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Abstract

We consider a class of degenerate reaction–diffusion systems with quadratic nonlinearity and diffusion only in the vertical
direction. Such systems can appear in the modeling of photochemical generation and atmospheric dispersion of pollutants. The
diffusion coefficients are different for all equations. We study global existence of solutions.

Résumé

Nous considérons une classe de systèmes dégénérés de réaction–diffusion avec une non-linéarité quadratique et avec diffusion
uniquement dans la direction verticale. De tels systèmes peuvent apparaître dans la modélisation de la synthèse de polluants par
réactions photochimiques et de leur dispersion atmosphérique. Les coefficients de diffusion sont différents pour chaque équation.
Nous étudions l’existence globale de solutions.
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1. Introduction

The goal of this paper is to analyze global existence in time of solutions to reaction–diffusion systems of the type
considered in [4] and combined from various models in [21,9,22] and which describe, in particular, the atmospheric
dispersion of ozone and other photochemically generated pollutants. Three main coupled difficulties appear in these
systems, set in a three-dimensional spatial domain:

• First, the diffusion occurs only in the vertical direction: consequently, the system is ‘degenerate’.
• However, transport of species hold in all directions.
• Even if diffusion occurred in all directions (that is, even if the linear part of the system was strictly parabolic),

global existence of solutions would not be obvious because of the structure of the nonlinear reaction terms.
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It is proved in [4] that, if the diffusion coefficients are all the same, then global existence of classical solutions
does hold. Our goal here is to tackle the more difficult situation where these coefficients are different from each
other and to give some global existence result.

Besides their interest with respect to the mentioned applications, these systems contain several theoretical questions
of interest for lots of other reaction–diffusion systems. Let us describe more precisely an explicit family of these
systems, and we will come back to more details on the corresponding difficulties.

Although we will consider more general systems, we focus on the atmospheric diffusion model of [4] to describe
and comment the equations. If the geographical area to be considered is represented by a bounded regular open subset
Ω of R

2, the equations for atmospheric dispersion can be written in a cylindrical domain Q of the form

Q = {
(x, y, z, t) ∈ R

4, (x, y) ∈ Ω, z ∈ (0,1), t ∈ (0, T )
}
,

where z = 0 represents the surface of the earth and z = 1 the limit of the troposphere.
Let the functions φi , i = 1, . . . , n, represent the molecular densities of the different species involved in the photo-

chemical reaction. Then the reaction–advection–diffusion equations can be written in the form

∂φi

∂t
= di

∂2φi

∂z2
+ ∇ · (ωφi) + fi(φ) + gi, (1.1)

where the velocity field ω = (ω1,ω2,ω3) models the atmospheric current, di is the diffusion coefficient for species i,
fi(φ) are nonlinear reaction terms, representing the chemistry of the process, and the gi are source terms. Finally, the
notation ∇ · u denotes the divergence of u in the spatial variables (x, y, z).

Throughout the paper we assume the following⎧⎪⎪⎪⎨⎪⎪⎪⎩
∀i = 1, . . . , n,

ωi : Q → R is continuously differentiable,
fi : R

n → R is continuously differentiable,
di ∈ (0,+∞),

gi ∈ L∞(Q).

(1.2)

In most references mentioned above, an incompressibility condition ∇ ·ω = 0 is assumed. In this case, if the functions
φi are regular enough, (1.1) writes

∂φi

∂t
= di

∂2φi

∂z2
+ ω1

∂φi

∂x
+ ω2

∂φi

∂y
+ ω3

∂φi

∂z
+ fi(φ) + gi. (1.3)

We will not need this incompressibility assumption in our analysis. We only need to note that even if it is not satisfied,
(1.1) can formally be written in the form (1.3) where the nonlinear term fi(φ) is replaced by fi(φ) + (∇ · ω)φi . It can
be checked easily that this operation does not affect the assumptions on the nonlinearity presented below. Hence in
the following we will always consider Eq. (1.3) instead of (1.1).

Boundary and initial conditions have to be specified. Since the diffusion takes place in the vertical direction,
boundary conditions are needed for z = 0 and z = 1. There is no horizontal diffusion, but conditions on the boundary
of Ω are needed where the advection field −ω is inward (and only there). We denote by ∂−Q the corresponding part
of the boundary of Q. It is defined as follows: let ν = (ν1, ν2) ∈ R

2 be the normal outward unitary vector at a point of
the boundary ∂Ω ; then

∂−Q = {
(x, y, z, t) ∈ ∂Ω × (0,1) × (0, T );ω1ν1 + ω2ν2 > 0

}
. (1.4)

We will choose the same boundary and initial conditions as in the references already mentioned, namely

φi(x, y, z,0) = φ0i (x, y, z) (t = 0),

∂φi

∂z
(x, y,1, t) = 0 (z = 1),

− ∂

∂z
[diφi] + μiφi(x, y,0, t) = ei(x, y,0, t) (z = 0),

φ (x, y, z, t) = θ (x, y, z, t), (x, y, z, t) ∈ ∂−Q.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(1.5)
i i
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The condition at the top of the cylinder is a simple noflux condition, while the condition at the surface of the earth takes
into account a smooth nonnegative prescribed flux ei due to anthropogenic and biogenic emission, and a deposition
flux μiφi . The coefficient μi represents a positive deposition velocity.

Note that our approach could handle as well any kind of “reasonable” boundary conditions. In particular, the
following could be chosen instead of (1.5) and may actually be more significant since it takes into account the transport
in the flux conditions:(

∂

∂z
[diφi] + ω3φi

)
(x, y,1, t) = 0 (at z = 1),(

− ∂

∂z
[diφi] + ω3φi + μiφi

)
(x, y,0, t) = ei(x, y,0, t) (at z = 0).

The following conditions will be throughout assumed on the data:⎧⎪⎪⎨⎪⎪⎩
∀i = 1, . . . , n,

φ0i ∈ L∞(
Ω × (0,1)

)
, ei ∈ L∞(

Ω × (0, T )
)
, θi ∈ L∞(∂−Q),

φ0i � 0, ei � 0, μi ∈ [0,+∞], θi � 0,

∃ζi ∈ [
H 2 ∩ L∞]

(Q) satisfying the conditions of (1.5).

