
Ann. I. H. Poincaré – AN 28 (2011) 813–835
www.elsevier.com/locate/anihpc

Ricci flow of conformally compact metrics

Eric Bahuaud

Department of Mathematics, Stanford University, CA 94305, USA

Received 7 February 2011; accepted 24 March 2011

Available online 20 July 2011

Abstract

In this paper we prove that given a smoothly conformally compact asymptotically hyperbolic metric there is a short-time solution
to the Ricci flow that remains smoothly conformally compact and asymptotically hyperbolic. We adapt recent results of Schnürer,
Schulze and Simon to prove a stability result for conformally compact Einstein metrics sufficiently close to the hyperbolic metric.
© 2011 Elsevier Masson SAS. All rights reserved.

Résumé

L’objectif de cet article est de démontrer l’existence d’une solution en temps court du flot de Ricci dans la classe de métriques ré-
gulières, conformément compactes et asymptotiquement hyperboliques. Nous appliquons ensuite les résultats de Schnürer, Schulze
et Simon pour prouver la stabilité des métriques d’Einstein conformément compactes suffisamment proches de la métrique hyper-
bolique.
© 2011 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In 1989, W.X. Shi initiated the study of the Ricci flow on a noncompact manifold by proving that there is a short-
time solution to the flow starting at a complete metric of bounded curvature, and moreover the flow remains in this
class. Recently there has been intense activity to understand to what extent the Ricci flow preserves other geometric
conditions on noncompact manifolds, see [2,6,14,12,13,21,27] for examples. In this paper we prove that the Ricci
flow preserves the set of smoothly conformally compact asymptotically hyperbolic metrics in general dimension for
a short time. We begin by introducing these metrics.

Let Mn+1 be the interior of a compact manifold with boundary �M . Suppose that x is a boundary defining function
for ∂M . This is to say that x is a smooth non-negative function on �M that vanishes to first order precisely at ∂M . We
say that a metric h is smoothly conformally compact if h̄ := x2h extends to be smooth metric on �M . The Poincaré
ball model of hyperbolic space provides an easy example.
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When |dx|2
h̄

= 1 on ∂M , we may use x to identify a collar neighborhood of ∂M in �M with [0, ε) × ∂M . We then
write h as

h = dx2 + ĥ(x)

x2
,

for a smooth family of metrics ĥ on ∂M .
If h is smoothly conformally compact, with |dx|2

h̄
= 1 on ∂M , and (Rcc)ijkl = hilhjk −hikhjl denotes the curvature

4-tensor of constant sectional curvature +1, then the curvature 4-tensor R of h satisfies∣∣R + Rcc
∣∣
h

= O(x), and
∣∣∇(j)

h R
∣∣
h

= O(x), for all j.

For this reason conformally compact metrics with |dx|2
h̄

= 1 on ∂M are asymptotically hyperbolic. It is well known
that h is complete and of bounded geometry.

Recall the Ricci flow is the system of equations{
∂τ g = −2Rcg(τ),

g(0) = h.
(1.1)

As previously mentioned, it follows from [30] that there is a solution to the Ricci flow, g(τ), with initial metric h for
a short time.

It will be more convenient to study a normalized Ricci flow. Suppose that gN satisfies:{
∂tg

N
ij = −2ngN

ij − 2RcgN
ij ,

gN(0) = h.
(1.2)

Setting g(x, τ ) = (1 + 2nτ)gN(x, 1
2n

log(1 + 2nτ)) yields a solution to the original Ricci flow. As solutions to the
Ricci flow and normalized Ricci flow differ by this time rescaling, we see that spatial regularity is preserved. Thus
a conformally compact and asymptotically hyperbolic solution to the normalized Ricci flow yields a conformally
compact solution to the Ricci flow, with sectional curvatures that depend on time. Moreover it is straightforward to
check that the conformal infinity is preserved along the flow.

The first main result of this paper is the following

Theorem A. If h is smoothly conformally compact and asymptotically hyperbolic then there exists a unique smoothly
conformally compact and asymptotically hyperbolic solution g(t) to (1.2) (and hence a conformally compact solution
to (1.1)) for a short time.

The proof of this theorem proceeds as follows. First we apply the DeTurck trick to obtain a system that may be
solved by parabolic PDE techniques. Then conditioning the equation appropriately we are able to apply a contraction
mapping argument to reprove the existence (see Theorem 4.7) of a short-time solution to the flow in 0-Hölder spaces,
which are Hölder spaces associated to conformally compact metrics that respect the interior geometry. These spaces
have no tangential regularity at the boundary, so the final part of the argument (see Theorem 5.3) proves that the
solution is smoothly conformally compact by applying regularity techniques modeled on [23]. We have stated our
results for smoothly conformally compact metrics, but the arguments here extend to certain initial metrics that are
polyhomogeneous.

Given short-time existence for the Ricci flow it is natural to study the stability of the flow about fixed points.
In general dimension, stability of hyperbolic space under the Ricci flow has been studied independently by Li and
Yin [20], Schnürer, Schulze and Simon [29], and Bamler [6]. The second main result of this paper extends the stability
result of Schnürer, Schulze and Simon to certain small Einstein perturbations of the hyperbolic metric. By an η-
admissible Einstein metric we mean an at least C3,α conformally compact Einstein metric h on B

n+1 that satisfies
both a global curvature bound

sup
Bn+1

∣∣R + Rcc
∣∣
h

� η,

and that the Yamabe invariant of its conformal infinity is positive. Note the existence of such metrics follows from
work of Graham and Lee [10]. In particular any smooth Riemannian metric ĥ on S

n sufficiently close to the round



E. Bahuaud / Ann. I. H. Poincaré – AN 28 (2011) 813–835 815
metric in an appropriate Ck,α norm is the conformal infinity of a conformally compact Einstein metric h on the unit
ball.

Before stating our second main result, we introduce the function spaces defined in [29]. For an interval I ⊂ [0,∞),
let Mk(Bn+1, I ) (resp. Mk

loc(B
n+1, I )) denote the space of sections g(t), t ∈ I of metrics on B

n+1 which are Ck

(resp. Ck
loc) on B

n+1 × I , with covariant derivatives taken with respect to h. The space M∞
0 (Bn+1, I ) will denote

metrics in M0(Bn+1, I ) ∩ M0
loc(B

n+1, I ) which are smooth for positive times and uniformly bounded in Ck when
restricted to time intervals of the form [δ,∞), δ > 0.

Adapting the work of Schnürer, Schulze and Simon we prove

Theorem B. Let n � 3. There exists an η(n) > 0 so that for any η-admissible Einstein metric with 0 < η < η(n) the
following holds. For all K > 0 there exists ε1 = ε1(n,K) > 0 where if g0 is a M0 metric close to h in the sense that∫

Bn+1

|g0 − h|2h dvolh � K,

and

sup
Bn+1

|g0 − h|h � ε1.

Then there exists a long-time solution g(t) ∈ M∞
0 (Bn+1, [0,∞)) to the normalized Ricci–DeTurck flow (with initial

metric g0) such that

sup
Bn+1

∣∣g(t) − h
∣∣
h

� C(n,K)e
− 1

4(n+3)
t
.

Moreover, g(t) → h exponentially in Ck as t → ∞, for all k ∈ N.

In the above theorem, unlike in [29], we have transcribed the dimension to n+1 to match the convention of the rest
of the paper. Note also that in view of the main regularity result of this paper, if g0 is smoothly conformally compact,
then g(t) remains smoothly conformally compact for finite time. The limiting conformally compact Einstein metric
need not be smoothly conformally compact.

We take this opportunity to mention two related papers. First, recent work by Hu, Qing and Shi [12] proves the
Ricci flow preserves a certain class of asymptotically hyperbolic metrics for a short time. These metrics are defined
by curvature decay conditions and, as shown in [4] and [12], are conformally compact of only a limited regularity.
Hu, Qing and Shi subsequently prove an interesting rigidity result. On the other hand, in view of the applications
of smoothly conformally compact metrics to geometry and physics (see for example [7] and references therein), it
is natural to study the Ricci flow in the smooth conformally compact setting. Second, the author and Helliwell have
recently proved short-time existence results for higher-order geometric flows on compact manifolds [5]. We observed
that many short-time existence results depend only on the special algebraic structure of the flow. Both [5] and the
present paper were developed in parallel, and were inspired by recent work of Koch and Lamm [15]. The short-time
existence of the Ricci flow we give here, while in the setting of conformally compact metrics, may be regarded as a
concrete application of the ideas in [5].

After the present paper was accepted for publication Qing, Shi and Wu [28] posted a preprint that also studies
the Ricci flow for conformally compact Einstein metrics. Their technique differs from the one presented here in that
they use maximum principles to obtain regularity along the flow. They also prove interesting perturbation results for
conformally compact Einstein metrics.

