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Abstract

For a compact Riemannian manifold N and a domain Ω ⊂ R
m, we consider the intrinsic bi-energy

E2(u) :=
∫
Ω

|∇Du|2 dx

for maps u :Ω → N . We prove that the minimizers of E2 constructed by R. Moser satisfy u ∈ W
2,2
loc (Ω,N). Furthermore, we apply

a dimension reduction argument in order to show H- dim(sing(u)) � m−5 for all minimizers u ∈ W2,2(Ω,N) of the functional E2.
This result is optimal since we show that the map u0 :Bm → Sm−1, x �→ x

|x| minimizes E2 in its Dirichlet class for m � 5.

Résumé

Pour une variété riemanienne compacte et un domaine Ω ⊂ R
m, nous considérons la bi-énergie intrinsèque

E2(u) :=
∫
Ω

|∇Du|2 dx

pour les applications u :Ω → N . Nous démontrons que les minimiseurs de E2 construée par R. Moser satisfont u ∈ W
2,2
loc (Ω,N).

En outre, nous utilisons une méthode de réduction de la dimension pour prouver H- dim(sing(u)) � m − 5 pour tout minimiseur
u ∈ W2,2(Ω,N) de la fonctionnelle E2. Ce résultat est optimal parce que nous démontrons que l’application u0 :Bm → Sm−1,
x �→ x

|x| minimise E2 dans sa classe de Dirichlet pour m � 5.
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1. Introduction and statement of the results

Throughout this article, we assume that N is a smooth, compact Riemannian manifold without boundary, and
Ω ⊂ R

m a bounded flat domain with smooth boundary, where m � 4. For simplicity, we may assume that N ⊂ R
K is

embedded isometrically into some Euclidean space R
K .
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For maps u :Ω → N , several second-order functionals have been considered as analogues of the classical Dirichlet
energy

E1(u) := 1

2

∫
Ω

|Du|2 dx,

which is well known from the setting of harmonic maps. From the analytic point of view, the so-called extrinsic
bi-energy

E2(u) := 1

4

∫
Ω

|�u|2 dx

seems to be the most natural one. For example, E2 is a coercive functional on the space W 2,2(Ω,N) and therefore,
the existence of minimizers follows easily by the direct method. Critical points u ∈ W 2,2(Ω,N) with an additional
stationarity assumption enjoy the partial regularity property Hm−4(sing(u)) = 0, where Hm−4 denotes the (m−4)-
dimensional Hausdorff measure, compare [3,14,17–19] and [15]. In a preceding paper [13], the author reduced the
dimension of the singular set of minimizers u ∈ W 2,2(Ω,N) to H- dim(sing(u)) � m−5. Nevertheless, the functional
E2 is not a completely satisfactory choice because its definition depends on the embedding N ↪→ R

K and not only
on the intrinsic geometrical properties of N . It would be preferable, from the geometric point of view, to consider an
intrinsically defined functional with similar properties as the extrinsic bi-energy.

A more geometrical functional that has been studied in the literature is

F2(u) := 1

4

∫
Ω

∣∣trace(∇Du)
∣∣2 dx,

where ∇ denotes the Levi-Civita connection on N . We refer to [8] for a survey on the differential geometric aspects
of this functional. From the analytic point of view, it has some unfavorable properties, for example it is not coercive
on W 2,2(Ω,N). This is the reason why the existence of minimizers is to our knowledge still an open problem, apart
from harmonic maps in W 2,2(Ω,N), which trivially minimize F2. Moreover, as pointed out by Moser [10, Section 7],
critical points of F2 cannot be expected to satisfy a monotonicity property unless the target manifold has nonpositive
sectional curvature. Consequently, the question of regularity for critical points of F2 remains open for general targets.

In order to overcome these difficulties, Moser introduced the functional

E2(u) = 1

4

∫
Ω

|∇Du|2 dx.

Here, | · | denotes the Hilbert–Schmidt norm on the space of bilinear functions, i.e. |∇Du|2 =∑m
α,β=1 |∇eα ∂βu|2 with

the standard basis {e1, . . . , em} ⊂ R
m. This functional is intrinsically defined, and we will show below that its critical

points satisfy similar regularity properties as the critical points of the extrinsic bi-energy E2.
The existence of minimizers of E2 is rather intricate, since E2 is not coercive in W 2,2(Ω,N). Nevertheless,

Moser [10] was able to construct minimizers of E2 in the space

H 2
N(Ω) := {

u ∈ W 1,2(Ω,N): ∇Du ∈ L2(Ω,
(
R

m
)∗ ⊗ (

R
m
)∗ ⊗ R

K
)}

with respect to Dirichlet boundary conditions

u = u0 and Du = Du0 on ∂Ω (1.1)

for a given map u0 ∈ H 2
N(Ω). This boundary condition has to be understood in the sense of traces, which is possible

since u0 ∈ H 2
N(Ω) implies u0 ∈ W 2,1(Ω,R

K).
In the sequel, we will employ the notion that a map u ∈ H 2

N(Ω) is an H 2
N -minimizer of E2 iff E2(u) � E2(v) for all

v ∈ H 2
N(Ω) with the same boundary data in the sense of (1.1). For H 2

N -minimizers u of E2, Moser was able to prove

u ∈ W
2,2
loc (Ω \ Σ,N) for a singular set Σ ⊂ Ω with Hm−2∗

(Σ) = 0, where 2∗ = 2m
m−2 [10, Corollary 4.1]. Here, we

improve this result as follows.

Theorem 1.1. Every H 2 -minimizer u ∈ H 2 (Ω) of E2 satisfies u ∈ W
2,2 ∩ W

1,4
(Ω,N).
N N loc loc
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This theorem holds more generally for maps satisfying a certain stationarity condition, see Theorem 3.4. We point
out that for m = 4, the theorem follows from the result by Moser.

In the proof of the above theorem, the key tool with which we compensate the lack of coercivity is the following
Morrey–Sobolev embedding theorem involving only covariant derivatives. We use the notation M

p
μ(Ω) for the Morrey

spaces as defined in (2.1).

Theorem 1.2. Every map u ∈ H 2
N(Ω) with |∇Du| ∈ M2

4 (Ω) and |Du| ∈ M2
4 (Ω) satisfies

‖Du‖M4
4 (Ω) � C

(‖∇Du‖M2
4 (Ω) + ‖Du‖M2

4 (Ω)

)
.

For the proof we refer to Theorem 2.1.
Because of Theorem 1.1, it is legitimate to consider H 2

N -minimizers u for E2 with u ∈ W 2,2 ∩ W 1,4(Ω,N). Such
minimizers are solutions of the Euler equation for E2, see Section 4. Since the leading part of the Euler equation
is the Bilaplacian, we will call smooth solutions of the Euler equation (intrinsically) biharmonic maps. We say that
u ∈ W 2,2(Ω,N) is a minimizing (intrinsically) biharmonic map if E2(u) � E2(v) holds for all v ∈ W 2,2(Ω,N) with
u − v ∈ W

2,2
0 (Ω,R

K).
The fact u ∈ W 2,2(Ω,N), combined with an ε-regularity result by Moser implies immediately Hm−4(sing(u)) = 0

for all minimizing intrinsically biharmonic maps u ∈ W 2,2(Ω,N), see Corollary 5.2. By a dimension reduction argu-
ment similar to that in [13], we are able to improve this result by the following theorem.

Theorem 1.3. Let N be a smooth, compact Riemannian manifold without boundary and Ω ⊂ R
m an open domain.

Then, every minimizing intrinsically biharmonic map u ∈ W 2,2(Ω,N) satisfies

H- dim
(
sing(u)

)
� m − 5. (1.2)

Here, H- dim denotes the Hausdorff dimension and sing(u) is the complement of the set {x ∈ Ω: u is C∞ in a
neighborhood of x}.

Moreover, if for all dimensions 4 � k � k0 up to some k0 � 4, there are no nonconstant minimizing intrinsically
biharmonic maps v ∈ C∞(Rk+1 \ {0},N) that are homogeneous of degree zero, then H- dim(sing(u)) � m − k0 − 2.
If this assumption holds with k0 = m − 2, then sing(u) ∩ A is finite for every compact subset A ⊂ Ω .

For the proof of the last theorem, we employ Federer’s dimension reduction principle. The crucial step that enables
us to use Federer’s argument is the following compactness theorem, which we prove by analyzing the defect measures
with tools from geometric measure theory, see Section 6.

Theorem 1.4. Let M(Ω) ⊂ W
2,2
loc (Ω,N) be the closure of the set of minimizing intrinsically biharmonic maps with

respect to the W
2,2
loc -topology. Assume that {ui}i∈N ⊂ M(Ω) is a sequence with

sup
i∈N

∫
Ω

(|∇Dui |2 + |Dui |2
)
dx < ∞.

Then there is a subsequence {ij } ⊂ N and a limit map u ∈ W
2,2
loc ∩ W

1,4
loc (Ω,R

K) with uij → u strongly in

W
2,2
loc (Ω,R

K) and in W
1,4
loc (Ω,R

K), as j → ∞.