(1.6)

The last regularity condition of (1.6) above could be weakened. It is only needed to reduce more easily the situation
to homogeneous boundary conditions, keeping in particular the L2-regularity of the various derivatives involved.

Now, we come to the assumptions on the structure of the nonlinearity f = (fi)1�i�n. We recall in Section 4
the specific 20 × 20 nonlinearity mentioned in [4] and introduced in [9,22]. We will actually consider more general
nonlinearities with the three following properties.

First, we assume that f preserves positivity of the solutions, namely quasi-positivity

∀i = 1, . . . , n, ∀φ ∈ [0,+∞)n with φi = 0, fi(φ) � 0. (1.7)

This assumption is quite natural in this context.
Next, as one knows, one cannot expect global existence in time without any structure assumption on the nonlinear-

ities. In [4], a so-called “intermediately quasi-conservative” triangular structure of the system of Section 4 is exploited
to prove global existence (assuming also that all the di ’s are equal). Namely, five ordered relations are satisfied by the
fi ’s which allow to progressively make L∞ estimates on the φi ’s when the di ’s are all equal; these five relations are
recalled in (4.1).

Here, we will only assume ONE global dissipative property on the nonlinearity f , namely⎧⎪⎨⎪⎩
∃a1, . . . , an ∈ R, ∃b1, . . . , bn ∈ R, ∀i = 1, . . . , n, ai > 0,

∀φ ∈ R
+n

,

n∑
i=1

aifi(φ) �
n∑

i=1

biφi .
(1.8)

Obviously, this assumption is satisfied by the nonlinearity in Section 4: add up for instance the five relations of (4.1).
We may notice that, when all the coefficients di ’s are equal, say di = d , and when, for instance ∀i, bi = 0 (to simplify),
then the function W = ∑

i aiφi satisfies

∂W

∂t
− d

∂2W

∂z2
+ ω · ∇W �

∑
i

aigi .

From this and the corresponding boundary conditions on W , we directly deduce an L∞-estimate on W and, by
nonnegativity of all the φi ’s, an L∞-estimate on all of them. Global existence of solutions then easily follows.

The situation is quite more delicate when the diffusion coefficients are different from each other. It is known that,
even for 2×2 systems with good nondegenerate diffusions and one (or even two!) conservative properties of type (1.8),
blow up in finite time may occur (see e.g. [19]). Then, two kinds of results may be obtained for nondegenerate
diffusions:

– either, we assume more structure on the nonlinearity: for a 2 × 2 system for instance, we may moreover assume
that an L∞-estimate is available for the first component; then, an L∞-estimate may also be deduced for the second
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component (see [15]) and global existence follows. This idea may be generalized to n×n systems with a so-called
“triangular structure” which allow to successively obtain L∞ estimates on the components, see [16,5]. In these
situations, global classical solutions are obtained;

– another point of view is to look for global “weak solutions” which may not be in L∞ for all time. This is the
choice made in [18,3] and it leads to global existence results for a quite larger class of nonlinearities. It may be
proved in particular that global existence of weak solutions holds for systems with the (only) structure (1.8) and
for which the nonlinear growth is at most quadratic. A recent work [7] analyzes the size of the possible set of
singularities of these weak solutions in a specific quadratic system.

Here, we will restrict our analysis to the (at most) quadratic situation and assume (like for the system of Section 4
and like in many more reaction–diffusion models arising in chemistry, biochemistry, biology, etc.) that

∃k � 0, ∀φ ∈ Rn,
∣∣f (φ)

∣∣ � k
[
1 + |φ|2]. (1.9)

This ‘quadratic assumption’ is consistent with our approach here which is mainly based on an a priori L2-estimate.
Indeed, as noticed in [19,3], assumption (1.8) together with nonnegativity ensure that the solutions are bounded in
L2(Q) if the diffusions are nondegenerate. Here, the situation is more delicate since diffusion occurs only in one
direction. We are not able to prove this L2-estimate in general. The considerations made in Section 5 indicate that
there may be none in general. Strangely enough, if we assume that ω1,ω2 do not depend on the vertical component z

(see (2.8)), then this L2-estimate does hold. It follows that the nonlinear terms are bounded in L1. Since we are able
to reduce the problem to a one-dimensional situation, it is then possible to bootstrap the estimates and reach L∞.
Thus, global existence of classical solutions based on an a priori L2-estimate is the main contribution of this paper.
Global existence in time is obtained no matter the various values of the di ’s in (0,+∞). Note that assumption (2.8) is
discussed in some situations (see e.g. [21, p. 1108] and [6]), when one-dimensional Lagrangian models are considered.
We do not know how much it is necessary in our context, but it appears quite naturally in the analysis (see the
discussion in Section 5).

Next section is devoted to a (classical) change of variable which reduces the first order part of the differential
operator to a single ∂Φ/∂t operator. The main point is that, when (2.8) holds, then the diffusion operator in the vertical
variable z remains invariant in the new set of variables and the new system reduces to a family of one-dimensional
parameter-dependent nondegenerate reaction–diffusion systems to which we can apply more classical approaches.
Global existence of solutions is then proved in Section 3. We recall in Section 4 the specific nonlinearity mentioned
in [4]. Then the last Section 5 is devoted to some remarks and to some open problems that we find interesting, together
with a self-contained presentation of preliminary lemmas.

2. Change of variables

The system (1.3) can be viewed as a parabolic evolution problem, with degeneracies in the horizontal variables
x, y, where only advection takes place. Following [4], we can also gather the horizontal advection terms and the time
derivative. Our strategy here is not to view (1.3) as a degenerate elliptic system, as in [4], but to use a change of
variables to get rid of the degeneracies. In this section we introduce new coordinates and characterize the domain in
the new variables, then we write the system of equations in these new variables.

2.1. The domain in the new coordinates

The change of variables introduced in this section is equivalent to a “method of characteristics”, where only the
horizontal wind field is taken into account.

