement is a direct consequence of Theorem 2.1 which applies for P-almost every ω ∈ Ω . �
Corollary 3.3. Within the notation and assumptions of Theorem 3.2, we also have

Qhom(G) = lim
R→∞

1

Rd
inf

{ ∫
(0,R)d

Q
(
x,G + ∇φ(x),ω

)
dx, φ ∈ H 1

0

(
(0,R)d

)}
(48)

for all G ∈ M
d , and for P-almost every ω ∈ Ω , where

Q(y,G,ω) := lim inf
h→0

W(y, Id+hG,ω)

h2
.

Proof. Once we know that Eε Γ (L2)-converges to Ehom, the uniform coercivity of Eε and Ehom implies the con-
vergence of the infima, which yields the desired formula (48). The Γ -convergence result is either a consequence of
Theorem 3.2 part (b), or of the G-convergence of the associated elliptic operator proved for instance in [10, Sec-
tion 12.3] (by definition, Q(y,G,ω) is stationary for the ergodic translation group). �
Remark 9. As can be easily seen, Theorem 3.2 holds as well in the almost-periodic case (see for instance [3] or [2,
Section 17.2]) and in variants of the stochastic case (see for instance [8]).

4. Locality of the Γ -closure at identity

This section is devoted to the locality of the Γ -closure in W p
α,ρ at identity. Given k homogeneous energy densities

{Wi}i∈{1,...,k} ∈ W p
α,ρ , we are interested in characterizing the set of maps W ∗(x, ·) that can be reached as energy

densities of Γ (Lp)-limits I ∗ : W 1,p(D) → R

u �→ I ∗(u) =
∫
D

W ∗(x,∇u(x)
)

dx, (49)

of energy functionals Iχn : W 1,p(D) → R of the form

u �→ Iχn(u) =
∫ k∑

i=1

Wi

(∇u(x)
)
χn

i (x)dx (50)
D
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as n goes to infinity. Above, χn ∈ L∞(D, {0,1}k) denotes a vector field with
∑k

i=1 χn
i ≡ 1 and satisfies χn ⇀∗ θ

weakly-* in L∞(D, [0,1]k). The components of χn can be seen as the characteristic functions of the k phases. Note
that also in the limit we have

∑k
i=1 θi ≡ 1.

The Γ -closure of {Wi}i∈{1,...,k} is said to be local if the set of such integrands W ∗(x, ·) for almost every x ∈ D

coincides with the closure for the pointwise convergence of the set of energy densities Whom obtained by periodic
homogenization of mixtures of {Wi}i∈{1,...,k} in the proportions {θi(x)}i∈{1,...,k}. To turn this into a rigorous statement,
let us recall some definitions related to periodic homogenization.

Definition 5. (See [14,3].) Let 1 < p < ∞, and W ∈ W p
α (Rd × M

d) be U = (0,1)d -periodic in its first variable.
The homogenized energy density associated with W is denoted by Whom : M

d → R and characterized by

Whom(F ) := lim
R→∞

1

Rd
inf

{ ∫
(0,R)d

W
(
y,F + ∇u(y)

)
dy, u ∈ W

1,p

0

(
(0,R)d

)}
. (51)

We are now in position to define the set of periodic homogenized energy densities.

Definition 6. Let 1 < p < ∞, {Wi}i∈{1,...,k} ∈ W p
α , and θ ∈ [0,1]k be such that

∑k
i=1 θi = 1. We define the set of

periodic homogenized energy densities associated with {Wi, θi}i∈{1,...,k} as

Pθ =
{

(Wχ)hom : M
d → R: ∃χ ∈ L∞(

R
d, {0,1}k) such that χ is U -periodic with

∫
U

χi dy = θi

and (Wχ)hom is associated with Wχ : (y,F ) �→
k∑

i=1

Wi(F )χi(y) through (51)

}
,

and its closure for the pointwise convergence by

Gθ = {
W ∗ : M

d → R: ∃(Wχn)hom ∈ Pθ , (Wχn)hom → W ∗ pointwise
}
.

The definition of locality of the Γ -closure now reads:

Definition 7. Let 1 < p < ∞, {Wi}i∈{1,...,k} ∈ W p
α . We say that the Γ -closure of {Wi}i∈{1,...,k} is local if and only if

for every sequence χn ∈ L∞(D, {0,1}k) with
∑k

i=1 χn
i ≡ 1 and such that

– χn ⇀∗ θ weakly-* in L∞(D, [0,1]k),
– the functional Iχn : W 1,p(D) → R defined in (50) Γ (Lp)-converges to the functional I ∗ : W 1,p(D) → R defined

in (49),

one has

W ∗(x, ·) ∈ Gθ(x)

for almost every x ∈ D.

