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Abstract

We prove some symmetry property for equations with Hardy terms in cones, without any assumption at infinity. We also show
symmetry property and nonexistence of entire solutions of some elliptic systems with Hardy weights.
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1. Introduction

Let Ω ⊂ R
n, n � 3, be a smooth domain and D1,2(Ω) denote as the completion of C∞

c (Ω), the set of smooth
functions with compact support in Ω , under the norm ‖u‖D1,2(Ω) := (

∫
Ω

|∇u|2)1/2. The Hardy–Sobolev inequality

[4,14] asserts that for t ∈ [0,2] and 2∗(t) := 2(n−t)
n−2 , there exists C > 0 such that for all u ∈ D1,2(Ω)

C

(∫
Ω

|u|2∗(t)

|x|t dx

) 2
2∗(t)

�
∫
Ω

|∇u|2 dx. (1)

The best constant of (1) is defined by

Ct(Ω) := inf

{∫
Ω

|∇u|2 dx

∣∣∣ u ∈ D1,2(Ω),

∫
Ω

|u|2∗(t)

|x|t dx = 1

}
.

If t = 0, (1) becomes the classical Sobolev inequality. The best constant C0(R
n) and extremal functions of Sobolev

inequality have been obtained explicitly by Aubin [1] and Talenti [31]. Moreover C0(Ω) = C0(R
n) for any Ω and

C0(Ω) is never attained unless cap(Ω) = R
n (see, e.g., [30]). If t = 2, (1) is the classical Hardy inequality which is

known not to possess extremal functions.
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The best constant Ct(Ω) for 0 < t < 2 is delicate, which depends on the properties of Ω . In the entire case, Ct(R
n)

was first computed in [16] and extremal functions were identified by Lieb in [21]. For a general domain Ω it was
shown by Ghoussoub and Yuan in [14] that if 0 is in the interior of Ω , then Ct(Ω) = Ct(R

n) and Ct(Ω) is achieved
if Ω = R

n. However, things are different when 0 is on the boundary of Ω , which was first studied by H. Egnell [11].
Egnell considered open cones of the form C := {x ∈ R

n: x = rθ, θ ∈ Σ and r > 0} where Σ is a connected domain
on the unit sphere Sn−1 in R

n, and proved that Ct(C) is achieved for any 0 < t < 2 even if C �= R
n. So Ct(R

n+) is
achieved where Rn+ � {x ∈ R

n: xn > 0} is the upper half space. The upper half space, is of special interest, since it
was identified in [12,17,18] as the limiting space after blow-up in the case where Ω is bounded and ∂Ω is smooth
at 0. The curvature of the boundary at 0 then plays important roles. It was proved by Ghoussoub and Robert in [13]
that Ct(Ω) (0 < t < 2) is achieved if the mean curvature of ∂Ω at 0 is negative. Complementarily, due to Pohozaev
identity, nonexistence occurs if Ω is star-shaped with respect to 0.

We consider rotationally symmetric cones Ωa which are defined by

Ωa �
{
x = (

x′, xn

) ∈ R
n−1 × R

+: xn > a
∣∣x′∣∣, where constant a � 0

}
. (2)

By Egnell’s theorem, Ct(Ωa) is attained ∀t ∈ (0,2), i.e. the equation⎧⎪⎪⎨
⎪⎪⎩

−�u(x) = u2∗(t)−1(x)

|x|t , in Ωa,

u � 0, in Ωa,

u = 0, on ∂Ωa

(3)

always has a least energy solution in D1,2(Ωa) for any 0 < t < 2. One natural question is whether all the solutions (not
only the least energy ones) of Eq. (3) have corresponding symmetry. We give an affirmative answer in Theorem 1.1.
In the following we use D1,2

loc (Ω) to denote the set of functions u which satisfy, on all compact set K of Ω , u ∈
L2n/(n−2)(K) and ∇u ∈ L2(K).

Theorem 1.1. If u ∈ D1,2
loc (Ωa) is a solution of (3), then u(x′, xn) is symmetric under rotations around the xn axis.

Namely, u(x′, xn) = u(x̃′, xn) if |x′| = |x̃′|. Moreover u(x′, xn) � u(x̃′, xn) if |x′| � |x̃′|.

Remark 1.1. When a = 0, i.e. Ω0 = R
n+, the symmetry property was proved by Ghoussoub and Robert in [13] under

the assumptions that u ∈ C2(Rn+) ∩ C1(Rn+) and lim sup|x|→+∞ |x|n−1u(x) < ∞. Theorem 1.1 does not make any
assumption on u near infinity.

A generalization of Hardy–Sobolev inequality (1) is the following Caffarelli–Kohn–Nirenberg inequality [4], which
asserts that for all w ∈ C∞

c (Rn), there is a constant C > 0 such that

C

( ∫
Rn

|x|−βq |w|q dx

) 2
q

�
∫
Rn

|x|−2α|∇w|2 dx (4)

where

−∞ < α <
n − 2

2
, 0 � β − α � 1 and q = 2n

n − 2 + 2(β − α)
.

The best constants and minimizers to Caffarelli–Kohn–Nirenberg inequality (4) have been extensively studied. We
refer to [7,8,17,18] and references therein. The minimizers w(x) of (4) are closely related (see, e.g. [8]) to the least
energy solution of the following equation:⎧⎪⎪⎨

⎪⎪⎩
−�u(x) = b

u2∗(t)−1(x)

|x|t + u2∗(s)−1(x)

|x|s , in Ω,

u � 0, in Ω,

u = 0, on ∂Ω,

(5)

where b is a constant and 0 � s < t � 2. When Ω = Ωa it has been proved by Bartsch, Peng and Zhang in [2] that
Eq. (5) always has a least energy solution if 0 < s < t = 2 and b < (n−2)2/4. The existence of entire solutions of (5),
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i.e. Ω = R
n+, has been proved by Musina in [24] when s = 0, t = 2, 0 < b < (n − 2)2/4; by Hsia, Lin and Wadade in

[17] when s = 0 < t < 2, b > 0; and by Li and Lin in [18] when 0 < s < t < 2, b ∈ R.
Our proof of Theorem 1.1 can also be applied to obtain symmetry property of solutions of Eq. (5) with b > 0.