The estimate (1.2) for the dimension of the singular set is optimal since the map B5 � x �→ x
|x| ∈ S4 is minimizing

biharmonic. More generally, we prove the following proposition in Section 8.

Proposition 1.5. The map u0(x) := x
|x| , where x ∈ Bm, minimizes E2 in the Dirichlet class W 2,2(Bm,Sm−1) ∩ (u0 +

W
2,2
0 (Bm,R

m)) for all m � 5.
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2. Sobolev–Morrey embedding for intrinsically defined Sobolev spaces

As noted by Moser [10], the function space naturally associated with E2 is

H 2
N(Ω) := {

u ∈ W 1,2(Ω,N): ∇Du ∈ L2(Ω,
(
R

m
)∗ ⊗ (

R
m
)∗ ⊗ R

K
)}

,

where the covariant second derivative of a map u :Ω → N ⊂ R
K is given by

∇Du := D2u − (I ◦ u)(Du ⊗ Du)

in the distributional sense. Here, I denotes the second fundamental form of the embedding N ↪→ R
K , defined by

I(y)(v,w) := (∂vW(y))⊥ for y ∈ N and v,w ∈ TyN , where W ∈ C1(N,R
K) is any vector field that is tangential

along N and satisfies W(y) = w, and ⊥ indicates the orthogonal projection onto T⊥
y N , see e.g. [6]. We note that u ∈

H 2
N(Ω) implies in particular u ∈ W 2,1(Ω,R

K) by the above definition of the covariant derivative and the compactness
of N .

The analysis of minimizers of E2 is delicate because the functional is not coercive with respect to the W 2,2-norm.
In order to deal with this problem, we need the following Morrey–Sobolev type embedding theorem adapted to the
function space H 2

N(Ω). For this we employ the notation M
p
μ(Ω) for the Morrey spaces of functions f ∈ Lp(Ω) with

‖f ‖M
p
μ(Ω) := sup

y∈Ω, 0<ρ<1

(
ρ μ−m

∫
Ω∩Bρ(y)

|f |p dx

)1/p

< ∞, (2.1)

where 1 � p < ∞ and 0 < μ � m.

Theorem 2.1. Assume that u ∈ H 2
N(Ω) with |Du| ∈ M2

4 (Ω) and |∇Du| ∈ M2
4 (Ω). Then, |Du| ∈ M4

4 (Ω) and

‖Du‖M4
4 (Ω) � C

(‖∇Du‖M2
4 (Ω) + ‖Du‖M2

4 (Ω)

)
(2.2)

for an appropriate constant C, depending only on Ω ⊂ R
m.

Proof. For the function gε :=√
ε2 + |Du|2, where ε > 0, we calculate

Dgε = ∇Du · Du√
ε2 + |Du|2

and conclude

‖Dgε‖M2
4 (Ω) � ‖∇Du‖M2

4 (Ω). (2.3)

The above calculations can be justified by observing that since u ∈ H 2
N(Ω) ⊂ W 2,1(Ω,R

K), the components of Du

are absolutely continuous along the coordinate lines t �→ x + tei for almost every x ∈ Ω and 1 � i � m, compare also
[10, Lemma 2.1]. Because of (2.3), we can apply the Sobolev–Morrey embedding theorem to the function gε , see e.g.
[1, Theorem 3.2] or [16, Corollary 3.4]. We deduce gε ∈ M4

4 (Ω) with

‖Du‖M4
4 (Ω) � ‖gε‖M4

4 (Ω) � C‖Dgε‖M2
4 (Ω) + C‖gε‖M2

4 (Ω) � C‖∇Du‖M2
4 (Ω) + C‖gε‖M2

4 (Ω).

Letting ε ↘ 0, we obtain the claim (2.2). �
3. W 2,2-regularity for H 2

N -minimizers

In [10], Moser proved the existence of minimizers u ∈ H 2
N(Ω) of E2 with respect to boundary conditions of the

type (1.1). In this section we study the W 2,2-regularity of these minimizers and more generally of maps u ∈ H 2
N(Ω)

that satisfy a stationarity property.
For this we adapt the following definition from [10].
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Definition 3.1. A map u ∈ H 2
N(Ω) is called stationary for E2 if and only if∫

Ω

(
∇eαDu · ∇eβ Du∂βψα + 1

2
∇eα ∂βu · ∂γ u∂α∂βψγ − 1

4
|∇Du|2 divψ

)
dx = 0 (3.1)

holds for all ψ = (ψ1, . . . ,ψm) ∈ C∞
0 (Ω,R

m). Here, e1, . . . , em denotes the standard basis of R
m.

As was shown in [10], the differential equation (3.1) is satisfied by all maps u ∈ H 2
N(Ω) with the property

∂
∂t

E2(ut )|t=0 = 0 for all inner variations ut (x) := u(x + tψ(x)) with ψ ∈ C∞
0 (Ω,R

m). In particular, H 2
N -minimizers

of E2 are stationary for E2. The differential equation (3.1) implies the following monotonicity property.

Theorem 3.2. (See [10, Theorem 3.1].) Assume that u ∈ H 2
N(Ω) is stationary for E2 and BR(a) ⊂ Ω . With the vector

field X(x) := x − a, the expression

Φu(a, r) := 1

4
r4−m

∫
Br(a)

|∇Du|2 dx + 3

4
r3−m

∫
∂Br (a)

|Du|2 dHm−1

+ 1

4
r1−m

∫
∂Br (a)

[
(m − 2)|∂Xu|2 − 2∇X∂Xu · ∂Xu

]
dHm−1

is well defined and monotonously nondecreasing for all r ∈ (0,R] outside a zero set. More precisely, for almost all
0 < r1 � r2 � R, there holds

Φu(a, r2) − Φu(a, r1) =
∫

Br2 (a)\Br1 (a)

( |∇∂Xu|2
|x − a|m−2

+ (m − 2)
|∂Xu|2

|x − a|m
)

dx.

The most important consequence of this property is the following

Corollary 3.3. (See [10, Corollary 3.2].) There is a constant C, depending only on m, such that every map u ∈ H 2
N(Ω)

that is stationary for E2 satisfies

ρ4−m

∫
Bρ(a)

(|∇Du|2 + ρ−2|Du|2)dx � CR4−m

∫
BR(a)

(|∇Du|2 + R−2|Du|2)dx

whenever BR(a) ⊂ Ω and 0 < ρ � R.

The preceding results by Moser enable us to prove the following regularity result in the scale of Morrey spaces.

Theorem 3.4. Every map u ∈ H 2
N(B2) that is stationary for E2 satisfies u ∈ W 2,2 ∩ W 1,4(B1,N). Furthermore,

|D2u| ∈ M2
4 (B1,N) and |Du| ∈ M4

4 (B1,N) with the estimates

‖Du‖M4
4 (B1)

� C
(‖∇Du‖L2(B2)

+ ‖Du‖L2(B2)

)
and

‖D2u‖M2
4 (B1)

� C
(‖∇Du‖L2(B2)

+ ‖Du‖L2(B2)
+ ‖∇Du‖2

L2(B2)
+ ‖Du‖2

L2(B2)

)
.

Here, the constant C depends only on m and N .

Proof. According to Corollary 3.3, the stationary map u satisfies

‖∇Du‖2
M2

4 (B1)
+ ‖Du‖2

M2
4 (B1)

� C

∫
B2

(|∇Du|2 + |Du|2)dx. (3.2)

With the help of Theorem 2.1, we deduce furthermore |Du| ∈ M4
4 (B1) with

‖Du‖M4(B ) � C
(‖∇Du‖L2(B ) + ‖Du‖L2(B )

)
. (3.3)
4 1 2 2
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Since D2u = ∇Du + (I ◦ u)(Du ⊗ Du), we can estimate

‖D2u‖M2
4 (B1)

� ‖∇Du‖M2
4 (B1)

+ C‖Du‖2
M4

4 (B1)

� C
(‖∇Du‖L2(B2)

+ ‖Du‖L2(B2)
+ ‖∇Du‖2

L2(B2)
+ ‖Du‖2

L2(B2)

)
by (3.2) and (3.3). This completes the proof. �
4. The Euler equation

Having established the W 2,2-regularity, we are now able to derive the Euler equation for biharmonic maps. We
consider variations ut := πN ◦ (u + tV ) for V ∈ W

2,2
0 ∩ L∞(Ω,R

K) with V (x) ∈ Tu(x)N for almost every x ∈ Ω .
Here, πN denotes the nearest-point retraction onto N , defined on a suitable neighborhood of N . We calculate

∂

∂t

∣∣∣∣
t=0

E2(ut ) = 1

2

∫
Ω

∇eα ∂βu · ∇t∇eα ∂βut |t=0 dx

= 1

2

∫
Ω

[∇eα ∂βu · ∇eα∇eβ V + ∇eα ∂βu · (R ◦ u)(V, ∂αu)∂βu
]
dx

by the definition of the Riemannian curvature tensor R associated with N and since ∂
∂t

ut |t=0 = V . The last equation
motivates the following

Definition 4.1. A map u ∈ W 2,2(Ω,N) is called (intrinsically) weakly biharmonic if and only if it satisfies the Euler
equation∫

Ω

(∇eα ∂βu · ∇eα∇eβ V + ∇eα ∂βu · (R ◦ u)(V, ∂αu)∂βu
)
dx = 0 (4.1)

for all vector fields V ∈ W
2,2
0 ∩ L∞(Ω,R

K) that are tangential along u in the sense V (x) ∈ Tu(x)N for almost every
x ∈ Ω .