This paper is structured as follows. In Section 2, we outline the DeTurck trick and reduction of the flow to a
parabolic system. In Section 3, we define function spaces and outline the main results from linear parabolic theory
on conformally compact manifolds. This theory is based on the edge and heat calculus for 0-operators that appears
in [22] and [1]. In order to not distract from the main Ricci flow argument, we have kept this section short and instead
sketched several of the proofs of the analytic results in Appendix A. In Section 4, we condition the flow equations
and provide the contraction mapping argument. We discuss the regularity argument in Section 5, and the stability
argument in Section 6. Finally, in Appendix A we provide sketches for the various analytic facts quoted in Section 3.
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2. Preliminaries

As is well known, the Ricci flow is not a parabolic system due to the diffeomorphism invariance of the Ricci tensor.
We will break this invariance using the standard DeTurck trick. Choosing the initial smoothly conformally compact
and asymptotically hyperbolic metric h as the background metric, and writing all Christoffel symbols and curvature
quantities with respect this metric with tildes, we define a time-dependent vector field

Wk = gpq
(
Γ k

pq − Γ̃ k
pq

)
.

The normalized Ricci–DeTurck flow is given by{
∂tgij = −2ngij − 2Rcgij + ∇iWj + ∇jWi,

g(0)ij = hij .
(2.1)

Standard computations, for example given in [30], show that this flow may be written⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 = ∂tgij − gab∇̃a∇̃bgij + 2ngij + gabgiphpqR̃jaqb + gabgjphpqR̃iaqb

− 1
2gabgpq

(∇̃igpa∇̃j gqb + 2∇̃agjp∇̃qgib − 2∇̃agjp∇̃bgiq

− 2∇̃j gpa∇̃bgiq − 2∇̃igpa∇̃bgjq

)
,

g(0) = h.

(2.2)

From this equation we see the Ricci–DeTurck flow is a quasilinear parabolic system for the metric.
Once we prove short-time existence of a smoothly conformally compact solution g to the Ricci–DeTurck flow,

the time-dependent vector field Wk will have coefficients smooth up to the boundary of �M and vanishing to first
order there. If φt denotes the flow generated by Wk , then ĝ = φ∗

t g is a solution to the normalized Ricci flow [9]. It is
straightforward to see that ĝ is smoothly conformally compact and asymptotically hyperbolic.

Finally, we only prove the existence of a short-time solution to the Ricci flow. The uniqueness assertion in Theo-
rem A follows from the work of Chen and Zhu [8].

3. Parabolic theory on conformally compact spaces

In this section we outline linear parabolic theory for uniformly degenerate operators on conformally compact man-
ifolds. We just state the results we need here; sketches of proofs are deferred to Appendix A. The primary references
for the material in this section are [22] and [1].

Let (M,h) be a smoothly conformally compact asymptotically hyperbolic manifold as defined in the introduction.
Suppose that x is a boundary defining function and that {y1, . . . , yn} are coordinates on the boundary, extended to
be constant in x. We will refer to these coordinates as background coordinates. Note that in order to avoid additional
notation we will occasionally use the convention x0 = x, xi = yi, i = 1 . . . n to generically refer to the coordinates as
xi when we do not need to keep track of normal/tangential directions. The metric h decomposes as

h = dx2 + ĥab(x, y) dyadyb

x2
,

where the components of ĥ are smooth up to the boundary.
The 0-vector fields are generated by

{x∂x, x∂y1 , . . . , x∂yn},
and form the basis of a vector bundle, the 0-tangent bundle 0T M . We will also have occasion to discuss b-vector
fields, which are generated by

{x∂x, ∂y1 , . . . , ∂yn}.
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We will denote the space of smooth functions on M by C∞(M) and functions smooth up to the boundary by

C∞( �M). The vector bundle of symmetric 2-tensors on M will be denoted Σ2(M). We will use dx
x

and dyb

x
as the

preferred basis for this bundle.
An operator L on functions is uniformly degenerate of order m if in local coordinates it is given by:

L =
∑

j+|β|�m

aj,β(x, y, t)(x∂x)
j (x∂y)

β,

where the coefficients aj,β are at least continuous up to the boundary. In order to use Albin’s heat calculus, we require
that aj,β be smooth up to the boundary and independent of time.

The principal symbol of a uniformly degenerate operator L is a homogeneous polynomial on 0T ∗M given by

0σ(L)(ξ, η) =
∑

j+|β|=m

aj,βξ jηβ.

We say that L is elliptic if 0σ(L) is invertible away from (ξ, η) = 0.
For the Ricci flow analysis, we will have to deal with systems of equations as our operators will act on the vector

bundle of symmetric two tensors. An operator between tensor bundles E and F is uniformly degenerate if in local
coordinates it may be written as a system:

(Lu)i =
∑

j+|β|�m

(aj,β)ki (x∂x)
j (x∂y)

βuk,

where the coefficients aj,β are now entries of a dimF × dimE matrix that is at least continuous up to the boundary.
The principal symbol is defined as before. We will not need to consider the most general notions of ellipticity for
systems as the Ricci flow system (2.2) is ‘diagonal’ at top order, i.e. (aj,β)ik = (aj,β) · δi

k . From this we can see that
all coupling occurs at lower order. We now say that L is elliptic if dimF = dimE and the symbol is invertible away
from (ξ, η) = 0.

For the remainder of this section we suppose that L is a second-order uniformly degenerate elliptic operator with
diagonal principal symbol.

3.1. Function spaces

We work in the 0-Hölder spaces defined for example in [19,22,24]. We describe the anisotropic version of these
Hölder function spaces, and refer the reader to the references for the purely spatial version. For any manifold M , the
notation MT will denote the cylinder M × [0, T ]. Fix a smoothly conformally compact metric h, which in the Ricci
flow analysis, will be the initial metric. We assume a covering of �M by background coordinates has been fixed.

Cover M by a Whitney decomposition of countably many uniformly locally finite coordinate balls Bi with center
(xi, yi) and radius 1

2xi . We will consider the product of each ball with a time interval [0, T ]. For any 0 < a < 1,
consider the norm

‖u‖a, a
2

:= ‖u‖∞ + sup
i

{
sup

(x,y,t)�=(x′,y′,t)∈(Bi)T

(x + x′)a|u(x, y, t) − u(x′, y′, t)|
|x − x′|a + |y − y′|a

+ sup
(x,y,t)�=(x,y,t ′)∈(Bi)T

|u(x, y, t) − u(x, y, t ′)|
|t − t ′|a/2

}
.

The prefactor x + x′ comes from using the Euclidean metric in background coordinates instead of the intrinsic g-
distance, see [24]. Note that we may also use an affine map ψi : BT → (Bi)T from a fixed standard cylinder BT to
define these norms.

Let C
a, a

2
e (MT ) be the closure of C∞( �MT ) with respect to this norm. We define C

k+a, k+a
2

e (MT ) to consist of all

functions u such that (∂t )
i(x∂x)

j (x∂y)
βu ∈ C

a, a
2

e (MT ) for all 2i + j + |β| � k. Note that unlike C∞( �MT ), the spaces

C
k+a, k+a

2
e (MT ) and even C

∞,∞
e (MT ) have no tangential regularity at the boundary. We also weight these spaces:

u ∈ xνC
k+a, k+a

2
e (MT ) if and only if u = xνv for some v ∈ C

k+a, k+a
2

e (MT ).
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We will also need Hölder spaces of tensors. As previously stated, we use the vector fields x∂x and x∂yb and covector
fields dx/x and dyb/x as a basis for bundles of tensors, and with this convention ∇h involves only derivatives by the
0-vector fields. In this way a section of a tensor bundle is an element of a Hölder space if and only if its components
are. Furthermore, for j � k(∇h

)j : xνC
k+a, k+a

2
e (MT ;E) → xνC

a, a
2

e

(
MT ;E ⊗ 0T ∗M

)
.

Finally, in what follows since we always deal with the bundle of symmetric 2-tensors, we will not explicitly mention
it in the notation.

In our final regularity argument we will need weighted Hölder spaces that allow for tangential regularity. Follow-

ing [25] we introduce a scale of spaces Ck+a, k+a
2 ,l(MT ) which consists of elements u ∈ C

k+a, k+a
2

e (MT ) such that

∂s
yu ∈ C

k−s+a, k−s+a
2

e (MT ) for 0 � s � l. This is to say that up to l of the x∂y 0-derivatives may be replaced by the tan-

gential ∂y b-derivatives. We weight these spaces as before. Note that Ck+a, k+a
2 ,0(MT ) = C

k+a, k+a
2

e (MT ), the 0-Hölder

space, and that Ck+a, k+a
2 ,k(MT ) is a Hölder space of k b-derivatives.