Theorem 1.2. If u ∈ D1,2
loc (Ωa) is a solution of (5) in Ωa with b > 0, then u(x′, xn) is symmetric under rotations

around the xn axis. Namely, u(x′, xn) = u(x̃′, xn) if |x′| = |x̃′|. Moreover u(x′, xn) � u(x̃′, xn) if |x′| � |x̃′|.

Remark 1.2. When Ω = R
n+ and under the assumption that u ∈ H 1

0 (Ω), the completion of C∞
c (Ω) under the norm

‖u‖H 1(Ω) := (
∫
Ω

|∇u|2 + u2)1/2, the symmetry property was obtained in [17] in the case that s = 0 < t < 2, b > 0,
and in [8] in the case that 0 < s < t = 2, b < (n−2)2/4 (can be negative). Theorem 1.2 does not make any assumption
on u near infinity, but with the assumption that b > 0.

We extend the above Eq. (3) to the following Lane–Emden systems with Hardy weights:{−�u(x) = |x|−svp(x), x ∈ R
n,

−�v(x) = |x|−t uq(x), x ∈ R
n.

(6)

We first recall the case s = t = 0 which has been studied by many authors. It has been conjectured that, see for
example de Figueiredo and Felmer [9], the following critical hyperbola:

n

p + 1
+ n

q + 1
= n − 2, p > 0, q > 0 (7)

is the dividing curve for existence and nonexistence of solutions of system (6). This conjecture was verified for positive
radial solutions (see, e.g. Mitidieri [23], Serrin and Zou [27,28]). de Figueiredo and Felmer [9] proved that system (6)
has no positive solutions provided that

0 < p,q � n + 2

n − 2
, (p, q) �=

(
n + 2

n − 2
,
n + 2

n − 2

)
.

See also [23] and [26] for other nonexistence results.
Recently the general case for s �= 0 and/or t �= 0 has been investigated independently by de Figueiredo et al. [10]

and Liu and Yang [22], where it is indicated that the dividing curve between existence and nonexistence is given by
the following “weighted” critical hyperbola:

n − s

p + 1
+ n − t

q + 1
= n − 2, p > 0, q > 0. (8)

Both papers considered the Dirichlet problem of system (6) in a bounded smooth domain, via an approach of fractional
Sobolev spaces. See also [5], where nonexistence of solutions and existence of symmetric solutions in balls were
studied.

We say u � 0 and v � 0 are weak solutions of system (6) if (u, v) ∈ D1,2
loc (Rn) × D1,2

loc (Rn) and∫
Rn

∇u∇φ =
∫
Rn

|x|−svpφ, ∀φ ∈ C∞
c

(
R

n
)
,

∫
Rn

∇v∇φ =
∫
Rn

|x|−t uqφ, ∀φ ∈ C∞
c

(
R

n
)
.

In the rest of the paper we will always assume system (6) satisfies

0 � s, t < 2, (s, t) �= (0,0), 0 < p � 2∗(s) − 1 and 0 < q � 2∗(t) − 1. (9)

Theorem 1.3. If u,v ∈ D1,2
loc (Rn) ∩ C(Rn) and u,v � 0 are weak solutions of system (6) then u, v are radial. Namely,

u(x1) = u(x2), v(x1) = v(x2) if |x1| = |x2|. Moreover u(x1) � u(x2), v(x1) � v(x2) if |x1| � |x2|.

Remark 1.3. If (p, q) �= (2∗(s) − 1,2∗(t) − 1) and u,v ∈ D1,2
loc (Rn) are weak solutions then u,v ∈ Cα(Rn) for some

α > 0. See Appendix A for details.
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Consequently, we have the following nonexistence result.

Theorem 1.4. If u,v � 0 are weak solutions of system (6), then u ≡ v ≡ 0 provided that:

0 < p,q <
n + 2 − s − t

n − 2 + |s − t | . (10)

Remark 1.4. Under condition (10), (p, q) is below “weighted” hyperbola (8).

We can also obtain symmetry property for system (6) in the upper half space with Dirichlet boundary condition.
It can be viewed as, like before, the limiting spaces after blow-up in the case where the boundaries of domains are
smooth at 0.⎧⎪⎪⎪⎨

⎪⎪⎪⎩
−�u(x) = |x|−svp(x), in R

n+,

−�v(x) = |x|−t uq(x), in R
n+,

u, v > 0, in R
n+,

u = v = 0, on ∂R
n+.

(11)

Theorem 1.5. If u,v ∈ D1,2
loc (Rn+) satisfy (11) with p,q > 1, then u(x′, xn) and v(x′, xn) are symmetric under rotations

around the xn axis. Moreover, u(|x′|, xn) � u(|x̃′|, xn) and v(|x′|, xn) � v(|x̃′|, xn) if |x′| � |x̃′|.

As remarked in [5], systems of type (6) are related to the double weighted Hardy–Littlewood–Sobolev inequality
(see e.g. Stein and Weiss [29] and Lieb [21]).

The proofs of our theorems use the method of moving spheres, a variant of the method of moving planes which are
developed through the works of Alexandrov, Serrin [25] and Gidas, Ni and Nirenberg [15]. We make use of ideas in
the proof of Liouville-type theorems given in [20,19,6], to fully exploit the conformal invariance of the problems. We
also make use of the “narrow domain idea” from Berestycki and Nirenberg [3].

2. Equations with Hardy terms

2.1. Proof of Theorem 1.1 if Ωa = R
n+

We first consider the case when a = 0, i.e. Ωa = R
n+. We make a remark about regularity of u. By standard elliptic

estimates,

u ∈ C∞(
R

n+\0
)
.

If u(x0) = 0 at some point x0 in R
n+, then u is identically zero, by the strong maximum principle. Hence we always

assume that

u(x) > 0.