We say that a map u ∈ W 2,2(Ω,N) is (intrinsically) stationary biharmonic if it is intrinsically weakly biharmonic
and additionally stationary for E2.

Clearly, minimizing intrinsically biharmonic maps are intrinsically stationary biharmonic. In the sequel, we will
often omit the adverb ‘intrinsically’ for the sake of brevity since in this article, we are always considering the intrinsic
case.

Next, we rewrite the Euler equation in a form that is more useful for some purposes.

Lemma 4.2. There are functions F [u] :Ω → (Rm)∗ ⊗ R
K and G[u] :Ω → R

K so that the Euler equation (4.1) for
u ∈ W 2,2(Ω,N) is equivalent to the differential equation∫

Ω

�u · �W dx =
∫
Ω

(
(I ◦ u)(Du ⊗ Du) · D2W + F [u] · DW + G[u] · W )

dx (4.2)

for all vector fields W ∈ W
2,2
0 ∩ L∞(Ω,R

K). More precisely, the coefficient functions have the form

F [u] = f (u;∇Du,Du) and G[u] = g1(u;∇Du,∇Du) + g2(u;∇Du,Du,Du)

for functions f,g1 and g2 that depend only on m and N , are smooth in the first argument and linear in all the others.

Proof. We assume N ⊂ R
K and let Π(y) : RK → TyN be the orthogonal projection for y ∈ N . Suppose that

u ∈ W 2,2(Ω,N) satisfies the Euler equation (4.1). For an arbitrary vector field W ∈ W
2,2
0 ∩ L∞(Ω,R

K) we let
V := (Π ◦ u)W and compute

∇eβ V = (Π ◦ u)∂β

(
(Π ◦ u)W

)= (Π ◦ u)∂βW + (Π ◦ u)DΠ ◦ u(W,∂βu)
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and consequently,

∇eα∇eβ V = (Π ◦ u)∂α∂βW + (Π ◦ u)DΠ ◦ u(∂βW,∂αu) + (Π ◦ u)DΠ ◦ u(∂αW,∂βu)

+ (Π ◦ u)DΠ ◦ u
(
DΠ ◦ u(W,∂βu), ∂αu

)+ (Π ◦ u)D2Π ◦ u(W,∂αu, ∂βu)

+ (Π ◦ u)DΠ ◦ u(W,∇eα ∂βu)

= (Π ◦ u)∂α∂βW + aαβ [u] · DW + bαβ [u] · W (4.3)

for suitable functions aαβ [u] :Ω → (Rm)∗ ⊗ R
K and bαβ [u] :Ω → R

K of the form

aαβ [u] = a′
αβ(u;Du) and bαβ [u] = b′

αβ(u;∇Du) + b′′
αβ(u;Du,Du)

with functions a′, b′ and b′′ that are C∞ in the first and linear in the remaining components. Furthermore, we use the
identity

∇eα ∂βu = ∂α∂βu − (I ◦ u)(∂αu, ∂βu). (4.4)

Plugging (4.3) and (4.4) into the Euler equation (4.1), we arrive at∫
Ω

∂α∂βu · ∂α∂βW dx =
∫
Ω

(I ◦ u)(∂αu, ∂βu) · ∂α∂βW dx

−
∫
Ω

∇eα ∂βu · (aαβ [u] · DW + bαβ [u] · W + (R ◦ u)
(
(Π ◦ u)W,∂αu

)
∂βu

)
dx

=:
∫
Ω

(
(I ◦ u)(Du ⊗ Du) · D2W + F [u] · DW + G[u] · W )

dx.

From this Eq. (4.2) follows by two integrations by parts on the left-hand side.
On the other hand, suppose that u satisfies (4.2) for all vector fields W ∈ W

2,2
0 ∩ L∞(Ω,N). For an arbitrary

V ∈ W
2,2
0 ∩L∞(Ω,N) that is tangential along u, consider Eq. (4.2) with W = V . From the derivation of this equation

it is clear that (4.2) is equivalent to (4.1) in this case. This proves the reverse implication. �
5. Partial regularity

The following ε-regularity result was established in [10, Corollary 6.1]. It also follows more directly from [10,
Theorem 6.1], combined with our Theorem 3.4. For the proof of the higher regularity, we refer to [4].

Theorem 5.1. There exists a constant ε1 > 0 such that every intrinsically stationary biharmonic map u ∈
W 2,2(Bρ(x0),N) with

ρ4−m

∫
Bρ(x0)

(|∇Du|2 + ρ−2|Du|2)dx < ε1

satisfies u ∈ C∞(Bρ/2(x0),N).

Combined with our results from Section 3, the above theorem implies

Corollary 5.2. Let u ∈ W 2,2(Ω,N) be intrinsically stationary biharmonic. Then there is a closed subset Σ ⊂ Ω with
Hm−4(Σ) = 0 so that u ∈ C∞(Ω \ Σ,N).

Proof. With the constant ε1 from Theorem 5.1, we define

Σ :=
{
y ∈ Ω: lim inf

ρ↘0
ρ4−m

∫
B (y)

(|∇Du|2 + ρ−2|Du|2)dx � ε1

}
.

ρ
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From Theorem 5.1 we infer that Σ is a closed subset and u ∈ C∞(Ω \Σ,N). Since u ∈ W 1,4(Ω,N) by Theorem 3.4,
we may apply the Cauchy–Schwarz inequality with the result

lim inf
ρ↘0

ρ4−m

∫
Bρ(y)

(|∇Du|2 + ρ−2|Du|2)dx � lim inf
ρ↘0

[
ρ4−m

∫
Bρ(y)

|∇Du|2 dx + C

(
ρ4−m

∫
Bρ(y)

|Du|4 dx

)1/2]
,

and the right-hand side vanishes for Hm−4-almost every y ∈ Ω by classical density theorems, see e.g. [20,
Lemma 3.2.2]. We conclude Hm−4(Σ) = 0, as desired. �

We also have the following uniform higher-order estimates, which follow from a well-known scaling technique
due to [12], see also [9, Lemma 5.3] for a version adapted to higher-order equations. We include a proof for the
convenience of the reader.

Lemma 5.3. For every δ > 0, there is a constant ε(δ) > 0 such that every intrinsically biharmonic map u ∈
C∞(B1,N) with

sup
Bρ(a)⊂B1

ρ2−m

∫
Bρ(a)

|Du|2 dx < ε(δ) (5.1)

satisfies∣∣D3u(x)
∣∣1/3 + ∣∣D2u(x)

∣∣1/2 + ∣∣Du(x)
∣∣� δ

1 − |x| for all x ∈ B1.

Proof. We abbreviate [u]C3(x) :=∑3
k=1 |Dku(x)|1/k for x ∈ B1. Suppose that the lemma was not true, then we could

find a sequence of biharmonic maps ui ∈ C∞(B1,N) with

sup
Bρ(a)⊂B1

ρ2−m

∫
Bρ(a)

|Dui |2 dx → 0 as i → ∞, (5.2)

but

sup
0<r<1

(1 − r) sup
Br (0)

[ui]C3 > δ for all i ∈ N. (5.3)

For every i ∈ N, we choose ri ∈ [0,1) with

(1 − ri) sup
Bri

(0)

[ui]C3 = sup
0<r<1

(1 − r) sup
Br (0)

[ui]C3

and xi ∈ Bri (0) with

[ui]C3(xi) = sup
Bri

(0)

[ui]C3 ,

which we interpret as xi = 0 in the case ri = 0. Moreover, we define

λi := δ

2 [ui]C3(xi)
.

As a consequence of (5.3) and the choice of xi , we have λi < (1 − ri)/2. Therefore, we may define rescaled maps

vi(x) := u(xi + λix) for x ∈ B1,

which are again stationary biharmonic by the scaling invariance of E2, and satisfy

[vi]C3(0) = λi[ui]C3(xi) = δ
(5.4)
2
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as well as

sup
B1(0)

[vi]C3 � λi sup
B(1+ri )/2(0)

[ui]C3 � λi

(
1 − 1 + ri

2

)−1

(1 − ri) [ui]C3(xi) = δ

by the definition of λi . The biharmonic maps vi satisfy the Euler equation for E2 in the classical sense, which, accord-
ing to Lemma 4.2, has the form

�2vi = f [vi] = f̃
(
vi,Dvi,D

2vi,D
3vi

)
, where

∣∣f [vi]
∣∣� C(m,N)[vi]4

C3 .

