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A note on constant geodesic curvature curves on surfaces
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Abstract

In this paper we are concerned with the structure of curves on surfaces whose geodesic curvature is a large constant. We first
discuss the relation between closed curves with large constant geodesic curvature and the critical points of Gauss curvature. Then,
we consider the case where a curve with large constant geodesic curvature is immersed in a domain which does not contain any
critical point of the Gauss curvature.

Résumé

Dans cet article nous nous intéressons au comportement des courbes sur une surface, dont la courbure géodésique est une
constante très grande. Dans un premier temps nous nous intéressons aux relations entre les courbes fermées dont la courbure
géodésique est grande et les points critiques de la courbure de Gauss. Ensuite, nous nous intéressons au comportement asymptotique
des courbes immergées dans un domaine de la surface qui ne contient aucun point critique de la courbure de Gauss.

MSC: 53C21

Keywords: Constant geodesic curvature; Critical point; Gauss curvature

1. Introduction

Suppose (Mn+1, g) is a Riemannian manifold. We are interested in the structure of embedded spheres Sn ↪→
Mn+1 that have constant mean curvature. In the case where s, the scalar curvature function of (Mn+1, g), has a
non-degenerate critical point p, R. Ye has constructed constant mean curvature embedded spheres with high mean
curvature which in fact form a local foliation of a neighborhood of p in [9]. When the manifold is compact, F. Pacard
and X. Xu have recently generalized this result relaxing the non-degeneracy assumption but loosing some control on
the fact that the embedded spheres form a foliation in [3]. All these results point out the crucial role played by the
critical points of the scalar curvature in the existence of embedded spheres with large enough mean curvature. More
precisely, it is natural to ask the converse question:
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Question 1. Assume that p ∈ M is fixed such that there exists a sequence of constant mean curvature hyper-surfaces
Hi , i ∈ N, with mean curvature mi → +∞ which converges (for the Hausdorff distance) to the point p. Is it true that
p is a critical point of the scalar curvature function?

Recall that the Hausdorff distance between two sets A and B is defined to be

DH (A,B) := inf
r>0

{
r > 0: A ⊂ Tr(B) and B ⊂ Tr(A)

}
,

where

Tr(X) := {
p ∈ M: dist(p,X) < r

}
.

The result of O. Druet [2] tells us that the answer to this question is positive under the additional assumption that
the constant mean curvature hyper-surfaces are solutions of the isoperimetric problem. In this note we give a positive
answer to this question in the simplest case, that is when (M,g) is a 2-dimensional Riemannian manifold. In this case,
constant mean curvature hypersurfaces are nothing but constant geodesic curvature curves and the scalar curvature
function is nothing but the Gauss curvature.

Let (M,g) be an oriented 2-dimensional Riemannian manifold. Even though most of our results have straightfor-
ward generalization to the noncompact complete setting, we will always assume that M is compact to simplify the
statements. We first recall the results of R. Ye in our setting.

Theorem 1. (See [9].) Assume that p is a non-degenerate critical point of the Gauss curvature function K . Then, for
all k large enough, say k � k∗, the geodesic circle of radius 1/k centered at p can be perturbed into Γk , a constant
(= k) geodesic curvature embedded curve. More precisely, Γk is a normal graph for some function wk over the
geodesic circle of radius 1/k centered at a point pk where

‖wk‖C 2 � ck−3 and dist(pk,p) � ck−2

for some constant c > 0 which does not depend on k. Moreover, the curves Γk form a local foliation of a neighborhood
of p.

We also have the following general property for curves on 2-dimensional Riemannian manifolds.

Theorem 2. (See [6].) Assume that Γ is a closed embedded curve in M with constant geodesic curvature k satisfying

k2 > −minMK,

then, M \ Γ has two disjoint connected components.

This result was obtained H. Rosenberg [6] for constant mean curvature surfaces in 3-manifolds but his proof extends
to any dimension. A similar argument was used in [5] for constant mean curvature surfaces in flat 3-manifolds. For
the sake of completeness, we give here a short proof of the result in the case of curves on surfaces.

If Γ is a closed embedded curve in M which is the boundary of a compact domain Ω , the Gauss Bonnet theorem
implies that∫

Γ

k = 2π −
∫
Ω

K dvolg

and hence if the geodesic curvature k is bounded from below by some positive constant, we conclude that the length
of Γ is bounded from above. more precisely, we have

|Γ |min |k| � 2π −
∫
M

min(0,K)dvolg .

Hence if min |k| is large enough, |Γ | will be smaller than the injectivity radius of M , then Γ is topologically trivial.
Our main result gives, in dimension 2, a positive answer to the question raised above.
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Theorem 3. Assume that p ∈ M is fixed and assume that there exists a sequence of embedded closed curves Γi , i ∈ N,
with constant geodesic curvature ki → +∞, which converges ( for the Hausdorff distance) to the point p. Then p is
a critical point of the Gauss curvature function.

If in addition the Gauss curvature function K is a Morse function, we have:

Theorem 4. Assume that the Gauss curvature function K is a Morse function. There exists c > 0 (only depending on
M and g) such that if Γ is a closed embedded curve in M with constant geodesic curvature k > c, then there exists p,
a critical point of the Gauss curvature function, such that the Hausdorff distance between Γ and the geodesic circle
of radius 1/k centered at p is bounded by a c/k2.