Let us define new coordinates (ξ, η) by{
x = β(ξ, η, z, t),

y = γ (ξ, η, z, t)

where β,γ are the solutions of the Cauchy problem

∂β = −ω1
(
β(ξ, η, z, t), γ (ξ, η, z, t), z, t

)
, (2.1)
∂t
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∂γ

∂t
= −ω2

(
β(ξ, η, z, t), γ (ξ, η, z, t), z, t

)
, (2.2)

β(ξ, η, z,0) = ξ, (2.3)

γ (ξ, η, z,0) = η. (2.4)

These solutions are defined for all t ∈ (0, T ) and of class C1 in all variables, according to the assumptions on ω1, ω2
(see (1.2)). In the new variables, the relevant domain is no longer cylindrical. But, if we define

Dz,t = {
(ξ, η) ∈ R

2,
(
β(ξ, η, z, t), γ (ξ, η, z, t)

) ∈ Ω
}
,

we can assert that, for fixed (z, t) ∈ (0,1) × (0, T ), the transformation

Λz,t : (ξ, η) 
→ (
x = β(ξ, η, z, t), y = γ (ξ, η, z, t)

)
defines a diffeomorphism from Dz,t to the section Ω of the cylinder Q.

Indeed, for fixed (z, t), and for (x, y) ∈ Ω given, then (ξ, η) = [Λz,t ]−1(x, y) is uniquely determined by ξ =
α(t), η = δ(t), where (α, δ) is the unique solution to the backward Cauchy problem

αs = ω1
(
α(t − s), δ(t − s), z, t − s

)
,

δs = ω2
(
α(t − s), δ(t − s), z, t − s

)
,

α(0) = x,

δ(0) = y.

We consider now the whole 4-dimensional domain

D = {
(ξ, η, z, t) ∈ R

2 × (0,1) × (0, T ), s.t. (ξ, η) ∈ Dz,t

}
and characterize its boundary. Obviously the faces z = 0, z = 1, t = 0 and t = T of Q are simply transported by
the diffeomorphism to similar faces of D. To identify the part ∂−Q of the boundary of Q, we introduce the distance
function d(·) to ∂Q. It is regular near ∂Ω ×(0,1)×(0, T ) and satisfies ∇d = (ν1, ν2,0,0) on this part of the boundary.
If we denote

d̃(ξ, η, z, t) = d
(
β(ξ, η, z, t), γ (ξ, η, z, t), z, t

)
,

then, we have the characterization:[
(ξ, η, z, t) ∈ ∂D

] ⇔ [
d̃(ξ, η, z, t) = 0

]
.

Moreover, using the chain rule and Eqs. (2.1)–(2.2), we obtain

∂d̃

∂t
= ∂d

∂t
− ω1

∂d

∂x
− ω2

∂d

∂x
,

so that, on ∂Ω × (0,1) × (0, T ), we have

∂d̃

∂t
= −ω1ν1 − ω2ν2. (2.5)

According to the definition (1.4) of ∂−Q, we deduce:

Lemma 1. Define the function τ by

∀(ξ, η, z, t) ∈ D, τ(ξ, η, z, t) = inf
{
σ � 0, ∀s ∈ [σ, t], (ξ, η, z, s) ∈ D

}
.

Then the following equivalence holds:[(
Λz,t (ξ, η), z, t

) ∈ ∂−Q
] ⇔ [

(ξ, η, z, t) ∈ ∂−D
]
,

where

∂−D = {(
ξ, η, z, τ (ξ, η, z, t)

)
, (z, t) ∈ (0,1) × (0, T ), (ξ, η) ∈ ∂Dz,t

}
. (2.6)



1558 M. Pierre, R. Texier-Picard / Ann. I. H. Poincaré – AN 26 (2009) 1553–1568
Indeed, we know by (2.5) that

∂−D =
{
(ξ, η, z, t) ∈ ∂D; (z, t) ∈ (0,1) × (0, T ), (ξ, η) ∈ ∂Dz,t ,

∂d̃

∂t
< 0

}
.

Since d̃ is constant on ∂D, ∂d̃/∂t is the fourth component of the normal outward vector to ∂D. It is negative at a point
(ξ, η, z, t) of ∂D if and only if D is “above” this point, that is if t = τ(ξ, η, z, t). Whence the lemma.

2.2. The new system of equations

Now we write the system of Eqs. (1.3)–(1.5) in the new variables ξ , η, z, t . Denoting

φi(x, y, z, t) = φi

(
β(ξ, η, z, t), γ (ξ, η, z, t), z, t

) = Φi(ξ, η, z, t), (2.7)

we differentiate Φi with respect to t . Using the chain rule and Eqs. (2.1)–(2.2), we obtain

∂Φi

∂t
(ξ, η, z, t) =

(
∂φi

∂t
− ω1

∂φi

∂x
− ω2

∂φi

∂y

)(
β(ξ, η, z, t), γ (ξ, η, z, t), z, t

)
.

We now make the following crucial assumption.

The functions ω1, ω2 are independent of the vertical variable z. (2.8)

Then the functions β and γ do not depend either on z and we have the equalities:

∂Φi

∂z
(ξ, η, z, t) = ∂φi

∂z

(
β(ξ, η, t), γ (ξ, η, t), z, t

)
,

∂2Φi

∂z2
(ξ, η, z, t) = ∂2φi

∂z2

(
β(ξ, η, t), γ (ξ, η, t), z, t

)
.