The last estimate follows by Young’s inequality. We conclude |�2vi | � Cδ4 on B1 for all i ∈ N, which, combined
with [vi]C3 � δ, yields

sup
i∈N

‖vi‖C3,α(B1/2)
< ∞ for every α ∈ (0,1)

by classical Schauder estimates for the Laplace operator. Hence, the Theorem of Arzéla–Ascoli implies that after
passing to a subsequence, we can find a map v ∈ C∞(B1/2,N) with vi → v in C3(B1/2,N) as i → ∞, which implies
in particular

[v]C3(0) = lim
i→∞[vi]C3(0) = δ

2
> 0 (5.5)

by (5.4). On the other hand, the property (5.2) implies∫
B1/2

|Dv|2 dx = lim
i→∞

∫
B1/2

|Dvi |2 dx = 0,

so that v must be constant, in contradiction to (5.5). This completes the proof. �
Corollary 5.4. There is a constant ε0 > 0 such that every intrinsically stationary biharmonic map u ∈ W 2,2(Br(y),N)

with

r4−m

∫
Br (y)

(|∇Du|2 + r−2|Du|2)dx < ε0 (5.6)

satisfies u ∈ C∞(Br/2(y),N) with

r|Du| + r2
∣∣D2u

∣∣+ r3
∣∣D3u

∣∣� 1 on Br/4(y). (5.7)

Proof. If we choose the constant ε0 > 0 not larger than the constant ε1 from Theorem 5.1, the mentioned theorem
yields u ∈ C∞(Br/2(y),N). As a consequence of the monotonicity property of u, see Corollary 3.3, the assumption
(5.6) implies

sup
Bρ(a)⊂Br/2(y)

ρ2−m

∫
Bρ(a)

|Du|2 dx � Cε0. (5.8)

By rescaling Br/2(y) to the unit ball, we infer from Lemma 5.3 that we can achieve (5.7) by choosing ε0 > 0 small
enough. �
6. Compactness for sequences of minimizing maps

6.1. The defect measure

In this section we are concerned with sequences of stationary biharmonic maps ui ∈ W 2,2(B4,N) with
supi∈N(‖∇Dui‖L2(B4)

+ ‖Dui‖L2(B4)
) < ∞. From Theorem 3.4 we infer ui ∈ W 2,2 ∩ W 1,4(B2,N) with

‖D2ui‖2
M2

4 (B2)
+ ‖Dui‖4

M4
4 (B2)

� Λ for an appropriate constant Λ > 0 and all i ∈ N. We may thus assume, after pass-

ing to a subsequence if necessary, that there is a map u ∈ W 2,2 ∩W 1,4(B2,R
K) with ui ⇀ u weakly in W 2,2(B2,R

K)



1594 C. Scheven / Ann. I. H. Poincaré – AN 26 (2009) 1585–1605
and in W 1,4(B2,R
K) as well as ui → u strongly in W 1,2(B2,R

K) and almost everywhere, as i → ∞. Furthermore,
we can assume

Lm�|∇Dui |2 ⇀ Lm�|∇Du|2 + ν in the sense of measures

for some Radon measure ν on B2, see e.g. [7, Theorem 1.23]. From the lower semicontinuity of E2 with respect to
weak convergence in W 2,2 we conclude ν � 0. We call this measure the defect measure of the sequence ui , a notion
that will be justified in Lemma 6.2 below. We consider the pair (u, ν) as the limit configuration of the sequence ui .
This motivates the following

Definition 6.1. For sequences of maps ui ∈ W 2,2(B2,N) and nonnegative Radon measures νi on B2, where i ∈ N0,
we write (ui, νi) ⇒ (u0, ν0) as i → ∞ if and only if convergence holds in the following sense.

ui ⇀ u0 weakly in W 2,2
(
B2,R

K
)

and in W 1,4
(
B2,R

K
)
,

ui → u0 strongly in W 1,2(B2,N) and almost everywhere,

Lm�|∇Dui |2 + νi ⇀ Lm�|∇Du0|2 + ν0 in the sense of measures.

For the set of all limit configurations of stationary biharmonic maps, we write

BΛ :=
⎧⎨
⎩(u0, ν0)

∣∣∣∣∣∣
(ui,0) ⇒ (u0, ν0), where ui ∈ W 2,2 ∩ W 1,4(B2,N) are

stationary biharmonic with
∥∥D2ui

∥∥2
M2

4
+ ‖Dui‖4

M4
4

� Λ

⎫⎬
⎭

for a given constant Λ > 0. Here, ‘0’ denotes the zero measure. Similarly, we write MΛ for the set that is defined as
above, but with minimizing biharmonic maps instead of stationary biharmonic maps.

For a given pair μ = (u, ν) ∈ BΛ, we define the energy concentration set Σμ as the set of points a ∈ B1 with the
property

lim inf
ρ↘0

(
ρ4−m

∫
Bρ(a)

(|∇Du|2 + ρ−2|Du|2)dx + ρ4−mν
(
Bρ(a)

))
� ε0,

where the constant ε0 > 0 is chosen according to Corollary 5.4.

The following lemma clarifies the meaning of the defect measure and the energy concentration set.

Lemma 6.2. Assume that {ui}i∈N ⊂ W 2,2(B2,N) is a sequence of stationary biharmonic maps with
supi (‖D2ui‖2

M2
4 (B2)

+ ‖Dui‖4
M4

4 (B2)
) � Λ and (ui,0) ⇒ μ as i → ∞, for some μ = (u, ν) ∈ BΛ. Then there holds

(i) ui → u in C2
loc(B1 \ Σμ,N) as i → ∞.

(ii) If the defect measure ν vanishes, then we have strong convergence ui → u in W 2,2(B1,R
K) and in W 1,4(B1,R

K),
as i → ∞.

Proof. In order to prove (i), we choose an arbitrary point a ∈ B1 \ Σμ. By the definition of Σμ, we may choose a
ρ ∈ (0,1) with

ρ4−m

∫
Bρ(a)

(|∇Du|2 + ρ−2|Du|2)dx + ρ4−mν
(
Bρ(a)

)
< ε0.

We may also assume that ν(∂Bρ(a)) = 0, because ν(∂Bρ(a)) > 0 can hold at most for countably many values of
ρ ∈ (0,1). Using the convergence (ui,0) ⇒ (u, ν), we conclude

lim
i→∞ρ4−m

∫
B (a)

(|∇Dui |2 + ρ−2|Dui |2
)
dx < ε0.
ρ
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Corollary 5.4 thus yields supi ‖ui‖C3(Bρ/4(a)) � C(N) + ρ−3, from which we infer by Arzéla–Ascoli’s theorem ui →
u in C2(Bρ/4(a),N) as i → ∞. Here it is not necessary to extract a subsequence since the assumptions include
convergence ui → u almost everywhere. Since a ∈ B1 \ Σμ was arbitrary, we conclude (i).

For the proof of the second claim, we note that in the case of ν = 0, the definition of Σμ becomes

Σμ =
{
y ∈ Ω: lim inf

ρ↘0
ρ4−m

∫
Bρ(y)

(|∇Du|2 + ρ−2|Du|2)dx � ε0

}
.

Since u ∈ W 1,4(B2,N), the Cauchy–Schwarz inequality and [20, Lemma 3.2.2] imply Hm−4(Σμ) = 0. Thus, for any
given ε > 0, we can choose a cover

⋃
k∈N

Bρk
(ak) ⊃ Σμ of open balls with radii ρk ∈ (0,1) such that

∑
k∈N

ρm−4
k < ε.

With the abbreviation A := B1 \⋃k Bρk
(ak), we conclude for all i, j ∈ N∫

B1\A

∣∣D2ui − D2uj

∣∣2 dx � 2
∑
k∈N

∫
Bρk

(ak)

(∣∣D2ui

∣∣2 + ∣∣D2uj

∣∣2)dx � 4Λ
∑
k∈N

ρm−4
k � 4Λε.

On the compact set A ⊂ B1 \ Σμ, the conclusion (i) implies ui → u strongly in W 2,2(A,R
K). Hence,

lim
i,j→∞

∫
B1

∣∣D2ui − D2uj

∣∣2 dx � 4Λε + lim
i,j→∞

∫
A

∣∣D2ui − D2uj

∣∣2 dx = 4Λε.

Since ε > 0 was arbitrary, we conclude that {ui} is a Cauchy sequence in W 2,2(B1,R
K). In the same way, one checks

that ui is strongly convergent in W 1,4(B1,R
K). �

Next we will analyze the relation between the defect measure and the energy concentration set.

Lemma 6.3. There are positive constants c and C, depending only on m, such that every pair μ = (u, ν) ∈ BΛ satisfies

cε0 Hm−4�Σμ � ν�B1 � CΛHm−4�Σμ. (6.1)

Furthermore, Σμ is a closed set and Σμ = sing(u) ∪ spt(ν).