The result of Theorem 2 together with the last result just says that, provided k > 0 is large enough, Γ separates M

into two different connected components, one of which is close to a geodesic disc centered at a critical point of the
Gauss curvature function. Unfortunately, we do not have an expression of the constant c which appears in this result.

Next we turn our attention to nonembedded curves. Since the equation which ensures that the geodesic curvature
of a curve is a second order ordinary differential equation and since we are on a compact manifold, immersions of R

in M as a constant geodesic curvature curve (parameterized by arc length) exist in abundance. In fact once an initial
point p and an initial (unit) speed v ∈ TpM have been chosen there exists a unique curve Γ (p,v) passing through p

with speed v. We study the behavior of these curves as their geodesic curvature tends to ∞. To be more precise, this
curve is parameterized by γ = γ (p, v, k) such that

γ (0) = p and ∂sγ (0) = v.

We choose r > 0 smaller than the injectivity radius of the underlying manifold and define I = I (p, v, k) ⊂ R to be
the largest interval containing 0 whose image Γ̃ (p, v, k) by γ is included in B̄r (p). With these definitions, we have
the following:

Theorem 5. Assume that B̄r (p) ∩ {q: K(q) = K(p)} does not contain any critical point of K . Then as k tends to ∞,
the sequence of constant geodesic curvature curves Γ̃ (p, v, k) converges in Hausdorff distance to the connected
component of B̄r (p) ∩ {q: K(q) = K(p)} which passes through p.

Roughly speaking, as k tends to ∞, the curve Γ̃ (p, v, k) looks like the trajectory of a particle circling (at unit
speed) at distance 1/k around a center which travels along the level curve of the function K passing through p at
speed ‖dK‖gk

−3/8.
The above analysis leaves the possibility of having an immersed constant geodesic curvature curve circling around

a critical point of the Gauss curvature function. To shed light over what is going on in this case, we restrict our
attention to curves which are immersed in a simply connected domain of M for which it makes sense to define the
degree of the curve. First of all, it is not surprising that the result of Theorem 4 holds, namely:

Theorem 6. Let Ω be a simply connected domain in M over which K has only non-degenerate critical points and let
d ∈ N be fixed. There exists c > 0 such that, if Γ is a closed curve of degree d immersed in Ω with constant geodesic
curvature k > 0, then there exists p, a critical point of the Gauss curvature function, such that the Hausdorff distance
between Γ and the geodesic circle of radius 1/k centered at p is bounded by a c/k2.

More surprising is the following result we obtain.

Theorem 7. Let Ω be a simply connected domain in M over which K has only non-degenerate critical points and let
d ∈ N be fixed. There exists k∗ > 0 such that, if Γ is a closed curve of degree d immersed in Ω with constant geodesic
curvature k > k∗, then Γ is a d-cover of an embedded constant geodesic curvature curve.

Now we outline the organization of this note briefly. In the beginning, we do some fundamental calculations about
the metric and the geodesic curvature of the curves, these build Section 2. Then, we will prove Theorems 3 and 4 in
Section 3 while Appendix A is devoted to Theorem 2. We study the immersed curves with large constant geodesic
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curvature in Section 4, the main result there is Theorem 5. The closed constant geodesic curvature curves immersed
in a simple connected domain with degree d are considered in Section 5, where the main aim is to prove Theorem 7.

2. The geodesic curvature

We first give the expansion of the metric in polar geodesic coordinates. Next, we recall the expression of the
geodesic curvature.

Given p ∈ M , we choose {e1, e2} an orthonormal basis of TpM . To parameterize a neighborhood of p, we use
either geodesic normal coordinates (x1, x2) ∈ R

2 via the exponential map

Φ(x1, x2) := Expp(x1e1 + x2e2),

or polar coordinates (r, θ) ∈ [0,∞) × S1 via

Ψ (r, θ) := Expp

(
r(cos θe1 + sin θe2)

)
.

It will be convenient to define

Θ(θ) := cos θe1 + sin θe2 ∈ TpM.

Gauss’s Lemma implies that, in polar geodesic coordinates, the metric g can be written as

Ψ ∗g = dr2 + f 2(r, θ) dθ2.

Recall [1] the expression of K , the Gauss curvature, at the point of coordinates (r, θ) is given in terms of f by

K ◦ Ψ = −∂2
r f

f
. (1)

We now recall the Taylor expansion of the function f in powers of r .

Proposition 8. (See [7,8].) The following expansion holds

f (r, θ) = r − 1

6
K(p)r3 − 1

12
∇ΘK(p)r4 + 1

120

(
K(p)2 − 3∇2

ΘK(p)
)
r5 + Op

(
r6), (2)

where the subscript p in Op(r6) is meant to remind the reader that this is a function of p.

Proof. By definition of geodesic coordinates, we have f (0, θ) = 0, and ∂rf (0, θ) = 1. Also the formula of the Gauss
curvature tells us that

∂2
r f = −Kf,

where we write for short K instead of K ◦ Ψ . Hence ∂2
r f (0, θ) = 0. We take the derivative of (1) with respect to r

and evaluate the result at r = 0 to find

∂3
r f = −K∂rf − ∇ΘKf.