With these notations we can rewrite Eq. (1.3) in the form

∂Φi

∂t
= di

∂2Φi

∂z2
+ ω3

∂Φi

∂z
+ Fi(Φ) + Gi, (2.9)

where the new nonlinear term is defined by Fi(Φ) = fi(φ) and the function Gi(ξ, η, z, t) is defined from gi as in (2.7).
For simplicity we denote by Λt instead of Λz,t the diffeomorphism introduced in Section 2.1 (which is now

independent of z). Then the boundary conditions (1.5) can be written in the new coordinates in the form

Φi(ξ, η, z,0) = φ0i

(
Λ0(ξ, η), z

)
, (2.10)

∂Φi

∂z
(ξ, η,1, t) = 0, (2.11)(

− ∂

∂z
[diΦi] + μiΦi

)
(ξ, η,0, t) = ei

(
Λt(ξ, η),0, t

)
, (2.12)

∀(ξ, η, z, t) ∈ ∂−D, Φi(ξ, η, z, t) = θi

(
Λt(ξ, η), z, t

)
. (2.13)

Note that for the problem (2.9)–(2.13), the variables ξ and η play the role of parameters. We have to deal with a
usual nondegenerate parabolic problem in the variables (t, z), where the boundary conditions (2.11) and (2.12) have
a usual form, namely⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂Φi

∂t
− di

∂2Φi

∂z2
− ω3

∂Φi

∂z
= Fi(Φ) + Gi,

∂Φi

∂z
= 0 for z = 1,

− ∂

∂z
[diΦi] + μiΦi = ei for z = 0.

(2.14)

A particularity is that the domain D is not a cylinder in the variable t . For each (ξ, η), the evolution is to be solved
in the open (possibly empty) subset
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Iξ,η := {
t ∈ (0, T ); (ξ, η, z, t) ∈ D

}
, (2.15)

which is a countable union of intervals, independent of z, each of them being of the form (τ−, τ+) where τ− =
τ(ξ, η, z, t) for some t (again τ−, τ+ are independent of z). By virtue of (2.6), we can assert that the “initial” value of
Φi at the point (ξ, η, z, τ−) is prescribed as follows{

Φi(ξ, η, z, τ−) = φ0i

(
Λ0(ξ, η), z

)
if τ− = 0,

Φi(ξ, η, z, τ−) = θi

(
Λτ−(ξ, η), z, τ−

)
if τ− > 0.

(2.16)

A technical remark. We will often have to make estimates of
∫
Q

a(φi) for regular functions a : R → [0,+∞). Then,
using the above change of variables, for some constant C depending only on the data (essentially on the sup norm of
the Jacobian of Λz,t and of its inverse), we may bound I = ∫

Q
a(φi) dx dy dzdt by

I � C

∫
D

a(Φi) dξ dη dzdt = C

∫
Ω̃

dξ dη

∫
(0,1)×Iξ,η

a(Φi) dz dt,

where

Ω̃ =
⋃{

Λz,t (Ω); (z, t) ∈ (0,1) × (0, T )
} = {

(ξ, η) ∈ R
2; Iξ,η �= ∅}

.

If one has an estimate of the form

τ+∫
τ−

1∫
0

a(Φi) dt dz �
τ+∫

τ−

1∫
0

h(ξ, η, z, t) dt dz, (2.17)

for some integrable function h and for all (ξ, η) and all intervals (τ−, τ+) ∈ Iξ,η, then, summing up over all intervals
(τ−, τ+) and integrating in (ξ, η) leads to

I � C

∫
D

h(ξ, η, z, t) dξ dη dzdt � C

∫
Q

h
(
Λ−1

z,t (x, y), z, t
)
dx dy dzdt. (2.18)

3. Existence of global classical solutions

In this section, we state and prove our main existence result of global classical solutions. For ψ ∈ L2(Q), we denote

Λψ = ∂ψ

∂t
− ∇ · (ψω) + ψ∇ · ω,

computed in the sense of distributions. Note that, we formally have

Λψ = ∂ψ

∂t
− ω · ∇ψ,

this being true only when ψ is regular enough.
We also denote, for i = 1, . . . , n,

∀ψ ∈ L2(Q), Li(ψ) = Λψ − di

∂2ψ

∂z2

and L = (Li)1�i�n.

Theorem 2. Assume that (1.2), (1.6), (1.7), (1.8), (1.9) as well as (2.8) hold. Then, for all g ∈ L∞(Q)n with g � 0,
there exists a unique nonnegative solution to the following system⎧⎨⎩∀i = 1, . . . , n, φi, ∂φi/∂z, ∂2φi/∂z2,Λφi ∈ L2(Q), φi ∈ L∞(Q),

Lφ = f (φ) + g on Q,

∀i = 1, . . . , n, boundary and initial conditions (1.5) hold.

(3.1)

A starting point of the analysis is the following lemma on the linear part of the system.
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Lemma 3. Assume that (1.2), (1.6) and (2.8) hold. Then, for all gi ∈ L2(Q), there exists a unique solution to the
following system⎧⎨⎩φi, ∂φi/∂z, ∂2φi/∂z2,Λφi ∈ L2(Q),

Liφi = gi on Q,

boundary and initial conditions (1.5) hold.

(3.2)

Moreover, [gi � 0] ⇒ [φi � 0] and [gi ∈ L∞(Q)] ⇒ [φi ∈ L∞(Q)].

This lemma follows from classical results that may be found in [17,1,12,13]. However, we give in Section 5 the
main steps in its proof, and we point out how assumption (2.8) has to be used even in this lemma.

In order to prepare existence results for the complete nonlinear system, we first truncate the nonlinearities. Let
M > 0 and ϕM ∈ C∞(R) such that

0 � ϕM � 1, ϕM = 1 on

[
−M

2
,
M

2

]
, ϕM = 0 outside [−M,M].

We define

∀φ ∈ R
n, f M(φ) = f (φ)ϕM

(|φ|2).
We denote f M = (f M

i )i , etc.

Lemma 4. Assume that (1.2), (1.6), (1.7) and (2.8) hold. Then, for all g ∈ L∞(Q)n with g � 0, there exists a unique
solution to the following truncated system⎧⎨⎩∀i = 1, . . . , n, φi, ∂φi/∂z, ∂2φi/∂z2,Λφi ∈ L2(Q), φi ∈ L∞(Q),

Lφ = f M(φ) + g on Q,

∀i = 1, . . . , n, boundary and initial conditions (1.5) hold.

(3.3)

Moreover, for all i = 1, . . . , n, φi � 0.

This lemma is obtained in a standard way by a fixed point argument: we indeed have a Lipschitz perturbation of a
“good” linear operator. Again, we indicate the main arguments in the last section. Preservation of positivity is due to
the quasi-positivity of fM . Uniqueness is standard for reaction–diffusion systems in the family of classical uniformly
bounded solutions.