Proof. The inclusion sing(u)∪ spt(ν) ⊂ Σμ holds by Lemma 6.2(i). For the converse inclusion, we assume that there
is some point a ∈ Σμ \ sing(u). By the choice of a, the functions |∇Du| and |Du| are bounded on a neighborhood
of a. Therefore, the definition of Σμ implies

lim inf
ρ↘0

ρ4−mν
(
Bρ(a)

)
� ε0,

from which we infer a ∈ spt(ν). We have thus proven Σμ = sing(u) ∪ spt(ν), which implies in particular that Σμ is a
closed set.

Now we turn our attention to the proof of (6.1). For a Borel set A ⊂ Σμ, we choose an arbitrary cover⋃
j∈N

Bρj
(aj ) ⊃ A of balls with radii ρj ∈ (0,1) and centers aj ∈ B1. Since (u, ν) ∈ BΛ, there holds

ν(A) �
∑
j∈N

ν
(
Bρj

(aj )
)
� Λ

∑
j∈N

ρm−4
j .

Since the cover of A was arbitrary, we conclude ν(A) � CΛHm−4(A). More precisely, C = α(m−4)−1, where
α(m−4) denotes the volume of the (m−4)-dimensional unit ball. For the proof of the first estimate in (6.1), we
choose a set B ⊂ Σμ with Hm−4(B) = 0 and

lim
ρ↘0

ρ4−m

∫
Bρ(a)

(|∇Du|2 + |Du|4)dx = 0 for all a ∈ Σμ \ B.

A set with this property exists by [20, Lemma 3.2.2]. From the choice of B and the definition of Σμ, we know

lim infρ4−mν
(
Bρ(a)

)
� ε0 for all a ∈ Σμ \ B. (6.2)
ρ↘0
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Let ε > 0 be given. By the definition of the Hausdorff measure, we may choose δ > 0 small enough to ensure

Hm−4(A \ B) � ε + inf

{
α(m−4)

∑
j∈N

rm−4
j

∣∣∣A \ B ⊂
⋃
j∈N

Brj (aj ), 0 < rj � δ

}
.

We recall that ν is a Radon measure. We may thus choose an open set Oε ⊃ A with ν(Oε) � ν(A) + ε. We consider
the family of balls Bρj

(aj ) ⊂ Oε with 0 < ρj � δ/5, centers aj ∈ A \ B and the property

ρ4−m
j ν

(
Bρj

(aj )
)
� ε0

2
. (6.3)

By (6.2), the union of all balls with these properties covers A \ B . A standard covering argument, see for example
[11, Theorem 3.3], yields the existence of a countable disjoint family {Bρj

(aj )}j∈N of balls with the property (6.3),
Bρj

(aj ) ⊂ Oε and A \ B ⊂ ∪jB5ρj
(aj ). We conclude

Hm−4(A) = Hm−4(A \ B) � ε + α(m−4)
∑
j∈N

(5ρj )
m−4

by the choice of δ. On the other hand, since the balls are pairwise disjoint and satisfy (6.3), we can estimate

∑
j∈N

ρm−4
j � 2

ε0

∑
j∈N

ν
(
Bρj

(aj )
)
� 2

ε0
ν(Oε) � 2

ε0

(
ν(A) + ε

)
.

Putting together the last two estimates, we arrive at

cε0 Hm−4(A) � ν(A) + (1 + cε0)ε

with a constant c = c(m). This completes the proof of the lemma, since ε > 0 can be chosen arbitrarily small. �
In the special case that the weak limit map is constant, the defect measure inherits a monotonicity property from

the sequence of biharmonic maps.

Lemma 6.4. Assume (c, ν) ∈ BΛ, where c ∈ N is constant. Then, the functions

(0,1] � r �→ r4−mν
(
Br(a)

)
are monotonously nondecreasing for every a ∈ B1.

Proof. By the definition of BΛ, there is a sequence ui ∈ W 2,2(B2,N) of stationary biharmonic maps with
‖D2ui‖2

M2
4

+ ‖Dui‖4
M4

4
� Λ and (ui,0) ⇒ (c, ν) as i → ∞. For a fixed a ∈ B1, radii r ∈ (0,1) and X(x) := x − a,

let

fi(r) := r3−m

4

∫
∂Br (a)

(
3|Dui |2 + m − 2

r2
|∂Xui |2 − 2

r2
∇X∂Xui · ∂Xui

)
dHm−1.

Since ui → c strongly in W 1,2(B2,R
K) and supi ‖D2ui‖2

L2(B1(a))
� Λ, one checks that fi → 0 in L1

loc[0,1], as
i → ∞. Therefore, there is a subsequence {ij } ⊂ N with fij → 0 almost everywhere, as j → ∞. We conclude that
for almost every r ∈ (0,1],

Φuij
(a, r) = 1

4
r4−m

∫
Br (a)

|∇Duij |2 dx + fij (r)−→
j→∞

1

4
r4−mν

(
Br(a)

)
,

if we choose in particular r ∈ (0,1] in such a way that ν(∂Br(a)) = 0. Thus, the monotonicity property of Φuij
from

Theorem 3.2 implies the claim. �
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6.2. Blow-up analysis of the defect measure

In this section we consider tangent pairs for a given pair μ = (u, ν) in the following sense. We define the rescaled
pair μa,r = (ua,r , νa,r ) at a given point a ∈ B1 with a scaling factor r ∈ (0,1) by

ua,r (x) := u(a + rx) for x ∈ B1/r (0), (6.4)

νa,r (A) := r4−mν(a + rA) for every Borel set A ⊂ B1/r (0).

If for some sequence ri ↘ 0 we have convergence μa,ri ⇒ (u∗, ν∗) =: μ∗ for some map u∗ ∈ W 2,2 ∩ W 1,4(B2,N)

and a Radon measure ν∗ on B2, then we call μ∗ a tangent pair of the pair μ ∈ BΛ at the point a ∈ B1. For the family
of all tangent pairs of a given μ ∈ BΛ, we write

T(μ) := {
μ∗
∣∣ μa,ri ⇒ μ∗ for a sequence ri ↘ 0 and some a ∈ B1

}
and similarly, T(A) := {T(μ) | μ ∈ A} for subsets A ⊂ BΛ. At first we prove that the sets BΛ and MΛ are closed
under blow-up.

Lemma 6.5. There holds T(BΛ) ⊂ BΛ and T(MΛ) ⊂ MΛ.

Proof. For any pair μ = (u, ν) ∈ BΛ, respectively μ = (u, ν) ∈ MΛ, we choose a sequence ui ∈ W 2,2(B2,N) of
stationary, respectively minimizing biharmonic maps with (ui,0) ⇒ μ as i → ∞ and ‖D2ui‖2

M2
4
+‖Dui‖4

M4
4

� Λ for

all i ∈ N. Consider a tangent pair μ∗ ∈ T(μ), which means

μa,rn ⇒ μ∗, as n → ∞
for some sequence rn ↘ 0 and a ∈ B1. Since E2 is scaling invariant, the rescaled maps (ui)a,rn are stationary bihar-
monic for any sequence rn ↘ 0 and in the case μ ∈ MΛ, they are additionally minimizing biharmonic. Moreover,
there holds(

(ui)a,rn ,0
)
⇒ μa,rn, for all n ∈ N, as i → ∞.

Thus, a diagonal sequence argument yields a sequence {vi} ⊂ {(ui)a,rn} with

(vi,0) ⇒ μ∗, as i → ∞.

By the definition of the Morrey spaces, it is clear that ‖D2vi‖2
M2

4
+ ‖Dvi‖4

M4
4

� Λ. Thus, we have μ∗ ∈ BΛ, re-

spectively μ∗ ∈ MΛ, as desired. We point out that the choice of the diagonal sequence as above is possible since
the weak convergence of measures is metrizable, cf. [7, Lemma 14.13], and the weak topology in W 2,2(B2,N) and
W 1,4(B2,N) is metrizable on bounded subsets of these spaces. �

In the following lemma, we perform a double blow-up in order to simplify the situation to the case of a flat defect
measure.

Lemma 6.6. Assume that there is a pair μ = (u, ν) ∈ BΛ with ν�B1 �= 0. Then there exists a pair (c, ν̄) ∈ BΛ, where
c ∈ N denotes a constant map and

ν̄�B1 = CHm−4�(V ∩ B1) (6.5)

for a constant C > 0 and an (m − 4)-dimensional linear subspace V ⊂ R
m.

Moreover, if μ ∈ A for a subset A ⊂ BΛ that is closed under blow-up in the sense T(A) ⊂ A, then the above pair
can be chosen with (c, ν̄) ∈ A.

Proof. Since u ∈ W 2,2 ∩ W 1,4(B2,N), we know that for Hm−4-a.e. a ∈ B1,

lim
ρ↘0

ρ4−m

∫
B (a)

(∣∣D2u
∣∣2 + |Du|4)dx = 0, (6.6)
ρ
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cf. [20, Lemma 3.2.2]. Since by Lemma 6.3, the fact ν�B1 �= 0 is equivalent to Hm−4(Σμ) > 0, we may choose a
point a ∈ Σμ with the property (6.6). This property implies clearly that for any sequence ri ↘ 0, the rescaled maps
converge to some constant c ∈ N in the sense

ua,ri → c strongly in W 2,2
(
B2,R

K
)

and in W 1,4
(
B2,R

K
)
, as i → ∞.