So ∂3
r f (0, θ) = −K(p). Taking twice the derivative of (1) with respect to r and evaluating the result at r = 0, we get

∂4
r f = −K∂2

r f − 2∇ΘK∂rf − ∇2
ΘK(p)f,

therefore ∂4
r f (0, θ) = −2∇ΘK(p). Similarly

∂5
r f (0) = −K∂3

r f − 3∇ΘK∂2
r f − 3∇2

ΘK∂rf − ∇3
ΘKf,

so that ∂5
r f (0, θ) = K(p)2 − 3∇2

ΘK(p). Collecting these, we have completed the proof of the expansion. �
We recall that formula for the geodesic curvature of a smooth curve Γ , which is parameterized in geodesic polar

coordinates centered at p by θ �→ (r(θ), θ).
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Fig. 1. Local graph of Γ .

Lemma 9. The geodesic curvature kg of Γ at the point Ψ (r(θ), θ), is given by

kg = 1

(r ′2 + f 2)3/2

(
r ′∂θf + 2r ′2∂rf − r ′′f + ∂rff 2), (3)

where ′ stands for ∂θ and where f is computed at the point (r(θ), θ).

Proof. First we recall Liouville’s formula in [1,4] for the computation of the geodesic curvature: Suppose that (u, v)

are isothermal coordinates on the surface M so that the metric can be written as g = E du2 + Gdv2, where E and G

depend on u and v. Further assume that C(s) := (u(s), v(s)) is an immersed curve on M parameterized by arc-length.
Let α denote the angle between the velocity vector ∂sC and ∂u. Then the geodesic curvature of C is given by the
formula

kg = dα

ds
− 1

2
√

G

∂ lnE

∂v
cosα + 1

2
√

E

∂ lnG

∂u
sinα.

In our case, we obtain

kg = dα

ds
+ ∂rf

f
sinα,

where α denotes the angle between r-line and curve Γ . One can see Fig. 1.
It is easy to see that

cosα = r ′√
r ′2 + f 2

and sinα = f√
r ′2 + f 2

, (4)

where f is computed at the point (r(θ), θ). Differentiating the first formula with respect to θ and using the second
formula, we get

dα

dθ
= r ′(∂θf + ∂rf r ′) − f r ′′

r ′2 + f 2
. (5)

Hence, we conclude that
dα

ds
= 1

(r ′2 + f 2)3/2

(
r ′(∂θf + ∂rf r ′) − f r ′′).

We can now use Liouville’s formula

kg = dα

ds
+ ∂rf

f
sinα = 1

(r ′2 + f 2)3/2

(
r ′∂θf + 2r ′2∂rf − r ′′f + f 2∂rf

)
.

This completes the proof of the lemma. �
We now specialize the previous general formula to curves Γp,ε,w which, in polar coordinates centered at the point p,

are parameterized by

r(θ) = ε
(
1 − w(θ)

)
, (6)

where ε > 0 is a small parameter and w is small (smooth enough) function. We expand the geodesic curvature of this
curve in powers of ε and w. According to (3), the geodesic curvature of Γp,ε,w reads:

kg(p, ε,w) =
(

1 + ε2w′2

2

)−3/2(
∂rf + εw′′

2
− εw′∂θf

3
+ 2ε2w′2∂rf

3

)
. (7)
f f f f f
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In order to make notations shorter, it will be convenient to use the following notations. An expression of the form
Lp,ε(w) will denote a linear second order differential operator such that, there exists a constant c > 0 independent of
p ∈ M and ε ∈ (0,1) such that∥∥Lp,ε(w)

∥∥
C 0(S1)

� c‖w‖C 2(S1)

for all w ∈ C 2(S1). Similarly, given a ∈ N, any expression of the form Q
(a)
p,ε(w) denotes a nonlinear second order

differential operator such that, Q
(a)
p,ε(0) = 0 and there exists a constant c > 0 independent of p ∈ M and ε ∈ (0,1)∥∥Q(a)

p,ε(w2) − Q(a)
p,ε(w1)

∥∥
C 0(S1)

� c
(‖w2‖C 2(S1) + ‖w1‖C 2(S1)

)a−1‖w2 − w1‖C2(S1)

provided ‖wj‖C1(S1) � 1, j = 1,2.
The following result gives the Taylor expansion of kg(p, ε,w) in powers of w and ε:

Proposition 10. The geodesic curvature kg(p, ε,w) of the curve Γp,ε,w can be expanded as:

εkg(p, ε,w) = 1 − 1

3
K(p)ε2 − 1

4
∇ΘK(p)ε3 −

(
1

45
K2(p) + 1

10
∇2

ΘK(p)

)
ε4

+ Op

(
ε5) +

(
1 + 1

3
K(p)ε2

)(
∂2
θ + 1

)
w + ε3Lp,ε(w)

+ w2 + 1

2
w′2 + 2ww′′ + Q(3)

p,ε(w) + ε2Q(2)
p,ε(w). (8)

The subscript p in Op(ε5) is meant to remind the reader that this is a function of p bounded by a constant times ε5.