For any x̄ ′ ∈ R
n−1, define

x̄ = (
x̄ ′,−1

)
.

Let

ux̄,λ(x) :=
(

λ

|x − x̄|
)n−2

u

(
x̄ + λ2(x − x̄)

|x − x̄|2
)

(12)

be the Kelvin transformation of u with respect to the ball B(x̄, λ) with center x̄ and radius λ. By direct computations,
we have for x ∈ B+(x̄, λ) � B(x̄, λ) ∩ R

n+,

−�ux̄,λ(x) =
(

λ2|x|
|x − x̄|2|x̄ + λ2(x−x̄)

|x−x̄|2 |

)t u
2∗(t)−1
x̄,λ (x)

|x|t .

We start with a lemma, which is similar to Lemma 4 in [6].
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Lemma 2.1. ∀λ ∈ (1, |x̄|), we have

λ2|x|
|x − x̄|2|x̄ + λ2(x−x̄)

|x−x̄|2 |
� 1 (13)

for all x ∈ B+(x̄, λ).

Proof. The proof is the same as that of Lemma 4 in [6]. We include it here for convenience. (13) is equivalent to

λ2|x| � ∣∣λ2x + (|x − x̄|2 − λ2)x̄∣∣,
which is equivalent to (by taking square on both sides)

−2λ2x · x̄ �
(|x − x̄|2 − λ2)|x̄|2,

which is equivalent to

−2λ2(x − x̄) · x̄ �
(|x − x̄|2 + λ2)|x̄|2.

The last inequality holds since

−2λ2(x − x̄) · x̄ � 2λ2|x̄||x − x̄| � 2|x̄|2λ|x − x̄| � (|x − x̄|2 + λ2)|x̄|2. �
Lemma 2.2. ∀|x̄′| > 2, there exists λ0(x̄) > 1 such that for any λ ∈ (1, λ0(x̄)),

ux̄,λ(x) � u(x), ∀x ∈ B+(x̄, λ).

Proof. By Lemma 2.1,

−�ux̄,λ(x) �
u

2∗(t)−1
x̄,λ (x)

|x|t , ∀x ∈ B+(x̄, λ).

Thus

−�
(
ux̄,λ(x) − u

)
�

u
2∗(t)−1
x̄,λ (x) − u2∗(t)−1(x)

|x|t , ∀x ∈ B+(x̄, λ). (14)

Denote

wλ = ux̄,λ(x) − u, w−
λ = max{0,−wλ}.

We first require that 1 < λ0(x̄) <
√

2, then we have |x| > 1, ∀x ∈ B+(x̄, λ). In the following part, as well as in the
proof of Lemma 2.3 below, we make use of the “narrow domain idea” from Berestycki and Nirenberg [3].

Multiplying both sides of (14) by w−
λ then integrating on B+(x̄, λ), we have, using w−

λ = 0 on ∂(B+(x̄, λ)) and
the mean value theorem,

∫
B+(x̄,λ)

∣∣∇w−
λ

∣∣2
dx �

∫
B+(x̄,λ)

u2∗(t)−1(x) − u
2∗(t)−1
x̄,λ (x)

|x|t w−
λ

� n + 2

n − 2

∫
B+(x̄,λ)

u2∗(t)−2(w−
λ

)2

� C(n, x̄)
∣∣B+(x̄, λ)

∣∣ 2
n
∥∥w−

λ

∥∥2

L
2n

n−2 (B+(x̄,λ))

� C(n, x̄)
∣∣B+(x̄, λ)

∣∣ 2
n

∫
+

∣∣∇w−
λ

∣∣2
dx,
B (x̄,λ)



970 T. Jin / Ann. I. H. Poincaré – AN 28 (2011) 965–981
where C(n, x̄) denotes various constants depending only on n and x̄. Now we can choose λ0(x̄) > 1 but very close

to 1, then C(n, x̄)|B+(x̄, λ)| 2
n is small, and we have∫

B+(x̄,λ)

∣∣∇w−
λ

∣∣2
dx <

1

2

∫
B+(x̄,λ)

∣∣∇w−
λ

∣∣2
dx.

This implies ∇w−
λ = 0 in B+(x̄, λ). Since w−

λ = 0 on ∂(B+(x̄, λ)), w−
λ = 0 in B+(x̄, λ). �

Define

λ̄(x̄) := sup
{
μ

∣∣ 1 < μ < |x̄|, and ux̄,λ(x) � u(x), ∀x ∈ B+(x̄, λ), ∀1 < λ < μ
}
.

By Lemma 2.2, λ̄(x̄) is well defined for all |x̄ ′| > 2. Moreover 1 < λ̄(x̄) � |x̄|.

Lemma 2.3. ∀|x̄′| > 2, λ̄(x̄) = |x̄|. Namely,

ux̄,λ(x) � u(x), ∀x ∈ B+(x̄, λ), ∀0 < λ � |x̄|. (15)

Proof. We argue by contradiction. Suppose that λ̄ = λ̄(x̄) < |x̄| for some x̄. Then

ux̄,λ̄(x) � u(x), ∀x ∈ B+(x̄, λ̄).

Since ux̄,λ̄(x) > u(x) on B(x̄, λ̄) ∩ ∂R
n+, we have, by the strong maximum principle,

ux̄,λ̄(x) > u(x), ∀x ∈ B+(x̄, λ̄).

For δ > 0 small, which will be fixed later, let

K := {
x ∈ B+(x̄, λ̄)

∣∣ dist
(
x, ∂

(
B+(x̄, λ̄)

))
� δ

}
.

Then

b := min
K

wλ̄ > 0.