By extracting a subsequence if necessary, we can thus assume that μa,ri ⇒ (c, ν∗) for some Radon measure ν∗ on
B2 as i → ∞, which means μ∗ := (c, ν∗) ∈ T(μ). After this first blow-up, we have achieved that r4−mν∗(Br(y)) is
monotonously nondecreasing in r ∈ (0,1] for every y ∈ B1, according to Lemma 6.4. Hence, the (m−4)-dimensional
density

Θm−4(ν∗, y) := lim
r↘0

r4−mν∗
(
Br(y)

)
exists for every y ∈ B1. Consequently, we can rewrite the definition of Σμ∗ in the way

Σμ∗ = {
y ∈ B1: Θm−4(ν∗, y) � ε0

}
.

Since we know ν∗(B1 \ Σμ∗) = 0 by Lemma 6.3, we conclude

0 < ε0 � Θm−4(ν∗, y) � Λ for ν∗-a.e. y ∈ B1.

Here, the bound from above follows from the fact (c, ν∗) ∈ BΛ. The above property implies the existence of an
(m−4)-flat tangent measure of ν∗, see [7, Theorem 14.18]. To be more precise, for ν∗-a.e. y ∈ B1, there is a sequence
ρj ↘ 0 with (ν∗)y,ρj

⇀ ν̄ in the sense of measures, where ν̄ = CHm−4 �V for an (m − 4)-dimensional subspace
V ⊂ R

m and a constant C > 0. This yields the desired pair (c, ν̄) ∈ T(T(μ)) ⊂ BΛ. �
6.3. Proof of Theorem 1.4

For the proof of the compactness theorem we will employ the following lemma, which provides an analogue of
radially constant extension in the setting of W 2,2-maps. It was proven in [13, Lemma 3.8].

Lemma 6.7. For 0 � σ < 1
2 and k,m ∈ N with 4 � k < m, we define tori T k

σ := {x ∈ R
m: [x] � σ }, where

[x] :=
[(

|x′| − 1

2

)2

+ |x′′|2
]1/2

for x = (x′, x′′) ∈ R
m−k × R

k.

For every σ ∈ (0, 1
8 ), there is a retraction Ψ ∈ C∞(T k

2σ \ T k
0 , T k

2σ \ T k
σ ) with Ψ = id and DΨ ≡ Id on ∂T k

2σ and the
estimates∣∣DΨ (x)

∣∣� Cσ

[x] ,
∣∣D2Ψ (x)

∣∣� Cσ

[x]2
and detDΨ (x) � cσ k

[x]k (6.7)

for all x ∈ T k
2σ \ T k

0 and constants c,C > 0 depending only on k and m. Here, id denotes the identity map on ∂T k
2σ

and Id the identity map on R
m.

Proof of Theorem 1.4. By rescaling, it suffices to prove that for any sequence wi = W 2,2-limj→∞ wij ∈
W 2,2(B4,N), where wij ∈ W 2,2(B4,N) are minimizing biharmonic maps, the property supi∈N(‖∇Dwi‖L2 +
‖Dwi‖L2) < ∞ implies that the sequence {wi} is strongly convergent in W 2,2(B1/2,R

K) and in W 1,4(B1/2,R
K),

after passing to a subsequence. The maps wi are stationary for E2 since the differential equation (3.1) remains valid
under strong W 2,2-convergence. Hence, Theorem 3.4 yields ‖D2wi‖2

M2
4 (B2)

+ ‖Dwi‖4
M4

4 (B2)
< Λ for a suitable con-

stant Λ > 0 and all i ∈ N. This implies (wi,0) ∈ MΛ for all i ∈ N, and we may assume that (wi,0) ⇒ (u, ν) as
i → ∞, where (u, ν) ∈ MΛ by a diagonal sequence argument. In order to show strong convergence for the se-
quence wi , it is thus sufficient to show ν�B1 = 0 for all pairs (u, ν) ∈ MΛ, compare Lemma 6.2.

We assume for contradiction that there is a pair (u, ν) ∈ MΛ with ν�B1 �= 0. Lemma 6.6, combined with
Lemma 6.5, yields a pair μ̄ := (c, ν̄) ∈ MΛ, where c ∈ N is constant and ν̄ is a measure with the property (6.5).
After a rotation, we can assume furthermore

ν̄�B1 = CHm−4�(Bm−4×{0})
1
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with a positive constant C. By the definition of MΛ, there is a sequence of minimizing biharmonic maps ui ∈ W 2,2 ∩
W 1,4(B2,N) with (ui,0) ⇒ (c, ν̄) as i → ∞. Since Σμ̄ = Bm−4

1 ×{0}, Lemma 6.2 yields the convergence

ui → c in C2
loc

(
Bm

1 \ (Bm−4
1 × {0}),N) as i → ∞. (6.8)

For an arbitrary σ ∈ (0, 1
8 ) we choose a cut-off function ϕ ∈ C∞(B1, [0,1]) with ϕ ≡ 0 on B(1−σ)/2 and ϕ ≡ 1 outside

of B(1+σ)/2. Moreover, we can choose ϕ in such a way that |Dϕ| � C
σ

and |D2ϕ| � C

σ 2 on B1. We apply the notation

of Lemma 6.7. Since the set {0 < ϕ < 1} \ T 4
σ has positive distance from the energy concentration set Bm−4

1 × {0}, we
infer from (6.8) that ui → c in C2-norm on the former set, as i → ∞. Hence, we may define

ṽi (x) := πN

(
c + ϕ(x)

(
ui(x) − c

))
for x ∈ B1 \ T 4

σ

if i ∈ N is chosen sufficiently large. Here, we write πN for the nearest-point retraction from a tubular neighborhood
of N onto itself. In the dimension m = 4, the above definition is even possible on all of B1, so that in this case the
construction is completed. In the case m > 4 however, we employ the retraction Ψ ∈ C∞(T k

2σ \ T 4
0 , T 4

2σ \ T 4
σ ) from

Lemma 6.7 for the definition

vi(x) :=
{

ṽi (x) for x ∈ B1 \ T 4
2σ ,

ṽi(Ψ (x)) for x ∈ T 4
2σ .

Note that the construction of Ψ ensures vi ∈ W 2,2(B1,N). In order to estimate E2(vi), we calculate, using ṽi = ui on
B1 \ B(1+σ)/2 and ṽi ≡ c on B(1−σ)/2,∫

B1\T 4
σ

|∇Dṽi |2 dx �
∫

B1\B1/2

|∇Dui |2 dx + C(N)

∫
{0<ϕ<1}\T 4

σ

[∣∣D2(ϕ(ui − c)
)∣∣2 + ∣∣D(ϕ(ui − c)

)∣∣4]dx (6.9)

and since ui → c in C2-norm on {0 < ϕ < 1} \ T 4
σ and Lm�|∇Dui |2 ⇀ ν̄ in the sense of measures, we conclude

lim sup
i→∞

∫
B1\T 4

σ

|∇Dṽi |2 dx � ν̄(B1 \ B1/2), (6.10)

where we used ν̄(∂(B1 \ B1/2)) = 0. Furthermore we estimate, using the properties (6.7) of Ψ ,∫
T 4

2σ

|∇Dvi |2 dx � C

∫
T 4

2σ

(|∇Dṽi ◦ Ψ |2|DΨ |4 + |Dṽi ◦ Ψ |2∣∣D2Ψ
∣∣2)dx

� C

∫
T 4

2σ

(|∇Dṽi ◦ Ψ |2 + σ−2|Dṽi ◦ Ψ |2)detDΨ dx

= C

∫
T 4

2σ \T 4
σ

(|∇Dṽi |2 + σ−2|Dṽi |2
)
dx. (6.11)

Using ṽi = ui on B1 \B(1+σ)/2 and ṽi ≡ c on B(1−σ)/2 as well as ui → c in C2-norm on {0 < ϕ < 1}\T 4
σ , we estimate

similarly as in (6.9) above

lim sup
i→∞

∫
T 4

2σ

|∇Dvi |2 dx � C lim
i→∞

∫
T 4

2σ

(|∇Dui |2 + σ−2|Dui |2
)
dx = Cν̄

(
T 4

2σ

)
(6.12)

by the convergence ui → c strongly in W 1,2(B1,R
K). Putting together (6.10) and (6.12) and using the minimizing

property of the maps ui , we arrive at

lim
i→∞

∫
B1

|∇Dui |2 dx � lim sup
i→∞

∫
B1

|∇Dvi |2 dx � ν̄(B1 \ B1/2) + Cν̄
(
T 4

2σ

)
< ν̄(B1)

for sufficiently small values of σ > 0. Since Lm�|∇Dui |2 ⇀ ν̄ in the sense of measures, we reached the desired
contradiction. �
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7. Dimension reduction for the singular set

We begin by introducing the notion of a tangent map for a given map u ∈ W 2,2(B2,N). We say that a map v ∈
W

2,2
loc (Rm,N) is a tangent map of u in a point a ∈ B1 if there are scaling factors ri ↘ 0 such that strong convergence

ua,ri → v holds in W
2,2
loc (Rm,N) and in W

1,4
loc (Rm,N), as i → ∞. Here, the rescaled maps ua,ri are defined according

to (6.4). We have the following theorem about the structure of tangent maps of minimizing biharmonic maps.