Proof. Using (2) with r = ε(1 − w), we can write

ε2w′2

f 2
= w′2 + Q(3)

p,ε(w) + ε2Q(2)
p,ε(w),

εw′∂θf

f 3
= ε2Lp(w) + ε2Q(2)

p,ε(w),

ε3w′2∂rf

f 3
= w′2 + Q(3)

p,ε(w) + ε2Q(2)
p,ε(w),

ε2w′′

f 2
= w′′ + 2ww′′ + 1

3
K(p)ε2w′′ + Q(3)

p,ε(w) + ε2Q(2)
p,ε(w).

Using once more (2), we see that

∂rf

f
(r, θ) = 1

r
− 1

3
K(p)r − 1

4
∇ΘK(p)r2 −

(
1

45
K2(p) + 1

10
∇2

ΘK(p)

)
r3 + O

(
r4)

at the point (r, θ). Taking r = ε(1 − w), we get

ε
∂rfr

f
= 1 − 1

3
K(p)ε2 − 1

4
∇ΘK(p)ε3 −

(
1

45
K2(p) + 1

10
∇2

ΘK(p)

)
ε4 + O

(
ε5)

+
(

1 + 1

3
K(p)ε2

)
w + ε3Lε,p(w) + w2 + Q(3)

ε,p(w) + ε2Q(2)
ε,p(w).

Inserting these into (7), this completes the proof of the result. �
3. Constant geodesic curvature curves

In this section, we assume that Γ is an embedded closed curve in M with constant geodesic curvature k = 1/ε. We
assume that k is large enough so that the result of Theorem 2 holds true.

We now show that Γ is in fact a normal graph over a geodesic circle of radius 1/k. For the sake of simplicity, let
us assume that (M,g) is compact.
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Proposition 11. There exists k∗ > 0 and c > 0 such that, if Γ is an embedded closed curve with constant geodesic
curvature k = 1/ε � k∗, then there exist a point p ∈ M such that Γ can be parameterized in polar coordinates
centered at p by r(θ) = ε(1 − w(θ)) where the function w ∈ C 2(S1) satisfies

‖w‖C 2 � cε2,

and
2π∫

0

w(θ) cos θ dθ =
2π∫

0

w(θ) sin θ dθ = 0. (9)

Proof. The proof goes as follows. We first show that, there exists p̃ ∈ M such that Γ can be written as a normal
graph over the geodesic circle of radius ε centered at p̃, for some function which is bounded by a constant times ε3.
Obviously, there is no uniqueness in the choice of p̃ and next, we show that, moving the point p̃ if this is necessary,
one can arrange in such a way that the function satisfies the orthogonality condition (9).

We pick a point q ∈ Γ and consider the point p̃ defined as follows: The point p̃ is at distance ε = 1/k from q along
the geodesic starting at q with velocity the normal vector about Γ (see Fig. 1). We assume that k is large enough so
that ε is less than the cut locus of p̃ and we denote by Γ̃ the geodesic circle of radius ε = 1/k centered at p̃. Clearly,
near q , the curve Γ can be written as a normal graph over Γ̃ and hence we can parameterize Γ near q using geodesic
polar coordinates centered at p̃, namely

θ �→ (
r(θ), θ

)
with r(0) = ε and r ′(0) = 0. Let θ̃ ∈ (0,π] be the largest value such that∣∣r(θ) − ε

∣∣ � ε2 and
∣∣r ′(θ)

∣∣ � ε2,

for all θ ∈ [−θ̃ , θ̃ ]. Obviously θ̃ > 0.
Since kg(Γ ) = k, by Lemma 9, we know that r is a solution of the following second order ordinary differential

equation

r ′′ = f ∂rf − 1

ε
f 2 + r ′

f
∂θf + 2

(
r ′

f

)2

f ∂rf − f 2

ε

((
1 +

(
r ′

f

)2)3/2

− 1

)
.

Thanks to the expansion of the function f given in (2), we obtain the following estimates for θ ∈ [−θ̃ , θ̃ ].
r ′

f
∂θf = O

(
ε5), f ∂rf − 1

ε
f 2 = r − r2

ε
+ O

(
ε3),

2

(
r ′

f

)2

f ∂rf = O
(
ε3), −f 2

ε

((
1 +

(
r ′

f

)2)3/2

− 1

)
= O

(
ε3).

Therefore, we conclude that θ �→ r(θ) is a solution of the equation

r ′′ = r − r2

ε
+ O

(
ε3),

with r(0) = ε and r ′(0) = 0. We set r = ε(1 − w), so that

w′′ = −w + w2 + O
(
ε2),

with w(0) = w′(0) = 0. It is easy to see w = O(ε2), w′ = O(ε2) and hence w′′ = O(ε2). Going back to the original
function, we see that

r = ε + O
(
ε3), r ′ = O

(
ε3).

This implies that θ̃ = π , for ε small enough. In addition, the curve Γ being an embedded curve, we conclude easily
that

r(−π) = r(π)
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provided ε is small enough and this completes the proof of the first part of the result. It remains to prove that, modulo
some small change in the position of p̃, one can ensure that (9) holds.

As already mentioned, the point p̃ is not unique and in fact once that we know that Γ is a normal graph over the
geodesic circle of radius ε centered at p̃, for some function wp̃ , we conclude that the same is true if instead of p̃, we
choose any point p̂ close enough to p̃. We claim that it is possible to choose p̂ in such a way that (9) is fulfilled. This
follows at once from the following argument.