Remark. To prove existence of solutions on Q with the nonlinearity f itself, the game consists in proving L∞-
estimates on the solution of the approximate system (3.3) which do not depend on M . Then choosing M large enough,
a solution of (3.3) will also be a solution of (3.1).

We will now denote by C any constant depending only on the data (but not on M).
For simplicity, from now on, we will often write ψt,ψz,ψzz, . . . for the derivatives of a function ψ .
Thanks to the assumption (2.8), we may use the change of coordinates of Section 2. The system (3.3) is equivalent

to the system (2.14)–(2.16) with F(Φ) replaced by FM(Φ) = f M(φ). For each (ξ, η), we will make estimates on the
set

G = {
(z, t) ∈ (0,1) × (τ−, τ+)

}
for all time intervals (τ−, τ+).

We first start by the key L2-estimate which is valid essentially only under assumption (1.8).

Proposition 5. Let φ be the solution of the truncated system (3.3) and Φ the solution of the corresponding system in
the new variables. Then

∀(ξ, η), for all interval (τ−, τ+), ‖Φ‖L2(G) � C(τ+ − τ−)1/2. (3.4)
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Remark. As we know, Φ is defined for t in the domain Iξ,η (see (2.15)) which is the union of the intervals (τ−, τ+).
Summing up the above estimate on all of the sub-intervals (τ−, τ+) of Iξ,η leads to

‖Φ‖2
L2[(0,1)×Iξ,η] � CT . (3.5)

We can then go back to the initial function φ and, through the computations (2.17), (2.18), obtain the bound
‖φ‖2

L2[(0,1)×Iξ,η] � CT .

Proof. We set W = ∑
i aiΦi,Z = ∑

i diaiΦi , where the coefficients ai are defined in (1.8). Summing all the equa-
tions in the Φi ’s (see (2.14) with FM instead of F ), we have, using also assumption (1.8):

Wt − Zzz − ω3Wz =
∑

i

aiF
M
i (Φ) +

∑
aiGi �

∑
i

biΦi + C.

Since ai > 0 for all i, one has
∑

i biΦi � AW for some A > 0 depending only on the ai, bi . Then, we deduce the
following inequality from which the L2 estimate will follow:

Wt − Zzz − ω3Wz � AW + C. (3.6)

We set σ := Z/W so that we may write

Wt − (σW)zz − ω3Wz � AW + C. (3.7)

A main point is that, thanks to the positivity of the Φi , ai ,

0 < min
i

di � σ � max
i

di . (3.8)

As in [19,3], we will exploit this property to get an L2(G)-estimate on W which obviously implies the expected
L2-estimate on Φ . We do it by duality. For this, let Θ ∈ C∞

0 (G), Θ � 0. We introduce the nonnegative solution θ of
the dual problem{−θt − σθzz + (ω3θ)z − Aθ = Θ on G,

θz = r(2z − 1)θ for z = 0,1,

θ = 0 at t = τ+,

(3.9)

where r ∈ (0,+∞) is such that

rσ − ω3 � 0 for z = 1, −rσ − ω3 � 0 for z = 0. (3.10)

This choice of r is possible since σ is bounded from below and |ω3| is bounded from above. We denote R(z) =
r(z2 − z) so that R′(z) = r(2z − 1). In particular,[

θz = r(2z − 1)θ
] ⇔ [e−Rθ ]z = 0. (3.11)

Multiplying (3.6) by θ � 0 and using Z = σW lead to

0 �
∫
G

θ [Wt − Zzz − ω3Wz − AW − C].

This writes

0 �
∫
G

(WΘ − Cθ) −
1∫

0

[θW ](z, τ−) dz + a, (3.12)

where a denotes the integrated terms in z, namely

a =
τ+∫ {[−θZz − ω3θW + θzZ](1, t) − [−θZz − ω3θW + θzZ](0, t)

}
dt,
τ−
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which, according to the boundary conditions on the Φi ’s and θ , is equal to

a =
τ+∫

τ−

Wθ [rσ − ω3](1, t) + θ

[
W(ω3 + rσ ) +

∑
i

ai(μiΦi − ei)

]
(0, t) dt.

By the choice of r as in (3.10) and thanks to μi � 0, ei ∈ L∞, we deduce that a � −C
∫ τ+
τ− θ(0, t) dt . Together with

(3.12) and the fact that W(·, τ−) is a given L∞-function, this leads to

∫
G

WΘ � C

{ 1∫
0

θ(z, τ−) dz +
τ+∫

τ−

θ(0, t) dt +
∫
G

θ

}
. (3.13)

The next task is now to prove

1∫
0

θ(z, τ−) dz +
τ+∫

τ−

θ(0, t) dt +
∫
G

θ � C(τ+ − τ−)1/2‖Θ‖L2(G). (3.14)

Then, the expected estimate of Proposition 5 will follow by duality. To obtain (3.14), we actually prove maximal
L2-regularity for the parabolic operator involved in (3.9), namely∫

G

θ2 + (θt )
2 + (θz)

2 + (θzz)
2 � C

∫
G

Θ2. (3.15)

Indeed, assuming (3.15), we then obtain, by setting ρ := (τ+ − τ−)1/2:∫
G

θ � |G|1/2
{∫

G

θ2
}1/2

� ρ

{
C

∫
G

Θ2
}1/2

,

1∫
0

θ(z, τ−) dz = −
τ+∫

τ−

1∫
0

θt � ρ

{∫
G

(θt )
2
}1/2

� ρ

{
C

∫
G

Θ2
}1/2

.

Then, starting from the embedding estimate

∀t ∈ (τ−, τ+), θ(0, t) �
{ 1∫

0

[
θ2 + (θz)

2](z, t) dz

}1/2

,

we have similarly, using again (3.15)

τ+∫
τ−

θ(0, t) dt �
τ+∫

τ−

dt

{ 1∫
0

[
θ2 + (θz)

2]dz

}1/2

� ρ

{
C

∫
G

Θ2
}1/2

.