Consider λ̄ < λ < λ̄ + ε < (λ̄ + |x̄|)/2, where the value of ε = ε(δ) < δ is chosen so that

wλ >
b

2
on K, ∀λ̄ < λ < λ̄ + ε <

(
λ̄ + |x̄|)/2. (16)

We use the “narrow domain techniques” again. Multiplying w−
λ to (14) and using integration by parts on

(B+(x̄, λ))\K , then we have∫
(B+(x̄,λ))\K

∣∣∇w−
λ

∣∣2
dx � C(n, λ̄, x̄)

∫
B+(x̄,λ)

u2∗(t)−2(w−
λ

)2

� C(n, λ̄, x̄)
∣∣(B+(x̄, λ)

)\K∣∣ 2
n
∥∥w−

λ

∥∥2

L
2n

n−2 (B+(x̄,λ)\K)

� C(n, λ̄, x̄)
∣∣(B+(x̄, λ)

)\K∣∣ 2
n

∫
B+(x̄,λ)\K

∣∣∇w−
λ

∣∣2
dx,

where C(n, λ̄, x̄) denotes various constants depending only on n, λ̄ and x̄. Now we can fix the value of δ so that

C(n, λ̄, x̄)|(B+(x̄, λ))\K| 2
n < 1

2 . Then we obtain, as before, w−
λ = 0 on (B+(x̄, λ))\K , i.e.

wλ � 0, ∀x ∈ (
B+(x̄, λ)

)\K, ∀λ̄ < λ < λ̄ + ε.

This and (16) contradict the definition of λ̄. �
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Proof of Theorem 1.1. For any x1 < 0 < x̄1, we set x̄ = (x̄1,0, . . . ,0,−1) and λ = |x̄| = √|x̄1|2 + 1. (15) with
x = (x1,0, . . . ,0, xn) leads to, after sending x̄1 → ∞,

u(−x1,0, . . . ,0, xn) � u(x1,0, . . . ,0, xn), ∀xn > 0.

By the symmetry of the equation, uO(x) := u(Ox′, xn) satisfies the same equation for any orthogonal matrix
O ∈ O(n − 1), so we have

uO(−x1,0, . . . ,0, xn) � uO(x1,0, . . . ,0, xn), ∀xn > 0,

which implies u is symmetric under rotations around the xn axis.
For any 0 < a < x1 < x̄1, we set x̄ = (x̄1,0, . . . ,0,−1) and λ = √|x̄1 − a|2 + 1. (15) with x = (x1,0, . . . ,0, xn)

leads to, after sending x̄1 → ∞,

u(2a − x1,0, . . . ,0, xn) � u(x1,0, . . . ,0, xn), ∀xn > 0.

This implies u(|x′|, xn) � u(|x̃′|, xn) if |x′| � |x̃′|. Theorem 1.1 is proved when Ωa = R
n+. �

2.2. The case Ωa �= R
n+

We do a small modification of the method used in Section 2.1. For any 0 �= x̄′ ∈ R
n−1, define

x̄ = (
x̄ ′,0

)
.

Note that x̄ /∈ Ωa . Let ux̄,λ be the Kelvin transformation (12) of u with respect to the ball B(x̄, λ) with center x̄ and
radius λ.

Lemma 2.4. If λ � |x̄′| and x = (x′, xn) ∈ Ωa ∩ B(x̄, λ), then

x̄ + λ2(x − x̄)

|x − x̄|2 ∈ Ωa. (17)

Proof. (17) is equivalent to

λ2xn > a
∣∣λ2x′ + (|x − x̄|2 − λ2)x̄′∣∣,

which is equivalent to (by taking square on both sides)

λ4x2
n > a2(λ4

∣∣x′∣∣2 + 2λ2(|x − x̄|2 − λ2)x′ · x̄′ + (|x − x̄|2 − λ2)2∣∣x̄′∣∣2)
.

So it suffices to show

−2λ2(x′ − x̄′) · x̄′ �
(∣∣x′ − x̄′∣∣2 + λ2)∣∣x̄′∣∣2

.

The last inequality holds since

−2λ2(x′ − x̄′) · x̄′ � 2λ2
∣∣x̄′∣∣∣∣x′ − x̄′∣∣ � 2

∣∣x̄′∣∣2
λ
∣∣x′ − x̄′∣∣ �

(∣∣x′ − x̄′∣∣2 + λ2)∣∣x̄′∣∣2
. �

Proof of Theorem 1.1. By Lemma 2.4, ux̄,λ(x) is well defined in Ωa . Thus we can run exactly the same procedure
as that in Section 2.1, replacing B+(x,λ) by B(x,λ) ∩ Ωa , to get

ux̄,λ(x) � u(x), ∀x ∈ B(x̄, λ) ∩ Ωa, ∀0 < λ � |x̄|.
This implies, as before, that u(|x′|, xn) = u(|x̃′|, xn) if |x′| = |x̃′|, and u(|x′|, xn) � u(|x̃′|, xn) if |x′| � |x̃′|. Theo-
rem 1.1 is proved. �
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2.3. Other symmetric domains

Another symmetric domain for Eq. (3) other than cones would be the unit upper half cylinder:

S := {(
x′, xn ∈ R

n
)
:

∣∣x′∣∣ < 1, xn > 0
}
.

If 0 � u ∈ D1,2
loc (S) is a solution of Eq. (3) in S we can also prove

Proposition 2.1. u is symmetric under rotations around xn axis.

Proof. In this case the moving sphere method is not suitable since the Kelvin transformation of S with respect to
large balls will no longer stay in S itself. Fortunately we can apply one version of moving plan method. As before it
suffices to show

u(x1, . . . , xn−1, xn) = u(x1, . . . ,−xn−1, xn). (18)

We choose moving hyperplanes like the following:

lk = {
(x1, . . . , xn−1, xn)

∣∣ xi ∈ R, i = 1, . . . , n − 2; xn + 1 = k xn−1
}
.

lk passes through (0, . . . ,0,−1) but never passes 0. Denote

Σk = {x ∈ S: xn + 1 < k xn−1}.
When k > 1, Σk �= ∅ and it is bounded. For any x ∈ Σk , let xlk be the reflection point of x with respect to lk and define
ulk (x) = u(xlk ). Direct computations yield that

−�ulk �
u

2∗(t)−1
lk

|x|t , ∀x ∈ Σk.