In [19,22], elliptic estimates in 0-Hölder spaces are proved from scaling and classical interior elliptic estimates on
the balls Bi , as the pullback of a uniformly degenerate elliptic operator under ψi becomes uniformly elliptic. Similarly
we may obtain parabolic estimates from scaling and classical parabolic estimates. In particular we have the following
regularity result, see [16, Theorem 8.11.1, Theorem 8.12.1] for the classical parabolic statements.

Proposition 3.1 (Parabolic regularity). Let L be a second-order uniformly degenerate elliptic operator. Suppose that

Dγ aj,β ∈ C
a, a

2
e (MT ) for |γ | � k, and Dγ f ∈ C

a, a
2

e (MT ), Dγ φ ∈ Ca
e (M) for all |γ | � k. If u ∈ C

2+a, 2+a
2

e (MT ) is a

solution to (∂t − L)u(ζ, t) = f (ζ, t) then Dγ u ∈ C
2+a, 2+a

2
e (MT ) for all |γ | � k.

3.2. Parabolic Schauder estimates

We now state the main facts from linear parabolic PDE theory that we need. We will be interested in the following
problem{

(∂t − L)u(ζ, t) = f (ζ, t),

u(ζ,0) = 0.
(3.1)

The basic result is

Theorem 3.2. Suppose L is a second-order uniformly degenerate elliptic operator with time-independent coefficients.

For every f ∈ xμC
a, a

2
e (MT ) there is a solution u to (3.1) in xμC

2+a, 2+a
2

e (MT ). Moreover, u satisfies the parabolic
Schauder estimate

‖u‖
xμC

2+a, 2+a
2

e (MT )

� K‖f ‖
xμC

a, a
2

e (MT )
. (3.2)

The Schauder constant K that appears in the statement depends on T but remains bounded as T → 0. Please see
Appendix A for a proof.

3.3. Mapping properties of the heat operator

Given the homogeneous Cauchy problem{
(∂t − L)u(ζ, t) = 0,

u(ζ,0) = φ(ζ ),
(3.3)

let A denote the heat operator such that takes φ to the solution of this problem, i.e. (Aφ)(ζ, t) = u(ζ, t). We also use
the notation that A = etL. In Appendix A we describe how A is given by an integration against a specific polyhomo-
geneous distribution on a certain manifold with corners that covers M × M × R

+. The mapping properties of such
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operators follow from the asymptotics at each of the boundary hypersurfaces. A key result that we will need is that if
Vb is a b-vector field and A is a heat operator, then the commutator [A,Vb] has the same asymptotics as A, and will
enjoy the same mapping properties. See Proposition A.6 for a precise formulation.

Let H denote the following time convolution of the heat operator

(Hf )(ζ, t) =
t∫

0

e(t−s)Lf (·, s) ds.

This operator provides a solution to the inhomogeneous Cauchy problem with zero initial data. The precise mapping
properties we need are given in the following

Proposition 3.3. (See Corollary A.4.) If φ ∈ xμC∞( �M) and f ∈ xμC∞( �MT ) then

(1) Aφ ∈ xμC∞( �MT ).
(2) Hf ∈ xμC∞( �MT ).

Once again we defer the proof to Appendix A.

4. Short-time existence

In this section we prove short-time existence of a solution to (2.2) in the 0-Hölder spaces. This is based on a
contraction mapping argument.

We begin by making several observations that will be needed later. Let E = R +Rcc be the curvature ‘error’ tensor
for the conformally compact metric h, where Rcc denotes the +1 constant curvature 4-tensor. By our convention for
function spaces, if h is smoothly conformally compact then

h = h̄ij

dxi

x

dxj

x
∈ C∞

e (M),

where we recall the convention that (x0, x1, . . . , xn) = (x, y1, . . . , yn).
We also have E ∈ xC∞( �M;T 4M) and thus E ∈ xC∞

e (M;T 4M).

We need an expansion for the inverse of the metric. Suppose that v ∈ xC
k+a, k+a

2
e (MT ) with sufficiently small norm,

then the symmetric 2-tensor h + v will be invertible and (h + v)−1 ∈ C
k+a, k+a

2
e (MT ). Furthermore, we document a

useful expansion

(h + v)ab = hab − halhbmvml + (h + v)blhamhpqvlpvmq. (4.1)

4.1. Conditioning the Ricci–DeTurck system

Here we pursue short-time existence of the normalized Ricci–DeTurck flow. We will look for a solution of the form

gij (x, y, t) = hij (x, y) + vij (x, y, t)

where vij ∈ xC
k+a, k+a

2
e (MT ). The system (2.2) for v may be written in the following way, which will facilitate treating

the quasilinear system with a contraction mapping argument. Here we handle the quasilinearity as a quadratic error.⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 = ∂tvij − hab∇̃a∇̃bvij − (

(h + v)ab − hab
)∇̃a∇̃bvij + 2n(h + v)ij

− (h + v)ab(h + v)iphpqR̃jaqb − (h + v)ab(h + v)jphpqR̃iaqb

+ [
(h + v)−1 ∗ (h + v)−1 ∗ ∇̃v ∗ ∇̃v

]
ij
,

v(0) = 0.

(4.2)

Note that in this expression we have switched curvature sign conventions from [30]. Shi lowers an index in the
curvature tensor to the third slot whereas I lower to the fourth slot. The asterisk denotes linear contractions whose
precise formula is unimportant for what follows.
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Let us introduce notation for some of the terms above. Define

(T1v)ij := (
(h + v)ab − hab

)∇̃a∇̃bvij ,

(T2v)ij := 2n(hij + vij ) + (−(h + v)ab(h + v)iphpqR̃jaqb − (h + v)ab(h + v)jphpqR̃iaqb

)
,

(T3v)ij := (h + v)−1 ∗ (h + v)−1 ∗ ∇̃v ∗ ∇̃v.

We begin by studying the various mapping properties of the terms of this equation. Much of the argument depends
on the special algebraic structure of these equations. We introduce the following notation. We will say various terms
are Q(v) if they are linear combinations of contractions of bounded tensors with either v or its first two h-covariant
derivatives. We will loosely refer to this dependence as being ‘quadratic’, and we will make precise the estimates we
need at the end of this section. Note that indices on Q index the term of origin in the decomposition above.

Lemma 4.1.

T1v = Q1(v), and Q1 : xνC
k+a; k+a

2
e (MT ) → x2νC

k−2+a; k−2+a
2

e (MT ).

Proof. We begin by applying the expansion for the inverse in Eq. (4.1)

(T1v)ij := (
(h + v)ab − hab

)∇̃a∇̃bvij

= (
hab − halhbmvml + (h + v)blhamhpqvlpvmq − hab

)∇̃a∇̃bvij

= h−1 ∗ h−1 ∗ v ∗ ∇̃2v + (h + v)−1 ∗ h−1 ∗ h−1 ∗ v ∗ v ∗ ∇̃2v,

which shows the expression is quadratic in v. Noting that h−1 ∈ C∞
e (M) and v ∈ xνC

k+a; k+a
2

e (MT ), we see that while

we lose two 0-derivatives we gain decay in x, i.e. Q1v ∈ x2νC
k−2+a; k−2+a

2
e (MT ). �

The expression for T2 simplifies considerably. Note that in order to recognize the Lichnerowicz Laplacian below
we will not suppress indices in the expression that follows.

Lemma 4.2.

(T2v)ij = 2Eij + 2nvij + vipR̃cj
p + vjpR̃ci

p + 2vmlR̃
m

ij
l + Q2(v)ij .

Q2 : xνC
k+a; k+a

2
e (MT ) → x2νC

k+a; k+a
2

e (MT ).

Proof. By applying the expansion for the inverse to terms in T2 we find the expression contains inhomogeneous terms
as well as terms linear in v which we must separate from the main expression. In particular, considering one of the
constituent terms in T2 we find

−(h + v)ab(h + v)iphpqR̃jaqb = −(h + v)ab(h + v)ipR̃ja
p
b

= −(
hab − halhbmvml + (h + v)blhamhpqvlpvmq

)
(hip + vip)R̃ja

p
b

= R̃cij + vipR̃cj
p − vmlR̃

m
ij

l + [
h−1 ∗ h−1 ∗ v ∗ v ∗ R̃

]
ij
,

where R̃ in this calculation denotes the (1,3) tensor. One may check that the final quadratic contraction terms map

xνC
k+a; k+a

2
e (MT ) → x2νC

k+a; k+a
2

e (MT ).
Consequently,

−(h + v)ab(h + v)iphpqR̃jaqb − (h + v)ab(h + v)jphpqR̃iaqb

= 2R̃cij + vipR̃cj
p + vjpR̃c

p
i − 2vmlR̃

m
ij

l + Q2(v)ij .