It is easy to check that there exists c > 0 small enough such that, for all ṽ ∈ Tp̃M and all w̃ ∈ C 2(S1) satisfying

‖ṽ‖g � c and ‖w̃‖C 2 � c

the curve Γ (p̃, ε, w̃) can also be written as the normal graph over the geodesic circle of radius ε centered at p =
Expp̃(εṽ) for some function w = wp̃,ṽ,w̃ . In other words, we can write

Γ (p̃, ε, w̃) = Γ (p, ε,wp̃,ṽ,w̃).

We define

P(ε, ṽ, w̃) = 1

π

2π∫
0

wp̃,ṽ,w̃Θ dθ ∈ Tp̃M.

It is easy to check that P is depends smoothly on v and ε (at least when ε > 0 is small enough) and extends smoothly
to ε = 0. Moreover, P(0,0,0) = 0 and

DṽP(0,0,0)(ṽ) = ṽ.

The implicit function theorem implies that, for all ε > 0 and ‖w̃‖C 2 small enough, there exists a vector ṽε ∈ Tp̃M such
that P(ε, ṽε, w̃) = 0. In addition dist(p, p̃) � cε‖w̃‖C 2 if p = Expp̃(εṽ). This completes the proof of the result. �

We keep the notations, assumptions and conclusions of Proposition 11. Making use of Proposition 10, we get:

Proposition 12. There exists a constant c > 0 such that∥∥dK(p)
∥∥

g
� cε2

provided k = 1/ε � k∗.

Proof. By Proposition 11, Γ can be parameterized by r(θ) = ε(1 − w(θ)) in polar coordinates centered at p. In
addition, we know that ‖w‖C 2 = O(ε2). Using this information in (8), we conclude that the function w is a solution
of

1 := εkg(ε,w) = 1 − 1

3
K(p)ε2 + (

∂2
θ + 1

)
w + O

(
ε3).

In particular, we get

(
∂2
θ + 1

)
w = 1

3
K(p)ε2 + O

(
ε3),

moreover we know that, by construction, w is L2(S1)-orthogonal to the functions cos θ and sin θ . Hence we conclude
that

w = 1

3
K(p)ε2 + O

(
ε3).

Therefore, we get

2π∫ (
w2 + 1

2
w′2 + 2ww′′

)
cos θ dθ = O

(
ε5).
0
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Obviously,

2π∫
0

cos θ

(
1

3
K(p)ε2 +

(
1

45
K2(p) + 1

10
∇2

ΘK(p)

)
ε4

)
dθ = 0,

and, thanks to (9)

(
1 + 1

3
K(p)ε2

) 2π∫
0

cos θ
(
∂2
θ + 1

)
w dθ = 0.

Multiplying (8) by cos θ , using the fact that εkg(ε,w) = 1, and integrating the result over (0,2π), we conclude that

1

3
ε3

2π∫
0

∇ΘK(p) cos θ dθ = O
(
ε5).

Similarly, we get

1

3
ε3

2π∫
0

∇ΘK(p) sin θ dθ = O
(
ε5)

which implies that∥∥dK(p)
∥∥

g
� cε2

as claimed. This completes the proof of the result. �
We are now in a position to prove both Theorems 3 and 4.

Proof of Theorem 3. By assumption, we have a sequence of closed embedded curves Γi with constant geodesic
curvature ki → +∞. According to the result of Proposition 12, when i is large enough, we can write Γi as a normal
graph, for some function bounded by a constant times 1/k3

i , over a geodesic circle of radius 1/ki centered at a point pi

with ∥∥dK(pi)
∥∥

g
� c/k2

i .

The fact that Γi converges to p forces pi to converge to p. Passing to the limit, as i → +∞, we conclude that
dK(p) = 0. This completes the proof of Theorem 3. �
Proof of Theorem 4. We keep the notations of the previous paragraph. The novelty being that K is now assumed to
be a Morse function on M . In particular it has finite number of critical points which are all isolated. The curve Γ is
known to be a normal graph (for some function bounded by a constant times 1/k3) over a geodesic circle of radius
1/k centered at a point p̃ such that ‖dK(p̃)‖g = O(1/k2). Since K is a Morse function, we conclude that p̃ is at most
at distance a constant times 1/k2 from one of the critical points of K . This completes the proof of the result. �
4. Limit of constant geodesic curvature curves as their curvature tends to infinity

In this section we consider curves with large constant geodesic curvature which are immersed in some open domain
Ω which does not contain any critical point of the Gauss curvature. Without loss of generality, we can assume that this
curve is parameterized by s ∈ I �→ γ (s) ∈ M where s is the arc length and I the maximal interval for whose image
by γ lies in Ω .

As usual we set

ε = 1/k.



1578 T. Sun / Ann. I. H. Poincaré – AN 26 (2009) 1569–1584
Fig. 2. Local description of Γ .

We pick a point q ∈ Γ and consider the point p which is at distance ε from q along the geodesic starting at q with
velocity the normal vector about Γ . By Proposition 11, Γ can be parameterized by r(θ) = ε(1 − w(θ)) in polar
coordinates centered at p. (The point q corresponds to θ = 0.) In addition, we know that ‖w‖C 2 = O(ε2) on any
interval of fixed length and also that w(0) = w′(0) = 0 (observe that here we do not assume that w satisfies (9)).