Then the proof of Theorem 1.1 would be applied to prove (18). �
2.4. Scalar equation with multiple Hardy terms

Proof of Theorem 1.2. If we examine the proof of Theorem 1.1, we note that the number of Hardy terms with positive
coefficients does not interfere with the moving sphere method and “narrow domain techniques”. Actually the same
proof works for the following equation with bi � 0, 0 � ti � 2, i = 1, . . . ,m:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
−�u =

m∑
i=1

bi |x|−ti u2∗(ti )−1 + |x|−su2∗(s)−1, in Ωa,

u � 0, in Ωa,

u = 0, on ∂Ωa

(19)

for any positive integer m provided that it admits a solution. �
3. Lane–Emden systems with Hardy weights

3.1. Radial symmetry

In this section we will prove Theorem 1.3. First by standard elliptic regularity theory,

u,v ∈ C∞(
R

n\{0}).
Recall that in Theorem 1.3 we assume

u,v ∈ C
(
R

n
)
.
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Suppose u(x0) = 0 for some point x0 ∈ R
n. If x0 �= 0 then by the strong maximum principle and continuity,

u(x) ≡ 0 in R
n. If x0 = 0 and u(x) > 0, ∀x �= 0, noting that −�u(x) � 0 in R

n\{0} and {0} has zero (Newtonian)
capacity, we have

u(0) = lim inf
x→0

u(x) > 0.

So u(x) > 0 or u(x) ≡ 0. In view of system (6) v ≡ 0 if u ≡ 0. Thus either u ≡ v ≡ 0 or u,v > 0 in R
n. Hence we

always assume that

u,v > 0 in R
n.

For 0 �= x̄ ∈ R
n, we let ux̄,λ and vx̄,λ be the Kelvin transformation (12) of u and v with respect to the ball B(x̄, λ).

Lemma 3.1. ∀λ ∈ (0, |x̄|), we have

λ2|x|
|x − x̄|2|x̄ + λ2(x−x̄)

|x−x̄|2 |
� 1 (20)

for all x ∈ R
n\B(x̄, λ).

The proof of Lemma 3.1 is the same as that of Lemma 2.1.

Lemma 3.2. For every x̄ ∈ R
n\{0}, there exists λ0(x̄) > 0 such that for all 0 < λ < λ0(x̄), we have ux̄,λ(x) � u(x),

vx̄,λ(x) � v(x), ∀|x − x̄| > λ.

Proof. Since u, v are super-harmonic, by the maximum principle

lim inf|x|→∞
(|x|n−2u(x)

)
> 0, lim inf|x|→∞

(|x|n−2v(x)
)
> 0.

Noting that u and v are smooth near x̄ and continuous in the whole space, the rest of the proof is the same as that of
Lemma 2.1 in [19]. �

Define

λ̄(x̄) := sup
{
μ

∣∣ 0 < μ < |x̄|, and ux̄,λ(x) � u(x), vx̄,λ(x) � v(x) for all |x − x̄| � λ, 0 < λ < μ
}
.

By Lemma 3.2, λ̄(x̄) is well defined for all x̄ �= 0. Moreover 0 < λ̄(x̄) � |x̄|.

Lemma 3.3. For all x̄ �= 0, λ̄(x̄) = |x̄|. Namely,

ux̄,λ(x) � u(x), vx̄,λ(x) � v(x), ∀x ∈ R
n\B(x̄, λ), ∀0 < λ � |x̄|. (21)

Proof. We prove by contradiction arguments. Suppose the contrary, that there exists x̄ ∈ R
n\{0} such that 0 <

λ̄(x̄) < |x̄|. Without loss of generality we assume s > 0. Using Lemma 3.2 and p � 2∗(s) − 1 we have, for any
λ ∈ (0, |x̄|),

−�ux̄,λ(x) � 1

|x|s u
p
x̄,λ, ∀|x − x̄| > λ.

Indeed, for |x − x̄| > λ,

−�ux̄,λ(x) =
(

λ

|x − x̄|
)n+2(

−�u

(
x̄ + λ2(x − x̄)

|x − x̄|2
))

=
(

λ

|x − x̄|
)n+2 1

|x̄ + λ2(x−x̄)
2 |s

vp

(
x̄ + λ2(x − x̄)

|x − x̄|2
)

|x−x̄|
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=
(

λ

|x − x̄|
)n+2−p(n−2) |x|s

|x̄ + λ2(x−x̄)

|x−x̄|2 |s
1

|x|s v
p
x̄,λ(x)

�
(

λ

|x − x̄|
)2s |x|s

|x̄ + λ2(x−x̄)

|x−x̄|2 |s
1

|x|s v
p
x̄,λ(x)

� 1

|x|s v
p
x̄,λ(x)

where p � 2∗(s) − 1 is used in the first inequality and Lemma 3.1 is used in the second inequality.
By the definition of λ̄(x̄),

v(x) − vx̄,λ̄(x̄)(x) � 0, ∀|x − x̄| > λ̄(x̄).

Hence

−�
(
u(x) − ux̄,λ̄(x̄)(x)

)
� 1

|x|s
(
vp(x) − v

p

x̄,λ̄(x̄)
(x)

)
� 0,

when x �= 0 and |x − x̄| > λ̄(x̄).
Since λ̄(x̄) < |x̄|, all u, ux̄,λ̄(x̄), v and vx̄,λ̄(x̄) are smooth near ∂B(x̄, λ̄(x̄)). If there exists x0 �= 0, |x0 − x̄| > λ̄(x̄)

such that u(x0) = ux̄,λ(x̄)(x0), then by the strong maximum principle and continuity u(x) = ux̄,λ̄(x̄)(x) for all |x − x̄| �
λ̄(x̄). Hence for x �= 0 and |x − x̄| > λ̄(x̄),

1

|x|s vp(x) = −�u(x) = −�ux̄,λ(x) �
(

λ

|x − x̄|
)2s |x|s

|x̄ + λ2(x−x̄)

|x−x̄|2 |s
1

|x|s v
p
x̄,λ(x).