If the k energy densities {Wi}i∈{1,...,k} are convex functions, then the associated Γ -closure is local (see for instance
[1, Theorem 5.1]). In the case of quasiconvex non-convex functions, the locality (or non-locality) of the Γ -closure is
an open problem. In the specific case when Wi ∈ W p

α,ρ for all i ∈ {1, . . . , k}, Theorem 2.4 allows us to prove that the
Γ -closure is “local at identity”. This notion is made precise by the following two definitions.

Definition 8. Let 2 � p < ∞, {Wi}i∈{1,...,k} ∈ W p
α,ρ , and θ ∈ [0,1]k such that

∑k
i=1 θi = 1. We define the set of

periodic homogenized energy densities associated with {Wi, θi}i∈{1,...,k} at identity as

P Id
θ = {

W ∗ : M
d → R: ∃(Wχ)hom ∈ Pθ such that

∣∣W ∗(Id + G) − (Wχ)hom(Id + G)
∣∣ = o

(|G|2)},
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and its closure:

G Id
θ =

{
W ∗ : M

d → R: there exists a sequence (Wχn)hom ∈ Pθ

such that
∣∣∣W ∗(Id + G) − lim

n→0
(Wχn)hom(Id + G)

∣∣∣ = o
(|G|2)}.

Definition 9. Let 2 � p < ∞, {Wi}i∈{1,...,k} ∈ W p
α,ρ . We say that the Γ -closure of {Wi}i∈{1,...,k} is local at identity if

and only if for every sequence χn ∈ L∞(D, {0,1}k) with
∑k

i=1 χn
i ≡ 1 and such that

– χn ⇀∗ θ weakly-* in L∞(D, [0,1]k),
– the functional Iχn : W 1,p(D) → R defined in (50) Γ (Lp)-converges to the functional I ∗ : W 1,p(D) → R defined

in (49),

one has

W ∗(x, ·) ∈ G Id
θ(x)

for almost every x ∈ D.

The above definition is a weakened version of the locality of the Γ -closure of Definition 7 obtained by restricting
the property of approximation by periodic homogenized energy densities to a neighborhood of identity via a Taylor
expansion. We have:

Theorem 4.1. Let 2 � p < ∞ and {Wi}i∈{1,...,k} ∈ W p
α,ρ , then the Γ -closure of {Wi}i∈{1,...,k} is local at identity.

Proof. By [1, Theorem 3.5], it is enough to prove the locality property in the so-called homogeneous case, that is
with a repartition function χn ∈ L∞(D, {0,1}k) such that

– χn weakly-* converges to a constant function θ in L∞(D, [0,1]k),
– the functional Iχn : W 1,p(D) → R defined in (50) Γ (Lp)-converges to the functional I ∗ : W 1,p(D) → R defined

in (49), where W ∗ does not depend on the space variable.

Let Eχn : H 1(D) → R
+ denote the quadratic energy functional associated with Iχn , that is

Eχn(u) :=
∫
D

k∑
i=1

Qi

(∇u(x)
)
χn

i (x)dx

where Qi ∈ Qα′ denotes the quadratic form associated with Wi through (W3). We then apply Theorem 2.1 and deduce
that Eε Γ (L2)-converges to

E ∗ : H 1(D) → [0,+∞), E ∗(u) :=
∫
D

Q∗(∇u(x)
)

dx,

where Q∗ ∈ Qα̂ for some α̂ > 0, and is characterized by the expansion

W ∗(Id + G) = Q∗(G) + o
(|G|2). (52)

Next, we appeal to the locality of the Γ -closure for convex linear problems. In particular, there exists a U -periodic
sequence χ̃n ∈ L∞(Rd , {0,1}k) satisfying

∫
Q

χ̃n
i (y)dy = θi for all n ∈ N and all i ∈ {1, . . . , k}, and such that the

homogenized quadratic functions Q̃n
hom associated with the periodic quadratic energy densities Q̃n : R

d × M
d → R

Q̃n : (y,G) �→
k∑

Qi(G)χ̃n
i (y)
i=1
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approximate Q∗ in the sense that for all G ∈ M
d ,

lim
n→∞Qn

hom(G) = Q∗(G). (53)

We are now in position to prove the claim. To this aim, we define a sequence of periodic integrands W̃n : R
d ×M

d → R

as

W̃n : (y,G) �→
k∑

i=1

Wi(G)χ̃n
i (y).

With this sequence of periodic integrands we associate a sequence of homogenized integrands Wn
hom through (51)

with W̃n in place of W . Combined with standard periodic homogenization results (see for instance [14,3] or [2,
Section 14.2]), Theorem 2.1 then shows that

|Wn
hom(Id + G) − Qn

hom(G)|
|G|2 � ρ′(|G|),

and the theorem follows from (52), (53), and the uniformity of the validity of the Taylor expansion since for all n,
Wn

hom and W ∗ are of class W p

α′,ρ′ for the same function ρ′. �
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