Using this information in (8), we conclude that the function w is a solution of

(
∂2
θ + 1

)
w = 1

3
K(p)ε2 + 1

4

(
∂x1K(p) cos θ + ∂x2K(p) sin θ

)
ε3 + O

(
ε4).

It is easy to check that

w(θ) = 1

3
K(p)ε2(1 − cos θ)

+ 1

8
ε3(θ(

∂x1K(p) sin θ − ∂x2K(p) cos θ
) + ∂x2K(p) sin θ

) + O
(
ε4)

and in particular, we conclude that

w(θ + 2π) = w(θ) + π

4
ε3(∂x1K(p) sin θ − ∂x2K(p) cos θ

) + O
(
ε4). (10)

Since the metric can be written as

Ψ ∗g = dr2 + f 2 dθ2,

we get

gradK = ∂rK∂r + 1

f 2
∂θK∂θ .

If v is a tangent vector to M , we denote v⊥ the vector obtained from v by rotation of angle π/2. We have the formula

gradK⊥ = 1

f
(∂rK∂θ − ∂θK∂r).

If Γ is parameterized in geodesic polar coordinates by γ : θ → (θ, r(θ)) with r(θ) = ε(1 − w(θ)), we have

∂θγ = ∂θ − εw′∂r .

Therefore,

g
(
gradK⊥, ∂θγ

) = f ∂rK + 1

f
εw′∂θK.

The first lemma ensures that, in I , the set of s such that ∂sγ is colinear to gradK(γ ), with opposite orientation, is
a sequence of isolated points whose mutual distance are roughly multiple of 2πε.
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Proposition 13. There exists k∗ > 0 such that, if the geodesic curvature of Γ is constant and larger than k∗ then the
set of parameters θ for which ∂θγ and gradK(γ ) are co-linear and have opposite orientations is a finite sequence of
points θ0 < θ1 < · · · < θm (which depend on Γ ). In addition

|θj+1 − θj − 2π | � cε4,

for some constant c > 0 only depending on Ω .

Proof. The proof of this result follows from the implicit function theorem which is applied to the function

φ := g
(
gradK⊥(γ ), ∂θγ

)
.

We find

f −1φ =
(

∂x1K(γ ) + 1

f 2
ε2w′(1 − w)∂x2K(γ )

)
cos θ

+
(

∂x2K(γ ) − 1

f 2
ε2w′(1 − w)∂x1K(γ )

)
sin θ.

One has to be careful that the set of zeros of φ is not exactly the set we are looking but the set of points where ∂sγ

and gradK(γ ) are colinear, independently of the choice of orientation. It is easy to check that

1

f 2
ε2w′(1 − w) = O

(
ε2) and ∂θ

(
1

f 2
ε2w′(1 − w)

)
= O

(
ε2).

Moreover

∂θ

(
∂x1K(γ )

) = O(ε) and ∂θ

(
∂x2K(γ )

) = O(ε).

Therefore,

f −1φ = ∂x1K(γ ) cos θ + ∂x2K(γ ) sin θ + O(ε)

and

∂θ

(
f −1φ

) = −∂x1K(γ ) sin θ + ∂x2K(γ ) cos θ + O(ε). (11)

Let θ0 ∈ (−π,π] such that

∂x1K(p) cos θ0 + ∂x2K(p) sin θ0 = 0.

Since the distance between p and γ can be estimated by a constant times ε, we see that the zeros of φ are given by

θn = θ0 + nπ + O(ε),

where n ∈ Z. But using (11) we can estimate ∂θ (f
−2φ) at any zero of φ and show that the zeros of φ are isolated

and the distance between two consecutive zeros is about π . Taking into account the fact that we are only interested in
points where ∂sγ and gradK(γ ) have opposite orientation, we conclude that the distance between the points we are
interested in is about 2π . We can assume that θ0 is chosen so that these points correspond to θ2n for n ∈ Z.

To get a better estimate for the distance between two such zeros of φ we use (10) which implies that

w(θ + 2π) = w(θ) + π

4
ε3(∂x1K

(
γ (θ)

)
sin θ − ∂x2K

(
γ (θ)

)
cos θ

) + O
(
ε4)

since the distance between γ (θ) and p is estimated by a constant times ε. We also get

w′(θ + 2π) = w′(θ) + π

4
ε3(∂x1K

(
γ (θ)

)
cos θ + ∂x2K

(
γ (θ)

)
sin θ

) + O
(
ε4)

since ∂θ∂xj
K(γ (θ)) = O(ε). Using these informations we estimate

(
f −1φ

)
(θ + 2π) − (

f −1φ
)
(θ)

= π
ε3(∂x1K

(
γ (θ)

)
cos θ + ∂x2K

(
γ (θ)

)
sin θ

)(
∂x2K

(
γ (θ)

)
cos θ − ∂x1K

(
γ (θ)

)
sin θ

) + O
(
ε4)
4
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Fig. 3. “Spring”.

which can also be written as
(
f −1φ

)
(θ + 2π) =

(
1 + π

4
ε3∂θ (f

−1φ)(θ)

)(
f −1φ

)
(θ) + O

(
ε4).

This together with the estimate of the derivative of f −1φ implies that

θ2n+2 = θ2n + 2π + O
(
ε4).