Whence (3.14). It remains to prove (3.15). We set U := e−Rθ where R is defined in (3.11). Obviously, it is sufficient
to prove (3.15) with θ replaced by U . The function U satisfies an equation of the form

−Ut − σUzz + a(z, t)U + b(z, t)Uz = Θ̂,

U(·, τ+) = 0,

Uz = 0 at z = 0 and z = 1,

⎫⎪⎬⎪⎭ (3.16)

where a, b are uniformly bounded by C and Θ̂ = e−RΘ .
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Multiply the equation in U by −Uzz and integrate by parts to obtain:

1∫
0

−∂t

1

2
[Uz]2 + σ [Uzz]2 =

1∫
0

[−Θ̂ + aU + bUz]Uzz. (3.17)

Since σ is bounded from below, we can use Young’s inequality to control the right-hand side as follows:

1∫
0

[Θ̂ + aU + bUz]Uzz �
1∫

0

σ

2
[Uzz]2 + C

[
Θ̂2 + U2 + (Uz)

2]. (3.18)

Absorbing the term in (Uzz)
2 and exploiting the linear Gronwall’s inequality in the term (Uz)

2, we deduce from (3.17),
(3.18) and U(τ+) = 0, the following estimate on Gt = (t, τ+) × (0,1):

∫
Gt

[Uzz]2, sup
s∈(t,τ+)

1∫
0

[Uz]2(s) � C

∫
Gt

Θ̂2 + U2. (3.19)

Going back to (3.16), we derive
∫
Gt

(Ut )
2 � C

∫
Gt

Θ̂2 + U2 which, together with U(·, t) = − ∫ τ+
t

Ut (·, s) ds, leads to

1∫
0

U2(z, t) dz � C

τ+∫
t

1∫
0

(Ut )
2 � C

τ+∫
t

1∫
0

Θ̂2 + U2.

Integration of this Gronwall’s inequality in t → ∫ 1
0 U2(t) gives∫

G

U2 + (Ut )
2 � C

∫
G

Θ̂2.

This inequality coupled with (3.19) leads to (3.15) with θ replaced by U , and this ends the proof of Proposition 5. �
Now, we recall classical estimates on the heat operator in one space dimension (see e.g. [14]):

Lemma 6. Let ψ be a solution on G of⎧⎪⎨⎪⎩
ψt − dψzz − ω3ψz = F,

ψz = 0 for z = 1,

−dψz + μψ = e ∈ L∞(0, T ) for z = 0,

ψ(z,0) = ψ0 ∈ L∞(0,1).

(3.20)

Then, for C = C(T ,d,ω3,μ, e,‖ψ0‖∞),

∀r ∈ (1,3), ‖ψ‖Lr(G) � C
[
1 + ‖F‖L1(G)

]
,

∀p ∈ (1,3/2), q = 3p/(3 − 2p) ‖ψ‖Lq(G) � C
[
1 + ‖F‖Lp(G)

]
,

∀p > 3/2, ‖ψ‖L∞(G) � C
[
1 + ‖F‖Lp(G)

]
.

Remark. These estimates may be found for instance in [14]. The only remark to be done is that the constants above do
not indeed depend on G and in particular do not depend on τ+ − τ− even if this difference becomes small. A simple
way to see it is to notice that a solution on the interval I = (τ−, τ+) is the restriction to I of a solution on the fixed
length interval I1 = (τ−, τ− + T ) with a left-hand side F̃ equal to F on I and to zero on I1 \ I . Then, for instance,
the first inequality is obtained as follows from the same inequality on the ‘fixed’ domain G1 = (0,1) × I1:

‖ψ‖Lr(G) � ‖ψ‖Lr(G1) � C
[
1 + ‖F̃‖L1(G1)

] = C
[
1 + ‖F‖L1(G)

]
.
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Lemma 7. Let φ be the solution of the truncated system (3.3) and Φ the solution of the corresponding system in the
new variables. Then

∀(ξ, η), for all interval (τ−, τ+), ‖Φ‖L∞(G) � C. (3.21)

Proof. We start with the L2-estimate of Proposition 5 where we even forget the precise dependence in (τ+ − τ−),
that is to say, we start with: ‖Φ‖L2(G) � C.

By the ‘quadratic hypothesis’ (1.9): ‖FM(Φ)‖L1(G) � C.
By the first statement of Lemma 6: ∀r ∈ (2,3), ‖Φ‖Lr(G) � C.
By (1.9) again: ∀p ∈ (1,3/2), ‖FM(Φ)‖Lp(G) � C.
By the second statement of Lemma 6: ∀q < +∞, ‖Φ‖Lq(G) � C.
By (1.9): ∀m < +∞, ‖F(Φ)‖Lm(G) � C.
Finally, by the last statement of Lemma 6: ‖Φ‖L∞(G) � C.
Lemma 7 follows. �

Proof of Theorem 2. As explained in the remark following Lemma 4, we apply the uniform estimate of Lemma 7 to
the solution of the truncated system (3.3). We choose M larger than the constant C of Lemma 7. Then, the solution of
the truncated system (3.3) is also a solution of the true system (3.1). �

Uniqueness is classical in the class of uniformly bounded solutions.

Remark. In the context of air pollution models, the coefficients di are the so-called “eddy diffusivities” introduced to
model turbulent mixing, see for example [21] and the references therein. In realistic models, these coefficients may
depend on the vertical variable z. In this case, the diffusion part must be written in the divergence form,

Liψ = Λψ − ∂

∂z

(
di

∂ψ

∂z

)
.

Adapting the proof of Proposition 5, it is easy to show that the results of Theorem 2 remain valid if the coefficients di

are differentiable functions of z, as long as the following conditions are satisfied:

∃α > 0, ∃C > 0, ∀i, ∀z ∈ (0,1), di(z) > α,
∣∣d ′

i (z)
∣∣ � C. (3.22)

However, this approach fails as such when the diffusion coefficients vanish at z = 0, which is the case in the models
stemming from the Monin–Obukhov similarity theory, see [21, p. 869]. Extensions of this method may be made to
handle coefficients vanishing inside the domain (see [3]). Degeneracy at z = 0 would require further improvements.