Note that by the curvature asymptotics R̃cij = −nhij + Eij where Eij ∈ xC∞( �M). Therefore, re-assembling T2
we find
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(T2v)ij = 2Eij + 2nvij + vipR̃cj
p + vjpR̃ci

p − 2vmlR̃
m

ij
l + Q2(v)ij . �

The third term requires no additional conditioning.

Lemma 4.3.

(T3v)ij = Q3(v), and Q3 : xνC
k+a; k+a

2
e (MT ) → x2νC

k−1+a; k−1+a
2

e (MT ).

The preceding lemmas allow us to condition the equation for v further. We now move the terms linear in v to the
other side of the equation. We also have from [9] that the term hab∇̃a∇̃bvij is the rough Laplacian on 2-tensors. In
fact, we see the linear elliptic part of the equation is the Lichnerowicz Laplacian on 2-tensors,

L = �h
Lvij + 2nvij = hab∇̃a∇̃bvij + vipR̃cj

p + vjpR̃ci
p − 2vmlR̃

m
ij

l + 2nvij .

We may write:{
∂tvij − (Lv)ij = Qvij + 2Eij ,

vij (0) = 0.
(4.3)

For the remainder of the argument we drop indices.
To summarize the argument so far, we have conditioned the flow equations to recognize a strongly parabolic

equation for the metric. As the quadratic terms Q depend on v and up to its first two covariant derivatives in a
polynomial fashion, there is a constant C > 0 depending on the algebraic structure of Q such that for all u,v ∈
xμC2+a, a

2 (MT ),∥∥Q(v)
∥∥

xμC
a, a

2
e (MT )

� C‖v‖2

xμC
2+a, a

2
e (MT )

, (4.4)∥∥Q(u) − Q(v)
∥∥

xμC
a, a

2
e (MT )

� C max
{‖u‖

xμC
2+a, a

2
e (MT )

,‖v‖
xμC

2+a, a
2

e (MT )

}‖u − v‖
xμC

2+a, a
2

e (MT )
. (4.5)

Note in these estimates that we are relaxing control of one time derivative. This will facilitate the contraction
mapping argument given in the next section. Note also that this part of the argument will not explicitly use the gain of
decay by Q.

In the regularity argument of Section 5, we will need this additional decay. We conclude this section with the
following lemma.

Lemma 4.4. All of the quadratic mapping terms satisfy

Q : xνC
k+a, k+a

2
e (MT ) → x2νC

k−2+a, k−2+a
2

e (MT ).

Moreover, we have

• if w = w′ + w′′, where w′ ∈ xνC
k+a, k+a

2 ,l
e (MT ) and w′′ ∈ xμC

k+a, k+a
2

e (MT ) (ν < μ), then

Q(w) ∈ x2νC
k−2+a, k−2+a

2 ,l−2
e (MT ) + xμ+νC

k−2+a, k−2+a
2

e (MT ),

• if w = w′ + w′′, where w′ ∈ xνC∞( �MT ) and w′′ ∈ xμC
k+a, k+a

2 ,l
e (MT ) (ν < μ), then

Q(w) ∈ x2νC∞( �MT ) + xμ+νC
k−2+a, k−2+a

2 ,l−2
e (MT ).

Proof. The first mapping property stated follows from the previous lemmas. We need only check the final mapping
properties. These are straightforward to check as ∇̃ acts by 0-derivatives thus preserves the order of decay. The explicit
contraction structure of each of the terms that form Q are:

Q1v = h−1 ∗ h−1 ∗ v ∗ ∇̃2v,

Q2v = h−1 ∗ h−1 ∗ v ∗ v ∗ R̃,

Q3v = (h + v)−1 ∗ (h + v)−1 ∗ ∇̃v ∗ ∇̃v.

Inserting w = w′ + w′′ into the expression we find the cross terms have the decay expected of w′ ∗ w′′. �
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4.2. The contraction mapping argument

We now explain the contraction mapping argument that leads to short-time existence for Eq. (4.3). Write the heat
operator for ∂t − L as etL. Apply Duhamel’s principle to (4.3) to get an equivalent integral equation

v(t) =
t∫

0

e(t−s)L
(
E + Q(v)

)
ds

︸ ︷︷ ︸
:=Ψ v

. (4.6)

Note the definition of the map Ψ in the displayed equation above.

For a parameter μ and T to be specified, define a subspace Zμ,T of xC
2+a, a

2
e (MT ) by

Zμ,T = {
u ∈ xC

2+a, a
2

e (MT ): u(x,0) = 0,‖u‖
xC

2+a, a
2

e (MT )
� μ

}
.

This is a closed subset of a Banach space.
Suppose that u ∈ Zμ,T , it follows that v = Ψ u is a solution to{

(∂t − L)v = Q(u) + E,

v(0) = 0.

As Q(u) + E ∈ xCa, a
2 (MT ), the Schauder estimate implies v ∈ xC

2+a,1+ a
2

e (MT ) ⊂ xC
2+a, a

2
e (MT ), and so

Ψ : Zμ,T → xC
2+a, a

2
e (MT ).

We now prove that Ψ in fact maps Zμ,T to itself and is a contraction for μ and T sufficiently small.

Lemma 4.5. Ψ : Zμ,T → Zμ,T for μ and T sufficiently small.

Proof. To begin, let u ∈ Zμ,T and set

v1 :=
t∫

0

e(t−s)LQ(u) ds,

v2 :=
t∫

0

e(t−s)LE ds.

Consider v1. This is a solution to{
(∂t − L)v1 = Q(u),

v1(0) = 0.

The Schauder estimate, followed by the estimates for Q given by Eqs. (4.4) and (4.5) gives

‖v1‖
xC

2+a, a
2

e (MT )
� ‖v1‖

xC
2+a,1+ a

2
e (MT )

� K‖Qu‖
xC

a, a
2

e (MT )

� KC‖u‖2

xC
2+a, a

2
e (MT )

� KCμ‖u‖
xC

2+a, a
2

e (MT )
.

Taking μ sufficiently small allows us to force KCμ < 1
2 . So ‖v1‖

xC
2+a, a

2
e (MT )

� μ
2 . Note that this same μ works if we

shrink T .
Regarding v2, note that this is a solution to
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{
(∂t − L)v2 = E,

v2(0) = 0.

We recall that E and the coefficients of L are smooth, time-independent and have bounded 0-derivatives of all orders,
and so by parabolic regularity any finite number of derivatives of v2 are bounded. Fixing any ζ we may write

v2(ζ, t) =
t∫

0

E(ζ ) + Lv2(ζ, s) ds, t ∈ [0, T ).

We may now estimate the xC
2+a,1+ a

2
e (MT ) norm of v2. The L∞ norm of spatial derivatives may be controlled through

the Schauder estimates by the norm of E, and can be made as small as we like by choosing T sufficiently small.

Further, as the time derivative of v2 is bounded and v2(x,0) = 0, the C
a, a

2
e (MT ) norm of v2 can be made arbitrarily

small by choosing T sufficiently small. We conclude for T small enough

‖v2‖
xC

2+a, a
2 (MT )

� μ

2
.

Thus Ψ : Zμ,T → Zμ,T for t ∈ [0, T ]. �
Lemma 4.6. For the μ and T specified in the previous lemma, Ψ : Zμ,T → Zμ,T is a contraction.

Proof. Schauder’s estimate applied to Ψ u − Ψ v implies

‖Ψ u − Ψ v‖
xC

2+a, a
2

e (MT )
� ‖Ψ u − Ψ v‖

xC
2+a,1+ a

2
e (MT )

� K‖Qu − Qv‖
xC

a, a
2

e (MT )

� KC max
{‖u‖

xC
2+a, a

2
e (MT )

,‖v‖
xC

2+a, a
2

e (MT )

}‖u − v‖
xC

2+a, a
2

e (MT )

� KCμ‖u − v‖
xC

2+a, a
2

e (MT )
.

Where K and C are the same constants from the previous proof. Consequently KCμ < 1
2 , and Ψ is a contrac-

tion. �
We are now ready to prove the existence of a solution to the Ricci–DeTurck flow with full 0-regularity.

Theorem 4.7. If h is a smoothly conformally compact metric, then there exists T > 0 and a solution g ∈ C
∞,∞
e (MT )

to (2.2).