By the proof of Lemma 3.1, there exists y with |y − x̄| > λ̄(x̄) such that v(y) < vx̄,λ̄(x̄)(y). But this contradicts the
definition of λ̄(x̄). So we have

u(x) > ux̄,λ̄(x̄)(x), ∀|x − x̄| > λ̄(x̄) with x �= 0.

Since −�(u(x) − ux̄,λ̄(x̄)(x)) � 0 in Bc(x̄, λ̄(x̄))\{0} and {0} has zero (Newtonian) capacity, we have

u(x) > ux̄,λ̄(x̄)(x), ∀|x − x̄| > λ̄(x̄).

By Hopf lemma and the compactness of ∂B(x̄, λ̄(x̄)) we have

∂

∂ν
(u − ux̄,λ̄(x̄))|∂B(x̄,λ̄(x̄)) � b > 0

where ν denotes the out normal of ∂B(x̄, λ̄(x̄)) and b is a positive constant. With noting that u(x) is uniformly
continuous in any compact set of R

n, we can show, by exactly the same proof of Lemma 2.2 in [19], that there exists
ε1 > 0 such that

u(x) − ux̄,λ(x) > 0, ∀λ̄(x̄) � λ < λ̄(x̄) + ε1, |x − x̄| � λ. (22)

Similarly, there exists ε2 > 0 such that

v(x) − vx̄,λ(x) > 0, ∀λ̄(x̄) � λ < λ̄(x̄) + ε2, |x − x̄| � λ. (23)

Estimates (22) and (23) violate the definition of λ̄(x̄). �
Proof of Theorem 1.3. Denote 0n−1 = (0, . . . ,0) ∈ R

n−1. For x1 < 0 < x̄1, we set x̄ = (x̄1,0n−1), λ = |x̄| = x̄1.
(21) with x = (x1,0n−1) leads to, after sending x̄1 → ∞,

u(−x1,0n−1) � u(x1,0n−1), v(−x1,0n−1) � v(x1,0n−1). (24)

For 0 < x1 < a < x̄1, we set x̄ = (x̄1,0n−1), λ = x̄1 − a. (21) with x = (x1,0n−1) leads to, after sending x̄1 → ∞,

u(2a − x1,0n−1) � u(x1,0n−1), v(2a − x1,0n−1) � v(x1,0n−1). (25)
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By the symmetry of the system, uO(x) := u(Ox) and vO(x) := v(Ox) satisfy the same system for any orthogonal
matrix O ∈ O(n). Hence uO and vO satisfy (24) which implies u and v are radial about the origin; and satisfy (25)
which implies that u(x1) � u(x2), v(x1) � v(x2) if |x1| � |x2|. �
3.2. Nonexistence

Let u,v � 0 be solutions of system (6). For simplicity, we denote u(r) as u(x) and v(x) as v(r) for |x| = r , since
both of them are radial functions. Then u(r) and v(r) satisfy, in R

n\{0},{(
rn−1u′(r)

)′ = −rn−1−svp(r),(
rn−1v′(r)

)′ = −rn−1−t uq(r).
(26)

Here ′ means the differentiation with respect to r .
To get nonexistence, first we derive a Pohozaev-type identity for (26).

Lemma 3.4. Solutions u and v of system (26) satisfy, for R > 0,

Rnu′v′ + Rn−s

p + 1
vp+1 + Rn−t

q + 1
uq+1 + n − t

p + 1
Rn−1v′u +

(
n − 2 − n − t

p + 1

)
Rn−1vu′

=
(

n − s

p + 1
+ n − t

q + 1
− (n − 2)

) R∫
0

rn−s−1vp+1 dr. (27)

Proof. Multiplying rv′(r) to the first equation of (26) and integrating from ε to R, we have

nu′(r)v′(r)
∣∣R
ε

−
R∫

ε

rn−1u′v′ −
R∫

ε

rnu′v′′ dr = − rn−svp+1(r)

p + 1

∣∣∣∣
R

ε

+ n − s

p + 1

R∫
ε

rn−s−1vp+1 dr. (28)

Similarly, multiplying ru′(r) to the second one and integrating from ε to R, we obtain

rnu′(r)v′(r)
∣∣R
ε

−
R∫

ε

rn−1u′v′ −
R∫

ε

rnv′u′′ dr = − rn−t vq+1(r)

q + 1

∣∣∣∣
R

ε

+ n − t

q + 1

R∫
ε

rn−t−1uq+1 dr. (29)

Adding (28) to (29), and using

R∫
ε

(
u′v′)′ = rnu′v′∣∣R

ε
−

R∫
ε

nrn−1u′v′

it yields(
rnu′v′ + rn−s

p + 1
vp+1 + rn−t

q + 1
uq+1

)∣∣∣∣
R

ε

= n − s

p + 1

R∫
ε

rn−s−1vp+1 dr + n − t

q + 1

R∫
ε

rn−t−1uq+1 dr − (n − 2)

R∫
ε

rn−1u′v′ dr.

On the other hand, we multiply v to the first equation of (26) and u to the second one and integrate from ε to R, to get

rn−1u′v
∣∣R
ε

−
R∫

ε

rn−1u′v′ dr = −
R∫

ε

rn−1−svp+1,

rn−1v′u
∣∣R
ε

−
R∫

rn−1u′v′ dr = −
R∫

rn−1−t uq+1.
ε ε



976 T. Jin / Ann. I. H. Poincaré – AN 28 (2011) 965–981
A direct substitution yields that(
rn−s

p + 1
vp+1 + rn−t

q + 1
uq+1 + n − t

p + 1
rn−1v′u +

(
n − 2 − n − t

p + 1

)
rn−1vu′

)∣∣∣∣
R

ε

= −(
rnu′v′)|Rε +

(
n − s

p + 1
+ n − t

q + 1
− (n − 2)

) R∫
ε

rn−s−1vp+1 dr. (30)

Since u,v ∈ H 1(B(0,1)),

lim inf
ε→0

ε
n
2 u′(ε) = 0 and lim inf

ε→0
ε

n
2 v′(ε) = 0. (31)

Taking lim infε→0 on both sides of (30), and with the help of (31) we obtain (27). �
We will use the Pohozaev identity (27) to prove Theorem 1.4.