4. A specific nonlinearity f

Here, as a main example, we reproduce the 20 × 20 system mentioned in [4] and introduced in the context of
pollutants models in [9] and [22].

The nonlinear part is given as follows:

f1(φ) = −k1φ1 + k22φ19 + k25φ20 + k11φ13 + k9φ11φ2 + k3φ5φ2

+ k2φ2φ4 − k23φ1φ4 − k14φ1φ6 + k12φ10φ2 − k10φ11φ1 − k24φ19φ1,

and

f2(φ) = k1φ1 + k21φ19 − k9φ11φ2 − k3φ5φ2 − k2φ2φ4 − k12φ10φ2,

f3(φ) = k1φ1 + k17φ4 + k19φ16 + k22φ19 − k15φ3,

f4(φ) = −k17φ4 + k15φ3 − k16φ4 − k2φ2φ4 − k23φ1φ4,

f5(φ) = 2k4φ7 + k7φ9 + k13φ14 + k6φ7φ6 − k3φ5φ2 + k20φ17φ6,

f6(φ) = 2k18φ16 − k8φ9φ6 − k6φ7φ6 + k3φ5φ2 − k20φ17φ6 − k14φ1φ6,

f7(φ) = −k4φ7 − k5φ7 + k13φ14 − k6φ7φ6,
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f8(φ) = k4φ7 + k5φ7 + k7φ9 + k6φ7φ6,

f9(φ) = −k7φ9 − k8φ9φ6,

f10(φ) = k7φ9 + k9φ11φ2 − k12φ10φ2,

f11(φ) = k11φ13 − k9φ11φ2 + k8φ9φ6 − k10φ11φ1,

f12(φ) = k9φ11φ2,

f13(φ) = −k11φ13 + k10φ11φ1,

f14(φ) = −k13φ14 + k12φ10φ2,

f15(φ) = k14φ1φ6,

f16(φ) = −k19φ16 − k18φ16 + k16φ4,

f17(φ) = −k20φ17φ6,

f18(φ) = k20φ17φ6,

f19(φ) = −k21φ19 − k22φ19 + k25φ20 + k23φ1φ4 − k24φ19φ1,

f20(φ) = −k25φ20 + k24φ19φ1.

As noticed and strongly used in [4], this nonlinearity satisfies the five following relations:⎧⎪⎪⎪⎨⎪⎪⎪⎩
f1 + f2 + f13 + f15 + f19 + f20 = 0,

f7 + f8 + f9 + f10 + f11 + f12 + f13 + f14 = 0,

f17 + f18 = 0,

f3 + f4 + f16 � k1φ1 + k22φ19,

f5 + f6 � 2k4φ7 + k7φ9 + k13φ14 + 2k18φ16.

(4.1)

Summing up these five relations yields the assumption (1.8). Let us emphasize that we only use this last global
dissipative relation, and not the five ones separately. On the other hand, we exploit the quadratic structure (see next
section for more comments on other kinds of systems).

5. Comments and open problems

In this section, we first give direct and elementary proofs of the preliminary Lemmas 3 and 4. Then we make some
comments and indicate open problems.

Proof of Lemma 3.

Preliminary remark. One way to prove this linear lemma is to use the results in [1,12,13]. However, in these ref-
erences, solutions are a priori less regular than stated in the lemma. Roughly speaking, Λφi, ∂

2φi/∂z2 are found in
an H−1-type space rather than in L2. We do not know how to prove the L2 regularity in general (see open problems
below). On the other hand, under the assumption (2.8), we are able to do it. For simplicity, we take advantage of the
change of variable introduced in Section 2 and we provide a more selfcontained proof.

Let ζi ∈ [H 2 ∩L∞](Q) as in assumption (1.6). Then, setting by translation ψi := φi −ζi , in order to prove existence
of φi as in Lemma 3, we may assume all the data equal to zero except for the right-hand side gi ∈ L2(Q).

Now by assumption (2.8) and thanks to the change of variables described in Section 2, we are reduced to solving
the new following system on each interval [τ−, τ+):

∂Φi

∂t
− di

∂2Φi

∂z2
− ω3

∂Φi

∂z
= Gi,

∂Φi

∂z
= 0 for z = 1,

− ∂

∂z
[diΦi] + μiΦi = 0 for z = 0,

Φ (ξ, η, z, τ ) = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.1)
i −
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This problem is nondegenerate and it is well known (see e.g. [14]) that for Gi given in L2(G), it has a (unique)
solution with derivatives in L2 and the corresponding estimates, namely

τ+∫
τ−

1∫
0

∣∣(Φi)t
∣∣2 + ∣∣(Φi)zz

∣∣2 + ∣∣(Φi)z
∣∣2

dt dz � C

τ+∫
τ−

1∫
0

|Gi |2 dt dz, (5.2)

where C depends only on the data. The function Gi is measurable with respect to (ξ, η). The above estimate preserves
this measurability for the solution Φ: indeed, if Gi depends continuously on (ξ, η), then so does the solution by (5.2).
Now, if G is in L2 in the four variables, it may be approximated in L2(G) and a.e. in (ξ, η) by regular functions.
Again, (5.2) ensures the convergence and the measurability of the limit. Moreover, according to the computations
(2.17), (2.18) and to those of Section 2, we also have∫

Q

|Λφi |2 + ∣∣(φi)z
∣∣2 + ∣∣(φi)zz

∣∣2 � C.

For the last statement of Lemma 3, we may again use the change of variable of Section 2. We are back to a system
of type (5.1) with

0 � Gi � ‖Gi‖∞ < +∞
and nonnegative bounded boundary data instead of zero data. It is well known that they provide nonnegative bounded
solutions. �
Proof of Lemma 4. As in the previous proof, we use the change of variable of Section 2 and we are lead to the system

∂Φi

∂t
− di

∂2Φi

∂z2
− ω3

∂Φi

∂z
= FM

i (Φ) + Gi,

∂Φi

∂z
= 0 for z = 1,

− ∂

∂z
[diΦi] + μiΦi = ei for z = 0,

Φi(ξ, η, z, τ−) = Φ0i (ξ, η, z).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.3)

We have here a globally Lipschitz perturbation of the previous linear system. Since all data are in L∞, by a classical
fixed point theorem, we obtain unique uniformly bounded solutions on (0, T ). Measurability with respect to (ξ, η) is
preserved in this approach.