Proof. The existence of a solution to (4.3) in Zμ,T follows from the Banach fixed point theorem. The Schauder

estimate applied to the fixed point equation shows that the solution lies in C
2+a, 2+a

2
e (MT ). This short-time solution

yields a solution in the same space to the Ricci–DeTurck flow by taking g = h + v. We now improve the regularity by
using a bootstrap procedure, applied to the system (2.2). We may write this abstractly as

∂tg +
2∑

|β|=0

aβ(h,g)Dβg,

where the coefficients aβ at worst satisfy Dγ aβ ∈ Ca, a
2 (MT ), for |γ | = 1. By parabolic regularity (cf. Proposition 3.1)

we conclude Dγ g ∈ C
2+a, 2+a

2
e (MT ) for all |γ | = 1, which allows us to improve the spatial regularity. By bootstrap-

ping, and then using the equation to improve regularity in time, we find g ∈ C
∞,∞
e (MT ). �
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5. Beyond 0-regularity

In the previous section we proved short-time existence of the Ricci–DeTurck flow starting at a smoothly confor-
mally compact metric. The solution was constructed in 0-Hölder spaces and is smooth in time and 0-derivatives. We
can expect more as the inhomogeneous terms in Eq. (4.6) are smooth up to the boundary with respect to background
derivatives. In this section we prove the solution remains smoothly conformally compact on the entire interval of
existence. The arguments of this section are modeled on the arguments in [23].

We begin by writing (4.6) more compactly as

v = HE + H Qv, (5.1)

where H is the time convolution of the heat operator appearing in (4.6).

We begin by documenting the mapping properties of H on the Ck+a, k+a
2 ,l(MT ) spaces.

Lemma 5.1.

H : xμCk+a, k+a
2 ,l(MT ) → xμCk+a, k+a

2 ,l(MT ), l � k.

Proof. When l = 0, the mapping properties follow from the Schauder estimate, Theorem 3.2. The new content here
is that H preserves tangential regularity.

Suppose that f ∈ xμCk+a, k+a
2 ,1(MT ). Taking an arbitrary b-derivative of Hf , we write

∂y(Hf ) = H(∂yf ) + [H,∂y]f.

Since ∂yf ∈ xμCk−1+a, k−1+a
2 (MT ), and H : xμCk−1+a, k−1+a

2 (MT ) → xμC
k+1+a, k+1+a

2
e (MT ), the first term lies again

in xμC
k+a, k+a

2
e (MT ). For the second term, by Proposition A.6, [H,∂y] has the same mapping properties as H , and

again maps xμC
k+a, k+a

2
e (MT ) to a subset of xμC

k+a, k+a
2

e (MT ). This implies that ∂y(Hf ) ∈ xμC
k+a, k+a

2
e (MT ), and so

Hf ∈ C
k+a, k+a

2 ,1
e (MT ).

The remainder of the proof proceeds by iteration. �
The next proposition shows that a solution to the normalized Ricci–DeTurck flow is smooth in b-derivatives.

Proposition 5.2. Let g be a solution to (2.2) in C
k+a, k+a

2
e (MT ), with h smoothly conformally compact. Then g(t) lies

in Ck+a, k+a
2 ,k for all t ∈ [0, T ).

Proof. Consider the term HE in Eq. (5.1). As h is smoothly conformally compact, E ∈ xC∞( �MT ). Now H preserves
polyhomogeneity via Proposition 3.3, and so HE ∈ xC∞( �MT ). Thus we need only focus on the second term.

In order to handle the term H Qv we take advantage of the improved decay of Qv. If v ∈ xC
k+a, k+a

2
e (MT ), then

Qv ∈ x2C
k−2+a, k+a−2

2
e (MT ), which H maps to x2C

k+a, k+a
2

e (MT ). Consequently, taking any b-derivative of H Qv

yields

∂yH Qv = x−1(x∂y(H Qv)
) ∈ xC

k−1+a, k−1+a
2

e (MT ),

which shows a gain of one tangential derivative so that

H Qv ∈ xCk+a, k+a
2 ,1(MT ).

This argument iterates k-times and we indicate the next step. Apply Eq. (5.1) and Lemma 4.4 to obtain

v = HE + H Q(HE + H Qv) ∈ xC∞( �MT ) + x3Ck+a, k+a
2 ,1(MT ),

and so v ∈ xCk+a, k+a
2 ,2(MT ). �

We now state the main regularity result of this paper.
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Theorem 5.3. Let g be a solution to (2.2) in C
∞,∞
e (MT ), with h smoothly conformally compact. Then g(t) is smoothly

conformally compact for all t ∈ [0, T ).

Proof. By Proposition 5.2 we have that g(t) is fully tangentially regular, i.e. v ∈ xC∞,∞,∞(MT ). It remains to show
that v is smooth up to the boundary, i.e. v ∈ xC∞( �MT ).

We will now use the structure of the heat kernel as a polyhomogeneous distribution to prove polyhomogeneity of v.
Given that v ∈ xC∞,∞,∞(MT ) satisfies

v = HE + H Qv.

We see that Qv ∈ x2C∞,∞,∞(MT ), and so we may decompose v as

v = v′ + v′′ ∈ xC∞( �MT ) + x2C∞,∞,∞(MT ).

We now insert this back into (5.1). Using Lemma 4.4, we find

Q
(
v′ + v′′) = x2C∞( �MT ) + x3C∞,∞,∞(MT ).

Eq. (5.1) now lets us conclude

v ∈ xC∞( �MT ) + x3C∞,∞,∞(MT ).

Iterating we conclude v ∈ xC∞( �MT ).
Finally, we have proved v ∈ xC∞( �MT ), i.e. that

v = xv̄ij

dxi

x

dxj

x
,

where v̄ij is smooth up to the boundary, and we remind the reader of the convention (x0, x1, . . . , xn) = (x, y1, . . . , yn).
So now x2v = xv̄ij dxi dxj and consequently g = h + v is smoothly conformally compact. �

We note that ḡ = x2g = (h̄ij + xv̄ij ) dxi dxj , so that |dx|2ḡ = 1 on ∂M , so that g is asymptotically hyperbolic.
Combining Theorem 4.7 and Theorem 5.3 completes the proof of Theorem A.

We conclude this section by remarking that it is possible to relax the condition that the initial metric h be smoothly
conformally compact. Our entire argument applies to certain polyhomogeneous initial metrics as well. The heat kernel
analysis from Appendix A and the heat kernel mapping properties extend to this case in a straightforward manner.

6. Stability about admissible Einstein metrics

In this section we adapt the arguments from [29] to prove stability of the normalized Ricci–DeTurck flow near
η-admissible Einstein metrics.

The main idea is to replace the background hyperbolic metric on the ball used in [29] with an η-admissible Einstein
metric, h. The existence arguments in [29, Theorem 2.4] works with a such a complete Einstein metric in place of the
hyperbolic metric. In order to obtain the long-time existence and convergence result, we must adapt the L2 estimate
for the difference of the solution of the flow with the background metric due to the ‘curvature error’ terms, whose
magnitude is measured by η, that arise. There is sufficient room in the main estimate to allow for metrics with η

sufficiently small. To this end, we replace [29, Lemma 2.2] with the following

Lemma 6.1. Suppose that g ∈ M∞(Bn+1, (0, T )) is a solution to the normalized Ricci–DeTurck flow which is ε-close
to h, where h is an η-admissible Einstein metric and ε is sufficiently small. Then

∂t |g − h|2 � gij ∇̃i∇̃j |g − h|2 − (2 − ε)
∣∣∇̃(g − h)

∣∣2 + (
4 + ε + b(n)η

)|g − h|2, (6.1)

where b(n) is a constant depending on n, and where any constant c(n)ε is replaced with ε, and norms and covariant
derivatives are with respect to h.
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Proof. Choose h-normal coordinates at any point p and write hij = δij , then diagonalize g at p to write gij = λigij ,
where λi > 0. Note that we drop Einstein summation convention as we use this expression in the remainder of the
proof.

Note that for a metric g ε-close to h, the eigenvalues of g with respect to h satisfy (1 + ε)−1 � λi � 1 + ε.
Set Z = g − h. We compute using Eq. (2.2)

∂t |Z|2 = 2
∑

i

(gii − hii)∂tgii

= 2
∑

i

(gii − hii)
(
gab∇̃a∇̃bgii + 2gabgiphpqEiaqb

+ 2(hii − gii) + 2giig
ab(hab − gab) + [

g−1 ∗ g−1 ∗ ∇̃g ∗ ∇̃g
]
ii

)
,

where E represents the curvature deviation from hyperbolic space: E = R + Rcc .
We now estimate exactly as in [29]. The only new ingredient are the curvature error terms. Given an index i, we

find the expression for 2
∑

i (gii − hii)∂tgii contains

2
∑

i

2(gii − hii)g
abgiphpqEiaqb = 4

∑
i,q

(gii − hii)g
abgiqEiaqb

= 4
∑

i

(λi − 1)λig
abEiaib

= −4
∑

i

(λi − 1)λig
abEaiib

= −4
∑

i

(λi − 1)λi

∑
j

λ−1
j Ejiij

= −4
∑

i

(λi − 1)λi

∑
j

(
λ−1

j − 1
)
Ejiij

where in the last line we used the fact that since h is Einstein
∑

j Eijji = 0. Noting from symmetries of the curvature
tensor that Eiiii = 0, we find

−4
∑

i

(λi − 1)λi

∑
j

(
λ−1

j − 1
)
Ejiij = 4

∑
i �=j

λiλ
−1
j (λi − 1)(λj − 1)Eijji .