Theorem 7.1. Let N be a smooth, compact Riemannian manifold without boundary and m � 4. Suppose that
u ∈ M(B2) ⊂ W 2,2(Bm

2 ,N), where M(B2) denotes the closure of the set of minimizing biharmonic maps with re-

spect to the W 2,2-norm. Then for every a ∈ B1, there exists a stationary biharmonic tangent map v ∈ W
2,2
loc (Rm,N) of

u in the point a and every tangent map of u is homogeneous of degree zero. Moreover, for any given s � 0, at Hs -a.e.
point a ∈ sing(u), there is a tangent map v ∈ W

2,2
loc (Rm,N) of u with Hs(sing(v)) > 0.

Proof. For every a ∈ B1 and any sequence ri ↘ 0, the rescaled maps ua,ri satisfy

sup
i∈N

∫
B1

(|∇Dua,ri |2 + |Dua,ri |2
)
dx = sup

i∈N

r4−m
i

∫
Bri

(a)

(|∇Du|2 + r−2
i |Du|2)dx < ∞

by Corollary 3.3. Therefore, the existence of a tangent map v = limri↘0 ua,ri follows from the compactness Theo-
rem 1.4. Here, the convergence holds in W

2,2
loc and W

1,4
loc , which implies that the tangent map is stationary biharmonic.

In order to show that v is homogeneous of degree zero, we recall the monotonicity formula from Theorem 3.2,∫
BR\Br

( |∇∂Xv|2
|x|m−2

+ (m − 2)
|∂Xv|2
|x|m

)
dx = Φv(0,R) − Φv(0, r) (7.1)

for almost all 0 < r < R, where X(x) := x. From the strong convergence ua,ri → v, we conclude

Φua,ri
(0, ·) → Φv(0, ·) in L1[0,1], as i → ∞.

After passing to a subsequence, the convergence holds also almost everywhere, from which we deduce for a.e.
R ∈ (0,1]

Φv(0,R) = lim
i→∞Φua,ri

(0,R) = lim
i→∞Φu(a, riR) = lim

ρ↘0
Φu(a,ρ).

Here, the latter limit exists by the monotonicity of Φu. We conclude that Φv(0,R) does not depend on R, which
implies ∂Xv ≡ 0 by (7.1).

For the proof of the last claim, we employ [11, Theorem 3.6] to infer that for Hs -a.e. point a ∈ sing(u), we can
achieve

lim
i→∞ Hs∞

(
sing(ua,ri ) ∩ B1(0)

)= lim
i→∞ r−s

i Hs∞
(
sing(u) ∩ Bri (a)

)
� 2−sα(s) (7.2)

for a suitable sequence ri ↘ 0 and α(s) := �( 1
2 )s/�( s

2 + 1). Here,

Hs∞(A) := inf

{
α(s)

∑
j∈N

ρs
j

∣∣∣A ⊂
⋃
j∈N

Aj , diam(Aj ) � 2ρj

}

for every Borel set A ⊂ R
m. As shown above, we can assume ua,ri → v ∈ W

2,2
loc (Rm,N) in W

2,2
loc -topology, as i → ∞.

We choose an arbitrary cover U := ⋃
j∈N

Bj ⊃ sing(v) ∩ B1(0) of open balls Bj with radii ρj and claim that
sing(ua,ri ) ∩ B1(0) ⊂ U for sufficiently large i ∈ N. Assume that this is not the case, then after extracting a sub-
sequence there are points pi ∈ sing(ua,ri ) ∩ B1(0) for all i ∈ N with pi → p ∈ B1(0) \ sing(v) as i → ∞. Because p

is a regular point of v, we have for all sufficiently small ρ > 0

ρ4−m

∫
B (p)

(|∇Dv|2 + ρ−2|Dv|2)dx < 22−mε1 (7.3)
ρ
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with the constant ε1 > 0 from Theorem 5.1. For such a radius ρ and i > i0(ρ) large enough, there holds(
ρ

2

)4−m ∫
Bρ/2(pi )

(|∇Dua,ri |2 + 4ρ−2|Dua,ri |2
)
dx < ε1.

Theorem 5.1 yields pi /∈ sing(ua,ri ) in contradiction to the choice of pi . Thus, we have established the claim
sing(ua,ri ) ∩ B1(0) ⊂ U = ⋃

j Bj for all but finitely many values of i ∈ N. If we assume for contradiction that

Hs(sing(v)) = 0, then we can choose the cover
⋃

j Bj ⊃ sing(v) ∩ B1(0) in such a way that
∑

j ρs
j < 2−s . As a

consequence,

lim
i→∞ Hs∞

(
sing(ua,ri ) ∩ B1(0)

)
< 2−sα(s)

in contradiction to (7.2). We conclude Hs(sing(v)) > 0, as claimed. �
In the following lemma we prove that the tangent maps arising in Federer’s dimension reduction argument are in

fact minimizing. For this we apply a comparison argument similar to the one in Section 6.3.

Lemma 7.2. Suppose that v̂ ∈ W
2,2
loc (Rm,N) is a tangent map of a minimizing biharmonic map with sing(v̂) = R

m−k ×
{0} for some 5 � k � m and ∂i v̂ ≡ 0 for 1 � i � m − k. Then the restriction v := v̂|{0}×Rk ∈ C∞(Rk \ {0},N) is
minimizing biharmonic and homogeneous of degree zero.

Proof. The homogeneity of v is a consequence of Theorem 7.1. We abbreviate Z1 := Bm−k
1 × Bk

1 and observe
that, since v is a tangent map of the minimizing map u, there are minimizing biharmonic maps vi ∈ W 2,2(Z1,N)

with vi → v̂ strongly in W 2,2(Z1,R
K) and in W 1,4(Z1,R

K), as i → ∞. Additionally, we can assume vi → v̂ in
C2

loc(Z1 \ (Bm−k
1 ×{0}),N), according to Theorem 6.2 and since sing(v̂) = R

m−k ×{0}. The homogeneity of v makes

it sufficient to consider comparison maps w ∈ W
2,2
loc (Rk,N) with w = v outside of Bk

1 . As in Lemma 6.7, we consider
tori T k

σ := {x ∈ R
m: [x] � σ } for σ ∈ [0, 1

2 ), where

[x] :=
[(

|x′| − 1

2

)2

+ |x′′|2
]1/2

for x = (x′, x′′) ∈ R
m−k × R

k.

For an arbitrary σ ∈ (0, 1
16 ), we choose a cut-off function ϕ ∈ C∞(Z1, [0,1]) with ϕ ≡ 0 on B1/2−σ , ϕ ≡ 1 on

Z1 \ B1/2+σ , as well as |Dϕ| � C
σ

and |D2ϕ| � C

σ 2 . Then the map wσ (x′, x′′) := w(σ−1x′′), defined for (x′, x′′) ∈
R

m−k × R
k , satisfies wσ = v̂ on R

m \ (Rm−k × Bk
σ ), in particular wσ = v̂ on {0 < ϕ < 1} \ T k

2σ . Because vi → v̂ in
C2({0 < ϕ < 1} \ T k

2σ ,N), we may define

w̃i := πN

(
wσ + ϕ(vi − wσ )

)
on Z1 \ T k

2σ

for large values of i ∈ N, where πN denotes the nearest-point retraction onto N . For k = m, the above definition
is actually possible on all of Z1 and yields an admissible comparison map for vi . In the case k < m, we choose a
retraction Ψ ∈ C∞(T k

4σ \ T k
0 , T k

4σ \ T k
2σ ) as in Lemma 6.7 and define

wi :=
{

w̃i on B1 \ T k
4σ ,

w̃i ◦ Ψ on T k
4σ .

By the choice of Ψ , this defines a map wi ∈ W 2,2(Z1,N), compare Lemma 6.7. Since ϕ ≡ 0 on B1/2−σ , we have

w̃i = wσ on
(
Bm−k

1/2 × Bk
σ

) \ T k
2σ . (7.4)

Using vi → v̂ in W 2,2(Z1,R
K) and in W 1,4(Z1,R

K) as i → ∞, together with wσ = v̂ on R
m \ (Rm−k × Bk

σ ), we
deduce furthermore

w̃i → v̂ on
(

Z1 \ (Bm−k
1/2 × Bk

σ

)) \ T k
2σ (7.5)

with respect to the W 2,2-norm, as i → ∞. From this we infer the following estimate, where we write α(m − k) for
the volume of Bm−k .
1
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lim sup
i→∞

∫
Z1\T k

2σ

|∇Dw̃i |2 dx �
∫

Z1\(Bm−k
1/2 ×Bk

σ )

|∇Dv̂|2 dx +
∫

Bm−k
1/2 ×Bk

σ

|∇Dwσ |2 dx

= α(m−k)

∫
Bk

1

|∇Dv|2 dx + α(m−k)

2m−k

∫
Bk

σ

(|∇Dwσ |2 − |∇Dv|2)dx. (7.6)

Using the properties (6.7) of Ψ , we can estimate similarly as in (6.11)∫
T k

4σ

|∇Dwi |2 dx � C

∫
T k

4σ

(|∇Dw̃i ◦ Ψ |2 + σ−2|Dw̃i ◦ Ψ |2)( [x]
σ

)k−4

detDΨ dx

� C

∫
T k

4σ \T k
2σ

(|∇Dw̃i |2 + σ−2|Dw̃i |2
)
dx.