This completes the proof of the result by dividing the subscript of θ by two. �
We set

pj = γ (θj ).

Since

w(θ + 2π) = w(θ) + π

4
ε3(∂x1K(p) sin θ − ∂x2K(p) cos θ

) + O
(
ε4)

we conclude that

pj+1 = Exppj
(Vj ),

where Vj = π
4 ε4 gradK(pj )

⊥ + O(ε5). This completes the proof of Theorem 5.
In Fig. 3 is the global picture of this process, the curve goes along the level curve of K like a spring.

5. Constant geodesic curvature d-circles: the proof of Theorem 7

In this section we study the case of immersed closed curves with constant geodesic curvature. We start with:

Definition 1. Given d ∈ N
+, a closed curve immersed in M is called a d-circle if it is a degree d curve immersed in a

simple connected domain of M .

The proof of Theorem 7 is based on the following idea: It is easy to check that the results of Theorems 6 and 4 hold
when “embedded curves” are replaced by “d-circles”, with d fixed. Therefore, if Γ is a constant geodesic curvature
d-circle, it is a graph over the geodesic circle of radius ε = 1/k centered at a point q which is at distance c/k2 from
p a critical point of the Gauss curvature function, for some 2πd-periodic function which can be estimated by cε3 in
C 2 topology.

We now prove that, for all ε small enough, there exists a unique normal graph over the geodesic circle of radius
ε = 1/k centered at a point q at distance c/k2 from p for some 2πd-periodic function which can be estimated by
cε3 in C 2 topology. Since the d-cover of the embedded curve obtained by R. Ye in Theorem 1 has constant geodesic
curvature equal to k, Γ has to be the d-cover of this embedded curve.

From now on, we focus our attention on proving Theorem 7. We will use the fixed point argument to derive an
uniqueness property which is enough to obtain the theorem. Assume that we have Γ1 and Γ2 two d-circles with
constant geodesic curvature. It follows from the result of Theorem 4 that Γj a normal multi-graph for some 2πd-
periodic function εwj over the geodesic circle of radius ε = 1/k centered at the point pj . Furthermore, we can
assume that

2dπ∫
wj cos θ dθ =

2dπ∫
wj sin θ dθ = 0
0 0
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Fig. 4. A 2-circle.

and that

dist(pj ,p) + ‖wj‖C 2(S1) � cε2, (12)

where p is a non-degenerate critical point of K .
Let kg(q, ε,w) denote the geodesic curvature of the curve parameterized by (ε(1 − w(θ)), θ) in geodesic polar

coordinates centered at q . We use the result of Proposition 10 to get the expansion

εkg(q, ε,w) = 1 − 1

3
K(q)ε2 − 1

4
∇ΘK(q)ε3 + Oq

(
ε4)

+ (
∂2
θ + 1

)
w + ε2Lq,ε(w) + Q(2)

q,ε(w), (13)

where the subscript q in Oq(ε4) means that this is a function of q . We denote

F(ε, q) := −1

3
K(q) − 1

4
∇ΘK(q)ε + Oq

(
ε2).

Since εkg(pj , ε,wj ) = 1 we get by substraction(
∂2
θ + 1

)
(w2 − w1) = (

F(ε,p1) − F(ε,p2)
)
ε2 + ε2(Lp1,εw1 − Lp2,εw2)

+ (
Q(2)

p1,ε
(w1) − Q(2)

p2,ε
(w2)

)
.

Since w2 − w1 is L2-orthogonal to cos θ and sin θ , we conclude easily that

‖w2 − w1‖C 2(S1) � cε2(dist(p2,p1) + ‖w2 − w1‖C 2(S1)

)
,

where we have implicitly used (12). Hence, for ε small enough, we conclude that

‖w2 − w1‖C 2(S1) � cε2 dist(p2,p1). (14)

Now, we project onto cos θ , the identity kg(p2, ε,w2) − kg(p1, ε,w1) = 0. Using the arguments already used in
the proof of Proposition 12 we get

2dπ∫
0

(
∂2
θ + 1

)
(w2 − w1) cos θ dθ =

2dπ∫
0

(
K(p2) − K(p1)

)
cos θ dθ = 0.

Moreover, using (12), we easily conclude that

ε2

∣∣∣∣∣
2dπ∫
0

(Lp2,εw2 − Lp1,εw1) cos θ dθ

∣∣∣∣∣ � c
(
ε4 dist(p2,p1) + ε2‖w2 − w1‖C 2(S1)

)

and ∣∣∣∣∣
2dπ∫ (

Q(2)
p2,ε

(w2) − Q(2)
p1,ε

(w1)
)

cos θ dθ

∣∣∣∣∣ � c
(
ε4 dist(p2,p1) + ε2‖w2 − w1‖C 2(S1)

)
.

0
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Fig. 5. Graph of M\Γ .

Therefore, we conclude that

ε3

∣∣∣∣∣
2dπ∫
0

(∇ΘK(p2) − ∇ΘK(p1)
)

cos θ dθ

∣∣∣∣∣ � c
(
ε4 dist(p2,p1) + ε2‖w2 − w1‖C 2(S1)

)
.