Estimating using the h-norm yields∣∣∣∣−4
∑

i

(λi − 1)λi

∑
j

(
λ−1

j − 1
)
Ejiij

∣∣∣∣
h

=
∣∣∣∣4∑

i �=j

λiλ
−1
j (λi − 1)(λj − 1)Eijji

∣∣∣∣
h

�
(

max
i,j

|Eijji |h
)
b(n)|Z|2

� ηb(n)|Z|2. �
In order to proceed we must replace the McKean inequality used in [29] for the infimum of the L2 spectrum of

the hyperbolic Laplacian on functions with its counterpart for a conformally compact Einstein metric. By a result of
Lee [18], if h is at least C3,α conformally compact with smooth conformal infinity, and the conformal infinity has
positive Yamabe invariant, then λ0(h) = n2/4.

We now obtain L2 control of |g(t) − h| by modifying [29, Theorem 3.1]. Let η(n) = 1
8b(n)

, where b(n) is the
constant appearing in the previous lemma. We assume that for 0 < η < η(n) that we have a fixed η-admissible Einstein
metric.

Theorem 6.2. Let n � 3. There exists δ0 = δ0(n) > 0 such that if g ∈ M∞(BR, [0, T )) is a solution to the normalized
Ricci–DeTurck flow with g = h on ∂BR(0) × [0, T ) and supB (0)×[0,T ) |g − h| � δ0, then
R
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∫
BR(0)

∣∣g(t) − h
∣∣2
h

dvolh � e−at

∫
BR(0)

∣∣g(0) − h
∣∣2
h

dvolh, for some a � 1/4.

Proof. Assume that δ0 is so small that g is ε-close to h.
We compute using Lemma 6.1,

∂t

∫
BR(0)

|Z|2 dvolh �
∫

BR(0)

gij ∇̃i∇̃j |Z|2 − (2 − ε)|∇̃Z|2 + (4 + ε + η)|Z|2 dvolh .

After integrating by parts and estimating as in [29], we obtain

∂t

∫
BR(0)

|Z|2 dvolh �
∫

BR(0)

−(2 − ε)|∇̃Z|2 + (
4 + ε + b(n)η

)|Z|2 dvolh .

We now use the eigenvalue estimates described above. Kato’s inequality implies that |∇̃|Z||2 � |∇̃Z|2. Further,∫
BR(0)

∣∣∇̃|Z|∣∣2 dvolh � λ0
(
BR(0)

) ∫
BR(0)

|Z|2 dvolh

where λ0(BR(0)) � λ0(h) = n2

4 . So now,∫
BR(0)

−(2 − ε)|∇̃Z|2 �
∫

BR(0)

−(2 − ε)
∣∣∇̃|Z|∣∣2 dvolh

�
∫

BR(0)

−(2 − ε)
n2

4
|Z|2 dvolh

=
(

−n2

2
+ ε

) ∫
BR(0)

|Z|2 dvolh .

Finally, we obtain

∂tF �
(

−n2

2
+ ε + 4 + b(n)η

)
F,

where F = ∫
BR(0)

|Z|2 dvolh.

We must have −n2

2 + ε + 4 + b(n)η < 0 in order to get an exponential decay estimate. Thus we can take ε so small

that (say) ε < 1/8. Since b(n)η < 1/8 and n � 3, we see −n2

2 + ε + 4 + b(n)η � − 1
2 + 1

4 = − 1
4 . �

We now have all of the new ingredients needed to prove Theorem B. Let 0 < η < η(n) and h be an η-admissible
Einstein metric. We proceed exactly as in [29, Theorem 3.4].

Appendix A. More on linear parabolic PDE theory

In this appendix we give more detail surrounding linear parabolic theory on conformally compact asymptotically
hyperbolic manifolds. Our approach to understanding these operators is based on the edge heat calculus developed
in [1]. Note that in this appendix we deal exclusively with the 0-case but the arguments generalize in a straightforward
manner to the full complete edge case.

The point of view we adopt is that for a second-order uniformly degenerate elliptic operator with time-independent
coefficients, we can explicitly construct the heat kernel as a polyhomogeneous distribution on an appropriate manifold
with corners that covers M × M × R

+. In this section we will first describe this blow up space. We then proceed to
discuss the heat kernel as constructed in [1]. We then prove several mapping properties of these kernels. We conclude
by proving Schauder type estimates.
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Fig. 1. The blow-up heat space, HM2
e .

We now introduce the appropriate blow-up spaces for the construction of the heat kernel. First we define the 0-
double space: M2

e , originally introduced in [22] for the elliptic edge calculus. This is a manifold with corners that
covers M2, and is obtained by introducing polar coordinates around the submanifold

∂M ×B ∂M = {(
w,w′) ∈ ∂M × ∂M: w = w′}.

So M2
e = [M × M; ∂M ×B ∂M]. This will introduce three new boundary hypersurfaces; following Albin we denote

these by B11 (the front face), B01 (the right boundary) and B10 (the left boundary). We denote the blow-down map

βe : M2
e → M2,

and the edge diagonal by

diage = β−1
e (diag\∂M ×B ∂M).

We describe the edge double space in terms of coordinate charts. In the interior of M2
e we may use the usual

coordinates(
(x, y),

(
x′, y′)) = (

ζ, ζ ′),
where y will always denote coordinates along B and z will always denote coordinates along F . We will favor the
following projective coordinates for M2

e , defined away from B10 and that express the edge diagonal easily are given
by (

(x, y, z),

(
s := x′

x
, v := y′ − y

x

))
.

Note that in these coordinates, s = 0 is a defining function for B01 and x = 0 for the front face (away from B10). By
reversing the roles of x and x′ in the obvious manner, one may obtain a second chart covering the remainder of M2

e .
We now introduce the heat space HM2

e . This is given by a parabolic blow up of the manifold M2
e × R+ along the

submanifold diage ×{0}. This gives us a number of new boundary hypersurfaces. We keep Albin’s notation for these,
illustrated in Fig. 1.

We now discuss the coordinate systems we can use on HM2
e . In what follows we work away from B10,0 (i.e. away

from x = 0). Near B11,0, and away from B00,1 we can use(
(x, y),

(
s′ := x′

x
, v′ := y′ − y

x

)
, τ := t1/2

)
. (A.1)

Near B11,0 and the ‘top’ of B00,2 we may use



E. Bahuaud / Ann. I. H. Poincaré – AN 28 (2011) 813–835 829
(
(S,U), ζ ′, τ

) :=
((

x − x′

x′t1/2
,
y − y′

x′t1/2

)
,
(
x′, y′), t1/2

)
. (A.2)

In these coordinates, x′ = 0 defines the B11,0 and τ = 0 defines B00,2. Finally, near B11,0 and the ‘bottom’ of B00,2,
close to B00,1 we appear to need to introduce another coordinate system. However, we observe that this region is
reached using the above coordinates as |(S,U)| → +∞. We will soon see that our heat kernels vanish to infinite order
along this boundary.

We will denote the full blow-down map β : HM2
e → M2 × R

+.
Given a manifold with corners M , C∞( �M) denotes functions on M that are smooth in the interior and smooth up to

all boundary hypersurfaces. The space Ċ∞(M) will denote smooth functions vanishing to all orders at the boundary
hypersurfaces. If F denotes a list of boundary hypersurfaces then Ċ∞

F (M) denotes smooth functions vanishing to
all orders at all boundary hypersurfaces except those in F ; at the other hypersurfaces we demand the functions are
smooth up to the boundary.

We will also need to define sets of functions that have asymptotic expansions at the boundary hypersurfaces. Let
M be a manifold with corners with boundary defining functions xi . A distribution u is polyhomogeneous conormal1

if:

u ∼
∑

Resj →∞

pj∑
p=0

aj,p(x, y)xsj (logx)p,

where aj,p ∈ C∞( �M). We’ll denote the set of such distributions A∗
phg . We can also restrict the set of exponents that

may occur above. Define an index set to be a discrete subset E ⊂ C × N0 such that

(1) if (sj ,pj ) ∈ E and |(sj ,pj )| → ∞, then Re(sj ) → ∞,
(2) if (s,p) ∈ E then (s + k,p − l) ∈ E for any k, l ∈ N, l � p.