To prove that the positivity is preserved when the data are nonnegative, instead of solving directly with the right-
hand side FM , we first do it with FM replaced by FM ◦ Π where Π : R

n → (R+)n is the orthogonal projection onto
the positive cone (R+)n of R

n. The assumption (1.7) implies that, for all i and all Φ ∈ R
n, [FM

i (Π(Φ))]Φ−
i � 0.

Then, multiplying the ith equation of the modified system by Φ−
i and using boundary conditions lead to

− ∂

∂t

1

2

1∫
0

(Φ−
i )2 − di

1∫
0

{
(Φ−

i )z
}2 − ω3

2

{
(Φ−

i )2}
z
� 0.

Integrating this inequality in t proves that Φ−
i = 0, whence the positivity of the solutions of the modified system. But,

since FM = FM ◦ Π on the positive cone, Φ is also solution of the initial system. �
About the L2-estimate: The main ingredient in the proof of Theorem 2 is the L2-estimate given in Proposition 5.
We could ask whether such an estimate would be true without the assumption (2.8). Let us make the question more
precise. If, as in the proof of Proposition 5, we set W = ∑

i aiφi , Z = ∑
i diaiφi , then summing the n equations

in (1.3), we obtain similarly to (3.12):

Wt − [σW ]zz + ω · ∇W − AW � C, (5.4)
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where

0 < min
i

di � σ = Z

W
� max

i
di < +∞.

We do not know whether the inequality (5.4) implies an L2-estimate on W as in Proposition 5. The dual problem is

−θt − σθzz − ∇ · (ωθ) − Aθ = Θ. (5.5)

The goal would be to prove L2-estimates for this equation (see (3.15)). Technically, when we multiply it by −θzz as
in the proof of Proposition 5, then it is not clear what to do with the new terms of the form ω1θxθzz. After integration
by parts, they become θz[ω1zθx + ω1θxz]. The last term can be treated easily, but it is not so clear for the first one. . .
except if ω1z = 0, whence the hypothesis (2.8).

We would like to emphasize that it is not even obvious to obtain L2-estimates for the main linear operator involved
in the system (1.3). More precisely, let

θt − θzz − ω · ∇θ = Θ, (5.6)

with ‘good boundary conditions’ and Θ ∈ L2(Q). Does this imply “maximal regularity”, namely

θt − ω · ∇θ, θzz ∈ L2(Q)? (5.7)

The above approach (multiplying by θzz) fails in general in exactly the same way as for the more general operator
with the σ -term (and as just explained).

Therefore, here is a first open problem: for which ω does (5.6) imply (5.7) when Θ ∈ L2(Q)?
One can find partial results in the literature from the theory of so-called ultra-parabolic operators (see e.g. [2]).

Strangely enough, it follows from this theory that, for instance, for ω(x, y, z, t) = (z,0,0), the answer would be
positive, although ω1z �≡ 0 . . . . Indeed, for each fixed y, the operator is then hypoelliptic in the variables (x, z, t) as
shown by Kolmogorov in [10] and generalized by Hörmander in [8]. As proved in [20] (see also [11]), this implies
the expected L2 (and even Lp) regularity in (x, z, t) and, therefore also in (x, y, z, t) after integration in y (see
the technical remark (2.17), (2.18)). This approach may be generalized to operators of the form (5.6) when they are
hypoelliptic (see [20]) or, equivalently, when they satisfy Hörmander’s dimension condition for the space generated by
the commutators of ∂t − ω · ∇ and ∂z up to an arbitrary order. However, this approach would not apply for instance to
ω = (z, x − tz,0) in which case the operator is not hypoelliptic (see [8,11]). Note that it is interesting to understand the
optimal assumptions needed on ω in order to better handle nonlinear models where ω = ω(θ). Many such nonlinear
models with degenerate diffusion are mentioned in Section 3 of [11].

Once the previous problem is understood, a second open problem would be to understand for which ω the solutions
of (5.5) satisfy

Θ ∈ L2(Q) ⇒ θ, θzz, θt + ∇ · (ωθ) ∈ L2(Q).

This would be a first step in solving our main problem without assumption (2.8).
A third open problem is to understand what happens in dimensions greater than 3. A main point in our approach is

that we reduced the problem to a one-dimensional one. Assume more generally that we have a problem in dimension
d > 3 with no diffusion in a number d ′ of the directions. Then, with an assumption like (2.8), we may reduce the
problem to a (d − d ′)-dimensional problem. We still keep the L2-estimate of Proposition 5, but, if d − d ′ > 1, we
cannot any more reach L∞-estimates as for d −d ′ = 1. It is very likely that we can then obtain global “weak”-solution
in the spirit of [18,3], but this needs to be done.

Another interesting fourth problem is when the nonlinearities are superquadratic. Several models are mentioned
in [21] (see pages 143, 167, 209) which come with this structure. But the question is interesting for itself. Even when
the diffusions are not degenerate, the problem is not yet completely understood. Some partial results are however
known. For instance, if the right-hand side presents some “triangular structure”, L∞-estimates may successively be
obtained on all the components (see [15,16]). This approach is based on Lp a priori estimates and it would be necessary
to first extend them to a degenerate situation. It is probably necessary to first understand it in the case p = 2 (as in the
previous problems just mentioned).

Another approach would be to look for global weak solutions. If the nonlinearity allows an a priori L1-estimate on
the right-hand side, we may expect global weak-solutions as in [18]. But this needs to be done.
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One more open problem would be interesting to look at, with respect to applications. The models considered here
are approximate ‘simplified’ versions of more elaborate ones: for instance, saying that no diffusion occurs in the
horizontal directions is just an approximation of the fact that diffusion does occur, but is small. Therefore, a natural
question would be to study what happens exactly for the system with positive diffusion coefficients tending to zero in
the horizontal directions. Since very different diffusions coefficients generate sharp behaviours in these systems, this
question is not easy, but relevant.
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