Similarly, we have

ε3

∣∣∣∣∣
2dπ∫
0

(∇ΘK(p2) − ∇ΘK(p1)
)

sin θ dθ

∣∣∣∣∣ � c
(
ε4 dist(p2,p1) + ε2‖w2 − w1‖C 2(S1)

)
.

This implies that

ε dist(p2,p1) � c‖w2 − w1‖C 2(S1), (15)

provided ε is small enough.
Using (14) and (15), we conclude that w2 = w1 and p1 = p2. This completes the proof of Theorem 7.
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Appendix A. The proof of Theorem 2

We recall the proof of Theorem 2 following [6]. The proof is by contradiction. Assume that the result is not correct,
so that we have an embedded curve Γ with constant geodesic curvature k such that M \ Γ has only one connected
component. We can consider that M0 := M \ Γ is a manifold with two boundaries Γ ′ and Γ ′′.

We consider the curve γ ⊂ M0 which minimizes the distance between a point of Γ ′ and a point of Γ ′′. Namely,
γ is a solution of the problem variational problem

Inf
{
Length(γ ): γ : [0, �] → M0, γ (0) ∈ Γ ′ and γ (�) ∈ Γ ′′}.

We parameterize γ by arc-length and define p := γ (0) and q := γ (�) where 0 < � := Length(γ ).
We parameterize a small neighborhood of p in Γ ′ by arc length s ∈ (−ε, ε) → φ(s) where ε > 0 and φ(0) = p.

We denote by n(s) the normal vector about Γ ′ at the point φ(s) and assume that the orientation is chosen so that
k > 0. We further assume that the orientation of γ is chosen so that so that γ̇ (0) = n at p (if not, just change p into q

and Γ ′ with Γ ′′).
We define the map

A : (−ε, ε) × [0, �] → M,

(s, t) �→ Expφ(s)

(
tn(s)

)
.

We claim that the following is true:
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Fig. 6. Moving Γ ′ along γ .

Lemma 14. We have
∂A

∂s
(0, t) �= 0,

for all t ∈ [0, �].

A straightforward application of the implicit function theorem implies that, provided ε > 0 is chosen sufficiently
small, the mapping A defined is a diffeomorphism from (−ε, ε) × [0, �] onto its image.

Let us assume that we have already proven the claim and let us complete the proof of Theorem 2.
In the image of A, we can decompose the metric g as

A∗g = dt2 + f 2(s, t) ds2,

where f (s,0) = 1 and, because of the chosen orientation,

∂tf

f
(s,0) = −k,

the (constant) geodesic curvature of Γ ′.
For all t ∈ [0, �], we denote by kg(s, t) the geodesic curvature of the curve s �→ A(s, t), at the point A(s, t) and we

denote by K(s, t) the Gauss curvature at the point A(s, t). We have

K(s, t) = −∂2
t f

f
(s, t)

and, again because of the chosen orientation,

kg(s, t) = −∂tf

f
(s, t).

We compute

∂tkg(s, t) = −∂t

(
∂tf

f

)
(s, t) = k2

g(s, t) + K(s, t). (A.1)

By assumption, we have

k2 > −minMK,

so that ∂tkg(s,0) > 0, then (A.1) implies that ∂tkg(s, t) > 0 for all t ∈ [0, �]. In particular

kg(0, �) > kg(0,0) := k. (A.2)

However, because the minimizing property of γ , the curve s �→ A(s, �) is on one side of Γ ′′ and tangent to Γ ′′ at q .
Therefore, we can compare the geodesic curvature of these two curves and given the chosen orientation we necessarily
have

k � kg(0, �)

since Γ ′′ has constant geodesic curvature equal to k. But this clearly contradicts (A.2). This completes the proof of
Theorem 2.
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Therefore, in order to complete the proof, it remains to prove Lemma 14.

Proof of Lemma 14. We argue by contradiction. Assume that the result is not correct. There would exist t̃ ∈ (0, �]
such that

∂sA(0, t̃ ) = 0,

we will then find a contradiction by inspection of the second variation of the length functional about γ . Indeed, by
construction γ minimizes the length between a point of Γ ′ and a point of Γ ′′. Hence, λ0, the least eigenvalue of the
Jacobi operator

∂2
t + K

with Neumann boundary conditions has to be positive or equal to 0. We denote by φ0 the associated eigenfunction so
that (

∂2
t + K

)
φ0 = −λ0φ0

we can assume without loss of generality that φ0 > 0. Observe that the function φ = g(∂sA(0, ·), ν), where ν is a
normal vector field to the curve parameterized by γ , is a Jacobi field in the sense that(

∂2
t + K

)
φ = 0.

Observe that φ(0) = 1, ∂tφ(0) = 0 and, by assumption, that φ(t̃) = 0. This implies that λ0 > 0 since otherwise φ

and φ0 being solutions of a second order ordinary differential equation with 0 Neumann boundary condition at t = 0
would be colinear and this contradicts the fact that φ0 does not vanish. Now we define ε > 0 such that

inf
[0,t̃]

(φ0 − εφ) = 0.

We have(
∂2
t + K

)
(φ0 − εφ) = −λ0φ0.

At a point where φ0 − εφ vanishes we conclude that (∂2
t + K)(φ0 − εφ) � 0. But the above equality implies that

−λ0φ0 < 0

which is a contradiction and this completes the proof of the claim. �
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