Given a set of index sets E for each boundary hypersurface, we denote by AE
phg the set of polyhomogeneous conormal

functions with exponents ranging in E . Note that we will use a few special notations for index sets. The empty set
will denote the index set for a function vanishing to all orders along a hypersurface. A single number n ∈ N0 will
denote the index set {(j,0): j ∈ N, j � n} of functions vanishing to order n. Note that the index set {0} represents
functions smooth up to the hypersurface. For more details about operations on these sets, see the concise review in [22,
Appendix A].

A.1. The heat kernel of a uniformly degenerate elliptic operator

Let L be a second-order uniformly degenerate elliptic operator. We consider a heat type equation{
(∂t − L)u(ζ, t) = 0,

u(ζ,0) = f (ζ ),

where f ∈ Γ (M; E ) is a smooth section of a vector bundle E .
The heat kernel of L is a distribution on M2 × R

+ so that the solution to the above problem is given by:

u(ζ, t) =
∫
M

h
(
ζ, ζ ′, t

)
f

(
ζ ′)dvolg

(
ζ ′).

Here h formally satisfies:{
(∂t − Lζ )h

(
ζ, ζ ′, t

) = 0,

h
(
ζ, ζ ′,0

) = δ
(
ζ − ζ ′). (A.3)

We will see that h = β∗H , where H is a polyhomogeneous distribution on HM2
e .

1 See [11] for a discussion and to make the meaning of ∼ precise.
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The actual construction of this distribution is done for half-densities, so that it makes sense to compose operators.
We briefly review Albin’s construction of the heat calculus. We define a weighted bundle of half-densities D :=
ρ

− n
2 +2

00,2 ρ
− n+1

2
11,0 Ω1/2(HM2

e ). Kernels of operators in the heat calculus are elements of

Kk,l(M,D) := ρk
00,2ρ

l
11,0Ċ

∞
B00,2,B11,0

(
HM2

e ;D)
.

The action of a kernel KA in Kk,l on smooth half-densities is given by

A(f )(ζ, t) =
∫
M

β∗KA

(
ζ, ζ ′, t

)
f

(
ζ ′).

We’ll denote the operator A acting in this manner by A ∈ Ψ
k,l
e,Heat.

Albin proves:

Theorem A.1. If L is the scalar Laplacian of a exact edge metric, then A ∈ Ψ
2,0
e,Heat, where A is the heat operator of

∂t − L.

We note that Albin’s construction is closely modeled on the work of Melrose [26], and generalizes in a straight-
forward manner to general second-order uniformly degenerate elliptic operators. Furthermore, Melrose also considers
the case of elliptic operators between bundles [26, Theorem 7.29] with diagonal principal symbol. Thus we have

Theorem A.2. If L is a uniformly degenerate elliptic operator with diagonal principal symbol, then A ∈ Ψ
2,0
e,Heat,

where A is the heat operator of ∂t − L.

We now give a brief indication of the proof of theorem and refer the reader to [1,26] for further detail. We work in
HM2

e with the ansatz that the solution already vanishes to infinite order at B10,0,B01,0, and B00,1. To deal with the
rest of the equation and boundary hypersurfaces involve three main steps. First, an initial parametrix is constructed by
pulling the heat equation back to HM2

e in coordinates near the blow-up diagonal. As B00,2 fibers over the diagonal, we
find that the equation restricts to a Euclidean type heat equation on each fiber with smooth coefficients in the variables
along the fiber. Thus we may progressively solve away the Taylor series at B00,2 with control of the asymptotics down
to B11,0. This handles the initial condition. The second step is to progressively solve away the Taylor series at B11,0
using the heat kernel of hyperbolic space (recall 0-metrics are asymptotically hyperbolic). The result of these two steps
is a parametrix solving the heat equation to infinite order at all boundary hypersurfaces. To improve the parametrix to
an actual inverse requires an argument involving Volterra operators and is given in [26, Proposition 7.17].

Finally we note that the construction above also works when the background metric is polyhomogeneous.

A.2. Mapping properties

In this section we study the action of the heat kernels in Ψ
2,0
e,Heat above on functions, using Melrose’s push-forward

theorem. Fig. 2 introduces some important notation.
We identify functions and half-densities on M2 × R

+ and the factors M × R
+ and M by2

f
(
x, y, x′, y′, t

) ↔ f
(
x, y, x′, y′, t

)
x− (n+1)

2
(
x′)− (n+1)

2
∣∣dx dy dx′ dy′ dt

∣∣1/2
,

f (x, y, t) ↔ f (x, y, t)x− (n+1)
2 |dx dy dt |1/2,

f (x, y) ↔ f (x)x− (n+1)
2 |dx dy|1/2.

From [1, p. 13] an element of A ∈ Ψ
2,0
e,Heat has an integral kernel that may be written as ρ

− n
2

00,2ρ
− n+1

2
11,0 k · ν, where k

is a function that vanishes to infinite order at B10,0,B01,0, andB00,1, and is smooth up to the boundary at B00,2 and
B11,0, and ν is a smooth section of Ω1/2(HM2

e ).

2 Here we omit the smooth factor
√

detg in the densities that follow.
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.

Fig. 2. Definition of various maps.

An operator A ∈ Ψ
2,0
e,Heat acts on half-densities by

(Af )(x, y, t)x− n+1
2 |dx dy dt |1/2 = (βL)∗

(
ρ

− n
2

00,2ρ
− n+1

2
11,0 kν · (βR)∗

(
f

(
x′, y′)(x′)− n+1

2
∣∣dx′ dy′∣∣1/2))

. (A.4)

To relate these half-densities, let us work in coordinates near B11,0 and B00,2. We may take ν = |dS dU dx′ dy′ dτ |1/2

Pulling our standard half-density on M2 × R
+ back we find

β∗(x− n+1
2

(
x′)− n+1

2
∣∣dx dy dx′ dy′ dt

∣∣1/2)
= (1 + Sτ)−

n+1
2

(
x′)− n+1

2
(
x′)− n+1

2
(
2
(
x′)n+1

τn+2)1/2∣∣dS dU dx′ dy′ dτ
∣∣1/2

= √
2(1 + Sτ)−

n+1
2

(
x′)− n+1

2 τ
n+2

2 ν.

The factor
√

2(1 + Sτ)−(n+1)/2 is smooth and uniformly bounded, so we omit it hereafter.
In order to apply Melrose’s push-forward theorem, we must work with smooth b-densities. Here is how to arrange

this. We multiply both sides by the half-density x− n+1
2 |dx dy dt |1/2, and noting

β∗
L

(
x− n+1

2 |dx dy dt |1/2)β∗
R

((
x′)− n+1

2
∣∣dx′ dy′∣∣1/2) = β∗(x− n+1

2
(
x′)− n+1

2
∣∣dx dy dx′ dy′ dt

∣∣1/2)
,

we find the action on smooth densities is given by

(Af ) (x, y, t)x−(n+1)|dx dy dt | = (βL)∗
(
ρ1

00,2ρ
−n−1
11,0 k · β∗

Rf ν2).
Finally we introduce a total defining function on both sides of this equation to obtain b-densities, which we denote

with a subscript b. In this case we have ν2
b = (ρ10,0ρ01,0ρ11,0ρ00,1ρ00,2)

−1ν2, and σb := 1
xt

|dx dy dt |. Now

(Af ) (x, y, t)xtx−(n+1)σb = (βL)∗
(
ρ10,0ρ

−n
11,0ρ01,1ρ00,1ρ

2
00,2k · (βR)∗

(
f

(
x′, y′))ν2

b

)
.

We now apply this to the following

Proposition A.3. Let A ∈ Ψ
2,0
e,Heat. If f ∈ A F

phg(M) then Af ∈ A(F ,0)
phg (M × R

+).

Proof. First, let us consider the b-map βR . As no boundary hypersurface is mapped to a corner of M , βR is a
b-fibration. It is easy to check that the exponent matrix for this map is

B10,0 B11,0 B01,0 B00,1 B00,2
∂X 1 1 0 0 0

.

As a consequence, if f ∈ A F
phg(M) with index set F , β∗

Rf ∈ A{F ,F ,0,0,0}
phg (HM2

e ), by the pull-back theorem [22,
Proposition A.13].
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The function k is polyhomogeneous with respect to the index set {∅,0,∅,∅,0}. Accounting for the powers of the
defining functions we obtain the index set {∅,−n,∅,∅,2}. The index set for the product of this expression with the
pull-back of f is then G = {∅,−n + F,∅,∅,2.}.