Keeping in mind (7.4) and (7.5), we arrive at

lim sup
i→∞

∫
T k

4σ

|∇Dwi |2 dx � C

∫
T k

4σ

(|∇Dv̂|2 + σ−2|Dv̂|2 + |∇Dwσ |2 + σ−2|Dwσ |2)dx.

By the homogeneity of v̂, the definition of wσ and by the inclusion T k
4σ ⊂ (Bm−k

1/2+4σ \ Bm−k
1/2−4σ ) × Bk

4σ , we can thus
estimate

lim sup
i→∞

∫
T k

4σ

|∇Dwi |2 dx � Cσ

∫
Bk

4σ

(|∇Dv|2 + σ−2|Dv|2 + |∇Dwσ |2 + σ−2|Dwσ |2)dx

= Cσk−3
∫
Bk

4

(|∇Dv|2 + |Dv|2 + |∇Dw|2 + |Dw|2)dx =: I. (7.7)

By the minimizing property of the vi , we conclude

α(m − k)

∫
Bk

1

|∇Dv|2 dx =
∫

Z1

|∇Dv̂|2 dx � lim sup
i→∞

∫
Z1

|∇Dwi |2 dx

� α(m − k)

∫
Bk

1

|∇Dv|2 dx + α(m − k)

2m−k

∫
Bk

σ

(|∇Dwσ |2 − |∇Dv|2)dx + I,

where we used (7.6) and (7.7) in the last step. As a result of the above estimate, we get∫
Bk

1

(|∇Dw|2 − |∇Dv|2)dx = σ 4−k

∫
Bk

σ

(|∇Dwσ |2 − |∇Dv|2)dx � −Cσ 4−kI

= −Cσ

∫
Bk

4

(|∇Dv|2 + |Dv|2 + |∇Dw|2 + |Dw|2)dx.

Since the last term can be made arbitrarily small by choosing σ > 0 small enough, we conclude∫
Bk

1

|∇Dv|2 dx �
∫
Bk

1

|∇Dw|2 dx,

which is the stated minimality of v. �
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Having established Theorem 7.1 and Lemma 7.2, the remainder of the proof of Theorem 1.3 is a standard appli-
cation of Federer’s dimension reduction argument (see e.g. [11, Theorem A.4]). We do no repeat it here in detail, but
give only the

Sketch of the proof of Theorem 1.3. Assume for contradiction that there is a minimizing biharmonic map u ∈
W 2,2(Ω,N) with H- dim(sing(u)) > m − 5. Then, Theorem 7.1 enables us to linearize the singular set by taking
tangent maps repeatedly. More precisely, we can construct a stationary biharmonic tangent map v ∈ W

2,2
loc (Rm,N) with

H- dim(sing(v)) > m − 5, for which sing(v) is a linear subspace of R
m. This clearly contradicts Hm−4(sing(v)) = 0

by Corollary 5.2.
Furthermore, if there is a minimizing biharmonic map u ∈ W 2,2(Ω,N) with m − k − 2 < H- dim(sing(u)) �

m − k − 1, then the same blow-up construction as above yields a tangent map v̂ ∈ W
2,2
loc (Rm,N) that is homogeneous

of degree zero, satisfies ∂i v̂ ≡ 0 for 1 � i � m − k − 1 and sing(v̂) = R
m−k−1 × {0}. Applying Lemma 7.2, we infer

that v := v̂|{0}×Rk+1 ∈ C∞(Rk+1 \ {0},N) is minimizing biharmonic. Furthermore, v is homogeneous of degree zero
and sing(v) = {0}, which implies in particular that v is not constant. Thus, we can reduce the dimension of the singular
set further if tangent maps with the above properties do not exist. �
8. The minimality of the map x

|x|

In this section we prove, as stated in Proposition 1.5, that the map u0 : Bm → Sm−1, x �→ x
|x| is minimizing

intrinsically biharmonic for m � 5. We point out that u0 ∈ W 2,2(Bm,Sm−1) if and only if m � 5. For the proof,
we employ the Null-Lagrangians introduced in [2] for the proof that u0 minimizes the functional

∫
Bm |Du|4 dx. In

contrast to the mentioned work, we will estimate these Null-Lagrangian with Maclaurin’s inequality between the
fourth and second elementary symmetric polynomial, which reads as follows (see e.g. [5, Theorem 52]). For all
numbers λ1, . . . , λm−1 � 0, there holds(

m − 1

4

)−1 ∑
1�i1<···<i4�m−1

λi1 . . . λi4 �
(

m − 1

2

)−2( ∑
1�i<j�m−1

λiλj

)2

. (8.1)

Proof of Proposition 1.5. Let u ∈ W 2,2(Bm,Sm−1) be an arbitrary map with u ∈ u0 + W
2,2
0 (Bm,R

m). We point out
that Nirenberg interpolation implies u ∈ W 1,4(Bm,Sm−1). Denoting the Levi-Civita connection of Sm−1 by ∇ , we
observe

|∇Du|2 = ∣∣D2u
∣∣2 − |Du ⊗ Du|2 and

∣∣trace(∇Du)
∣∣2 = |�u|2 − |Du|4.

Therefore, one checks by two integrations by part that E2(u) differs from∫
Bm

(∣∣trace(∇Du)
∣∣2 + |Du|4 − |Du ⊗ Du|2)dx

only by boundary terms, which are determined by the fixed boundary data. Since u0 ∈ W 2,2(Bm,Sm−1) is a harmonic
map, there holds | trace(∇Du0)| ≡ 0. Thus, it suffices to show that u0 minimizes the functional

H(u) :=
∫

Bm

(|Du|4 − |Du ⊗ Du|2)dx

in the class W 2,2(Bm,Sm−1) ∩ (u0 + W
2,2
0 (Bm,R

m)). We calculate

H(u) =
∫

Bm

[
|Du|4 −

m∑
i=1

m∑
α,β=1

(
∂αui∂βui

)2]
dx =

∫
Bm

[(
m∑

i=1

∣∣Dui
∣∣2)2

−
m∑

i=1

∣∣Dui
∣∣4]dx

= 2
∑

1�i<j�m

∫
m

∣∣Dui
∣∣2∣∣Duj

∣∣2 dx =:
∫
m

h(u)dx.
B B
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Following [2], we define for every subset I ⊂ {1, . . . ,m}

ωI (u) := dα1 ∧ · · · ∧ dαm, where αi :=
{

ui if i ∈ I,

xi if i /∈ I,

and

Λ(u) :=
∑
|I |=4

ωI (u).

Since ωI (u) = d(α1dα2 ∧ · · · ∧ dαm), the theorem of Stokes yields∫
Bm

Λ(u) =
∫

Bm

Λ(u0) for all u ∈ u0 + W
1,4
0 (Bm,R

m
)
.

We claim that for all u ∈ W 2,2(Bm,Sm−1), there holds

Λ(u) � (m − 3)(m − 4)

24
h(u) on Bm. (8.2)

Applying a rotation, it suffices to prove this inequality for the case u(x) = e := (0, . . . ,0,1) ∈ R
m. Since ∂αu(x) ∈

TeS
m−1 for all 1 � α � m, we conclude that Dum(x) ≡ 0. Using the inequality of Hadamard and (8.1), we estimate

in the point x

Λ(u) �
∑

1�i1<···<i4�m−1

∣∣Dui1
∣∣ ∣∣Dui2

∣∣ ∣∣Dui3
∣∣ ∣∣Dui4

∣∣

�
(

m − 1

4

)(
m − 1

2

)−2( ∑
1�i<j�m−1

∣∣Dui
∣∣ ∣∣Duj

∣∣)2

�
(

m − 1

4

)(
m − 1

2

)−1 ∑
1�i<j�m−1

∣∣Dui
∣∣2∣∣Duj

∣∣2,
where we applied the Cauchy–Schwarz inequality in the last step. This implies the claim (8.2). On the other hand,
one checks that h(u0)(x) = 2

|x|4
(
m−1

2

)
and Λ(u0)(x) = 1

|x|4
(
m−1

4

)
for all x ∈ Bm. Hence, for u = u0 we have equality

in (8.2). This completes the proof since

H(u0) = 24

(m − 3)(m − 4)

∫
Bm

Λ(u0) = 24

(m − 3)(m − 4)

∫
Bm

Λ(u) � H(u). �
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