Proof of Theorem 1.4. Step 1: We need some rates of u, v, u′ and v′ near infinity. First we obtain some rates of u

and v, following from [26]. We denote C as various positive constants that depend only on n, s, t , p and q . Note that
u, v are continuous near 0 under condition (10), by Remark 1.3.

Clearly, with the help of (31),

rn−1u′(r) = −
r∫

0

τn−1−svp(τ ) dτ

� −
r/2∫
0

τn−1−svp(τ ) dτ

� −vp(r/2)

r/2∫
0

τn−1−s dτ

= −vp(r/2)
rn−s

(n − s)2n−s

where p > 0 and that v is non-increasing are used. Hence

u′(r) � − r1−s

(n − s)2n−s
vp(r/2). (32)

Integrating (32) from r to 2r , we have

u(r) − u(2r) � C

2r∫
r

τ 1−svp(τ/2) dτ

� Cvp(r)

2r∫
r

τ 1−s dτ

� Cvp(r)r2−s

which implies

u(r) � Cr2−svp(r). (33)

Similarly

v(r) � Cr2−t uq(r). (34)
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Connecting (33) and (34), it yields

u(r) � Cr2−svp(r) � Cr2−sr(2−t)pupq(r). (35)

If pq � 1, then either u ≡ 0 which implies v ≡ 0, or

u1−pq(0) � u1−pq(r) � Cr2−sr(2−t)p → ∞ as r → ∞
which contradicts that u ∈ C(Rn) (Remark 1.3). So

u(x) ≡ v(x) ≡ 0 if pq � 1.

In the following we assume that pq > 1. Then from (33) and (34) we have

u(r) � Cr
s−2+p(t−2)

pq−1 , v(r) � Cr
t−2+q(s−2)

pq−1 . (36)

Secondly, we obtain some estimates for u′(r) and v′(r) from (36).

∣∣rn−1u′(r)
∣∣ =

∣∣∣∣∣−
r∫

0

τn−1−svp(τ ) dτ

∣∣∣∣∣
� vp(0) +

r∫
1

τ
n−1−s+ p

pq−1 (t−2+q(s−2))
dτ

� vp(0) + C + Cr
n−s+ p

pq−1 (t−2+q(s−2)) log r

where we put log r in case that the last exponent is zero. Hence

∣∣u′(r)
∣∣ �

(
vp(0) + C

)
r1−n + Cr

1−s+ p
pq−1 (t−2+q(s−2)) log r. (37)

Similarly we can have an estimate for v′(r):
∣∣v′(r)

∣∣ �
(
uq(0) + C

)
r1−n + Cr

1−t+ q
pq−1 (s−2+p(t−2)) log r. (38)

Step 2: Via direct computations, the left-handed side of (27) will go to zero as R → +∞ if the following three
inequalities are all satisfied:

(i) n + 1 − s + p
pq−1 (t − 2 + q(s − 2)) + 1 − t + q

pq−1 (s − 2 + p(t − 2)) < 0;

(ii) n − s + p+1
pq−1 (t − 2 + q(s − 2)) < 0;

(iii) n − t + q+1
pq−1 (s − 2 + p(t − 2)) < 0.

In the following we let

α = min(s, t), β = max(s, t).

Clearly

p + 1

pq − 1

(
2 − t + q(2 − s)

)
� (p + 1)(q + 1)

pq − 1
(2 − β) and n − α > n − s.

This implies that (ii) holds if

(p + 1)(q + 1)

pq − 1
(2 − β) > n − α. (39)

Similar (iii) holds if (39) is true.
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Furthermore,

p

pq − 1

(
2 − t + q(2 − s)

) + q

pq − 1

(
2 − t + p(2 − s)

)
�

(
1 + (p + 1)(q + 1)

pq − 1

)
(2 − β)

from which we can see that (i) holds if (39) is satisfied.
Since pq > 1, max(p, q) > 1 and consequently

(p + 1)(q + 1)

pq − 1
� max(p, q) + 1

max(p, q) − 1
.

So (39) is satisfied provided that

max(p, q) + 1

max(p, q) − 1
>

n − α

2 − β
,

which is equivalent to

max(p, q) <
n + 2 − β − α

n − 2 + β − α
= n + 2 − s − t

n − 2 + |s − t | . (40)

So under condition (10), the left-handed side of Pohozaev identity (27) will go to zero as R → +∞, which implies
v ≡ 0. So u ≡ 0. Theorem 1.4 is proved. �
3.3. Half space

In this section, we prove Theorem 1.5. Recall that we assume

1 � p � 2∗(s) − 1, 1 � q � 2∗(t) − 1.

The following proof is a small modification of the proof of Theorem 1.1. From elliptic estimates and the maximum
principle,

u,v ∈ C∞(
R

n+\0
)
, u(x) > 0, v(x) > 0.

For any x̄′ ∈ R
n−1, let x̄ = (x̄′,−1) and ux̄,λ(x), vx̄,λ(x) be the Kelvin transformation of u and v.

By Lemma 2.1 and direction computations, we have ∀λ > 1, ∀x ∈ B+(x̄, λ) � B(x̄, λ) ∩ R
n+,⎧⎪⎪⎪⎨

⎪⎪⎪⎩
−�

(
ux̄,λ(x) − u(x)

)
�

v
p
x̄,λ(x) − vp(x)

|x|s ,

−�
(
vx̄,λ(x) − v(x)

)
�

u
q
x̄,λ(x) − uq(x)

|x|t .

(41)

Lemma 3.5. ∀|x̄′| > 2, there exists λ0(x̄) > 1 such that for all λ ∈ (1, λ0(x̄)), we have ux̄,λ(x) � u(x), vx̄,λ(x) � v(x),
∀x ∈ B+(x̄, λ).