The map βL is a b-fibration. The exponent matrix for this map is

B10,0 B11,0 B01,0 B00,1 B00,2
H1 0 1 1 0 0
H2 0 0 0 1 1

.

In the above table we have the labeled hypersurfaces of M × R
+ in the following manner: H1 represents t =

0 and H2 represents x = 0. We now apply Melrose’s push-forward theorem [22, Proposition A.18]. Note that the
integrability condition is met at B10,0 as Re(G(B10,0)) > 0. Now the index set for H1 = G(B11,0)∪G(B01,0) = −n+ F
and H2 = G(B00,1)∪G(B00,2) = 2. Note that H2 = 2 is not surprising since τ 2 = t , from the parabolic blow up.

The calculation here provides the index sets needed to for computing the asymptotics of

(Af )(x, y, t)xtx−(n+1)σb.

Canceling the powers of the defining functions, and returning to the identification of densities with functions now
shows that Af ∈ A(F ,0)

phg (M × R
+). �

We use the above proposition primarily in the form

Corollary A.4. If f ∈ xμC∞( �M) then Af ∈ xμC∞( �MT ).

Proof. The only point that we have to be careful about is that the previous theorem only guarantees an expansion in
powers of τ = √

t . However we can obtain full smoothness in t by using the fact that Af solves the heat equation and
is already smooth in the spatial derivatives. �
Corollary A.5. If f ∈ xμC∞( �MT ) and H denotes the time convolution of the heat operator of A, then Hf ∈
xμC∞( �MT ).

We conclude this section with a proposition that we will need in the finer regularity analysis of the Ricci flow. This
shows that the commutator of a b-vector field with an element of the heat calculus remains in the calculus, and thus
has the same mapping properties.

Proposition A.6. If A ∈ Ψ
2,0
e;Heat(X) and Vb is any b-vector field, then [A,Vb] ∈ Ψ

2,0
e;Heat(X).

Proof. The proof is similar to [22, Proposition 3.30], adapted to the heat calculus setting. We sketch the proof here.
Return to the action on half-densities, Eq. (A.4), and suppose that f is a smooth half-density vanishing to all orders at
the boundary hypersurfaces. Now suppose for simplicity that Vb = ∂y is a b-vector field. After an integration by parts,
we may write

(∂yAf )(x, y, t) − (A∂yf )(x, y, t)

= (βL)∗
((

β∗
L(∂y) + β∗

R

(
∂T
y′

))
ρ

− n
2

00,2ρ
− n+1

2
11,0 kν · (βR)∗

(
f

(
x′, y′)(x′)− n+1

2
∣∣dx′ dy′∣∣1/2))

,

where ∂T
y′ is the adjoint of ∂y′ under the measure. The key now is that while each of ∂y and ∂y′ lifts to a vector field

singular near B00,2, their sum cancels this behavior. Indeed, computing in the coordinates defined in Eq. (A.2), we
find that

β∗
L(∂y) = 1

x′τ
∂U ,

β∗
R

(
∂T
y′

) = − 1
′ ∂U + ∂y′ + smooth function.
x τ
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Consequently, β∗
L(∂y) + β∗

R(∂T
y′) does not affect the asymptotics of the kernel, and [A,Vb] ∈ Ψ

2,0
e;Heat(X). �

We conclude with a discussion of the main existence theorem for the inhomogeneous Cauchy problem:{
(∂t − L)u(ζ, t) = f (ζ, t),

u(ζ,0) = 0,
(A.5)

where f ∈ xμC
a, a

2
e (MT ) and L is a second-order uniformly degenerate elliptic operator with coefficients in Ca

e .

Theorem A.7. Suppose L is a second-order uniformly degenerate elliptic operator with time-independent coefficients.

For every f ∈ xμC
a, a

2
e (MT ) there is a solution u to (A.5) in xμC

2+a, 2+a
2

e (M). Moreover, u satisfies the Schauder-type
estimate

‖u‖
xμC

2+a, 2+a
2

e (MT )

� K‖f ‖
xμC

a, a
2

e (MT )
. (A.6)

Proof. By Duhamel’s principle, a solution to (A.5) is given by

u(ζ, t) =
t∫

0

∫
M

h
(
ζ, ζ ′, t − t ′

)
f

(
ζ ′, t ′

)
dvolg

(
ζ ′)dt ′, (A.7)

where h is the heat kernel of the heat operator etL, where etL ∈ Ψ
2,0
e,Heat.

We now discuss the estimates. The case for nonzero weight μ reduces to the unweighted estimate, as to solve the

inhomogeneous problem with u ∈ xμC
2+a, 2+a

2
e (M) amounts to solving(

∂t − x−μLxμ
)
u′(ζ, t) = f ′(ζ, t)

for with u′ and f ′ in appropriate unweighted spaces. The kernel of the conjugated operator x−μLxμ has precisely
the same asymptotics as the kernel of L, as may be seen by working in the coordinate systems (A.1) and (A.2). So it
suffices to check the mapping properties when μ = 0.

The strategy is now to cut up the space HM2
e . Consider a function φ equal to one in a tubular neighborhood of

B00,2 and vanishing outside a slightly larger tubular neighborhood. We may write the heat kernel as

h = h1 + h2 := φh + (1 − φ)h.

To prove (3.2), it will suffice to estimate both

u1(ζ, t) =
t∫

0

∫
M

h1
(
ζ, ζ ′, t − t ′

)
f

(
ζ ′, t ′

)
dvolg

(
ζ ′)dt ′

and

u2(ζ, t) =
t∫

0

∫
M

h2
(
ζ, ζ ′, t − t ′

)
f

(
ζ ′, t ′

)
dvolg

(
ζ ′)dt ′.

Regarding the estimate for u2, we view h2 as a polyhomogeneous distribution vanishing to infinite order at
B10,0,B01,0,B00,1,B00,2 and smooth up to B11,0. The estimates are then checked in each of the coordinate systems
(A.1) and (A.2) in a lengthy but straightforward manner. For example, under the coordinate change (A.2), the 0-vector
field x∂x lifts to (τ−1 + S)∂S , consequently

(x∂x)2u(x, y, t) =
t∫

0

∫
M

(x∂x)2h2
(
ζ, ζ ′, t − t ′

)
f

(
ζ ′, t ′

)
dvolg

(
ζ ′)dt ′

=
t∫ ∫ ((

τ−1 + S
)
∂S

)2
h2

(
S,U,x′, y′, t − τ

)
f

(
x′, y′, τ

)
dvolg

(
x′, y′)dτ.
0
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We can now estimate the L∞ norm and Hölder seminorm of (x∂x)2u(x, y, t) using the fact that h2 is smooth and
vanishes to infinite order in τ to absorb the apparent singular factor of τ . The same is true for the other derivatives.
We omit the precise estimation but refer the reader to [3] for similar estimation.

Regarding the estimate for u1, recall the Whitney decomposition outlined in Section 3.1. Let ψi : BT → (Bi)T be
an affine map taking a ‘standard’ parabolic cylinder over the ball with center (1,0) and radius 1 in the right half plane
model of hyperbolic space to the ball with center (xi, yi) and radius 1

2xi :

ψi(v,w, t) = (xiv, yi + xiw, t).

Consider the pullback of u1 under ψi :(
ψ∗

i u
)
(v,w, t) = u1(xiv, yi + xiw, t)

=
t∫

0

∫
h1

(
xiv − x′

x′(t − t ′)1/2
,
yi + xiw − y′

x′(t − t ′)1/2
, x′, y′, t − t ′

)
f

(
x′, y′, t ′

)(
x′)−n−1 dvolg

(
x′, y′)dt ′

=
t∫

0

∫
h1

(
v − ṽ

ṽ(t − t ′)1/2
,

w − w̃

ṽ(t − t ′)1/2
, xi ṽ, yi + xiw̃, t − t ′

)
· f (

xi ṽ, yi + xiw̃, t ′
)
ṽ−n−1 dvolg(ṽ, w̃) dt ′

=
t∫

0

∫
h1

(
v − ṽ

ṽ(t − t ′)1/2
,

w − w̃

ṽ(t − t ′)1/2
, xi ṽ, yi + xiw̃, t − t ′

)
· (ψ∗

i f
)(

ṽ, w̃, t ′
)
ṽ−n−1 dvolg(ṽ, w̃) dt ′.

These charts essentially provide the bookkeeping for rescaling of the equation to a fixed parabolic cylinder in
R

n+1 ×[0,∞). Further, uniformly degenerate vector fields pull back under ψi to differential operators with uniformly
bounded coefficients on the standard cylinder, and in particular a uniformly degenerate parabolic operator is pulled
back to a uniformly parabolic operator. This reduces the estimate to the ‘classical’ parabolic case, which may be found
in [17]. �
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