Proof. Denote

wλ(u) = ux̄,λ(x) − u, w−
λ (u) = max

{
0,−wλ(u)

}
,

wλ(v) = vx̄,λ(x) − v, w−
λ (v) = max

{
0,−wλ(v)

}
.

We first require that 1 < λ0(x̄) <
√

2, then we have |x| > 1, ∀x ∈ B+(x̄, λ).
Multiplying w−

λ (u) to (41) and integrating on B+(x̄, λ), we have, using the mean value theorem,∫
B+(x̄,λ)

∣∣∇w−
λ (u)

∣∣2
dx � C(n, x̄)

∫
B+(x̄,λ)

vp−1w−
λ (v)w−

λ (u)

� C(n, x̄)
∣∣B+(x̄, λ)

∣∣ 2
n
∥∥∇w−

λ (u)
∥∥

2 +
∥∥∇w−

λ (v)
∥∥

2 + ,

L (B (x̄,λ)) L (B (x̄,λ))
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where we used p � 1. Similarly,∫
B+(x̄,λ)

∣∣∇w−
λ (v)

∣∣2
dx � C(n, x̄)

∣∣B+(x̄, λ)
∣∣ 2

n
∥∥∇w−

λ (u)
∥∥

L2(B+(x̄,λ))

∥∥∇w−
λ (v)

∥∥
L2(B+(x̄,λ))

.

Now we can choose λ0(x̄) > 1 but very close to 1, to force w−
λ (u) = w−

λ (v) = 0 in B+(x̄, λ). �
Define

λ̄(x̄) := sup
{
μ

∣∣ 1 < μ < |x̄|, and ux̄,λ(x) � u(x), vx̄,λ(x) � v(x) for all x ∈ B+(x̄, λ), ∀1 < λ < μ
}
.

By Lemma 3.5, λ̄(x̄) is well defined for all |x̄ ′| > 2. Moreover 1 < λ̄(x̄) � |x̄|.

Lemma 3.6. ∀|x̄′| > 2, λ̄(x̄) = |x̄|. Namely,

ux̄,λ(x) � u(x), vx̄,λ(x) � v(x), ∀x ∈ B+(x̄, λ), ∀0 < λ � |x̄|. (42)

Proof. The proof is similar to that of Lemma 2.3. The only difference has been shown in the proof of Lemma 3.5. We
omit the details here. �
Proof of Theorem 1.5. By Lemmas 3.5 and 3.6, the proof is the same as proof of Theorem 1.1. �
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Appendix A. Regularity

In this appendix we will prove Remark 1.3. The proof is based on standard Sobolev embeddings and bootstrap
arguments.

Proposition A.1. Under (9) but (p, q) �= (2∗(s) − 1,2∗(t) − 1), and if u,v ∈ D1,2
loc (Rn) are weak solutions of system

(6) then u,v ∈ Cα(Rn) for some α > 0.

Proof. We only need to show that u, v are Hölder continuous near 0. Without loss of generality we assume p <

2∗(s) − 1. Denote, for simplicity, LP as LP (D) where D is the unit ball centered at 0. By Sobolev embedding
v ∈ L2n/(n−2).

Suppose v ∈ LAk with A1 = 2n
n−2 . We will use bootstrap to find out Ak+1. We choose a decreasing and positive

sequence {εk} → 0 and will fix ε1 small in Claim 1 below. Since |x|−s ∈ L(n−εk)/s, |x|−t ∈ L(n−εk)/t , by Hölder
inequality

vp

|x|s ∈ LBk where Bk = (n − εk)Ak

sAk + p(n − εk)
.

By W 2,P theory and the first equation of system (6),

u ∈ W 2,Bk ↪→ LB∗∗
k if

1

B∗∗
k

:= 1

Bk

− 2

n
> 0.

This implies

uq

|x|t ∈ LCk where Ck = (n − εk)B
∗∗
k

tB∗∗ + q(n − ε )
.

k k
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By W 2,P theory and the second equation of system (6),

v ∈ W 2,Ck ↪→ LC∗∗
k if

1

C∗∗
k

:= 1

Ck

− 2

n
> 0.

Define

Ak+1 = C∗∗
k .

Combining the formulas together we have

1

Ak+1
= q

(
p

Ak

+ s

n − εk

− 2

n

)
+ t

n − εk

− 2

n
. (A.1)

Claim 1. Ak+1 > Ak if Bk,Ck < n/2.

Proof of Claim 1. By our assumption that p < 2∗(s) − 1,

(n − 2)pq < (n + 2 − 2s)q � n + 2 − 2t − 2qs + 4q,

which implies

pq − 1

A1
<

2

n
− qs

n
− t

n
+ 2q

n
.

Fix an ε1 to be small enough such that

max

(
0,

pq − 1

A1

)
<

2

n
− qs

n − ε1
− t

n − ε1
+ 2q

n
. (A.2)

By (A.1) Claim 1 is equivalent to

pq − 1

Ak

<
2

n
− qs

n − εk

− t

n − εk

+ 2q

n
. (A.3)

We can see from (A.2) that (A.3) is satisfied. Claim 1 is proved. �
Claim 2. After finite steps, either Ck � n/2 or Bk � n/2.

Proof of Claim 2. If not, the sequence {Ak} is increasing by Claim 1. Denote A = limk→∞ Ak (which could be +∞).
Letting k → ∞ in (A.1), we have

pq − 1

A
= 2

n
− qs

n
− t

n
+ 2q

n
.

Noting that

A � 2n

n − 2
,

we have

(n − 2)p � n + 2 − 2t

q
− 2s + 4 > n + 2 − 2s,

which violates our assumption about p. Claim 2 is proved. �
By Claim 2 and Sobolev embeddings, we immediately get that either u ∈ Lγ , ∀γ < ∞ or v ∈ Lγ , ∀γ < ∞. Hence

u,v ∈ Cα for some α > 0 by the W 2,P theory. �
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